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Introduction

Increasing demands for simulation accuracy requires efficient computation
algorithms.

I Error decreasing rate, en+1/en, is 1−O(h2) for classical iteration techniques like point
Jacobi or Gauss-Seidel.

Multigrid methods have been developed for convergence acceleration.
I Originally introduced to numerically solve elliptic PDEs
I Applied to various problems in many disciplines

F Fluid dynamics and elasticity

F Geodetics and molecular structures

F Image reconstruction and tomography

F Statistical mechanics and etc.

I An efficient and versatile approach for computational problems

Basic concept of multigrid methods is to transfer the original problem onto a coarser
grid to effectively eliminate low frequency errors.

I Involving deliberate interpolating procedures between fine and coarse meshes.

I Similar idea can be applied to the finite element method where various approximation
spaces are treated as different “grid” levels.
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Model Problem

Consider a one-dimensional boundary-value problem

{
u′′(x) = 0 0 < x < 1
u(0) = u(1) = 0

I Analytical solution for the specific boundary conditions is uex (x) = 0, x ∈ [0, 1].

I Present aim is to solve the second-order equation numerically.

Partition the domain into N subintervals with constant width of h = 1/N

Discretize the second-order term using a central difference scheme

u′′(xj) =
uj+1 − 2uj + uj−1

h2
+O(h2)

The discretized system becomes

uj+1 − 2uj + uj−1 = 0 1 ≤ j ≤ N − 1
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Model Problem

Express the system (uj+1 − 2uj + uj−1 = 0) into a matrix form as Au = b

A =


−2 1
1 −2 1

1 −2 1
· · ·
1 −2 1

1 −2

 u =



u1

u2

...

...
un−1


b = 0

Next we can solve the system using a weighted (or damped) Jacobi iterative method
(1 ≤ j ≤ N − 1)

u∗j =
un
j+1 + un

j−1

2

un+1
j = (1− ω)un

j + ωu∗j = (1− ω)un
j + ω

2
(un

j+1 + un
j−1)

The convergence behavior of errors can be examined by specifying an initial guess
consisting of Fourier modes

u0
j = sin

(
jkπ

N

)
I k is the wavenumber (or frequency) indicating the number of half sine waves.
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Model Problem

Note that the initial solution error for this problem is e0
j = −sin

(
jkπ
N

)
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For any Jacobi iteration, the solution error is enj = −un
j . Based on this fact, we

examine the error convergence by taking 100 weighted Jacobi iterations (ω = 2/3)

Iterations
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I Higher frequency errors are damped much more rapidly than the lower frequency ones.
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Model Problem

Error damping behavior using the weighted Jacobi method with ω = 2
3

for initial
guess consisting of k = 3 (left) and k = 16 (right).
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Model Problem

Examine this behavior more precisely assuming Fourier modes for the error

enj = V ne i(jθ) enj+1 = V ne i(j+1)θ

en+1
j = (1− ω)V ne i(jθ) + ωV n

2
(e i(j+1)θ + e i(j−1)θ)

I θ = kπ/N

The amplification of errors

g =
en+1
j

enj
= (1− ω) +

ω

2
(e iθ + e−iθ)

= (1− ω) + ω cos θ

= 1− 2ω sin2(
θ

2
)

= 1− 2ω sin2(
kπ

2N
) 1 ≤ k ≤ N − 1

or en+1
j = genj

Note that if |g | < 1, the errors are damped, and this requires 0 < ω ≤ 1.
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Model Problem

Examine how the value of ω affects the damping of all frequencies

k

g
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ω = 1

0 N/2 N

I All values of ω are not effective to damp low-frequency or smooth components of the
error, for example wavenumbers k close to one.

I For ω = 1 both the high and low-frequency components of the error are damped very
slowly, but those near N/2 wavenumbers are damped rapidly.

I ω = 2/3 is effective to damp high-frequency (or oscillatory) components of the error
(N/2 < k < N).

A method is in need to effectively eliminate errors of all frequencies.
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Two-Level Multigrid Method

Stem from the idea of using a coarser grid to provide a better initial guess
I Relaxation is cheaper on the coarse grid.
I A better convergence rate can be obtained.

I Recall the amplification of errors:

gk = 1− 2ω sin2(
kπ

2N
)

I g1 is associated with the smoothest mode (k = 1)

g1 = 1− 2ω sin2(
π

2N
)

= 1− 2ω sin2(
πh

2
)

≈ 1−O(h2)

I Error convergence rate is − log10(|g1|).
I Coarsening the grid by a factor of 2 makes g1 go from 1−O(h2) to 1−O(4h2), thus

resulting in a larger convergence rate.

Dr. Li Wang and Dr. W. Kyle Anderson High-Order Methods for Flow Simulation and Design July 9, 2014 13 / 45



Two-Level Multigrid Method

Low-frequency errors on the fine mesh appear as higher frequencies on a coarser
mesh.

I As an example, use a 4 mode (k = 4) wave on a N = 12 point mesh projected onto a
N = 6 point mesh.
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I For the same mode, the wavelength on the fine mesh is 6h versus 3h on the coarser
mesh.

I The wave on the coarse grid is more oscillatory than that on the fine grid.

The fine-grid problem should be transferred to a coarser grid to effectively damp the
low-frequency errors on the fine grid.
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Two-Level Multigrid Method

Basic idea of multigrid: do enough iterations on the fine grid and transfer the
problem to a coarse grid.

Obtain an equation for the errors that we can transfer to the coarser mesh ⇒ the
residual equation.

I Recall the system of equations

Auex = b

Au − b + R = 0 where R = b − Au

Ae = R = b − Au (e = uex − u)

I Relaxation on the original equation Auex = b with an arbitrary initial guess u0 is
equivalent to relaxing on the residual equation Ae = R with the specific initial guess
e = 0.

Based on the idea of relaxation on the error, we can initiate a multigrid approach.
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Two-Level Multigrid Method

A two-level multigrid procedure
1 Relax v1 times on Ahuh = b on the fine grid to obtain an approximation uh.

2 Compute the residual Rh = b − Ahuh on the fine grid.

3 Transfer the residual vector to the coarse grid, RH = IHh Rh.

4 Solve the residual equation AHeH = RH on the coarse grid to obtain an approximation
to the error eH .

5 Interpolate the error on the coarse grid up to the fine grid and update the solution
uh = uh + I hHeH .

6 Use uh as initial guess and go back to Step 1.

Restrict

e = I  e
Prologate

Relax on A  e  = R

h
Compute R = b − A uh h h h

H
H
h h h

h
H H

H H H

R  = I  R

Relax on A u  = bhh Correct u = u  + eh h h
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Restriction Procedure

Restriction procedure
RH = IHh Rh

I RH : residual on mesh with spacing H = 2h.

I Rh: residual on mesh with spacing h.

I IHh : restriction operator

Rh

2j−1 2j+12j

jj−1 j+1
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Restriction Procedure

The restriction operator can be defined in several ways.

RH = IHh Rh

I Direct injection, RH j = Rh2j

Rh

2j−1 2j+12j

j j+1

I Full weighting, RH j = 1
4

(Rh2j−1 + 2Rh2j + Rh2j+1)

Rh

2j−1 2j+12j

j j+1
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Prolongation Procedure

The prolongation is typically done using linear interpolation.

eh = I hHeH

e h

e H

2j−1 2j+12j

jj−1 j+1

eh2j = eH j

eh2j+1 =
1

2
(eH j + eH j+1) 0 ≤ j ≤ n

2
− 1
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Multigrid Schemes

A procedural question: What is the best way to solve the coarse-grid problem?

In many occasions we do not have to solve the residual equation on the coarse mesh
exactly.

Alternatively we can apply the same multigrid procedure recursively.

Replace the direct solve in the two-level multigrid scheme by an accurate solve using
multiple cycles of multigrid.

The two-level multigrid procedure is thus performed recursively.

Typical multigrid cycles: V-Cycle, full Multigrid schemes and etc.
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V-Cycle Multigrid Scheme

1 h: Relax v1 times on Ahuh = b to obtain uh.

2 h: Compute Rh = b − Ahuh.

3 h→ 2h Transfer R2h = I 2h
h Rh.

4 2h: Relax v1 times on A2he2h = R2h with initial
guess e2h = 0

5 2h: Compute R2h = R2h − A2he2h.

6 2h→ 4h: Transfer R4h = I 4h
2h R2h.

7 · · ·
8 16h: Solve A16he16h = R16h.

9 · · ·
10 4h→ 2h: Correct e2h = e2h + I 2h

4h e4h.

11 2h: Relax v2 times on A2he2h = R2h with initial
guess e2h.

12 2h→ h: Correct uh = uh + I h2heh.

13 2h: Relax v2 times on Ahuh = Rh with initial
guess uh.
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Full Multigrid (FMG)

Start from the relaxation problem at the coarsest grid.

Each V-cycle is preceded by a coarse-grid V-cycle to obtain a good initial solution.

Interpolate this initial guess on the current grid.

Perform a V-cycle to improve the solution.
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Multigrid Approach for Nonlinear Equations

Full Approximation Storage (FAS) Scheme
I A system of nonlinear algebraic equations

R(u) = b

I u, b are vectors with dimension N.
I The notation R(u) denotes a nonlinear operator.

The nonlinear residual equation on the fine grid can be derived

Rh(uh) = bh

rh(vh) = bh − Rh(vh)

I vh is an approximation to uh and eh = uh − vh.
I Subtracting the above two equations from one to the other yields

Rh(uh)− Rh(vh) = rh(vh)

If the high-frequency errors have been previously smoothed, then this equation can
be approximated on a coarser mesh as

RH(uH) = ĨHh rh + RH(IHh vh)
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Multigrid Approach for Nonlinear Equations

RH(uH) = ĨHh rh + RH(IHh vh)

ĨHh and IHh denote restriction operators for the residual and the solution variables.

IHh vh serves as an initial approximation to the solution on the coarse mesh.

uH is the exact solution on mesh H.

Full solution is computed and stored on the coarse mesh ⇒ referred to as full
approximation storage.

With the residual equation we can next use a two-level FAS scheme.
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Two-Level Full Approximation Storage

1 Relax on the fine grid to obtain an approximation vh for Rh(uh) = bh.

2 Compute the residual on the fine grid rh(vh) = bh − Rh(vh).

3 Restrict the residual and the fine-grid approximation to the coarse grid as ĨHh rh and
IHh vh, respectively.

4 Solve the residual equation on the coarse grid RH(uH) = ĨHh rh + RH(IHh vh).

5 Compute the coarse grid correction cH = uH − IHh vh.

6 Transfer the correction (i.e. error) to the fine grid, I hHcH .

7 Correct vh on the fine grid using the prolongated correction as vh = vh + I hHcH and
go to Step 1.
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Restriction and Prolongation

Solution variables are conserved variables, such as ρ, ρu and ρE

To preserve conservativity we use a volume weighted restriction operator for the
solution variables.

IHh vh =

∑
k Ωkvhk∑

k Ωk

I The summation takes over all the fine grid cells which make up the coarse grid cell.

Restriction operator of the residual is just a summation as

ĨHh Rh =
∑
k

Rhk

Prolongation operator of the correction is linear interpolation.

1Ω 2

3 4

Η

h H

Ω

Ω Ω

Ω
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hp−Multigrid Approach

Combination of spectral and geometric multigrid schemes (hp−Multigrid)

The spectral multigrid (p−Multigrid) approach makes use of lower-order p−levels as
coarser grids.

I Alleviate the need to generate a sequence of agglomerated grids.

I Simplify the interpolation and prolongation procedures with hierarchical functions.

I Often more suitable for unsteady problems.

hp-Multigrid V-Cycle
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hp−Multigrid Approach

The same procedure in the traditional multigrid approach is applied: fine grid
problem is accelerated by means of coarser grid corrections.

Fine : Rp(up) = bp

Coarse : Rp−1(up−1) = Ĩ p−1
p rp + Rp−1(I p−1

p vp)

The use of the hierarchical basis functions greatly facilitates the processes of
restriction and prolongation in the p−multigrid scheme.

p1 · · · φ1 φ2 φ3

p2 · · · φ1 φ2 φ3 φ4 φ5 φ6

p3 · · · φ1 φ2 φ3 φ4 φ5 φ6 φ7 φ8 φ9 φ10

I Approximation spaces are nested, i.e. Vp−1
h ⊂ Vp

h

φp−1
i =

∑
j

αp−1
ij φpj

 φ1

φ2

φ3

 =

 1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0



φ1

φ2

φ3

φ4

φ5

φ6


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hp−Multigrid Approach

Levels between p and p − 1 (p − 1 > 0) φp−1
i =

∑
j α

p−1
ij φp

j

Weighted residual restriction Ĩ p−1
p rp and state variable restriction I p−1

p vp

Ĩ p−1
p rp = R(φp−1

i , vp) = R

(∑
j

αp−1
ij φp

j , vp

)
=
∑
j

αp−1
ij R(φp

j , vp)

I p−1
p vp = αp−1

ij vp

I Obtained by disregarding the higher order modes and transferring the values of the low
order modes exactly.

State variable prolongation cp = I pp−1cp−1

I pp−1 =
(
αp−1
ij

)T


c1

c2

c3

c4

c5

c6

 =


1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0


 c1

c2

c3


I Obtained by setting the high order modes to zero and injecting the values of the low

order coefficients exactly.
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hp−Multigrid Approach

Restriction and prolongation between p1 and p0 levels
I Basis function is constant for p = 0, φp0 = 1.

I Underlying grid is the same.

I Triangular mesh as an example:

I p0
p1
vp1 =

1

3

3∑
i=1

vp1,i

Ĩ p0
p1
Rp1 =

3∑
i=1

Rp1,i

I p1
p0
cp0 = cp0

Restriction and prolongation between h-levels operate the same manners as those for
the traditional multigrid schemes.

IHh vh =

∑
k Ωkvhk∑

k Ωk
ĨHh Rh =

∑
k

Rhk I hHcH = cH
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Relaxation Methods at Each Level

Approximate Newton method for R(u) = S[
∂R

∂u

]n
∆un+1 = S − R(un)

un+1 = un + ω∆un+1

I Decompose the Jacobian matrix as
[
∂R
∂u

]n
= [Dn] + [On]

Various relaxation/smoothing solvers

I Nonlinear element Jacobi

∆un+1 = [Dn]−1 (S − R(un))

I Quasi nonlinear element Jacobi (runs with
sub-iterations, k)

∆uk+1 = [Dn]−1 (S − R(uk ))

I Linearized element Jacobi

∆uk+1 = [Dn]−1 (S − R(un)− [On]∆uk )

I Linearized element Gauss-Seidel [On] = [Ln] + [Un]

∆uk+1 = [(D + L)n]−1 (S − R(un)− [Un]∆uk )
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Numerical Examples

Compressible channel flow over a Gaussian bump

Convection of an isentropic vortex
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Compressible Channel Flow over a Gaussian Bump
M∞ = 0.2 (steady-state problem)

Inflow/Outflow boundary conditions and wall boundary conditions enforced on the
top and bottom

Agglomerated coarser grids
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Compressible Channel Flow over a Gaussian Bump

Comparison of convergence of non-linear element Jacobi (NEJ), quasi-nonlinear
element Jacobi (qNEJ), linearized element Jacobi (LEJ) and linearized Gauss-Seidel
(LGS) smoothers

Mesh size N = 1248, DG p = 4 (i.e. fifth-order) scheme, 5 sub-iterations
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Compressible Channel Flow over a Gaussian Bump

Effect of various discretization orders on the solution convergence

Single level method versus hp−multigrid approach

Discretization orders vary from p = 1 to p = 4

Number of hp-MG cycles
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Compressible Channel Flow over a Gaussian Bump

Effect of mesh resolution on the solution convergence

Single level method versus hp−multigrid approach

Variation of mesh sizes N = 573, N = 1248, N = 2522 and N = 5088 (fixed p = 4)
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Convection of An Isentropic Vortex

Effects of mesh sizes and time-step sizes on the solution convergence

Uniform flow perturbed by an isentropic vortex

δu = − σ

2π
(y − y0)eϑ(1−r2)

δv =
σ

2π
(x − x0)eϑ(1−r2)

δT = −σ
2(γ − 1)

16ϑγπ2
e2ϑ(1−r2)
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Convection of An Isentropic Vortex

Effect of mesh sizes on the solution convergence

Single level versus p−multigrid solvers

DG p = 4 scheme and the BDF2 temporal scheme (fixed time-step size ∆t = 1.0)

Various mesh sizes N = 3136, N = 7056 and N = 14400

Convergence history vs. p-Multigrid cycles Convergence history vs. CPU time
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Convection of An Isentropic Vortex

Effect of time-step sizes on the solution convergence

Single level versus p−multigrid solvers

DG p = 4 scheme, the BDF2 temporal scheme and fixed mesh size N = 14400

Various time-step sizes ∆t = 0.5, 1.0 and 5.0

Convergence history vs. p-MG cycles Convergence history vs. CPU time
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Outline (Lecture 2)

Introduction and Basic Concepts

Model Problem and Two-Level Multigrid Approach

Multigrid Approach for Nonlinear Equations

hp−Multigrid Strategy

Numerical Examples

Conclusions
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Conclusions

The multigrid method is designed to eliminate low-frequency errors on the fine mesh
by transferring the fine-grid residual to a coarse grid.

Purely spectral (p−) multigrid approach operates on the approximation spaces of
different orders.

The coupling of spectral and agglomerated (hp−) multigrid procedures increases the
overall efficiency for steady-state problems, while the purely p−multigrid approach is
more appropriate for implicit time-integration problems.

Compared to the nonlinear Jacobi smoother, the linearized smoothers require
additional storage, but generally more efficient than the former nonlinear smoother.

The hp−multigrid schemes demonstrates both h− and p−independent convergence
rates, thus the efficiency benefits become more significant for finer meshes.

For implicit time-integration problems, the p−multigrid strategy exhibits
h−independent convergence rates while retaining slight dependence on time-step
sizes.
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