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Overset Grid Motivation

• Advantages of finite elements
– Extendable to high-order accuracy
– Stencil is contained inside the element

• Benefits for overset grid schemes
– Minimal grid overlapping required
– Facilitates hole cutting
– Curved geometry poses minimal difficulties



Outline

• Governing equations
• Overset methodology
• Hole cutting
• Results

– Manufactured solutions
– Steady turbulent flow
– Unsteady moving boundary
– Relative motion between two bodies

• Conclusion



Governing Equations

• Weighted intergral form of compressible Navier-Stokes 
equations with Spalart-Allmaras turbulence model

• Convective flux on dynamic grids

• SUPG used in defining weighting function

• Utilizing integration by parts the weak form becomes
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Overset Methodology

• Overset problems appear as boundary conditions

Example of overset problem of an airfoil



Discretization
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Hole Cutting

• Hole cutting includes two steps
– Identify invalid cells
– Selection among valid cells

Airfoil 1

Example of 2 airfoil overset grids

Grid-1 Grid-2

Airfoil-1

Airfoil-2 Airfoil-2

Airfoil-1



Identify Invalid Cells

• On Grid-1, determine location of Airfoil-2. Cells in Grid-1 that 
intrude or lie inside of Airfoil-2 are invalid, and need to be 
removed from domain. Repeat procedure on Grid-2 for Airfoil-1.

• Direct wall cut is used to identify invalid cells

Grids after direct wall cut (all invalid cells removed) 
Grid 1 Grid 2



Select Among Valid Cells

• To minimize grid overlapping, among the valid cells, certain 
cells are selected for simulation, the remainder are removed.

• No definitive selection process. Three approaches are 
explored:
– Existing Implicit Hole Cutting (IHC) method
– Proposed modified Implicit Hole Cutting method  
– Novel Elliptic Hole Cutting (EHC) method



Original IHC
• Developed by Lee & Baeder, 2008
• A cell select process based on cell-quality

– Each grid node is viewed as a sampling point
– For each sampling point, all cells that contain it are 

identified
– Among the list of cells, the one with highest cell-quality is 

kept, then remainders are removed
• cell-quality is a user-defined grid metric (inverse of cell 

volume, aspect ratio, and so on...)
• User can manually specify cell-quality of some cells to 

influence selection process
• User does not have to specify grid priority
• However, if no grid priority is specified, selected cells may 

NOT be distributed "continuously"



Original IHC

• Cell-quality defined as the inverse of cell volume
• Smallest cells are selected across the whole domain
• High cell-quality does not gurantee a high-quality overset mesh. "Continuity" 

of cell selection is often more important

Mesh after original IHC



Modified IHC

• Introduce grid priority-factor in favor of mesh "continuity"

• Use original IHC to provide an initial cell selection
• In one cell selection iteration

– Loop over each sampling point
• Recalculate grid priority-factor for each grid at that sampling 

point. Higher priority-factor is given to the grid that is 
selected by more neighboring sampling points

• The cell with the highest priority-factor*cell-quality is selected  
at that sampling point

• The process iterates until the cell selection stops changing
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Modified IHC

After 5 cell-selection iterationAfter 1 cell-selection iteration

Cell selection using modified IHC (original IHC is used to provide the initial selection)



Elliptic Hole Cutting

• New approach. Details in final updated paper
• Solve a Poisson equation on each grid. Select the cells with 

the highest pseudo temperature.

• Boundary conditions
– Invalid nodes are set to minimum value (T= -1)
– Nodes that must be selected (i.e. nodes in non-overlap 

regions) are set to maximum value (T= 1)
– Overset boundaries (before hole cutting) are treated as 

adiabatic wall (Tn= 0)
• No need to solve the exact Poisson problems
• No need for the solutions to fully converge

2T f 



Elliptic Hole Cutting

• Choices of source term
– In favor of cell-quality

where c is cell-quality
– In favor of specific grids

– Other choices of source term possible
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Elliptic Hole Cutting

Grid 1 Grid2

Boundary conditions for Poisson equations on each grid

Tn= 0

T= 1

T= -1

T= 1

T= -1



Elliptic Hole Cutting

Grid 1 Grid2

Source term for the Poisson problems in favor of cell-quality



Elliptic Hole Cutting

Grid 1 Grid 2

Solution of Poisson problems



Elliptic Hole Cutting

Final mesh 3D view of Poisson solution



Comparison of Hole Cutting

16 airfoil-grids overlapping on a background grid



Comparison of Hole Cutting

Original IHC Modified IHC
Original and modified Implicit Hole Cutting



Comparison of Hole Cutting

In favor of cell quality In favor of airfoil grids

Elliptic Hole Cutting using different source terms



Advantages of Elliptic Hole Cutting

• Automation, does not require user input, yet the "continuity" of 
cell selection is still guaranteed by the smoothness of the 
Poisson solutions

• Users still have the freedom to influence cell selection 
process (in favor of cell quality, specific grids, etc…) by 
devising different source terms, or even different boundary 
conditions
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Manufactured Solutions

• The Method of Manufactured Solution (MMS) is a general 
procedure for generating nontrivial exact solutions to PDEs

• Accuracy of the SUPG overset scheme is assessed using 
MMS based on a comprehensive set of guidelines



Manufactured Solutions

• MMS for both inviscid and laminar (Re=100) equations are 
performed to assess accuracy

• The  following trigonometric functions are used to derive 
forcing functions and boundary conditions

– correspond to the free stream condition of 

– correspond to cosine and sine of 0◦, 40◦, 80◦, and 120◦
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Manufactured Solutions

Temperature on coarsest meshes, laminar, P3 elements



Manufactured Solutions

Temperature, invisicd Temperature, laminar
Order of accuracy for inviscid and laminar flow
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Steady Turbulent Flow

60.2, 2 ,Re 10M    

Free stream condition

Spalart-Allmaras  turbulent model
y+ of wall spacing is 1



Steady Turbulent Flow

Single grid Zero-layer non-matched 
overset grid

Multi-layer overlapping 
overset grid

Grids used in simulations



Steady Turbulent Flow

P1 elements P2 elements P3 elements

X-velocity profile at x=0.24 and 0.32
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Sinusoidally Oscillating Airfoil

• Benchmark case for dynamic mesh code validation 
• Free stream 
• NACA0012 airfoil pitch about its quarter chord
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Sinusoidally Oscillating Airfoil

• Inviscid. P1 elements
• Multiple layers of overlap, grids generated a priori
• Grid moves as a rigid body. Analytical grid velocities are used
• For overset simulation, background grid is stationary, only 

airfoil grid is moving

Single grid Overset grids Global view of overset 
grids



Sinusoidally Oscillating Airfoil

Time history of coefficient of lift



Sinusoidal Pitch and Plunge Airfoil

• Free stream
• NACA0012 Airfoil pitch about its quarter chord, and plunge
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Sinusoidal Pitch and Plunge Airfoil

Time history of coefficient of lift
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Relative Motion Between Two Bodies

• Inviscid simulation
• Demonstration of dynamic hole cutting
• Free stream 
• Airfoil is stationary. Triangle wedge moves upstream at
• Non-dimensional chord length = 1
• Non-dimensional time step = 0.05
• Modified IHC is used

0.1, 0M    

0.1M 



Relative Motion Between Two Bodies

t=3                                     t=20                                         t=34                              t=43
Grids (after hole cutting) and entropy contour
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Conclusion for Overset Grids

• Development of a novel hole cutting procedure: Elliptic Hole 
Cutting

• Demonstrated that the design order of accuracy of the method 
is retained using the method of manufactured solutions

• Demonstrated the method for steady-turbulent and for 
dynamic moving boundary simulations

• First implementation of a high-order SUPG overset grid 
scheme
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Motivation

• Streamline/Upwind Petrov-Galerkin (SUPG) scheme:

 For  lower polynomial degrees, requires significantly less 

computational resources.

 Great potential to be enhanced by adaptation.

Forth order PG Forth order DG
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• H-adaptation
• P-adaptation
• Hp-adaptation 
 Smoothness indicator  

[Persson and Peraire]

• Non-conformal refinement
• Constraint approximation

Mesh Modification Mechanisms

Discretization error:

Initial Mesh H-Adaptation P-Adaptation

Hanging nodes
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Discretization
• Tessellation: 

Top view Iso-view

• Nodal-piecewise construction:



(Integration by Parts)

• For SUPG scheme:

Discretization

Weight Function

Galerkin Part Stabilization Part

• Weighted residual form:



Discretization

• Using BDF2 method:

• Using Newton method:

• GMRES method with ILU(k) preconditioning.

• Semi-discrete formulation: 



Constraint Approximation



Constraint Approximation



Constraint Approximation



Constraint Approximation

Constraint info.

,
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Feature-Based Methods

• Aim to capture regions with distinguishing flow features.
• Usually use the gradients of the flow variables.
• Considered as error indicators.

• Pros
 Simplicity.
 Cost efficiency

• Cons
 Ad-hoc nature. May converge to the incorrect solution.

• Still used particularly for transient problems.

Adaptation Criteria



Adjoint-Based Methods

• Target a specific functional output f (usually in the integral form).
• Provide error estimations.

• Pros
 A prescribed precision is ensured.
 The obtained sensitivity data can also be utilized for design and 

optimization.

• Cons
 Costly  Feasible for steady-state flows.
 Difficult to implement.

Adaptation Criteria



Adjoint-Based Methods

1. Adaptation parameter 1:
 Adapts the mesh to reduce flow residual

2. Adaptation parameter 2 [Venditti and Darmofal]:
 Adapts the mesh to reduce both flow and adjoint residuals

Adaptation Criteria
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Numerical Results

• Steady-State Cases:

1. Adjoint-based h-, p-, and hp-adaptation for steady inviscid flow 

over a four element airfoil

2. Adjoint-based h-adaptation for steady turbulent flow over a three 

element airfoil

• Unsteady Case:

3. Dynamic feature-based h- and p-adaptation for laminar flow over a 

cylinder



Adjoint-Based Adaptation for Steady State Flow
over a Four Element Airfoil

• Flow conditions:

 Inviscid

 Mach = 0.2 

 Angle of attack = 0 o

• Initial mesh:

 1251 nodes

• Functional output: 

 Lift coefficient

• Purpose: 

 Quantitative comparison of  h-, p-, and hp-adaptations 



Case Study Adjoint Adaptation 
Parameter Adjoint Estimation

Uniform-h-refinement - -

H-adaptation-setting-1 1st Low order Prolongation

H-adaptation-setting-2 1st High order Prolongation

H-adaptation-setting-3 1st Exact Solution

H-adaptation-setting-4 2nd High and Low order 
Prolongations

P-adaptation 1st Exact Solution

Hp-adaptation-setting-1 1st Exact Solution

Hp-adaptation-setting-2  (h) 1st Exact Solution

Inviscid Flow over Four Element Airfoil



Inviscid Flow over Four Element Airfoil

Mach number and streamlines X-momentum component 
of discrete adjoint

Target Solution : CL= 5.0200
 Asymptotic value obtained from h-adaptation on P2 elements
 Tolerance within 1.e-4



Inviscid Flow over Four Element Airfoil

Final h-adapted mesh (setting 3) Close-up view



Inviscid Flow over Four Element Airfoil



Inviscid Flow over Four Element Airfoil



P-Adaptation

Inviscid Flow over Four Element Airfoil



Hp-Adaptation

Inviscid Flow over Four Element Airfoil



Inviscid Flow over Four Element Airfoil



Prandtl-Glauert Correction:

Inviscid Flow over Four Element Airfoil



Adjoint-Based Adaptation for Steady State 
Turbulent Flow over a Three Element Airfoil

• Flow conditions:

 Turbulent (Re = 9E+6)

 Mach = 0.2 

 Angle of attack = 16.2 o

• Initial mesh:

 38973 nodes

• Functional output: 

 Lift coefficient

• Purpose: 

 Capability assessment for turbulent flows with complex geometries



Turbulent Flow over a Three Element Airfoil

X-momentum component of discrete adjoint



Turbulent Flow over a Three Element Airfoil

Convergence of the lift coefficient



Turbulent Flow over a Three Element Airfoil

Final h-adapted mesh Close-up view



Turbulent Flow over a Three Element Airfoil

Flap cove and flap Slat and leading edge



Turbulent Flow over a Three Element Airfoil



Turbulent Flow over a Three Element Airfoil

Comparison of surface pressures



Feature-Based Adaptation for Vortex Shedding 
Flow over a Cylinder

• Flow conditions:
 Laminar (Re = 100)
 Mach = 0.2 

• Adaptation parameter: 
 Magnitude of velocity gradient

• Purpose:  Capability assessment for dynamic adaptation

• Studied cases:

 Case 1: uniform P1 elements

 Case 2: uniform P2 elements

 Case 3: h-adaptation on P1 elements. Max. refinement layer  = 3

 Case 4: p-adaptation using P1 to P3 elements



Dynamic Adaptation on Vortex Shedding Flow



Case 1: Uniform P1 elements Case 2: Uniform P2 elements

Case 3: h-adaptation on P1 elements Case 4: p-adaptation using P1 to P3

Dynamic Adaptation on Vortex Shedding Flow
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• A dynamic adaptation technique has been successfully coupled 
with a higher order (SUPG) finite-element scheme. 

• The problem of hanging nodes has been addressed by 
constraint approximation method. 

• The advantage of the method is that it can be implanted simply 
by adding a condensation step to an existing SUPG or any 
other continuous Galerkin method.
Particularly important for multi-disciplinary simulations.

• Method is applicable to 3D.

Conclusions for Adaptive Meshing



• Numerical results have been shown for both steady state and 
unsteady problems. 

• In steady-state problems, adjoint-based adaptation has been 
employed for both inviscid and turbulent flows. 

• In unsteady problems, feature-based adaptation has been 
employed for a laminar flow. 

• Functioning of refinements and derefinement mechanisms 
were verified in h- and p- and hp-adaptations.

• In all cases, the adapted solutions improved the solution’s 
accuracy.

Conclusions for Adaptive Meshing


