e UNIVERSITY of TENNESSEE at CHATTANOOGA

SIMCENTER

\JALLILVILIN_J11 N\

NATIONAL CENTER
for COMPUTATIONAL

LNICOINTEER INY
IOIN\JLINLIIUINLIING

Overset and Adaptive Meshes for
Stabilized Finite-Element Scheme

W. Kyle Anderson, Behzad Ahrabi, and Chao Liu
2014 CFD Summer School
Modern Techniques for Aerodynamic Analysis and Design
Beljing Computational Sciences Research Center
July 7-11, 2014




Source of Material

 Liu, C., Newman, J., and Anderson, K., “A Streamline/Upwind
Petrov-Galerkin Overset Grid Scheme for the Navier-Stokes
Equations with Moving Domains,” AlIAA-2014-2980, paper
presented at 32"d AIAA Applied Aerodynamic Conference,
Atlanta, GA, June 16-20, 2014.

 Ahrabi, B.R., Anderson, W.K., and Newman, J., “High-Order
Finite-Element Method and Dynamic Adaptation for Two-
Dimensional Laminar and Turbulent Navier-Stokes,” AIAA-
2014-2983, paper presented at 32"d AIAA Applied
Aerodynamic Conference, Atlanta, GA, June 16-20, 2014.

SIMCENTER rius UNIVERSITY of TENNESSEE at CHATTANOOGA
NATIONAL CENTER for COMPUTATIONAL ENGINEERING e



Overset Grid Motivation

* Advantages of finite elements
— Extendable to high-order accuracy
— Stencil is contained inside the element
» Benefits for overset grid schemes
— Minimal grid overlapping required
— Facilitates hole cutting
— Curved geometry poses minimal difficulties
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Governing Equations

Weighted intergral form of compressible Navier-Stokes
equations with Spalart-Allmaras turbulence model

Ig’)[—w Q)—FV(Q,VQ))—S(Q,VQ)}dQ=o

Convective flux on dynamic grids
F,=F,-V,Q
SUPG used in defining weighting function
=[N]+[P]
Utilizing integration by parts the weak form becomes

0 _ ~
aiN QdQ-jVN (F.-F,) dQ+mN (R=F)ndT o dary terms

—jNSdma—j[P]Qdmj[P]( ~-F,)-$)dQ=0
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Overset Methodology

» Overset problems appear as boundary conditions

\

Example of overset problem of an airfoil
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Discretization

Convective flux viewed as Riemann problem
F.-n=F(Q_)-n+F, (Qg)-n van Leer flux

F

\Y

=2(R Q¥R 1+F (QuvQ,) 1)
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Q.,VQ, are obtained locally
Q;.VQ, are interpolated from donor cell
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Hole Cutting

« Hole cutting includes two steps
— ldentify invalid cells
— Selection among valid cells

Example of 2 airfoil overset grids
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Identify Invalid Cells

 On Grid-1, determine location of Airfoil-2. Cells in Grid-1 that
Intrude or lie inside of Airfoil-2 are invalid, and need to be
removed from domain. Repeat procedure on Grid-2 for Airfoil-1.

« Direct wall cut is used to identify invalid cells

WEVIIVE

I

T

Grid 1 Grid 2
Grids after direct wall cut (all invalid cells removed)
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Select Among Valid Cells

To minimize grid overlapping, among the valid cells, certain
cells are selected for simulation, the remainder are removed.

No definitive selection process. Three approaches are
explored:

— Existing Implicit Hole Cutting (IHC) method
— Proposed modified Implicit Hole Cutting method
— Novel Elliptic Hole Cutting (EHC) method
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Original IHC

Developed by Lee & Baeder, 2008
A cell select process based on cell-quality
— Each grid node is viewed as a sampling point
— For each sampling point, all cells that contain it are
identified
— Among the list of cells, the one with highest cell-quality is
kept, then remainders are removed

cell-quality is a user-defined grid metric (inverse of cell
volume, aspect ratio, and so on...)

User can manually specify cell-quality of some cells to
Influence selection process

User does not have to specify grid priority

However, if no grid priority is spec:lfled selected cells may
NOT be distributed "continuously"
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Original IHC

Pay \\;'7_1,/ \ T | ‘I‘

/ S

Mesh after original IHC
o Cell-quality defined as the inverse of cell volume

e Smallest cells are selected across the whole domain

« High cell-quality does not gurantee a high-quality overset mesh. "Continuity"
of cell selection is often more important
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Modified IHC

Introduce grid priority-factor in favor of mesh "continuity”
n(iGrid)—n,,,
N

priority _ factor(iGrid) =1+C
max — Nimin
Use original IHC to provide an initial cell selection
In one cell selection iteration

— Loop over each sampling point

» Recalculate grid priority-factor for each grid at that sampling
point. Higher priority-factor is given to the grid that is
selected by more neighboring sampling points

» The cell with the highest priority-factor*cell-quality is selected
at that sampling point

The process iterates until the cell selection stops changing
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Modified IHC
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After 1 cell-selection iteration After 5 cell-selection iteration

Cell selection using modified IHC (original IHC is used to provide the initial selection)
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Elliptic Hole Cutting

New approach. Details in final updated paper

Solve a Poisson equation on each grid. Select the cells with
the highest pseudo temperature.

VT =f

Boundary conditions
— Invalid nodes are set to minimum value (T=-1)

— Nodes that must be selected (i.e. nodes in non-overlap
regions) are set to maximum value (T= 1)

— Overset boundaries (before hole cutting) are treated as
adiabatic wall (T,,= 0)

No need to solve the exact Poisson problems

No need for the solutions to fully converge
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Elliptic Hole Cutting

e Choices of source term
— In favor of cell-quality

C— CIocal_min

—C

f="f +

global_min ( 1:global_max _ 1cglobal_min)

C

local_max

where c is cell-quality
— In favor of specific grids

local_min

max

f for other grids

min

. {f for prefered grids

— Other choices of source term possible
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Elliptic Hole Cutting

T=-1

T=-1
Grid 1 Grid2

Boundary conditions for Poisson equations on each grid
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Elliptic Hole Cutting

-
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Pa.

Grid 1 Grid2

Source term for the Poisson problems in favor of cell-quality
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Elliptic Hole Cutting

Grid 1 Grid 2

Solution of Poisson problems
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Elliptic Hole Cutting
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Comparison of Hole Cutting
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Comparison of Hole Cutting

In favor of cell quality In favor of airfoil grids

Elliptic Hole Cutting using different source terms
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Advantages of Elliptic Hole Cutting

« Automation, does not require user input, yet the "continuity" of
cell selection is still guaranteed by the smoothness of the
Poisson solutions

e Users still have the freedom to influence cell selection
process (in favor of cell quality, specific grids, etc...) by

devising different source terms, or even different boundary
conditions
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Manufactured Solutions

 The Method of Manufactured Solution (MMS) is a general
procedure for generating nontrivial exact solutions to PDESs

e Accuracy of the SUPG overset scheme is assessed using
MMS based on a comprehensive set of guidelines
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Manufactured Solutions

 MMS for both inviscid and laminar (Re=100) equations are
performed to assess accuracy

 The following trigonometric functions are used to derive
forcing functions and boundary conditions

p = p,{1+0.2cos[z(c,x—s,y)]+0.2cos|z(c,x + 5,y )]}
u=u,{1+0.2cos[z(c,x—s,y +0.1)] +0.2cos|z(c,x + s,y + 0.1)]}
v=v,{1+0.2cos[z(c,x — S,y —0.1)] + 0.2cos|z(c,x + s,y + 0.1)]}
T =T, {1+0.2cos[z(c,x -,y —0.1)] +0.2cos|z(c,x +s,y —0.1)]}
— Py Uy, Yy, T, correspond to the free stream condition of
M=02a=15
— ¢, correspond to cosine and sine of 07, 40, 80°, and 120°
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Manufactu red Solutions
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Temperature on coarsest meshes, laminar, P3 elements
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Manufactured Solutions
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Steady Turbulent Flow

Free stream condition
M_=02a, =2",Re=10°

Spalart-Allmaras turbulent model

y+ of wall spacing is 1
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Steady Turbulent Flow

6 7 " To2 " 7 Toa” T Toe T To08

Single grid Zero-layer non-matched Multi-layer overlapping
overset grid overset grid

Grids used in simulations
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Steady Turbulent Flow
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Sinusoidally Oscillating Airfoll

 Benchmark case for dynamic mesh code validation
 Free stream M, =06,a, =0
« NACAOQO012 airfoil pitch about its quarter chord
a(t)=a, +a, sin(2kM _t)
where ¢, =2.89°, ¢, =2.41°,k = 0.0808
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Sinusoidally Oscillating Airfoil

e Inviscid. P1 elements
« Multiple layers of overlap, grids generated a priori
« Grid moves as a rigid body. Analytical grid velocities are used

* For overset simulation, background grid is stationary, only
airfoil grid is moving

VAN s

Single grid Overset grids Global view of overset
grids
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Sinusoidally Oscillating Airfoil

——+=—— one grid
multi-layer overset

-
O
0'10 ' ' 50 ' " 100 ' " 150 ' 200
Time
Time history of coefficient of lift
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Sinusoidal Pitch and Plunge Airfoil

e Free stream M, =04,a, =0
« NACAO0O012 Airfoil pitch about its quarter chord, and plunge
a(t)= a, +a,sin(2kM 1)
{h(t) - h, sin(kM _ t)
where o, =0°,¢¢, =5°,k =0.0808,h, =0.4c, c is the chord length
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Sinusoidal Pitch and Plunge Airfoill

——=—— one grid
multi-layer overset

Time history of coefficient of lift
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Relative Motion Between Two Bodies

* Inviscid simulation
 Demonstration of dynamic hole cutting

e Free stream M_ =01, =0

» Airfoil is stationary. Triangle wedge moves upstream at M =0.1
 Non-dimensional chord length =1

* Non-dimensional time step =0.05 - -
» Modified IHC is used :
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Relative Motion Between Two Bodies

t=3 t=20 t=34 t=43
Grids (after hole cutting) and entropy contour

SIMCENTER rius UNIVERSITY of TENNESSEE at CHATTANOOGA
NATIONAL CENTER for COMPUTATIONAL ENGINEERING ]



Outline

Governing equations

Overset methodology

Hole cutting

Results

— Manufactured solutions

— Steady turbulent

— Unsteady moving boundary

— Relative motion between two bodies
Conclusion

SIMCENTER rius UNIVERSITY of TENNESSEE at CHATTANOOGA
NATIONAL CENTER for COMPUTATIONAL ENGINEERING e



Conclusion for Overset Grids

Development of a novel hole cutting procedure: Elliptic Hole
Cutting

Demonstrated that the design order of accuracy of the method
IS retained using the method of manufactured solutions

Demonstrated the method for steady-turbulent and for
dynamic moving boundary simulations

First implementation of a high-order SUPG overset grid
scheme
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Adaptive Meshing

masy o Motivation

e Mesh Modification Mechanisms

* Governing Equations and Discretization

« Adaptation Criteria
 Numerical Results

e Conclusions
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Motivation

o Streamline/Upwind Petrov-Galerkin (SUPG) scheme:

» For lower polynomial degrees, requires significantly less

computational resources.

» Great potential to be enhanced by adaptation.

Forth order PG Forth order DG
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Mesh Modification Mechanisms

* H-adaptation ' Discretization error: |
e P-adaptation 0 ( hPt 1 )
e Hp-adaptation ~
» Smoothness indicator
[Persson and Peraire]

. Non-cor_1formal refmer_nent Hanging nodes
o Constraint approximation 7

P .fA
"\ VA
P1 Pl

Initial Mesh H-Adaptation P-Adaptation

Pl
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Discretization

» Tessellation: O=U,Q°
nn
« Nodal-piecewise construction: U= Z U;N;
=1
{ei}iz {e0,el,e2,e3,e4,e5)

Top view Iso-view
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Discretization

oU
—+V-F—S]dQ=O

 Weighted residual form: j@ Py

Q

Weight Function

e For SUPG scheme:  @; :SVD‘Ft
AL Galerkin Part Stabilization Part

ouU oU
f N;|——S dQe+f Ni[V-F]dQe+f P, |——S+V-F|ldQ* =0
Qe at Qe Qe at

(Integration by Parts)
|

—f VN;-FdQ®+ | V)[F-n]drI
Qe Feﬁ

SIMCENTER LLEUNIVERSITYof TENNESSEE ot CHATTANOOGA

_NATIONAL CENTER for COMPUTATIONAL ENGINEERING e




Discretization

Using BDF2 method:

Resn+1(l’jn+1) — %(

Using Newton method:

SIMCENTER

Semi-discrete formulation:

—

0U _
M=+ R(U)=0

3 _ M/ _ 1.
5Un+1) 1 R(un+1) _ E(ZU“ _ 5Un—l) =0

[J]"[AU"| = —Res"

[]] _ [aRes]

oU

GMRES method with ILU(K) preconditioning.
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Constraint Approximation
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Constraint Approximation
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Constraint Approximation

(a) 1 level of p-refinement (b) Ny (after p-refinement)

1 1
(d) N, (® Nix +2 Nz +2 Ny
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Constraint Approximation

Constraint info.

[jI"[AU"] = —Res"

A 4

0U
——I—V-F—S]dQ:O
ot

| @oer
Q
nhang

Res; = Res; + Z Cr Resy
k=1
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Adaptation Criteria

Feature-Based Methods

« Aim to capture regions with distinguishing flow features.
o Usually use the gradients of the flow variables.
» Considered as error indicators.

 Pros
» Simplicity.
» Cost efficiency

« Cons
» Ad-hoc nature. May converge to the incorrect solution.

o Still used particularly for transient problems.
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Adaptation Criteria
Adjoint-Based Methods

» Target a specific functional output f (usually in the integral form).
* Provide error estimations.

T T
G_R] (g) — (ﬁ) local error =~ ATR
oU R ouU

N— ——’

* Pros A
» A prescribed precision is ensured.

» The obtained sensitivity data can also be utilized for design and
optimization.

« Cons
» Costly - Feasible for steady-state flows.
» Difficult to implement.
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Adaptation Criteria
Adjoint-Based Methods

local error =~ ATR

1. Adaptation parameter 1:
» Adapts the mesh to reduce flow residual

o = Z Cl(e) |[A-Ii_11Rh(UiIf)]l(e)|
l(e)

2. Adaptation parameter 2 [Venditti and Darmofal]:
» Adapts the mesh to reduce both flow and adjoint residuals

ce = ) o | = 22T IR (U)o | + [0 = UE°TT [REE] )
l(e)
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Outline

 Motivation
 Mesh Modification Mechanisms
* Governing Equations and Discretization

« Adaptation Criteria

way * Numerical Results

e Conclusions
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Numerical Results

o Steady-State Cases:

1. Adjoint-based h-, p-, and hp-adaptation for steady inviscid flow

over a four element airfoil

2. Adjoint-based h-adaptation for steady turbulent flow over a three

element airfoll
 Unsteady Case:

3. Dynamic feature-based h- and p-adaptation for laminar flow over a

cylinder
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Adjoint-Based Adaptation for Steady State Flow
over a Four Element Airfoil

e Flow conditions:

- S S

» Mach=0.2 V‘}VA O\

’ ‘;4" Av<ﬂ “‘k‘

> Angle of attack = 0° 4’;‘ f‘”"“'t" RHEA 5: “‘\v
0f > P

"A :::::;‘\

>

« Initial mesh: y ‘;ﬁ;%v
» 1251 nodes 2F

« Functional output: 3p %ﬁi’v
> Lift coefficient SRS s SV
e  Purpose: X

» Quantitative comparison of h-, p-, and hp-adaptations
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Inviscid Flow over Four Element Airfoil

Adjoint Adaptation

Case Study Adjoint Estimation

Parameter

Uniform-h-refinement - -

H-adaptation-setting-1 1st [Low order Prolongation |
H-adaptation-setting-2 1st High order Prolongation
H-adaptation-setting-3 | 1t . BxactSolution
H-adaptation-setting-4 o High and L.ow order

Prolongations

P_adapta‘“on \ 18t Exact Solution
Hp-adaptation-setting-1 18t Exact Solution
Hp-adaptation-setting-2 (h) 1st Exact Solution
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Inviscid Flow over Four Element Airfoil

Target Solution : C, =5.0200
» Asymptotic value obtained from h-adaptation on P2 elements

> Tolerance within 1.e-4

O B e
Mach: 0.01 0.08 0.15 0.22 0.29 0.36 0.43 0.50 Adjoint(2): -50.00 45.45 140.91 236.36
3
2
1
> > 0
1
-2
-3
-4
X
Mach number and streamlines X-momentum component
......... of discrete adjoint
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Inviscid Flow over Four Element Airfoll

e = % 7 v ay, v
20 F 77 7 T » RS
15 N Ao RN B BB SR AN
SRS Ay x4 AN e s crreidbs =
E/ [y = /0K o8 E:Eg’ PO %
or gadsisse o =
% 5 ‘%%ge‘,%.vﬁ

0

y
n
|
<7
iRy
S
y

/s
7
75

=Y eaa
0 4»’#‘,91’ I P §
b e 7
5 ﬂﬁﬂ%gﬁ!?ﬁ#ﬁ’é‘?’, 0\"“& ‘n%uw‘a‘,%r
- gias S S OCORR
V%%{-’E RN M,W,«%.%%ﬁ Wﬁg}%’
A SR C B NSERE L
- ‘gi ‘4%1”@&‘%&&7‘ ‘% S / T i > XA % ‘%%ify“ ’
_15 R_ A L] | “\‘ ] f;(\:/ll { 7ﬂ~/f/ ANTAN NS o VAN N\ ad) % 747 |
-30 -20 -10 0 10 -4 -2 0 2 4
X X

Final h-adapted mesh (setting 3) Close-up view
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Inviscid Flow over Four Element Airfoll

I ——-<&—— h-adaptation-setting-1

——&—— h-adaptation-setting-2

10° —8—— h-adaptation-setting-3

- ——&@— h-adaptation-setting-4

——a—— uniform-h-refinement
g |

c ]

= 10" |
o -
T i
107}

I | | | | [ T |

DOF 20000 40000 60000
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Inviscid Flow over Four Element Airfoll

52F
5.1 :
- Asymptotic value = 5.02
5 e w S
4.9
4.8t
s H
O 4.7F
I /
46
I ¢ h-adaptation-setting-3-C,
4.5 | — =3 - h-adaptation-setting-3-C +CC
T —&@—— h-adaptation-setting-4-C_
I - —4 — h-adaptation-setting-4-C +CC
4.4 - ———h—— uniform-h-refinement-C_
4.3
—} [l ] | l ] 1 I [ LlL'lll‘lllilll‘lHl‘J'll
DOF 10000 20000 30000
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Inviscid Flow over Four Element Airfoil

P-Adaptation
[1P1 3 P2 I P3

>
RANRE
\X
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Inviscid Flow over Four Element Airfoil

Hp-Adaptation
—1P1 3 P2 1 P3

o, O __
2 VoUW
4 2 0 2 4
X
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Inviscid Flow over Four Element Airfoil

i h-adaptation-setting-3
0 h-adaptation-setting-4
10°F p-adaptation
B hp-adaptation-setting-1
i hp-adaptation-setting-2
o
g 10°F
S i
w |
-2
10 i e A
z TTea
10'3 | i | | Ll |
10° 10° 10°
DOF
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Inviscid Flow over Four Element Airfoil

O

hp-adapted-SUPG
Potential Solution

[}
I L A I I e e

1
(o] ol
—h

Prandtl-Glauert Correction:
Cp,comp. — Cp,incomp./\/l _ Mc%o
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Adjoint-Based Adaptation for Steady State
Turbulent Flow over a Three Element Airfoll

. Flow conditions:

f 1% A\
> Turbulent (Re = 9E+6) “gfﬂ%‘!mnz

o VAN VAT e A ATA o i
v

> Mach=02 v“%@!ﬂ%ﬁvﬁhﬁgﬂ

IS AT
BRI M S S
» Angle of attack = 16.2° ?ggg» e o %»AV%X‘

e ;

iti > O Ai%%:g yg
. Initial mesh: NN s
R S

AValvy
SRR

> 38973 nodes g}%ﬁgﬁ%@%@gﬁgﬁ%ﬁiﬁ%

Functional output: 051 E’%‘ﬁ%ﬁ%ﬁlﬂl"‘vﬂ
»  Lift coefficient “'A‘KFN"N
e Purpose: o 0;5 T

»  Capability assessment for turbulent flows with complex geometries
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Turbulent Flow over a Three Element Airfoll

Adjoint(2):  -200 533.333 1266.67 2000

T 05 0 0.5 - 15
X

X-momentum component of discrete adjoint
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Turbulent Flow over a Three Element Airfoll

4.25 -
| —— CL
[ | —e— c.+CC
4.2 =
415
(&)
(&)
44
(&)
o_l
405
o
3.95
[1 | I I | ! ! | !
0 200000 400000

DOF

Convergence of the lift coefficient
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Turbulent Flow over a Three Element Airfoll
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Turbulent Flow over a Three Element Airfoll
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Turbulent Flow over a Three Element Airfoll

Mach: 0.02 0.16 0.3 0.44 0.58 0.72 Mach: 0.02 0.16 0.3 0.44 0.58 0.72

-0.1 0 0.1 0.2 0.3
X

e UNIVERSITYof TENNESSEE at CHATTANOOGA
NATIONAL CENTER for COMPUTATIONAL ENGINEERING "s




Turbulent Flow over a Three Element Airfoll

h-Adapted SUPG
o Experimental

sk

¢+ - o o e a1
-0.2 0 0.2 0.4 0.6 0.8 1 1.2
x/c

Comparison of surface pressures
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Feature-Based Adaptation for Vortex Shedding
Flow over a Cylinder

 Flow conditions: : A
> Laminar (Re = 100) Sasss KRRRERREROODER

» Mach=0.2 N D B
 Adaptation parameter: °F AN KRORDR /\i
ap vav; SERRRRRK \‘L\S S N

» Magnitude of velocity gradient 5= Al e
 Purpose: Capability assessment for dynamic adaptation
e Studied cases:
» Case 1: uniform P1 elements
» Case 2: uniform P2 elements
» Case 3: h-adaptation on P1 elements. Max. refinement layer =3
>

Case 4. p-adaptation using P1 to P3 elements
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Dynamic Adaptation on Vortex Shedding Flow

! =0 . [
3 ZVorliclly: 0.5 04 93 02 01 0 01 D2 03 04 05 3 Zvortiety: 0.5 04 03 0.2 41 © 01 02 03 04 05
2 2
1 1
-t O ~p O
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- “ 4 n n L L n n n
2 L] H 4 1] 8 10 12 14 16 -2 L] 2 L] L] 8 10 12 11 16
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t =100 [t =100]
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150 (1= 150
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t =200
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Dynamic Adaptation on Vortex Shedding Flow

R ™

Case 1: Uniform P1 elements

Case 2: Uniform P2 elements

].@.

Case 3: h-adaptation on P1 elements

Case 4. p-adaptation using P1 to P3

e UNIVERSITY of TENNESSEE at CHATTANOOGA

£ SIMCENTER

NATIONAL CENTER for COMPUTATIONAL ENGINEERING



Outline

« Motivation

e Mesh Modification Mechanisms

* Governing Equations and Discretization

« Adaptation Criteria
 Numerical Results

way * Conclusions
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Conclusions for Adaptive Meshing

A dynamic adaptation technique has been successfully coupled
with a higher order (SUPG) finite-element scheme.

The problem of hanging nodes has been addressed by
constraint approximation method.

The advantage of the method is that it can be implanted simply
by adding a condensation step to an existing SUPG or any
other continuous Galerkin method.

» Particularly important for multi-disciplinary simulations.
Method is applicable to 3D.
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Conclusions for Adaptive Meshing

Numerical results have been shown for both steady state and
unsteady problems.

In steady-state problems, adjoint-based adaptation has been
employed for both inviscid and turbulent flows.

In unsteady problems, feature-based adaptation has been
employed for a laminar flow.

Functioning of refinements and derefinement mechanisms
were verified in h- and p- and hp-adaptations.

In all cases, the adapted solutions improved the solution’s
accuracy.
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