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Fluid Flows of Practical Interest
@ Responsible to most of transport and mixing phenomena
@ Interaction of objects with surrounding air or water
@ Meteorological phenomena such as wind, rain and hurricanes
o Combustion in aircraft or automobile engines

@ Heating, ventilation and air conditioning

Pressure field for air flow over Hurricane Sandy simulated by a NASA com- Fuel combustion of rocket engine
a 3D analytical body puter model in action
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Background

Approaches to Fluid Dynamics Problems
@ Analytical methods through simplifications of the governing equations

@ Experimental methods on scaled models
e Computational fluid dynamics (CFD) methods
Predict fluid flows, heat and mass transfer, chemical reactions and etc.
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Background

Approaches to Fluid Dynamics Problems
@ Analytical methods through simplifications of the governing equations

@ Experimental methods on scaled models
e Computational fluid dynamics (CFD) methods
Predict fluid flows, heat and mass transfer, chemical reactions and etc.

Need for CFD
@ Most real world problems do not have analytical solution.
@ Reduction of the total effort and expenses required in experiments
o Conceptual studies of new designs
@ Visualization of complex fluid-flow problems in both space and time

@ Require code validation and error quantification

Dr. Li Wang and Dr. W. Kyle Anderson High-Order Methods for Flow Simulation and Design July 9, 2014

3/43



A Brief Overview NATIONAL CENTER
Jor COMPUTATIONAL
ENGINEERING

Eﬁgﬂﬂiﬁﬁ' SIMCENTER
3

@ High-Order Discontinuous Galerkin Discretizations and Implicit Schemes
@ Multigrid Solution Acceleration Strategies
© Adjoint-Based Mesh Adaptation and Shape Optimization

@ Simulation of Turbulence Using High-Order Discontinuous Galerkin Methods

Dr. Li Wang and Dr. W. Kyle Anderson High-Order Methods for Flow Simulation and Design July 9, 2014 4 /43



. . SmMC
A Brief Overview e

Jr COMPUTATIONAL
ENGINEERING

@ High-Order Discontinuous Galerkin Discretizations and Implicit Schemes
(2]
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Outline (Lecture 1)

@ Motivation

@ DG Formulation for A Hyperbolic Equation

@ Interior Penalty Formulation for Elliptic Equations
@ Explicit and Implicit Time Integration

© Numerical Examples

@ Conclusions
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@ Popular CFD approaches

Finite Difference Methods

o Field variables are stored at each node

o Replace partial derivatives with FD approximations af| 11

Ax

Qu) g Mit1jTUiy Qu) . Yijr1—Uij ACY

(Bx)u ~ = and o), ~ Ay Uy [u

o Limited to structured grids and good for simple
geometries

Uil

=

ij-1

@ Require expanded stencil for higher-order accuracy
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Motivation

@ Popular CFD approaches

Finite Difference Methods

o Field variables are stored at each node

o Replace partial derivatives with FD approximations aff i

s
QuY o M1, Ui Qu Ay Ui/ = T,
(BX)’J ~ Ax and Ay 6uf ~ Ay e |
o Limited to structured grids and good for simple

geometries

Uil

ij-1

@ Require expanded stencil for higher-order accuracy

Finite Volume Methods
o Applied to unstructured grids
@ Variables are stored at centroid of control volume
o Take integral form of the governing equations

o Difficulty on extending to higher-order accuracy
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Motivation

@ Popular CFD approaches (Cont'd)

Finite Element Methods

o Easy handling of complicated geometries

o Compact stencil independent of order of scheme
High order precision by increasing solution order

Reduce mesh density

Easy parallelization & h — p adaptivity
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@ DG Formulation for A Hyperbolic Equation
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DG Formulation for A Hyperbolic Equation

o Consider a hyperbolic conservation law:

du | Of(u) _
ot ox
> u: a scalar, which is the variable solved for
> x: spatial Cartesian coordinate (0 < x < 1)
> t: time (t > 0)
> Initial condition: u(x,0) = ug
» Boundary condition: periodic b.c. at x=0and x =1
o Partition the domain into N intervals, Ik = (Xk—1/2, Xk41/2) (k =1,---, N)
| | | | | | |
| I | | I | | | I |
x=0 s Xi-32 'K=1 Xy-12 'K Xirrz "KL Xppap °°° x=1

o Find uj in space of piecewise polynomials of maximum degree p, V}

@ Use a weak statement

Oup ! Of(up)
/qﬁj—d —|—/O oj Dx dx =0
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DG Formulation for A Hyperbolic Equation o

@ Expansion of the Galerkin approximation at element k, up,
M
uni(x) =D Tirpi(x)
i=1

o Example of piecewise linear functions (p = 1)

Mk

xk_slzlk‘z Xk-312 lk-1 Xk-1/2 Ik Xk+1/2 Ik+1 Xi+a2 Xk_glzlk—Z Xk—a/zlk—l Xk-1/2 Ik Xk+1/2 Ike1 Xkraf2

ap 4+ a1x X € [xk_1/2, Xk+1/2]
- 6i(x) = S

0 otherwise

> up can be discontinuous at elemental interfaces.

Dr. Li Wang and Dr. W. Kyle Anderson High-Order Methods for Flow Simulation and Design July 9, 2014 11 / 43



ﬁﬁl SIMCENTER

NATIONAL CENTER
ONAI

DG Formulation for A Hyperbolic Equation o

@ Expansion of the Galerkin approximation at element k, up,
M
uni(x) =D Tirpi(x)
i=1

o Example of piecewise linear functions (p = 1)

Mk

xk_slzlk‘z Xk-312 lk-1 Xk-1/2 Ik Xk+1/2 Ik+1 Xi+a2 Xk_glzlk—Z Xk—a/zlk—l Xk-1/2 Ik Xk+1/2 Ike1 Xkraf2

1
a0 +a1x X € [xe_1/2, Xk+1/2] °
> i(x) = ,
0 otherwise 04

> up can be discontinuous at elemental interfaces. 02

n L
0.6 0.8
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DG Formulation for A Hyperbolic Equation

@ Rewrite the weak statement for an interval k

Xk+1/2 Xk+1/2
/ ¢-8“hdx+/ PRALAC v

et
Xk—1/2 ot Xk—1/2 Ix
@ Integrate by parts
Xk+1/2 8Uh d¢
/ $i gy T;f(Uh)dX A+ F(Un)sxyir o @i (Xkr1/2) — F(Un)x_y )2 Pi(Xk—1/2) =0

Xk—1/2

@ Note that v, at elemental boundaries, x4y1/2 and xx_1/2, are not well defined due to
the discontinuities.

@ Use a numerical flux function F(ur, ur) to resolve the discontinuities

Xk+1/2 o do:
/ d’j# - %f(uh)dx+ F(unie, tngr1) @i (Xir172) — F(Unk—1, Uni)9j(Xk—1/2) = 0

Xk—1/2

@ Boundary conditions are enforced weakly through F(u, up) and up is determined by
desired boundary conditions (e.g. inflow/outflow, wall).
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DG Formulation for A Hyperbolic Equation ATIONAL o TER

@ Choose an upwinding scheme due to stability, for example f(u) = au

1
F(ur, ur) = 5 (f(ur) + f(ur) + |al(uL — ug))
@ Replace the Galerkin approximation with the solution expansion (assuming a > 0)
Xk+1/2 8
/ <Z bik i X)) oj—a <Z fikdi X)> do; dx
Xk—1/2
+ aunkdj(Xiy1/2) — atnk—19i(Xk—1/2) = 0

@ The discretized equation can thus be expressed as

—Uhk—1
o U
Mk% — Syl + a 0 =0
0
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DG Formulation for A Hyperbolic Equation

@ The element matrices are given by
Xk+1/2 Xk+1/2 d¢'
Mijk :/ ¢;¢jdx Sijk :/ aTJ¢idX
Xk—1/2 Xk—1/2 o

o Compute the elementary matrices by Gaussian quadrature rule.

@ The DG scheme of p = 0 is equivalent to a first-order cell-centered finite volume

scheme. N y
Xk+1/2 O . . do;
/ 3 <Z_; Uik¢f(X)> ¢i—a <§ Uik¢f(X)> di;jdx

Xk—1/2
+ aupk@i(Xe+1/2) — aunk—10j(Xk—1/2) =0
@ Rewrite the system of equations as

di ~

@ Solve this semi-discrete system with explicit or implicit temporal schemes
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Interior Penalty Formulation for Elliptic Equations

o Consider a classic linear elliptic problem governed by a Poisson equation

—Au=g inQ
u=0 on o

> A is the second-order Laplace operator, Au = V2u =V -Vu
> Q denotes an open bounded polygonal domain.
» Homogeneous Dirichlet boundary conditions

@ DG weak form for the Poisson problem through multiplying the equation with a test
function ¢ and integrating over Q

—/Qd)V-VudQ:/di)dQ

@ Split the integration into a set of non-overlapping elements T}

- Z ¢V - Vupdx = Z /n godx

keTp

R keT?
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Interior Penalty Formulation for Elliptic Equations

o To approximate the diffusion operation V2uy,, we define an auxiliary variable gj,

Gh = Vup

@ The elliptic equation can then be written into two advection equations.

=Y [oviae = 3 [ g &)
keTp i keTf S
Z/ Th - Grdx = Z/ Ty - Vupdx (2)
keTP S keTf S

o Note that the right hand side of (2) can be written as

Z /Qk%’h.Vuhdx: Z /nk (V- (Fatn) — upV - 7) dx 3)

keTf keTf

@ The weak form of the auxiliary equation becomes

Z / Th - Gpdx = Z (V- (Foun) — upV - 7) dx (4)

keTf

Q
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Interior Penalty Formulation for Elliptic Equations

@ Integrate by parts and take the divergence theorem

Z ( o V¢ - Grdx — ¢3h'ﬁd5) = Z /ngqux

9y

keTf keTf
E / Th - ath = E <— V- Fhuhdx—k/ UpTh - ﬁds)
keTf i keTf X Rl

> 7 denotes the unit normal vector pointing outward the elemental interface.

> @i, and gj, denote numerical flux for solution and solution gradients, respectively.

o Introduce notations for average and jump operators n

+ - — —
T ey =24 [el=¢ i —p i ;

By =22 [Fl=FtRt -G At

T {et=9r el =psii
By =06, 8] =5r"
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Interior Penalty Formulation for Elliptic Equations

@ Define the numerical flux @i, = {up} and use the average and jump operators

. A J— . B p— +z . fr
Z Vé - Gndx /r’|I¢]] Gnds /rbqb Gb - nds Z /ngd)dx

Q

P
keTf keT]
E / T - C_fth = — E V - Thupdx +/ {uh}[?h]]ds +/ upTh - fds
ketp keTf S M1 Mo

— Z V- Fupdx = — Z / (v-(?huh)—Fh’VUh)dX
Q

keTl e keTp "k
= — E / Thuyp - nds + E / Ty - Vupdx
keTf 0% keTf &
= —/(Fhuh-ﬁ)++(7_"huh-ﬁ)7ds—/ Thup - Ads
Ty Ty
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Interior Penalty Formulation for Elliptic Equations

@ Inspired by the following relation
aTbt +a b = %(f a )bt — b )+ %(b+ Fb)at —a)
@ We express the formulation as

(Foun - BT 4 (Thup - )" ds = / {un} (7] + {74} [un]ds

@ Recall the previous derivation

ket M Mo

@ Use this desired relation and then we have

— Z V- Thupdx = —/{uh}ﬂﬁ]]—i-{ﬁ}[[uh]]ds—/ ?huh-ﬁds—l—Z/ Th-Vupdx
r T Qe

keTf 2 keTf

@ Substitute the above expression into the weak form of the auxiliary equation (8) and
rearrange - - -
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Interior Penalty Formulation for Elliptic Equations
@ The system of equations (primary and auxiliary) is expressed as

.‘» p— .C’ — +4’ . =
3 [ Vo [ 1ol -Gos /rb¢> onas= 3 [ gos (10

keTp i keTf
Z/Q Fh-ﬁth: Z/Q Fh-vuth7/{?h}|IUh]]d57/ (uhfub)ﬁ,-ﬁds (11)
keTP keTp 7 m Ts

@ In symmetric interior penalty method, a’h, Gp and 7, are defined to ideally eliminate
the auxiliary equation

G = {Vun} —nu]
G = Vuy —n(un—up)- 7
T = Vo

@ Using the above definitions yields the following formulation for the auxiliary equation

(11)
S| Vo-dndx= ) V¢>~Vuhdx—/r {V¢}|[uh]]ds—/ (up—up)Vp-iids (12)

P
keTF

2 keTf 2 Mo
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Interior Penalty Formulation for Elliptic Equations
@ The system of equations (primary and auxiliary) is expressed as

Vorddc— [([o]-dds— [ o"dends= Y [ gode  (10)
Ty Ty Qp

S keTP

keTp
Z/ Fh-ﬁth: Z/ ﬁ,-Vuhdxf/{ﬁ}l[uh]]dsf/(uhfub)%’h-ﬁds (11)
ket ket T s

@ In symmetric interior penalty method, a’h, Gp and 7, are defined to ideally eliminate
the auxiliary equation

G = {Vun} —nu]
G = Vuy —n(un—up)- 7
T = Vo

@ Using the above definitions yields the following formulation for the auxiliary equation

(11)
S| Vo-dndx= ) V¢>~Vuhdx—/r {V¢}|[uh]]ds—/ (up—up)Vp-iids (12)

keTF i keTf S s

o Now we can combine the weak forms of the primary and auxiliary equations into 1!
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Interior Penalty Formulation for Elliptic Equations

@ The final discretized system of the elliptic equation for the symmetric interior
penalty method is written as

ST | Vo Vupdx — /r {Vun}e] + {Ve}unl — nlel - [us] ds

ket
—/ ¢TVu R+ Vo - (un— up) - F— g (un — up)A - A ds

s
=> /Qk godx

P
keT,

> The symmetry term ensures the system be positive definite.

> Addition of the penalty term is for stability.
.y — (1) (p+D) S S
> Penalty parameter: n = €20) max( Voo )

v

Obtain V¢ analytically and Vu, = Z,’\il Vi

Dr. Li Wang and Dr. W. Kyle Anderson High-Order Methods for Flow Simulation and Design July 9, 2014 22 /43
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Interior Penalty Formulation for Elliptic Equations .

@ The final discretized system of the elliptic equation for the symmetric interior
penalty method is written as

> [ Vo Vudx— [ {Ven}e] + {Vo}ud o] - [un] s

ket
—/ ¢TVu R+ Vo - (un— up) - F— o (un — up)A - i ds

s
=> /Qk godx

P
keT,

> The symmetry term ensures the system be positive definite.

> Addition of the penalty term is for stability.
.y — (1) (p+D) S S
> Penalty parameter: n = €20) max( Voo )

v

Obtain V¢ analytically and Vu, = Z,’\il Vi
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Explicit and Implicit Time Integration

@ Model problem: governed by the Euler or Navier-Stokes equations

» Conservation of mass (continuity):

ot ox dy oz
> Conservation of momentum:
dpu 3(pu?+p) dpuv Opuw _ Ire _ 9Ty BT _
ot + Ox + Oy + oz Ox Oy 8z 0
dpv dpuv 8(pv2+p) dpvw OTxy _ ATy _ ATy,
ot + Ox + Oy + oz Ox Oy 9z 0

6(pW2+p) OTxz OTyz 0Tz =0

dpw dpuw dpvw
+ + + Oz Ox Oy oz

ot Ox dy

> Conservation of energy:

9pE + A(pE+p)u + A(pE+p)v + A(pE+p)w a(UTXX+VTxy+WTX2+K%)
ot Ox oy oz Ox
_B(foy+V7’yy+WTyz+'€%I) _ Oumetvrptwra+rgl) 0
Ay oz -

> Additional transport equation may be added depending on complexity of the problem.

High-Order Methods for Flow Simulation and Design July 9, 2014 24 /43
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High-Order Discontinuous Galerkin Discretizations

o Write the governing equations in the conservative form:
) | g (F(U) - F,(U,VU)) =0 in Q

> U= {p, pu,pE}T: Conservative variables of density, momentum and total energy
» F., F,: Cartesian inviscid and viscous flux vectors

@ Divide the domain into non-overlapping elements

@ Represent the solution using piecewise polynomial functions, U, = Zf\il Uh,. @i(x)

= Approximation
- Exact

Mesh Points ; {Control Volume

o Take the integral form and multiply by test functions, {¢;}

Sy o, 01 [2559 + V- (Fu(Up) — Fu(Us, TUR)] 02 = 0
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High-Order Discontinuous Galerkin Discretizations

@ Weak statement

8Uh(x, t) _
ij/nk Py [T £V (Fe(Up) — Fv(uh,vuh))] 49, = 0

@ Integrate by parts and Implement an explicit symmetric interior penalty method

ouUy,
Al - j —Fv ) Q j c +a b
[ i o /. V05 (FelU) = Fu(Up: V3Un) a0 + / MUy Uy myas
el fol
~ [ R v Telles - [ 622 6,20 ,3—)} (1Usl1ds + / (G} 4] - [l
80,00 89,00 Ox; Ox;
a¢>+ a¢+ a¢+
FRO (U, VAU - ndS — i —G,U—G,U U/ — Up)ndS
om0 ) mas = [ (iU G Un) S iU ) (U — U
- Fe(Up) - ndS =0
+/anknan G(UL)(U — Up)n nd5+/ g OFe(Us)

where Gy; = F/8(8U/dx;), Gy; = OF),/9(dU/dx;) and Gzj = OFZ /d(dU/dx;)

@ Solution expansion and geometric mapping

M M
=" 04 ¢i(€1,¢) X = % di(€,1,C)
i=1 =1
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Explicit Time Integration

@ Rewrite the weak statement as an ordinary differential equation (ODE):

dU, .
@ First-order forward Euler method - * + : -
— B . u ) u u
mYs —Yi +R(U}) =0

At
07" = 0p — AtM'R(07)

o Second-order TVD Runge-Kutta method [Shu and Osher 1988]

0 = 0 - am RO
07 = 507+ 5 (0 - aemR(OL))

July 9, 2014 27 /43
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Explicit Time Integration
@ Rewrite the weak statement as an ordinary differential equation (ODE):
d0, -
M—— +R(Uy) =0
g T R(U)

@ First-order forward Euler method *
u

Un+1 o On
M h h
At

07" = 0p — AtM'R(07)

o Second-order TVD Runge-Kutta method [Shu and Osher 1988]

0 = 00— atMR(0})
ot = %ﬂﬁ,"hr%(Uf,l)fAtM’lR(ﬂﬁ,l)))

@ Pros/Cons of explicit time integration
> + Simple implementation and no linearization (to obtain Jacobian matrix) is required.

> -+ Mass matrix M is block diagonal, which allows for fast local inversion.

Dr. Li Wang and Dr. W. Kyle Anderson High-Order Methods for Flow Simulation and Design July 9, 2014 27 /43
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Explicit Time Integration

@ Rewrite the weak statement as an ordinary differential equation (ODE):
d0, -
M—— +R(Uy) =0
g T R(U)

o First-order forward Euler method +
. . u
M U:+1 7 UZ
At
07" = 0p — AtM'R(07)
o Second-order TVD Runge-Kutta method [Shu and Osher 1988]
- - e
0 = 00— A R(0))
. 1~ 1 /-~ .
1 1 1 1
0 = S0P+ 5 (00 - ammR(OL))
@ Pros/Cons of explicit time integration
> + Simple implementation and no linearization (to obtain Jacobian matrix) is required.
+ Mass matrix M is block diagonal, which allows for fast local inversion.

— Selection of At is restricted by stability limit but not the temporal accuracy.

— Stability issue becomes more severe as the spatial order p is increased (CFL ~ 1/p?).

vy v.v Y

— Not desired for problems with diverse length and time scales.
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Implicit Time Discretization

@ Return to the semi-discrete form

dU, .

@ Advance in time using an implicit temporal scheme

First-order Backward Difference Formula (BDF1)

RQH(OZJA) _ %(UZH) + R(lj:+l . %UZ —0

i
¢ 7 SIMCENTER
A\ NATIONAL CENTER
frt COMPUTATIONAL
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Second-order Backward Difference Formula (BDF2)

n rntl Il
Re+1(UZ+ ) _ %(%U

P RO - M20; - 1077 =0

Second-order Crank-Nicolson (CN2) Scheme

~ n+1

~n+1 ~n+1 ~n ~n
ROF(O,) = MOp™ 4 IR0, ) — M(0; — 1R(0R) =0

Dr. Li Wang and Dr. W. Kyle Anderson
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o Fourth-order Six-stage Implicit Runge-Kutta (IRK4) Scheme

i ors=1,---,

(i) F s

0% = 0) - Ay, agM'R(DY)
(i) Oy =05 - AtYS, M 'R(D]

@ Butcher table for the ESDIRK scheme

=0 0 0 0 0 0 0
[e/] ani az = ae6 0 0 0 0
c3 as1 as a33 = a66 0 0 0
c an an an3 a4 = 66 0 0
Cs as1 asp as3 asa ass = a6 0

6 = a1 =b1  ap = b 363 = b acs = by a5 = bs  ae6

"t by by bs bs bs be

Fourth-order Six-stage Implicit Runge-Kutta (IRK4) Scheme

RO = MO ™+ alROP™) — [M0) — T3 agROP™)] = 0

Dr. Li Wang and Dr. W. Kyle Anderson High-Order Methods for Flow Simulation and Design July 9, 2014 29 /43



Solution Methods for Implicit Schemes

@ Require extra computation to solve the matrix
problem

@ Use an approximate Newton method
Find U such that R.(U) = 0:

. . OR.]1Y . .
U; = U —«a — Re(U;
J+1 J [BU L e( J)

> « is an under-relaxation parameter (0 < a < 1)

@ Structure of the Jacobian matrix (block sparsity)

Dr. Li Wang and Dr. W. Kyle Anderson High-Order Methods for Flow Simulation and Design July 9, 2014 30 /43
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Numerical Examples
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Numerical Examples

@ Convection of an isentropic vortex

@ Shedding flow over a triangular wedge

o Laminar flow over a circular cylinder
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Convection of an Isentropic Vortex &

@ Examine the accuracy of various implicit time-integration schemes

@ Initial condition: uniform flow (poc, Usc, Voo, Poos Too) = (1,0.5,0,1,1) perturbed by
an isentropic vortex
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o Determine conservative variables through the assumption of isentropic flow and a
perfect gas (i.e. yp/p” =1and T =~p/p)
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@ A rectangular domain of [—7,7] x [—3.5,3.5] partitioned with 10,000 triangular

elements

@ Periodic boundary condition in the horizontal direction
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@ Simulations from the BDF1 and IRK4 schemes (fixed At = 0.2 and DG p = 3)

BDF1 BDF1

IRK4 IRK4
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Convection of an Isentropic Vortex

@ Comparison of various temporal schemes (At = 0.2) with the exact solution

o Density profiles
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Convection of an Isentropic Vortex

@ Examination of temporal accuracy and efficiency
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> Desired order of temporal accuracy is achieved.
> Higher-order temporal scheme performs more efficiently than a lower-order counterpart.
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@ Free-stream Mach number = 0.2
@ Unstructured mesh with 10,836 elements

@ Various spatial discretizations and implicit time-integration schemes (At = 0.05,
CFLmax = 85)

DG p =1 and BDF2 schemes
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Shedding Flow over a Triangular Wedge (

@ Implicit versus explicit schemes
> Ratio of the smallest to largest cell area is 1:1425 (current mesh)
> Local CFL number is defined as

faces
At
CFLk = oo ; (lu-nl+c);

> Correspond to an explicit CFL ratio of 38:1

» Comparison between second-order BDF2 scheme and second-order explicit forward
Euler (FD2) scheme (fixed spatial scheme of p = 3)
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Shedding Flow over a Triangular Wedge

o Implicit versus explicit schemes
> Ratio of the smallest to largest cell area is 1:1425 (current mesh)
> Local CFL number is defined as

faces

At
CFLy = vole ; (Ju-n[+¢);

> Correspond to an explicit CFL ratio of 38:1
» Comparison between second-order BDF2 scheme and second-order explicit forward
Euler (FD2) scheme (fixed spatial scheme of p = 3)
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t=25 Time-step size | Time steps | Convergence limit | CPU time (s)
Implicit (BDF2) At = 0.05 50 7 orders 5160
Explicit (FD2) | At =5 x 10— ° 50000 = 22920

> A speedup of 4.5 is obtained through the use of the implicit time-integration scheme
(significant improvement for long-term integration problems).
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@ Rep =40, Mo, = 0.2 and AOA = 0°
> Adiabatic and no-slip wall boundary
condition
> Various orders of DG discretizations
> BDF2 scheme with At = 0.05

Computational mesh (N =1622)
Mach number contours (p = 4) at t = 10.5

High-Order Methods for Flow Simulation and Design July 9, 2014 39 /43

Dr. Li Wang and Dr. W. Kyle Anderson



7 SIMCENTER

NATIONA| iR
Jin CC

Unsteady Viscous Flow Over a Circular Cylinder (

X

o Comparison of streamwise velocity evolution at the flow axis with experimental data
[Coutanceau 1977]
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@ Motivation

© DG Formulation for A Hyperbolic Equation

© |Interior Penalty Formulation for Elliptic Equations
© Explicit and Implicit Time Integration

© Numerical Examples

@ Conclusions
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Conclusions

o High-order methods have earned increasing popularity for solving convection,
diffusion and convection-diffusion equations, which have wide applications in fluid
dynamics.

@ Discontinuous Galerkin methods can be viewed as an intermediate approach between
finite element and finite volume methods.

o Higher-order temporal schemes are capable of achieving higher accuracy solution
over the lower-order counterparts with a fixed time-step size.

@ The use of higher-order time-integration schemes aims to balance spatial and
temporal errors.

@ To make high-order discontinuous Galerkin methods competitive, solution
acceleration methods are required, which will be discussed in the next lecture.
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