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Introduction

@ Increasing demands for simulation accuracy requires efficient computation
algorithms.

> Error decreasing rate, e"1/e", is 1 — O(h?) for classical iteration techniques like point
Jacobi or Gauss-Seidel.

@ Multigrid methods have been developed for convergence acceleration.
> Originally introduced to numerically solve elliptic PDEs

> Applied to various problems in many disciplines
Fluid dynamics and elasticity

*

* Geodetics and molecular structures
* Image reconstruction and tomography
* Statistical mechanics and etc.

> An efficient and versatile approach for computational problems

@ Basic concept of multigrid methods is to transfer the original problem onto a coarser
grid to effectively eliminate low frequency errors.

> Involving deliberate interpolating procedures between fine and coarse meshes.

> Similar idea can be applied to the finite element method where various approximation
spaces are treated as different “grid” levels.
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Model Problem and Two-Level Multigrid Approach
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Model Problem
o Consider a one-dimensional boundary-value problem

{ u'(x)=0 0<x<1
u(0)=u(l)=0

> Analytical solution for the specific boundary conditions is uex(x) = 0, x € [0,1].

> Present aim is to solve the second-order equation numerically.

@ Partition the domain into N subintervals with constant width of h=1/N

=10 r=1

T X1 &y Tp—1 Tp

@ Discretize the second-order term using a central difference scheme

U”(Xj) — w + O(hz)

@ The discretized system becomes

Uiy1 —2uj +uji—1 =0 1<j<N-1
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Model Problem

@ Express the system (uj11 — 2uj + uj—1 = 0) into a matrix form as Au = b

2 1 [
1 -2 1 1
A= ! _2.3 u= b=0
1 -2 1
1 -2
L Un—1

@ Next we can solve the system using a weighted (or damped) Jacobi iterative method
(1<j<N-1)
*_ uf+1 + ujp—l

! 2
uj’-1+1 =1 -wu +wu =1 —-w)u + 5 (ufys +uly)
@ The convergence behavior of errors can be examined by specifying an initial guess

consisting of Fourier modes
0 . jk7T
UJ‘ = Sin (W)

> k is the wavenumber (or frequency) indicating the number of half sine waves.
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Model Problem (4

—sin (Jﬁvﬂ)

o Note that the initial solution error for this problem is ejQ

@ For any Jacobi iteration, the solution error is ¢/ = —uj’. Based on this fact, we
examine the error convergence by taking 100 weighted Jacobi iterations (w = 2/3)

Iteratlons

> Higher frequency errors are damped much more rapidly than the lower frequency ones.
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Model Problem

@ Error damping behavior using the weighted Jacobi method with w = % for initial
guess consisting of k = 3 (left) and k = 16 (right).

05
s of
05k
original original
- - 10 iterations . ) T 10 iterations . . .
- 10 20 30 40 50 60 - 10 20 30 40 50 60
] ]
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@ Examine this behavior more precisely assuming Fourier modes for the error
B ‘0 _ +1)0
e = v"ellif) el = vrellit)

eJ{H—l — (1 _ w)vnei(je) + wTV"(ei(j+1)6 4 ei(j—l)@)

> 0=kn/N
@ The amplification of errors
efH'l W i
g = G =0-w)+5(" e

J

= (1-w)4wcosh
0
_ _ 207
=1 2wsm(2)
= 1—2wsin2(§—;\Tl 1<k<N-1
n+1 __

n
or e = gej

o Note that if |g| < 1, the errors are damped, and this requires 0 < w < 1.
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Model Problem

SIMCENTER
@ Examine how the value of w affects the damping of all frequencies

1

0.5

-0.5

0 N2 ' N
k
> All values of w are not effective to damp low-frequency or smooth components of the

error, for example wavenumbers k close to one.

> For w =1 both the high and low-frequency components of the error are damped very
slowly, but those near N /2 wavenumbers are damped rapidly.

> w = 2/3 is effective to damp high-frequency (or oscillatory) components of the error
(N/2 < k < N).

@ A method is in need to effectively eliminate errors of all frequencies.
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Two-Level Multigrid Method

@ Stem from the idea of using a coarser grid to provide a better initial guess
> Relaxation is cheaper on the coarse grid.
> A better convergence rate can be obtained.

> Recall the amplification of errors:
km
=1—2wsin’(—
&k wsin"(on)
> gi is associated with the smoothest mode (k = 1)

K
= 1-—2wsin’(—
g1 w sin (ZN)

h
1- 2wsin2(%)

~
~

> Error convergence rate is — log;(|g1|)-

> Coarsening the grid by a factor of 2 makes g1 go from 1 — O(h?) to 1 — O(4h?), thus
resulting in a larger convergence rate.

1—O(h?)
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Two-Level Multigrid Method

@ Low-frequency errors on the fine mesh appear as higher frequencies on a coarser
mesh.

> As an example, use a 4 mode (k = 4) wave on a N = 12 point mesh projected onto a
N = 6 point mesh.

1 1

05

4l ! ! ! TR 1 ! ! ! ! 1
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
X X

> For the same mode, the wavelength on the fine mesh is 6h versus 3h on the coarser
mesh.
> The wave on the coarse grid is more oscillatory than that on the fine grid.
@ The fine-grid problem should be transferred to a coarser grid to effectively damp the
low-frequency errors on the fine grid.
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o Basic idea of multigrid: do enough iterations on the fine grid and transfer the
problem to a coarse grid.

o Obtain an equation for the errors that we can transfer to the coarser mesh = the
residual equation.

> Recall the system of equations
Auex = b
Au—b+R=0 where R=b— Au
Ae=R=b—-Au (e = uex — u)
> Relaxation on the original equation Auex = b with an arbitrary initial guess u” is

equivalent to relaxing on the residual equation Ae = R with the specific initial guess
e=0.

0

@ Based on the idea of relaxation on the error, we can initiate a multigrid approach.
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Two-Level Multigrid Method

@ A two-level multigrid procedure
@ Relax vi times on Ajup = b on the fine grid to obtain an approximation up,.

@ Compute the residual R, = b — Ajup on the fine grid.
© Transfer the residual vector to the coarse grid, Ry = I,:"Rh.
o

Solve the residual equation Ayey = Ry on the coarse grid to obtain an approximation
to the error ey.

@ |Interpolate the error on the coarse grid up to the fine grid and update the solution
up = up + I/J,eH-

@ Use uy, as initial guess and go back to Step 1.

Relax on Aju, = Correcty =y, + ¢
.ComputeRFp—,ﬁH [ )

RestrLct Prologate
Ry=ThRy e= e,

®
Relaxon A, g, = R
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Restriction Procedure

@ Restriction procedure
Ry = IR,

> Rpy: residual on mesh with spacing H = 2h.
> Ry residual on mesh with spacing h.
> I/]"’: restriction operator

Ry,

Dr. Li Wang and Dr. W. Kyle Anderson High-Order Methods for Flow Simulation and Design July 9, 2014 17 / 45



Eﬂ‘ﬁlﬂlf SIMCENTER

N CENTER

Restriction Procedure

@ The restriction operator can be defined in several ways.

Ry = IR,

> Direct injection, Ry; = Rpy;
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Prolongation Procedure @ Snecenrer

@ The prolongation is typically done using linear interpolation.

h
eh = IHeH

€h2j = €Hj

1 .
ehjr1 = E(eHjJFeHH—l) 0<j<
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Multigrid Schemes

@ A procedural question: What is the best way to solve the coarse-grid problem?

o In many occasions we do not have to solve the residual equation on the coarse mesh
exactly.

o Alternatively we can apply the same multigrid procedure recursively.

@ Replace the direct solve in the two-level multigrid scheme by an accurate solve using
multiple cycles of multigrid.

@ The two-level multigrid procedure is thus performed recursively.

o Typical multigrid cycles: V-Cycle, full Multigrid schemes and etc.
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V-Cycle Multigrid Scheme

h: Relax v1 times on Ayup = b to obtain up.
h: Compute R, = b — Anpup.
h — 2h Transfer Ry, = I,thh.

2h: Relax vi times on Asnexn = Ry with initial
guess 2, =0

2h: Compute Rop = Ropn — Ashéen.
2h — 4h: Transfer Ry, = I;,’,’th.

16h: Solve A16h615h = R16h-

4h — 2h: Correct ex, = exn + I eqs.

2h: Relax v» times on Axpern = Ry with initial
guess .
2h — h: Correct up = up + Ly ep.

2h: Relax v» times on Apu, = Ry with initial
guess up.
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Full Multigrid (FMG)

@ Start from the relaxation problem at the coarsest grid.

Each V-cycle is preceded by a coarse-grid V-cycle to obtain a good initial solution.

Interpolate this initial guess on the current grid.

Perform a V-cycle to improve the solution.
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Multigrid Approach for Nonlinear Equations

o Full Approximation Storage (FAS) Scheme
> A system of nonlinear algebraic equations

R(u)=0»b

> u, b are vectors with dimension N.
> The notation R(u) denotes a nonlinear operator.

@ The nonlinear residual equation on the fine grid can be derived

Rh(uh) = by
ro(vh) bh — Ru(vh)

> v}, is an approximation to up and e, = up — V.
> Subtracting the above two equations from one to the other yields

Rn(un) — Ra(va) = ra(va)

o If the high-frequency errors have been previously smoothed, then this equation can
be approximated on a coarser mesh as

Ru(un) = 18 rn + Ru(ly vi)
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Multigrid Approach for Nonlinear Equations

Re(un) = T8ty + Ru (I vi)

o 1/ and If' denote restriction operators for the residual and the solution variables.
o I/'v, serves as an initial approximation to the solution on the coarse mesh.
@ uy is the exact solution on mesh H.

@ Full solution is computed and stored on the coarse mesh = referred to as full
approximation storage.

@ With the residual equation we can next use a two-level FAS scheme.
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Two-Level Full Approximation Storage

@ Relax on the fine grid to obtain an approximation vy for Ry(us) = bp.
@ Compute the residual on the fine grid r,(vs) = by — Ru(va).

© Restrict the residual and the fine-grid approximation to the coarse grid as 7,‘,L’rh and
1 vy, respectively.

@ Solve the residual equation on the coarse grid Ry(un) = If'ry + Ru(1f'vs).
@ Compute the coarse grid correction ¢y = uy — If vi.

@ Transfer the correction (i.e. error) to the fine grid, I/jcy.

@ Correct vj, on the fine grid using the prolongated correction as vy = vj, + Ificiy and
go to Step 1.
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Restriction and Prolongation

@ Solution variables are conserved variables, such as p, pu and pE

@ To preserve conservativity we use a volume weighted restriction operator for the
solution variables.
2ok vk

Zk Qi

> The summation takes over all the fine grid cells which make up the coarse grid cell.

H
/h Vh =

@ Restriction operator of the residual is just a summation as
H
IRy = Z Rk
K

@ Prolongation operator of the correction is linear interpolation.

h H

Qy Qy

Qn

Q3 Q4
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hp—Multigrid Approach

o Combination of spectral and geometric multigrid schemes (hp—Multigrid)

@ The spectral multigrid (p—Multigrid) approach makes use of lower-order p—levels as
coarser grids.
> Alleviate the need to generate a sequence of agglomerated grids.

> Simplify the interpolation and prolongation procedures with hierarchical functions.
> Often more suitable for unsteady problems.

0 e, s .
p=
@ w.% 0 @, 1%
B @5
a\ & d
@ X ™ o 9, p=3
/ 5
¢ Ll s
¢ [o Smooting® & % P=2 4
o Updates s
i
@ 9, P=1
I3
hy ¥ p=0
hp-Multigrid V-Cycle Multigrid in various p- Multigrid in various h-levels

levels
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hp—Multigrid Approach

@ The same procedure in the traditional multigrid approach is applied: fine grid
problem is accelerated by means of coarser grid corrections.
Fine : Ro(up) = by
Coarse :  Rp_1(Up—1) = 17 1, + Ro—1 (127 vp)

@ The use of the hierarchical basis functions greatly facilitates the processes of
restriction and prolongation in the p—multigrid scheme.

Py P11 92 @3
Py 1 @2 P3 Pa @5 g6
p3-c- 91 P2 Pz P Ps Ps P71 s P9 P10

> Approximation spaces are nested, i.e. V}’;71 C Vﬁ

p—1 _ p—1_p
o =2 af e

/ ¢1

1 10 0 0 0 O 22

¢ =10 1 0 0 0 0 ¢i
1

3 0 0 0 0 0 e

6
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hp—Multigrid Approach

o Levels between pand p—1 (p—1>0) ¢f-’_1 = Zj af-j-_l¢f

o Weighted residual restriction 7,?_1rp and state variable restriction 177 'v,

p—1 ~1 1 1
Ifl’) n=R(® ", v) =R Zaz" vap =Za5 R( vap)
J J

p—1

p—1.
Iy Vp = oy

Vp

> Obtained by disregarding the higher order modes and transferring the values of the low
order modes exactly.

@ State variable prolongation ¢, = I;,’flcp_l

C1 1 0 0
o 01 0 .
AT e 0 0 1 !
P _ p—1 —
Ipfl—(a,'j ) s - 0 0 O 52
Cs 000 3
o 000

> Obtained by setting the high order modes to zero and injecting the values of the low
order coefficients exactly.
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hp—Multigrid Approach

@ Restriction and prolongation between p; and po levels
» Basis function is constant for p =0, ¢P0 = 1.
> Underlying grid is the same.
> Triangular mesh as an example:

3
1
Po — .
/p1 Vpr = 5 E Vp1,i
i=1

PL.
159 oo = Cpo
3
TpPo — .
Ioy Roy = E Rpy,i
i=1

@ Restriction and prolongation between h-levels operate the same manners as those for
the traditional multigrid schemes.

>k Vi TH h
I vy = STk ¥Ry =" Ru licn = e
=0 2
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Relaxation Methods at Each Level

@ Approximate Newton method for R(u) = S

[%} Au™ =S — R(u")
un+l _ un + (A.)AU”+1

> Decompose the Jacobian matrix as [gﬂ = [D"] +[0"]

@ Various relaxation/smoothing solvers

> Nonlinear element Jacobi
Au™t = [D" (S — R(u"))

> Quasi nonlinear element Jacobi (runs with
sub-iterations, k)

AuFT = [D"7H(S — R(dY))
> Linearized element Jacobi
Auktt = [D"71 (5 — R(u") — [O"AUF)
> Linearized element Gauss-Seidel [0"] = [L"] 4 [U"]
AU = [(D+ L)) 7H (S — R(u") — [UT]Aw¥)
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o Compressible channel flow over a Gaussian bump

@ Convection of an isentropic vortex

Dr. Li Wang and Dr. W. Kyle Anderson High-Order Methods for Flow



Compressible Channel Flow over a Gaussian Bump

o M. = 0.2 (steady-state problem)

o Inflow/Outflow boundary conditions and wall boundary conditions enforced on the
top and bottom
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o Comparison of convergence of non-linear element Jacobi (NEJ), quasi-nonlinear
element Jacobi (QNEJ), linearized element Jacobi (LEJ) and linearized Gauss-Seidel
(LGS) smoothers

@ Mesh size N = 1248, DG p = 4 (i.e. fifth-order) scheme, 5 sub-iterations

10*E 10*E
F ——— NEJ E ——— NEJ
——— gNEJ _
10° — LB 10° _
——— LGS _
10°
107
i=2 j=2)
o =}
- -
10° 10°

[
Q

1012 T - | 1 L
500 1000 1500 6000 8000
Number of Cycles

Lr-norm of residual vs. MG cycles Ly-norm of residual vs. CPU time

Dr. Li Wang and Dr. W. Kyle Anderson High-Order Methods for Flow Simulation and Design July 9, 2014 37 /45



(@ SIMCENTER

NATIONAL R
Jir COM!

Compressible Channel Flow over a Gaussian Bump T

o Effect of various discretization orders on the solution convergence
@ Single level method versus hp—multigrid approach

@ Discretization orders vary from p=1to p=14

10" 10
—8—-— p=1,1level —-—8—-- p=1,1level
—4—— p=2,1level ——a—= p=2,1level
p=3,1level ——o—-— p=3,1level
10° p=4,1level 10° — 00—~ p=4,1level
p=1, hp-MG —=—— p=1,hp-MG
p =2, hp-MG X —+—— p=2,hp-MG
p =3, hp-MG Q ——— p=3,hp-MG
p=4,hp-MG S ——e—— p=4,hp-MG
%
" N 3 o
a7 FOME % e
—= = Ty
x x %
= = ®
g 8 N
Sio 197 A Sy
2 ®
S
A 2
ZX b ©.
12 12 <
10 10 & Q
B %
Yoo
<
A ] -
10 | I I I N L 10% I\A\\\I\\\QI\\\\I\\\\I\‘\\
200 300 100 200 300 400 500
Number of hp-MG cycles CPU Time (s)
L>-norm of residual vs. MG cycles Ly-norm of residual vs. CPU time
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Compressible Channel Flow over a Gaussian Bump

o Effect of mesh resolution on the solution convergence
@ Single level method versus hp—multigrid approach

@ Variation of mesh sizes N =573, N = 1248, N = 2522 and N = 5088 (fixed p = 4)

. —-—8—-—= N=573 ,1level ., —-—B—-— N=573 ,1level
10718 ——A—— N=1248, 1 level 107F —-—a—-— N=1248, 1 level
N =2522, 1 level N =2522, 1 level
i ) .
b ——o6—— N=5088, 1 level —o—— N =5088, llevel
—=—— N=573 , hp-MG ——=—— N=573 , hp-MG
10°h% ——+—— N=1248, hp-MG 10° ——+—— N=1248, hp-MG
h N = 2522, hp-MG N = 2522, hp-MG
s ——e—— N=5088, hp-MG 1 ——e—— N =5088, hp-MG
W
> >
=10° =10°F
x x
= =
D D
o o
- - .
10" 107 4
101 101
oell® o 4w W o4 ol v & 4 v ) )
200 400 600 800 1000 2000 3000 4000 5000
Number of hp-MG Cycles CPU Time (s)
Lp-norm of residual vs. MG cycles L>-norm of residual vs. CPU time
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Convection of An Isentropic Vortex

o Effects of mesh sizes and time-step sizes on the solution convergence

@ Uniform flow perturbed by an isentropic vortex

__0 d(1-r?)
u=——(y —
u o (y — yo)e

ov

= —(x—xo)e

5T = ~ 20 =1 pou-r)

0.97
0.94
0.91
0.88
0.85
0.82
0.79
0.76
0.73

067
0.64
0.61
0.58
055
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Convection of An Isentropic Vortex

o Effect of mesh sizes on the solution convergence
@ Single level versus p—multigrid solvers

@ DG p = 4 scheme and the BDF2 temporal scheme (fixed time-step size At = 1.0)
@ Various mesh sizes N = 3136, N = 7056 and N = 14400

3136 elements, p-MG
. 7056 elements, p-MG
107 - 14400 elements, p-MG
3136 elements, 1 level
7056 elements, 1 level
- 14400 elements, 1 level

3136 elements, p-MG
7056 elements, p-MG
14400 elements , p-MG
3136 elements, 1 level
7056 elements, 1 level

1075 =+ 14400 elements, 1 level
= 2ige
Q
2 2
§’1 $107 RN
. - \.
N, N
g ., -8 b
1 N 10 N\
\‘.\ .\.
10° N N 10° ¥
\, N, \~.\
10 Y ™ 107 FEAN U P BT N |
20 30 40 1000 2000 3000 4000
Number of p-MG Cycles CPU Time (s)

Convergence history vs. p-Multigrid cycles Convergence history vs. CPU time
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Convection of An Isentropic Vortex

o Effect of time-step sizes on the solution convergence

@ Single level versus p—multigrid solvers

@ DG p = 4 scheme, the BDF2 temporal scheme and fixed mesh size N = 14400
@ Various time-step sizes At = 0.5,1.0 and 5.0

-
At=05,p-MG 10
At=1.0,p-MG ﬁ: = .1]'151 s p-mg
At=50,p-MG =10, p-
05,1 level - At=50,p-MG
. 1.0 .1 level 10 <+ Atz 05,1 level
——— A=50.1level . A=10,1level
! N At=50,1level
. ~.
N 10°k :
N, ~ F
N = [ .
\.\ ok Ny
N g f N
u\ a [ \..
3 s \,
N 10°F N
N\, b N\,
N, I .
. 10°E N\
K N F B N
\ ., | \ ..,
\ [ \ N
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40 60 80 100 120 2000 4000 6000 8000 10000
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Conclusions

@ The multigrid method is designed to eliminate low-frequency errors on the fine mesh
by transferring the fine-grid residual to a coarse grid.

@ Purely spectral (p—) multigrid approach operates on the approximation spaces of
different orders.

@ The coupling of spectral and agglomerated (hp—) multigrid procedures increases the
overall efficiency for steady-state problems, while the purely p—multigrid approach is
more appropriate for implicit time-integration problems.

o Compared to the nonlinear Jacobi smoother, the linearized smoothers require
additional storage, but generally more efficient than the former nonlinear smoother.

@ The hp—multigrid schemes demonstrates both h— and p—independent convergence
rates, thus the efficiency benefits become more significant for finer meshes.

@ For implicit time-integration problems, the p—multigrid strategy exhibits
h—independent convergence rates while retaining slight dependence on time-step
sizes.
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