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Governing Equations

Compressible Navier-Stokes Equations:

oU(x,t) N dF, (U(x,t)) _9G,(U(x)
ot ox, ox,

where the conservative state, inviscid flux, and viscous flux vectors

[ P ) [ pu, ) 0
U=|puy, Fj =| PuU; +p5ij G, = O
\,06/ \uj(pe+p)/ Uo;+49;

Here p, p, and e denote the density, pressure, and specific total energy of
the fluid, respectively, and u; 1s the velocity of the flow in the coordinate
direction X;

0; : Kronecker tensor.
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by

1 du, ou, 2 du, ol

= — N = d I ) Zu—%L05. S R
p=(y-Dple 2ujuj) % ”(ax.+ax.) 3”axk i q; k

J 1

where y(=1.4) ratio of the specific heats, pu: molecular viscosity, k: thermal

conductivity coefficient. The molecular viscosity can be determined through

Sutherland’s law uo ( T )3 T +S

Hyo I, ) T+S
I, denotes the viscosity at the reference temperature 7|, and S is a constant
which for air assumes the value S = 110°K. The temperature of the fluid T 1s
determined by

r_ P

R: 1deal gas constant. Rp
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o

| Compressible Euler Equations %

H

If we neglect the loss of the heat by thermal diffusion (k=0) and the effects of
viscosity(u=0), the Navier-Stokes equations become the Euler equations:

aU(X,t) 4 aFk(U(X,t)) :O

ot ox,
va [ ouy )
U= pu, F, =| puu, +po,
\,08 \uj(loe-l_p)/

p=(y —1)p<e—%u,-u,-)
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Boundary Conditions

* Dirichlet boundary conditions

* No-slip nall boundary conditions:
Isothermal wall: V=0,and T, =T,
Adiabatic wall : V.=0,and %X _o

on |y

» Slip wall boundary conditions:
Vn|=0
e Inflow/Outflow boundary conditions: characteristic boundary conditions

* Periodic boundary conditions: no boundary conditions
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e Advantages:

e Several useful mathematical properties with respect to conservation, stability, and convergence.
Easy extension to higher-order (>2"%) schemes.
Well suited for complex geometries.
Easy adaptive strategies, allowing implementation of /p-refinement and hanging nodes.
Compact and highly parallelizable.

Accuracy for low Mach number flows.

e Disadvantages:
e Require higher-order boundary representation
—Geometric modeling capability
—Curved boundary elements
e High computing costs (more degrees of freedom)
— CPU time
— Storage Requirements
e Treatment of discontinuities (like all other high-order methods)
— Sensitive to the implementation of limiters
— Lead to loss of high-order accuracy
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Find UE) such that

f a;vvdm f F.n.dr- f F,- dQ f G.n.dr - f G, —dQ YW eV

k

V: Solution space
W Test function
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Semi-discrete form

Q=UQ, VhP“={th[L2(Q)]m:vh| e[w] Vgeeg},
Vo' =span {]_[ O<a <p, O<z<d}

m: dimension of conservative state vector
d: number of spatial dimension

Find U evh such as

fUWd9+ka(Uh)ndeF ka(U) —14Q = ka(U ) W,dl - fG U, )—dQ YW, €V}

X

U, : piecewise polynomial function of degree p,, which 1s
discontinuous between the cell interfaces.
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([} |
DG(P,) Method '

= fU BdQ+ ka(U n Bdl - ka(U

k(U n Bdl - ka(U )—dQ I<i<N

Xk Xk

B (x): basis functions of the polynomials of degree P, 1<i<N.
N: dimension of the polynomial space P,..

T
Discontinuous Galerkin method of degree Pn (DG(Pn)) : O(A")

F.(U,)n, =H,(U!,,U%, n,) < Numerical Riemann flux function

U U, U,
G, (U, —*" = H.(U%,U¥%, , .n
k( h P )nk ( hsCh I I )

i i i

The computation of the viscous fluxes has to properly resolve the
discontinuities at the interfaces.
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'ﬂ

T DG(P,) Method B

EUQ (t)B (x) = EU (1)B, (x)

=R. l<i<N

1

anBdr+fFa dQ+fGnBaT fG 9B 40

T X, 2, 0x,
U, R,
U, R,
d
My,n a : = :
Uy Ry

* No global mass matrix needs to be inverted.

* Inter-element communications are minimal.
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Computation of the domain integral

R = ka(Uh)a—B’dQ, 1=i=<N
Q, 0X;

Computer Implementation:

do ielem = 1, nelem I Loop over the elements
do igaus = 1, ngaus I Loop over the Gauss points
I Get the solution at the Gauss points
Unkno = ...
I Compute the fluxes at the Gauss points
Fluxes = ...
I Scatter it to the RHS vector
rhsel = rhsel + ...
enddo
enddo
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Computation of boundary integral

R=-[F.U,)n,Bdl, 1<isN

: . T
Computer implementation (efement-based data structure)

do ielem = 1, nelem I Loop over the elements

do ifele = 1, nfele I Loop over the face of this element

jelem = elsuel(ifele,iclem) I Adjacent element number

do igaus = 1, ngaus I Loop over the Gauss points

I Get the solutions at the Gauss points
Unkno ielem = ... I Solution at the left of Gauss point

unkno jelem = ... I Solution at the right of Gauss point
I Compute the fluxes at the Gauss points by a Riemann flux functions
Fluxes = ...
I Scatter it to the RHS vector
rhsel ielem =rhsel ielem + ...
enddo ! End of the do-loop over the Gauss points
enddo I End of the do-loop over the faces of this element
Enddo ! End of the do-loop over the elements
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Computation of boundary integral

R=-[F.U,)n,Bdl, 1<isN
r

Computer implementation (efaced—based data structure)

do iface = 1, nface I Loop over the faces

ielem = intfac(1,iface) I Left element of this face

jelem = intfac(2,iface) I Right element of this face

do igaus = 1, ngaus I Loop over the Gauss points of this face

I Get the solutions at the Gauss points
Unkno_ielem = ... I Solution at the left of Gauss point

unkno jelem = ... I Solution at the right of Gauss point

I Compute the fluxes at the Gauss points by a Riemann flux functions
Fluxes = ...

I Scatter it to the RHS vector

rhsel ielem =rhsel ielem + ...

rhsel jelem =rhsel jelem - ...
enddo ! End of the do-loop over the Gauss points

Enddo ! End of the do-loop over the faces
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[ I
| Numerical Integration '

Quadrature order requirements for the 2D Euler equations
using conservative state variables for triangle

Boundary (1-D) Domain (2-D)

=1 g=2 9=3  g=1  g=2  g=3

P=0 1 3 5

P=1 2 5 7 3 3 4
P=2 3 7 7 4 5 6
P=3 7 9 9 6 7 8

where p 1s interpolation order and q i1s element geometry
order.
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| Numerical Integration ¥

Quadrature order requirements for the 3D Euler equations
using conservative state variables for tetrahedral

Boundary (2-D) Domain (3-D)

=1 g=2 9=3  g=1  g=2  g=3

r—

P=0 1

P=1 3 5 6 4 5 6
P=2 6 7 8 5 6 7
P=3 8 9 10 7 7 8

where p 1s interpolation order and q i1s element geometry
order.
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Nodal Discontinuous Galerkin Methods

The DG solutions in each element are represented using finite element
shape functions:

U, - 30,08,

where B;: finite element shape functions.

Ul Rl
U2 R2
NINxNi =l
dt . .

Ux) Ry Q1/P1 Q2/P2

The unknowns are the values of the conservative variables at the nodes.

The shape (trial, test) functions depend on the shape of elements.
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Lagrange Basis Functions

* Introduce reference coordinate & over an element with nodes 1
and 2

© C=(x-x))/(xyx;)

 Linear basis functions over an element with nodes 1 and 2
* B=1-C, B,=C

* (Quadratic basis functions

* B, =(1-0(1-20), B, = -{(1-20), By = 4¢(1-)
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Finite Element Basis Functions for Triangle

* Introduce area (harycentrl 3 coordinates C, (1=1,2,3) for a point P(X)
in a triangle with nodes 1, 2, and 3

e (, = area of triangle P23/area of triangle 123
e (, =area of triangle P31/area of triangle 123
e (; =area of triangle P12/area of triangle 123

* Introduce reference coordinates (&, 1)

* {=(and n=_;
« X=X =(-&- X, +eX,; +nX;
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Shape Functions for Triangles

* Linear basis functions over a triangle with nodes 1, 2, and 3
* B=§=1-¢&n
© By=(=¢ 3
* B=G=n

* Quadratic basis functions 1 2

e B, =( (2¢,-1) = (1-E)(1-28-21) 5;?1:;2 of freedom of linear
B, = G (26-1) =<(26-1)

By =G (261 =n@n-1) 3

By = 4G, 6 = 4(1-6m)g 6

Bs=46,6 =480

B, =4, ¢, =4n (1-&) L
Degree of freedom of quadratic
triangle
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Shape Functions for Quads

e Bi-linear Quad
* B,=(1-9(l-n)
* By=¢(1m)
* B;=an
* B,=(1-9n

* Quadratic Serendipity Quads Bi-linear Quad
* B;=1-9)-m)(1-2&-2n)
* B,=-¢(I-m)(1-2&+2n)
* B;=-g(1-n)(3-2¢-2n)
* B,=(1-On(1+2&-2n)
* Bs=4(1-9)(1-n)
* Bg=48n (1-n)
* B;=4(1-9)dn
By =4(1-5)(1-n)n
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Model Discontinuous Galerkin Methods

The DG solutions in each element are represented using model basis
functions:

U, - S U, 08,(x).

where B.: model basis functions.

U1 Rl

d Uz Rz
MNxNa 1=l °
UN RN

The unknowns are the moments of the conservative variables in each
elements.
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Legendre Basis Functions

* 1D Legendre Basis Function

* Introduce reference coordinate  over an element with nodes 1
and 2

o =2(x-x.)/(x,-x;) with x = (x,+x,)/2

 [Linear basis functions over an element with nodes 1 and 2
[ ] Blzl, B2 o C

* (Quadratic basis functions
- B=1,B,=(, B;=3-1)2

* Bonnet’s recursion formula: (n+1)B,_,,({) = (2n+1) (B, .,({) — nB_({)

e Multi-dimensional Basis Function can be derived using tensor-product
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Taylor Basis Functions

) u@| | PUE)| (x-x) U (-p) U@,
U,=U.(n+ ™ C(X X.)+ C(y yo)+ x| 2 + | 2 +8x8y L(x x)»-y.)
~ oU oU
U, =U+— (x=x)+— (v-».)
ox |, ay|.
2 2 2 2 2 2
+aI2J ((x_xc) _f(x_xc) dQ)+aIZJ ((y_yc) _f(y_yc) dg)
ot s 2 4 2 v o2 42
0°U
+ ((x—xc)(y—yc)—f(x—xc)(y—yc)dQ)
axayc 5,

The unknowns are the cell-averaged
conservative variables and their
derivatives at the center of the cells,
regardless of element shapes.
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_ _ 2
B=1 B =% p_Y¥Y Y p _(x=x) f(x %) 4o
Q

Ax Ay Ny i 9, 24x°
B, - (- y; f(y ) Q B, - (x-x)0-y.) _ f(x—xc)(y—yc) 7O
Q. J 2A)° AxAy QJ  AxAy

U, =UB +UB,+ UB,+U,B,+U B +U B,

GU U 22U 92U 29U
2 U = AxA
Ux ax AX U ay AY& Uxx =a7 AX R UW ay Ay ) Xy axay ) y
X - X _. — .
Ay = Zmax : min Ay = Ymax ~ Vmin
2

Xmax, xmin, ymax, ymin are the maximum and minimum coordinates in
the cell Q21 1n x-, and y-directions, respectively.

Alleviate the stiffness of the system matrix for higher-order DG
approximation
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Features of Taylor Basis

* A finite volume code can be easily converted to a DG code.

e Same approximate polynomial solution for any shapes of
clements:
* Can be easily extended and implemented on arbitrary meshes.

* Cell-averaged variables and their derivatives are handily available:
* Make implementation of WENO reconstruction easy and
efficient

* Hierarchic basis
* Make implementation of p-multigrid methods and p-
refinement easy and efficient
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DG(P,) approximation

U, =U0 N=1, B,=l,
d dB, .
dtS!UhBidQ+!Fk(Uh)11kBidF_§!Fk(Uh)axkdg_09 I<i=N
d U(#)d<2 dl'=0
Eg{ Q) +£Fknk -

* The classical first-order cell-centered finite volume
scheme exactly corresponds to the DG(P,) method.

o DG methods can be regarded as a natural generalization of
finite volume methods to higher order methods.

o By simply increasing the degree o of polynomials DG
methods of corresponding higher-orders are obtained.
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DG(P,) approximation

N=3 U,=UB +U B, +U B,

d .
Eg[Udgz +!Fk(Uh)nkaT=O, i=1

\

(dU 5,

i ) fF n,B,dl - fF an dQ
TN | EnBar- [F, a0
\ dt ) \ T Q, ayk )

[B.B,dQ  [B,B,dQ
[B.B,dQ  [B,B,dQ
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DG(P,) approximation

N=6, U,=UB +UB,+U B +U_B,+U B;+U_B

d .
E!Ud@ +ka(Uh)nde=O, i=1

JU fF n,B,dl — fF ax2 dQ

k

dt
du, ander fF ; 9 4o
X

dt k
dU _
M. —= n andeI“ fF ax:dQ 0
dU
_w 5
” ankBaT fF . dQ

k

N fF 1, Byl — fF ax6 dQ

k
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Similarity and difference between FV and DC

 The discretized governing equations for cell-averaged
variables and the assumption of a polynomial solution on
cach cell are exactly the same for both FV and DG

methods.

* The only difference between them 1s the way how to obtain
the polynomial solution, 1.e., how to compute the
derivatives.
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i |
DG Methods ’

* The derivatives are computed 1in a manner similar to the
mean variables, which 1s unique, compact, rigorous, and
clegant mathematically.

* The higher order DG methods can be easily constructed by
simply increasing the degree p of the polynomials locally,
in contrast to the finite volume methods which use the
extended stencils to achieve higher order of accuracy.
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Reconstruction Methods

 The polynomial solutions are reconstructed from cell-
averaged variables of neighbouring cells. The multi-
dimensional reconstruction schemes based on the
extension of 1D MUSCL approach have two serious flaws:

* Uncertainty and arbitrariness in choosing the stencils
and the methods to compute the derivatives;

* Formal second order accuracy is hardly obtained in
practice !!!
» Extended stencils required for higher-order (>2nd)
reconstruction.

* The finite volume methods are not practical at
higher order and have remained second-order !!!
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L ovenaion R

Reconstruction and DG methods can be viewed as two
ways to obtain higher accuracy of the first order finite
volume methods

_

Efficiency (computing

costs and storage Bad Good
requirements)
Robustness Good Bad
Accuracy Good Bad
Tolerance Good Bad

to grid irregularity
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In-cell Recovery/Reconstruction

* Objective:
* Combine the advantages of both reconstruction and DG
methods in order to improve the efficiency of the DG methods

* PnPm schemes (Dumbser et al, 2008)

* Reconstruction-based DG (Luo et al, 2009)

* Hybrid DG/FV schemes (Zhang et al, 2010)
* How?

* Recover/reconstruct a higher-order polynomial solution from
the underlying discontinuous DG polynomial solution
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Background ¥

To reduce high computing costs of the DG methods, Reconstructed
DG (RDG(P,P,,)) schemes were introduced by Dumbser et al.

—

* P indicates that a piecewise polynomial of degree of n 1s
used to represent a DG solution.

* P _ represents a reconstructed polynomial solution of degree
of m (m>n) that 1s used to compute the fluxes and source
terms.

* Provide a unified formulation for both finite volume and DG
methods, and contain both classical finite volume and
standard DG methods as two special cases of RDG(P_P,,)
schemes.
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Classification of the RDG(PnPm) Schemes

O(1) RDG(P,P, ) (DG(Py))

0(2) RDG(P,P;) RDG(P,P)) (DG(P)))

0@3) RDG(P,P; ) RDG(P,P,)  RDG(P,P,)
O(M-+1) RDG(P,P,) ... RDG(P,P, ) ... RDG(P,P,)

FV New Class DG
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Reconstructed Discontinuous Galerkine Method: RDG(PnP

4 [U, Bd2+ [F,(U n,Bdrl - [F, (U 1986 = [GL(US jn,BdT~ [G,(UE ) 9B, 0
lt ‘Qe r ,Qe m axk r m Qe m axk

e e

U, : reconstructed polynomial solution of degree Pm

m

B.(x) : basis functions of polynomials of degree Pn , 1<i<N

N: dimension of the polynomial space P

i

Reconstructed Discontinuous Galerkin method RDG(PnPm) : O(A"")
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Background

 (Observation: The construction of an accurate and efficient reconstruction
operator 1s crucial to the success of the RDG(PnPm) schemes.
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Reconstructed DG method RDG(P,P,)

* From a linear polynomial DG solution 1n any cell 1

U=UB+U_B,+ U,B,

* Reconstruct a quadratic polynomial solution UR

Uf=U'B +U:B, + Ufl.B3 + U B, + Ujfyl.BS + Uj;l.z;6

* Six degrees of freedom
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 Conservation

* Compactness
* Maintain compactness of the underlying DG method
* Necessary for unstructured arbitrary grids

e Stencils involve only Von Neumann neighborhood
(face-neighboring cells)
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Reconstruction

* Requiring conservation and reconstructed first
derivatives equal to the ones of the underlying DG
solution leads

U =Uf U,=0U, Uft =U,

due to the judicious choice of Taylor-basis in the DG
formulation

* Three second derivatives only need to be reconstructed.
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1. Least-squares Recovery (P,P,(rc)) (Dumbser et al

* This 1s achieved using a so-called in-cell recovery
where recovered equations are obtained using a L,
projection for each face-neighboring cell j, 1.¢.,

foB,{dQ = fU S BldQ,  k=1,.3
Q; Q;

* The over-determined system of linear equations (9x3
for a triangular cell and 12x3 for a quadrilateral cell) 1s
solved using a least-squares method.

(weak 1nterpolation)
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P,P,(rc) (Dumbser et al)

e ?2-exact reconstruction

* Able to reconstruct a quadratic polynomial exactly.

* Complex and expensive

* Require to compute the integral on both left and right-side of

the recovered equations.

 Problematic

For a boundary cell, the number of the face neighbouring

cells might not be enough to recover a polynomial solution
of a desired order.

Use extended one-side stencils -> destroy the compactness.
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=

m 2. Least-squares Reconstruction (P,P,(RC)) (Luo et

* The remaining three degrees of freedom can be
determined by requiring that the reconstructed solution

and 1ts first derivatives are equal to the underlying DG
solution and 1ts first derivatives for all the face

neighboring cells.

U,=U,+U_B/+U B/ +U" B/ +U" B/ + U B/

1 B’ B]

aU =U_ —+UL —+U

x " Ax “Ax, 7 Ax,
J J

Wy _y Lyr B yr By

' Ay TN T A,

Strong interpolation
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‘ﬁ\.

Y~

L l.
™y

Least-Squares Reconstruction

 Similar equations can be written for all face-
neighboring cells, which leads to a non-square matrix.

* The number of face-neighboring cells for a triangular
and quadrilateral cell 1s 3 and 4, respectively. As a
result, the size of resulting non-square matrix 1s 9x3,
and 12x3, respectively.

 This over-determined linear system of 9 or 12

equations for 3 unknowns can be solved 1n the least-
squares sense.
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P Pz(RC) method

* Simple and straightforward

* The boundary conditions are used to obtain the
reconstructed equations for the boundary cells, thus
ensuring existence of an over-determined system.

e ?2-exact reconstruction
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3. Green-Gauss Reconstruction (P,P,(GG)) (Zhang et a

* Green-Gauss reconstruction 1s widely used to
reconstruct a gradient from the cell-averaged values in

the finite volume methods.

e Similarly, the second derivatives in a cell i can be
reconstructed from the first derivatives using Green’s

theorem as follows,

2 2
(Va0 2U| (U, i
0x 0x
Ql . .

l ;T ox
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Green-Gauss Reconstruction (P,P,(GG)) (Zhang et @

« Simple, efficient. and robust
* No need to solve a least-squares problem.

e |.ess accurate

* Only use the information on first derivatives.

e Not 2-exact reconstruction

* Cannot reconstruct a quadratic polynomial exactly
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RDG(P,’,) RDG(P,P,)  RDG(P,P,) RDG(P,P,)

Number of quadrature
points for boundary 1 3 4 7
Integrals
Number of quadrature
points for domain 0 4 5 11
Integrals
Reconstruction Yes No Yes No
Order of Accuracy O(h?) O(h?) O(h?) O(h?)
Storage for Implicit 25 words
Diagonal Matrix Per 400 400 2500
element
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Spatial method RDG(P1P1)) | RDG(P1P2) RDG(P2P2)

Nr. of quadrature points for
boundary integrals

Nr. of quadrature points for domain 8 8 2y
integrals

Reconstruction NO YES NO

Order of spatial accuracy o(h?) o(h?) o(h%)
Storage for the implicit diagonal 400 words 400 words 2500 words

matrix per element

The memory requirement for RDG(P,P,) 1s much smaller than DG(P,).
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Storage Consideration

Consider the memory requirements for storing only a block
diagonal matrix

D(ndegr?,neqns?,nelem)

10000 T D . T I X 10000
2D triangular element ——
ndegr: degrees of freedom 0000 | 3D tetrahedral clement | 9000
for the polynomial L B00D [ 5000
. B 6000 o 6000
variables " 5 T
& 5000 - 5000
nelem: number of elements % S
Storage requirements for £ o0 ' A 3000
. e =

Implicit DG method are very 2000 | 2000

g7 p y 0 e 0

for higher-order methods !!!

Order of Polynomials
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=

|y —

Example 1. Convection of an 1sentropic vort

AT AVAAT AT AV AV AV AV A AT AT AT AF AV LV ERTRT AT AV AN ATLT &Y

A AV AT AT AT AV AV AV ACECAT KT AV AV AV AT AT AV AT AT
YAV AVACATAYAY.A AN

FAVAVAVAVAVATANANAVAN LWLV,

AYAYAYAVAV AV AV AV AV AV AT AT A VA

| v
Fay
¥i

i
Y
FAVATATATAYA :%.\/\/\/\/\/\f\é(

W N A A

AVAN AN ATV AVAV LT LT ALY AN

R AL AV RVAN AN AV AN ANV LA

s Ty

FARAYAYAT
i
™
N
R OO CON

PAN AV AP AV AV AV AV AV AV AN LV AN LY AT AV AVAVATAVAN
LT AT AV AT AN AN LA AT AT AV AN AV AV AN AT AT AV AV AVANAT LT A )
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Sequences of three successively globally refined meshes

16x16 § 32x32

64x64 : %
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_1 1 T l T T 1 -1
-1.5 F
N2t
3
O
C
C
—
w -2.5 |
—
s P1P1(Slope=2.27) =——t— 173
1P2(Green-Gauss) (Slope=3.13) =i
P2(Reconstruction) (Slope=3.32) =il
5 c . P1P2(Recovery) (Slope=3.31) —— 5 c

=1.6 =1.5 =-1.% =l.d -1l.2 =l.1 -1 -0.9

Log(cell-size)
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13

Example 2. Subsonic inviscid flow
past a circular cvlinder (M=0.38

—
—
—

Assess the order of accuracy of the reconstructed
discontinuous Galerkin methods.

Entropy production is served as the error
measurement.
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Computed density contours

DG(PI)

aalo

P1P2(LS)

W06 8CH| 0o
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-1 -1
-1.5 F .5
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O
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-
- T I 7 T . -3.5
P1P1(Slope=2.17) ——t—
E A PIPZ(Green-Gauss) (Slope=2.86) —d— 1 —4
P1P2(Recovery) (Slope=3.57) =il
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Example 3. Subsonic inviscid flow (M=0.5)

through a channel with a smooth bump

Assess the order of accuracy of the reconstructed
discontinuous Galerkin methods for internal flows

Entropy production is served as the error
measurement.
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£

Example 4. Subsonic inviscid flow
past an NACAO0012 airfoil (M.

—
—
—

This test case 1s designed to assess the accuracy
and robustness of the reconstructed discontinuous
Galerkin methods for inviscid solutions on viscous
type grids.
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Example 4. Subsonic Flow past a NACA 0012 ai

Nquad = 1,533, ntria=3,469, nbfac=157

AN
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Subsonic flow past a NACA0012 Airfoil M_=0.

y=")0

Computed Mach Number Contours

DG(P1) P1P2(GG) P1P2(LS)
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Subsomc ﬂow

"DG(P1) ——
RDG(P1) —x—
DG(P2) —w—

0.8
L 0.6

0.4

0.2

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
X/C

Entropy Production

0.004

0.003 4Ty

0.002

0.001

-0.001

0.004

C PIPL ——
© P1P2(GR) ——
- P1P2(RC) —— {
TN S S S—

0.002

0.001

-0.001

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.3 0.9 1
K/C

Comparison of computed pressure coefficient (left) and entropy

production (right) distributions on the surface of airfoil obtained by the

RDG methods
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Concluding Remarks

* A class of RDG(P,P,) methods has been presented
for solving the compressible flow problems.

* All three RDG methods are able to deliver the
desired third order of accuracy and can significantly
improve the accuracy of the underlying second-order
method.

* The least-squares RDG provides the best
performance 1n terms of accuracy, efficiency, and
robustness.
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Observation '

* The extension of the RDG(P,P,) method to tetrahedral grids was
unsuccessful.

—d

* The RDG method suffers from linear instability, similar to RDG(P,P,)
* Instability occurs even for linear equations and in smooth flows.
* Reconstruction stencils only involve von Neumann neighborhood,
1.e., adjacent face-neighboring cells

* To maintain the linear stability
* Augment stencils in the reconstruction
— Destroy the compactness of the underlying DGM.
* Use non-linear stability enforcement to achieve linear stability
— Limiters in the case of RDG(P P,) method
— ENO/WENO reconstructions.
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L[} .
i Objective '

* Develop an RDG(P,P,) method based Hermit WENO
reconstruction for solving the Euler equations on tetrahedral grids.

* enhance the accuracy, and therefore reduce the high
computational costs of the underlying DG methods

* avoid the spurious oscillations in the vicinity of strong
discontinuities, and therefore maintain the non-linear stability,
and naturally linear stability.

* Attempt to address the two weakest links of the DG methods.
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Hermit WENO Reconstruction

* On a tetrahedral cell i, a convex combination of the least-squares
reconstructed 2™ order derivatives at the cell itself and its four
face-neighboring cells

0°U 5 0°U
| =ZW \
=1

i k k
0x;0x dx;0x ;
w,: weighting function o, : oscillation indicator
4
W, 5(8 +0,)
8 ;0X

¢ — asmall positive number
Yy  — an integer parameter
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* C(entral stencil
— the least-squares reconstructed polynomial at the cell itself
* Biased stencils

— the least-squares reconstructed polynomials on its four face-
neighboring cells
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Example 1. Convergence Study for

the Quadratic Hermit WENO Reconstruction

* Access the order of accuracy on tetrahedral grids.
* A smooth function f(x,y,z)=sin(nx)cos(2my)sin(37z)

547 elements , 4406 elements
156 points 990 points
103 boundary pts 444 boundary pts

35697 elements 286702 elements
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SRRt || - In
K i
| SR 73 points - 5 points
T avAvAvaY AVAVAVAYAVAva g 1)
i e vavy KR
| Bt u
i R i 1785 boundary pts : 7094 boundary pts
i e navavayy e i
i AV VAVAVAVAVAVAVAVANSSS b i
| et |l
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i aeavaN AVAVAVAVAVAVAVANS 1111111}
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i
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Solution Accuracy for

the Quadratic Hermit WENO Reconstruction

L,-error and order of the convergence

Number of cells L2-error Order
547 3.44033E-2 -
4,406 4.24326E-03 3.01
35,697 4.46581E-04 3.23
286,705 4.93515E-05 3.17

The Hermit WENO reconstruction delivers
the designed 3" order of convergence !!
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Example 2. A Subsonic Flow through
a Channel with a Smooth Bump (Ma=0.5, a=0°)

* Access the order of accuracy of the Hermit WENO RDG(P,P;,

P,P,, P,P,) method for internal flows.
* Entropy production is served as the error measurement.

6986 cells

e 1555 pts
= 691 boundary pts

889 cells

254 pts
171 boundary pts :

449522 cells

81567 pts

449522 cells
10999 boundary pts

81567 pts
10999 boundary pts
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Obtained by the RDG(P,P,)
on the finest grid

Obtained by the RDG(P,P,)
on the fine grid

Obtained by the RDG(P,P,)
on the fine grid



Log(Error-L2)
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{-4.2

-2.2 -2.1 -2 -1.9 -1.8 -1.7 -1.6 -1.5 -1.4 -1.3 -1.2 1000 10000 100000

Log({cell-size) Number of degrees of freedom

* Hermit WENO reconstruction-based RDG(P,P,) method

* significantly increases the accuracy of the underlying DG
method

* greatly decreases 1ts computational costs

-4.4
1e+06
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* Access the order of accuracy of the Hermit WENO RDG(P,P;,
P,P,, P,P,) method for external flows.

* Entropy production is served as the error measurement.

535 cells 2426 cells 16467 cells 124706 cells
167 points 598 points 3425 points 23462 points
124 boundary pts 322 boundary pts 1188 boundary pts 4538 boundary pts
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Computed Velocity Contours

Obtained by the Obtained by the Obtained by the
RDG(P,P,) RDG(P,P)) RDG(P,Py)
on the finest grid on the fine grid on the fine grid
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1.6 -1.6 1 : | :
RDG(POP1) on finest grid
-1.8 1 : 1-1.8 0 RDG(P1P1) on fine grid _
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Example 4. Low Mach Number Flow

past a Sphere (Ma=0.01)

Velocity contours
obtained by the

RDG(P,P,)

Velocity contours
obtained by the

RDG(P,P,)

Velocity contours
obtained by the

RDG(P,P,)

on the fine grid on the fine grid

on the finest grid
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Comparison of the Computed Velocity Distributions

on the Surface of the Sphere

1-6 T T T T T 1-6
: Analytical Solution
‘ RDG(POP1)  +
‘ RDG(P1P1) X
I A S .o . T -
b ¥ roG(P1P2) mw ] °
1.2 fo 1.2
1 f 1
> f
= | o %
S 0.8 oo M eseeeeeens 0.8
— '
@ .
> .
0.6 |rmmemmmemmmmeesteeeee e M R RRRROTE, FCTRRY S CEETE ERRRPTLTRRERY 0.6
0.4 [-omemememmendieneeeee Rl  atts & JSSCCTTELTTTEREPTLTRERY 0.4
0.2 [reeereresmmmeeemenee Rt 0.2
0 * 0

~1.5 -1 —0.5 0 0.5 1 1.5

X-coordinates
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Example 5. Transonic Flow past

an ONERA M6 Wing (Ma=0.699, 04=3.06°)

* Access the accuracy and robustness of the RDG(P,P,) method for
transonic flow problems.

IO e e e e
N s i o AV gﬁ@%’ﬁg&ﬂkﬂﬁﬁp
Sl I e e g e S e
LPOLHKT R i e g
Vé(}fﬂﬁ%ﬂr . 0 A

v VA g
41,440 elements

8,325 grid points
2,575 boundary points

coarseness of grids
in the vicinity of
the leading edge
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Computed Pressure Contours by RDG(P,P,)
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Computed Pressure Coefficient Distributions

Compared with Experimental Data

Computed results ——
Experiment data .

T

x/c

n=0.20

0 0.2 0.4 0.6 0.8 1

Computed results ——
25 F Experiment data =

x/c

1n=0.80

0 0.2 0.4 0.6 0.8 1

5]

5

5

.Cp

_Cp

Computed results ——
Experiment data .

‘ ' ‘ ' -1
0 0.2 0.4 0.6 0.8 1
x/c
. : r 2
Computed results —+—
3‘\ Experiment data = 15
{ :
|r ¥ 0.5
0
; 0.5
0 0.2 0.4 0.6 0.8 1

1=0.90

Computed results ——
Experiment data = | 1=

: - : : -1
0.2 0.4 0.6 0.8 1
x/c
. ; . 2
Computed results —+—
Experiment data = 15

0.2

0.4 0.6 0.8 1
x/c

n=0.95
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Example 6. Blasius Boundary Layer Solution

* Demonstrate that the RDG(P,P,) method 1s able to obtain the
accurate solution for the viscous flow problems.

* Flow condition: Ma=0.5, Re=100,000
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\

E
i

Grids 1n the boundary layer
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Comparison of Computed skin friction coefficients

between RDG(P,P,) and RDG(P,P,)

01 ——

cf

0.001

0.01 |

T S T |

*

T S S N |

Analytical solution
RDG(P1P1)
RDG(P1P2)

+
X

0.01

0.1
X-Coordinate
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h Concluding Remarks g

* An RDG(P,P,) method based on a Hermit WENO reconstruction,
designed not only to enhance the underlying DG method but also
to maintain non-linear stability, has been presented for solving the
compressible Euler equations on tetrahedral grids.

 This RDG(P,P,) method is able to deliver the designed 3™ order of
accuracy, and outperforms the second-order finite volume method
RDG(P,P,) by orders of magnitudes to achieve the same accuracy.

* This RDG(P,P,) has also successfully been extended to problems
with strong discontinuities using a hierarchical reconstruction and
viscous flows, which will be discussed next.
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Background ’

* Objective: Develop a RDG method based on a hierarchical WENO
reconstruction: HWENO(PP,), for compressible flows with strong

discontinuities on hybrid grids.
* enhance the accuracy, and therefore reduce the high computational
costs of the underlying DG methods
* avoid the spurious oscillations 1n the vicinity of strong
discontinuities, and therefore maintain the non-linear stability, and

naturally linear stability.

e Attempt to address the two weakest links of the DG methods.
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* Objective:
— Reconstruct a quadratic polynomial solution (P,) from the
underlying discontinuous linear polynomial DG polynomial
solution (P,) based on a WENO reconstruction.
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* From a linear polynomial DG solution in any cell 1
U, = fji +UyB, +U,5, + U B,
* Reconstruct a quadratic polynomial solution UR
Uf=Ur+U%B, +UB, +U®B,
+U B + U, B+ ULB,
+ULBy + U B, + U B,

* 10 degrees of freedom



DEPARTMENT OF MECHANICAL AND AEROSPACE ENGINEERING

Requirements for Reconstruction

* Conservation

* Compactness
* Maintain the compactness of the underlying DG method
* Necessary for unstructured arbitrary grids

* Stencils mnvolve only Von Neumann neighborhood (adjacent
face-neighboring cells)
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Least-squares Reconstruction (P,P,)

* Requiring conservation and reconstructed first derivatives equal to
the ones of the underlying DG solution leads

ﬁf{:ﬁia U§i=Uxi9 U§i=in’ Ufi:Uzi

due to the judicious choice of Taylor-basis in the DG formulation

» Six second derivatives only need to be reconstructed
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Least-squares Reconstruction (P,P,)

For a face-neighboring cell j:

U ,=U,+U,B,+U B +U_B,
+U;,B;+U B +U. B, +U, B +U_B,+U} B,

U =UxiL+Uiii+URii+Ufﬂ_ﬁ
dx ’ Ax, Ax, 7 Ax, Ax,

1 1 l 1

E '_Uz 1 +UR1 B3 _I_U B URziﬁ
o Ay Ty T T,
& =U 1 + Uk B4 +UR B; + Uk = B,

aZ ] zi AZ zzi AZ AZ yZl AZ

1 1 l
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Least-squares Reconstruction (P,P,)

* Similar equations can be written for all face-neighboring cells,
which leads to a non-square matrix.

* The size of resulting non-square matrix is (4xnface)x6, where
nface 1s the number of face-neighboring cells.

* nface=4 for a tetrahedral cell
* nface=5 for a prismatic or pyramidal cell

 nface=6 for a hexhedral cell

* This over-determined linear system of (4xnface) equations for 6
unknowns can be solved in the least-squares sense.
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Least-squares Reconstruction (P,P,)

* Simple and straightforward

* The boundary conditions are used to obtain the reconstructed
equations for the boundary cells, thus ensuring existence of an
over-determined system.
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Instability Issues of RDG Method in 3D

* The RDG method suffers from linear instability, similar to
RDG(P,P,)
* Instability occurs even for linear equations and in smooth
flows.
* Reconstruction stencils only involve von Neumann
neighborhood, i.e., adjacent face-neighboring cells

* To maintain the linear stability
* Augment stencils in the reconstruction
— Destroy the compactness of the underlying DGM.
* Use non-linear stability enforcement to achieve linear stability
— Limiters in the case of RDG(P,P,) method
— ENO/WENO reconstructions.
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Hermite WENO Reconstruction

* On a tetrahedral cell i, a convex combination of the least-squares
reconstructed 2" order derivatives at the cell itself (k=0) and its

face-neighboring cells (k= nface)
nface
T,
ox, ax ox, ax
w,: weighting function o, : oscillation indicator
E+0,)”’
Wk nfcfce k)
(e+0,)7" . 0X;0%,

¢ — asmall positive number
Yy  — an integer parameter
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* C(entral stencil
— the least-squares reconstructed polynomial at the cell itself
* Biased stencils

— the least-squares reconstructed polynomials on its face-
neighboring cells



DEPARTMENT OF MECHANICAL AND AEROSPACE ENGINEERING

WENO reconstruction at P, : HWENO(P,P,)

* Observation:
Although the WENO(P,P,) method does not introduce any
new oscillatory behavior for the reconstructed curvature terms
(second derivatives) due to the WENO reconstruction, it
cannot remove inherent oscillations in the underlying DG(P1)
solutions, leading to non-linear instability.

* Objective:
Reconstruct and modify the linear part (first derivatives) of
the resulting quadratic polynomial solution (P,) in order to

ensure non-linear instability for flows with strong
discontinuities using WENO reconstruction.
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* The following nface stencils (1,,), (1,),), ..., and (1,)_nface) are
chosen to construct a Hermite polynomial such that

U _UfiLJrfoiijLURi&qufzi_
ox Ax, Ax, 7' Ax, Ax,
B

l l l

E| —UR,LJrURZ 5, +U% =2 5, 2 +UT —
av ' TA, A T A, T A,
JU 1 B B B,

D '=UZZ—+UZZZ — +szz — _l—UZl
0z 7 Az Az Az, Az,

l l l l
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Hermite WENO Reconstruction

* On acell i, a convex combination of these nface (k=1,2,... nface)
reconstructed 1% derivatives and the first derivatives at the cell
itself (k=0) 1s used to modify the first derivatives

nface
=2
w,: weighting function o, : oscillation indicator
E+0,)”’
We = nfa(ce ) = [f(—‘k) dQ]l/z
(e+0,)”

¢ — asmall positive number
Yy  — an integer parameter
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* C(Central stencil
— the gradient from the DG solution itself at cell itself
* Biased stencils

— the eight reconstructed gradients
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Numerical Examples

Numerical examples are presented to demonstrate

* Accuracy
* Robustness
* Essentially oscillation-free property

of the RDG method
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of the RDG method.

1.2

' exact
DG(P1) (t=1) =
1 |Beam-Warming (t=1) =—dt—
Fromm {t=12te

0.8 F
0.6 |
0.4 |
0.2 b

0

X-coordinates

0.8

1

1.2

0.8

0.6

0.4 1

0.2

-0.2

-0.4

This simple test case 1s chosen to demonstrate the accuracy

ERACT  —

DG(P1) (1=5) =—fpe

| Beam-Warming (t=5) =——dt=—
Fromm (t=5)

0 0.2 0.4 0.6 0.8

X-coordinates

The superior dissipation and dispersion property of DG !

1.2

1 0.8

1 0.6

1 0.4

1 0.2

1-0.2

-0.4
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1.2 T 1.2 T 1.2
exact exact
DG(P2) (t=1) (TVB) == ; RDOG(PIP2) (t=1) =
DG(P2) (1=5) (TVB) =—d— :

-0.2

1 1 1 1 — _0.2 1 1 1 1
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

X-coordinates X-coordinates

Note the high accuracy and oscillation-free of the RDG !
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I Example 2

Water/vapor flow 1n a convergent-
divergent nozzle

Stiffened EOS 1s used.

This example 1s chosen to demonstrate
the robustness of the RDG method.
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873.0 , ’ y r 0.075 , ' ' y
: : : : el — RDG(P1P2) with WENO :
0070 | AR ]
8725 = DG(PL)
' 0085 __ Exact Solution - . T
— 0060 f--oooiooioo- deeeaaaneeaans Ro oo ............. 4
™ — . . . .
£ ared 2 0055
2 £ ooso
~ - A
8715 Z
2 = 0045
c S
S : B S : 0.040
O 8710 : ;.2 e P i - 0,035
3 3 ‘ RDG(P1P2) with WENO :
8705 DG(P1) ; 0030
— Exact Solution 0025 [y : : : :
' ' 0.020 i i i i
0.0 0.2 0.4 0.6 08 10 00 02 04 06 08 10
X(m) X (m)
8714 Ny : : : : : :
% . ! ' o y ’
Y P . —+ PDG(P1P2) with WENO
. = DG(P1)
_ 8712 .. — Exact Solution
™ . . .
£ g1
o
e
; 8710
®
T 8709
e}
870.8
870.7 X

040 042 044 046 048 050 052 054 056 058 060
X(m)
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55 , , , : 25 ,

50 - ' j j ﬁ — Exact Solution ]

= ; ; g | 20 |~ PDG(PIPZ)withwWENO //‘ ,,,,,,,,,,,,
Rl N S
S 35 o S RRREE SEEE EECEEED R s RGLIIL LS - 15 po RS S y TR I 1
= 10 z 3 \ 3 z = ; ; e :
= o b AR S, AR AR 1 E . ‘ : 3
=y : ; : : < ; : /S |
0 25 oo Rl EEEEEEEEEEL "o T LR . o 10 b T | §
T : f | E © : : e : il
s 20 b ............. \‘ ............ _ = /

15 po omsmemomoococdeccococooooo \ """""" . 05 § i

10 | — Exact Solution + i : :

~ RDG(P1P2) with WENO
0.5 L 4 0.0
0.0 02 0.4 06 08 10 0.0 02 0.4 06 08 10
X(m) X(m)

No single parameter 1s changed !!!
No time-derivative preconditioner 1s required !!!
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400 cells m—jr—
4000 cells —_—

Density
(] =Y
T T
P —
o =Y

0.4 0.6

“-coordinates

This example 1s chosen to demonstrate the essentially non-
oscillatory property of the RDG method.
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Example 4. A Subsonic Flow past a Sphere (M_=0.5)

* Access the order of accuracy of the RDG(P,P,), WENO(P,P,) and
HWENO(P,P,) methods for external flows.

* Entropy production is served as the error measurement.

535 cells 62426 cells 16467 cells
167 points 598 points 3425 points
124 boundary pts 322 boundary pts 1188 boundary pts
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Coarse Grid Medium Grid Fine Grids
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Convergence Study for different RDG methods

L2-error and order of convergence for the RDG(P,P,),
WENO(P,P,), and HWENO(P,P,) methods

RDG(P,P,) WENO(P,P,) HWENO(P,P,)

Length | L%-error | Order | LZ?-error | Order | L?-error | Order

scale
7.760E-2 | 1.783E-2 1.052E-2 1.117E-2

4.688E-2 | 5.010E-3| 2.519 | 1.317E-3 | 4.124 | 1.503E-3 | 3.980

2476E-2 | 1.232E-3| 2.198 | 1.978E-4 | 2.964 | 2.201E-4 | 3.009

Both WENO(P,P,) and HWENO(P,P,) deliver
the designed 3" order of convergence !!
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Example 5. Transonic Flow past

0.84, =3.06°)

8
=
g
=
O
>
=
aa
4
o

S

* Access the accuracy and non-oscillatory property of the

75
w 0 YAV
. »%o»»bw
n 7 )6
o y— (@\ -
m Ay AN oo
Q Ao =
3 m I
o v—
o) A m.m
= 2 = T &
°r = H o«
= >
k=
N
W @)
o @)
O
= =
S Z
G mlu
o) [l
> -
= 2
2 2
& s
~~ o O &
P2 @) ~ AN
— PO% 07
p—
m.L\ &
@, S Iy
< Z E £
= =35 2
= =

,287

=5

nboun

,887

=19

nboun



=

1.5

DEPARTMENT OF MECHANICAL AND AEROSPACE ENGINEERING

Computed Pressure Coefficient and Entropy Production

Distributions at different spanwise locations

0.014

WENO (POP1) =t
HWEND (P1P2) —tb—

Expgriment [ | 0.012 b

Entropy Production

0.004

®sC

0.008 H

0.006 {-

0.01 R Ao

WEND(POP1) =t
HWEND (F1P2) —bm

0.2

0.4 0.6
®/C

0.8
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Computed Pressure Coefficient and Entropy Production

Distributions at different spanwise locations

1.5 0.035

WENO(POP1) —b—
HWEND (P1P2) =t

WENO (POP1) =t
HWENDO(P1P2) =t
Experiment ™

Entropy Production

0 0.2 0.4 0.6 0.8 1
HC K/C
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Example 6. Transonic Flow past past a Wing/Pylon/Finned-S

Configuration (M_=0.95, a=0°)

* Access the accuracy and non-oscillatory property of the
HWENO(P,P,) method for flows with strong discontinuities.

07 v

SVAVAVAY, SVAY.
O ASOTA P IRA
%ﬂg"gﬂﬂﬂgﬁ.ﬁ
OO R
AL

A

T
N\

i
/Al
4)

Computed Pressure Contours
(nelem=319,134, npoin=61,075, nboun=14,373)
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Computed Pressure Coefficient Distributions at different

spanwise locations

1.2

HWEND (P1P2) =t HWEND (P1P2) =t
Experiment (lower) X

K/C

n=0.4077 n=0.51
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This example is presen
solving pro



* Demonstrate that the HWENO(P,P,) method can be used for
computing complicated flows of practical interest.
* Flow condition: M_=0.85, a=2°

>
49"712!0%#

75
s

’;ﬂumg <

RS

»'»'#}"757" a7 ’ :
TS T

N

7S
LT

At N

(nelem = 253,577, npoin = 48,851, nboun = 11,802)
Computed Mach Number Contours
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h Concluding Remarks -

* A reconstructed discontinuous Galerkin method based on a
Hierarchical WENO reconstruction, HWENO(P,P,) has been
developed for computing shock waves on hybrid grids.

 The HWENO(P,P,) method 1s able to provide sharp resolution
of shock waves essentially without over- and under-shoots for
discontinuities and achieve the designed third-order of accuracy
for smooth flows.

* RDG methods have the potential to provide a superior
alternative to the traditional FV methods, and to become a main
choice for the next generation of CFD codes.
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Thank you !
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DG Methods for Elliptical Problems

* The main advantages of DGMs in dealing with hyperbolic
equations do not come into play when considering purely
elliptic problems.

 However, using greater flexibility of DGMs which i1s
attained by not requiring continuity in inter-element
boundaries may prove advantageous.

* The potential of DGMs in the context of the Navier-Stokes
equations is still worth exploring.
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DG Method for Elliptical Problems

 Interior Penalty (IP) methods
* Local Discontinuous Galerkin (LDG) methods
* Bassi-Rebay Methods

* Recovery Methods

* J. Douglas, Jr. and T. Dupont, Interior penalty procedures for elliptic and
parabolic Galerkin Method, Lectures Notes in Physics 58, Springer Verlag,
Berlin, 1976.

* D. N. Arnold, An interior penalty finite element method with discontinuous
element, STAM J Numer. Anal. Vol. 19, pp. 742-760, 1982.

* B. Cockburn and C. W. Shu, The local discontinuous Galerkin method for
time-dependent convection diffusion problems, SIAM J Numer Anal., Vol. 35,
pp. 2440-2463, 1998.

« F. Bassi and S. Rebay, High-order accurate discontinuous finite element
method for the numerical solution of the compressible Navier-Stokes
equations, J Comp Phys , Vol. 131, pp. 267-279, 1997.

e B. van Leer and M. Lo, A Discontinuous Galerkin Method for Diffusion
Based on Recovery, AIAA-2007-4083, 2007.
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DG Methods for Elliptical Problems

* Consider 1-D scalar Poisson‘s equation using DG(P1)
d*u
- ax: s
e The DG formulation leads

Find u, €V, suchas

E —%v x”%_*_ du, dv, dx | = E ffvhdx Vv, €V’

hix 4
Q.€T, dx =5 Q. dx dx QET, O

i

* The value of % at the interface is not unique and
need to be defified.
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DG Methods for Elliptical Problems

* A natural choice 1s to use central flux, as no upwind
mechanism 1s provided.

du,| 1 du,|  du,
de |- 2 dx | dx |

e The DG formulation becomes
Find u, €V, suchas

L R X
E _Law, + i W,|. 2+ ity v, dx | = E ffvhdx Vv, EVYF
=) 2 dx dx -5 Q, dx dx O, &

1

I

* The problem: Scheme 1s not consistent !!!
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Inconsistency

 Examine Laplace’s equation with homogeneous Dirichlet
BCs.

d’u
"3 =0 on/[a,b]
u(a)=u(b)=0

* The exact solution 1s u(x) = 0.

du
. d—xh =0 = 0 everywhere, discrete equations satisfied

exactly regardless of magnitude of u,
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First order system approach

* Background: A central flux leads to an unstable scheme.

* Why? It does not take into account the fact that a DG
solution 1s discontinuous at the cell interfaces.

* How to solve this issue ? Transform the second order
equation into a first-order system of equations, as DG 1s
naturally suitable for the first-order system of equations

* Consider the following Laplace’s equation

-Au=f

* This equation can be rewritten as a a first-order system of
equations by introducing an auxiliary vector variable q,

-Veq=f
q-Vu =0
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First order system approach

* Application of the DG formulation leads

Find (u,,q,)€V,"xW/ such as
fqh *Vv,dQ —fqh *nv,dl =ffvhdx Vv, €V}
Q, T, Q,

fqh °thQ+fuhV 'w,dQ —fuhwh endll =0 Vw, €W/
Q, Q, T,

fqh 'th9+fuhV°thQ—Efuhwh ndl =0 Vw,EW/
Q, Q, J I
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First-order system approach

* Need to choose u,, at the interface
* No upwind mechanism -> Choose central flux,

1

”h‘r,j = E(uh‘aﬂi "'“h‘agj) / Jump operator
1
- uh‘agi +E(uh‘agj _uh‘agi) - uh‘agi +§|]:uh:[|rij

fqh 'th9+fuhV°thQ—Efuhwh ndl[ =0 Vw, €W/
Q, Q. J T.

I

fqh W a’Q+fuhV w,dQ2

Efuh‘ag w, *ndl - 2%![[14,1]]1.] w,*ndl[=0 Vw, EW/
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First-order system approach

* Define a global lifting operator 0o as

fﬁ‘whd9+2f%[[uh]]rywh°ndl“=0 Vw, eW/
J Ty

Q,

w,dQ V ow,dQ
JQh W, +§£uh W,

‘zf”h‘asziwhmdr'zf%[[”h]]ry w,*ndl[[ =0 Vw,eW/
7T, 7 T,

[

q,=Vu, -0
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Bassi-Rebay 1

* Compute the lift-operator:
Find 6€W/ suchas

fﬁ‘whd9+zf%[[uh]]rywh°ndr=0 Vw, EW/
Q. J Ty

* The primal form is then given by

(Vu, —0)*Vv,dQ - (Vu, —=0)env dl' = fv,dx Vv, €V’
! 2 [

f(Vuh —0)*Vv,dQ - Ef«(Vuh ~-9)° n>>vhdI‘ =ffvhdx Vv, eV’

Average operator



DEPARTMENT OF MECHANICAL AND AEROSPACE ENGINEERING

L e

* Unstable for pure elliptic problems

» Stencil no longer compact
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Bassi-Rebay 2

* Define a local lift operator 8, for each interface or
boundary face as

Find 6,€W/ suchas

fﬁl 'th9+f%[[uh]]ry w,*ndl =0 Vw, EW/
Q; L,

* The local lift operator 9,1s one interface (and boundary)
contributions to the global lift operator 6.

* Replace the global lift operator in the interface integral by
the local lift operator.
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I seirens

* The DG formulation in primal form becomes

f(Vuh —3)*Vv,dQ - Ef<<(Vuh -9,) °n>>vhdr =ffvhdx Vv, €V}

o

* Compact !!!

e Stability can be established (proven) if a stabilization
parameter 1 (>3) 1s used in the local lift operator.

Find 6,€W/ suchas

fﬁl 'thQ“?f%[[“h]]qj w,*ndl[ =0 VYw,EW/
Q; L,
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Recovery-based DG for Diffusion

* Idea:  Obtain a continuous polynomial solution on the
union of two cells that shares an interface, where the
diffusive fluxes need to be defined.

 How ? The smooth solution is locally recovered, that is
indistinguishable from the discontinuous discrete solution
in the weak sense. (can be thought as a weak
interpolation.)
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* Recovery in 1D, P=2. Shown are from left to right, the original quartic
mitial values U (dashed), the piecewise linear discretization u (bold)
together with U, and the cubic recovered distribution f (thin) together
with u and U, on the adjacent intervals (-1,0), and (0,1). All three
distributions yield the same value when taking their inner product with
either test function on either interval, making them indistinguishable in
the weak sense.



DEPARTMENT OF MECHANICAL AND AEROSPACE ENGINEERING

Recovery-based DG for Diffusion

* Following are the formulas for recovering the smooth
solution u; from two discontinuous solution u; and u; on
the union of neighboring cells €2; and €2, :

u BldQ = (uBdQ, k=1,.,N
JuiBid@= |

Q, Q,

1

ful.jB,{dQ=fujB,{dQ, k=1,..,N
Q;

Q;

where B! and B! are the basis functions for cell I and j respectively, and
N is the dimension of DG space.
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Recovery-based DG for Diffusion

* How to construct the basis BY defined on Q;UQ. is trivial
in 1D. (although extremely challenging in 2D/3D).
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Objective

* Development of high accurate 3" order temporal
discretization methods for RDG methods for unsteady flow
simulations.

* to reduce the temporal discretization error,
« for LES and DNS applications.

* A class of implicit RK schemes — ESDIRK: Explicit first
stage, Single Diagonal coefficient, diagonally Implicit
Runge-Kutta

* Allow variable time-step size.
* (Can be constructed to be A- and L-stable for arbitrary order in time.

* Found to be more efficient in terms of computational cost for a given
accuracy level as compared to the lower-order implicit schemes.
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Time Integration

Semi-discrete system of nonlinear equations:

MY _Rr(U)
dt

M: Mass matrix

U: Global vector of unknown conservative variables

R: Residual vector
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* Explicit three-stage third-order TVD Runge-Kutta Scheme:

UMD =1U"+ At M R(UY)
U@ =3/4U" + 1/4[UD + At M- R(UD)]
Untl =1/30" + 2/3[ U® + AtMIR(U@)]

This method is linearly stable for a Courant number less
than or equal to 1/(2p+1).

TVDRK scheme is not efficient, when the maximum
allowable time step 1mposed by an explicit stability
requirement 1s much smaller than that imposed by the
acceptable level of time accuracy.
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Time integration schemes: implicit method

* The m-stage ESDIRK scheme:

i) UP=U"
(11) Fors=2,..,m

() _ " -1 ()
UY=U"+Ary a,M"'R(UY)
j=1
(iii) U™ =0"
where a; are the Butcher coefficient of the scheme. The Butcher table for the 3-
order ESDIRK3 scheme (m=4) is listed below (the values are given in Appendix):

¢;=0 a,; (=0) 0 0

© )| @y~ 4y 0 0
3 431 a3) A33— 44

C4— ay,=b, a4y=b, a43=b, Q44
yn+l b, b, b, b,
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* The first stage 1s explicit since a,;=0.

* A system of non-linear equation is solved at each individual
stage since the set of a; has the form of a lower triangular
matrix.

* The solution at the last stage is the solution at the next time
step, and c, represents the point in the time interval [z, ¢
+At], and satisfies

c, = iasj s=1,2,3,....,4

* Note that ESDIRK2 (m=2) is nothing but the 2"d-order
Crank-Nicholson scheme (CN2).

Clearly, how to devise an efficient method
for the solution of the non-linear system of the equations
is crucial to the success of the ESDIRK scheme.

145
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Computational Results ’

—d

* Numerical Examples
e 1. Inviscid shedding flow past a triangular wedge
* 2. Karman vortex street at Re = 200

» 3. Viscous flow past an SD7003 airfoil
* 4. Implicit large eddy simulation of a lid driven cavity

* Default parameters for solving the pseudo-time system
e Linear solver: LU-SGS preconditioned GMRES algorithm

* The pseudo time-step term is off, which is equivalent to solving a quasi-
Newton system at each implicit Runge-Kutta stage

e The relative residual tolerance is 1.0x104.
 The maximum iteration number is 5.

* Compilation and runtime toolkit

* METIS for domain partitioning
* PGI Fortran compiler + OpenMPI



DEPARTMENT OF MECHANICAL AND AEROSPACE ENGINEERING

* Objective: illustrate the importance of the temporal discretization schemes
on the accuracy of the numerical solutions

* Grid: 13, 250 hexahedral elements, 27, 026 grid point, and 27, 026
quadrilateral faces

 Initial condition: we use intermediate solution (M_ = 0.5, a=0°) obtained
by DG(PO) as IC for the unsteady shedding flow

T s 3 n
-2 -1.5 1 -05 0 05 1 15 2

Local VieVXV of the grid

20

: : Mach

+ H 0.65

2 2r 0.55

[ [ 0.45

B b e — 0.35

> oor R | >oor < @L—B 025
F H 0.15

ok ° 0.05

L

1 1 1 1 1 1 Il L 1
-5 0 5 10 15 20 -5 o] 5 10 15 20

Density contour by P0 solution Mach number contour by P0 solution



* Comparison of computed density contours at t =400 (M_ = 0.5, a=0°)
« With a fixed time-step size of dt = 0.05

BDF1+RDG(P1P2)  IRK2 +RDG(P1P2) IRK3+RDG(P1P2) IRK3+DG(P1)
« With a fixed time-step size of dt =0.10

BDF1+ RDG(P1P2)  IRK2 + RDG(P1P2) IRK3 + RDG(P1P2) IRK3 + DG(P1)

Reference solution: explicit 3-stage RK + RDG(P1P2) with a fixed dt = 0.0004



* Animations (up to solution time t = 400)

 With a fixed time-step size of dt =0.10
[ SEEEEENEEEEEE - uired [ I EEEEENEEEEEL | | Ui

Riva: 074 075 052 Qs 09 084 056 102 108 11 Riva: 074 075 052 Qs 09 084 056 102 108 11

BDF1 + RDG(P1P2) IRK3+DG(P1)

ERET T T TTT 7T T T T IO [Time=ol BT [T TTT 11T T T TOI [Time=ol

Riva: 074 075 052 QS5 09 084 056 102 108 14 Riva: 074 075 052 QS5 09 084 056 102 108 11

IRK2 + RDG(P1P2) IRK3+RDG(P1P2)
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* Comparison of the CPU time (evaluated by running on 64
cores) between the explicit and implicit methods.

For solution at t =40 CPU time (sec)

[RK2 + RDG(P1P2) dt = 0.05 1,770
IRK3 + RDG(P1P2) dt=0.05 800 5,182
[RK2 + RDG(P1P2) dt=0.10 400 1,008
IRK3 + RDG(P1P2) dt=0.10 400 2,825
Explicit RK3 + RDG(P1P2) dt=0.0004 800,000 13,498

* Performance of the LU-SGS preconditioned GMRES solver

In average, a drop of 4 orders of magnitude for the
unsteady residual can be achieved within 5 inner 1terations
at each implicit RK stage

The IRK3+RDG(P1P2) method provides accurate solutions in space and time
and requires much less CPU time compared with its explicit counterpart!
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Example 2. Karman vortex street at Re = 2

* Grid: 10,204 hexahedral elements, 20,800 grid points, and 20,800
boundary faces. The normal grid spacing near the cylinder surface 1s 0.001
(normalized by the cylinder diameter)

* Boundary condition: no-slip, adiabatic condition on cylinder surface,
symmetry condition on spanwise wall, characteristic condition at far-field.

 Initial condition: we use steady-state solution (M_ = 0.2, a=3°, Re = 50)
obtained by DG(PO0) as IC for the vortex shedding

T o RS

Grid: global view Grid: local View Mach Number Entropy

You can find the grid and report at the NASA website
http://www.grc.nasa.gov/WWW/Acoustics/code/adpac/sample/ CYLINDER VORTEX SHEDDING/




* Comparison of the computed instantaneous Mach number and entropy

contours (M_ = 0.2, a =0° Re =200)
i
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IRK2+RDG(P1P2), dt=0.05

03

IRK3+RDG(P1P2), dt=0.05

* Animations (up to solution time t = 40)




* Time histories of lift and drag coefficients (Strouhal number = 1.923)
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IRK2+RDG(P1P2), dt=0.05

IRK3+RDG(P1P2), dt=0.05

IRK3+RDG(P1P2), dt=0.5

Agree well with the results in the referred literature!
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* Comparison of the CPU time (evaluated by running on 128
cores) between the explicit and implicit methods.

For solution at t =40 CPU time (sec)

[RK2 + RDG(P1P2) dt=0.05 10,000 1,603
IRK3 + RDG(P1P2) dt=0.05 10,000 5,524
IRK3 + RDG(P1P2) dt =0.50 1,000 1,047

Explicit RK3 + RDG(P1P2) dt=0.00005 10,000,000 Estimated 77,960

* Performance of the LU-SGS preconditioned GMRES solver

* In average, a drop of 4 orders of magnitude for the unsteady residual
can be achieved within 5 inner iterations at each implicit RK stage

= The IRK’s can greatly accelerate the solution over its explicit counterpart,
while rendering accurate solution in time and space for viscous flows.

= The IRK3 enables the use of much larger time-step size and thus can improve
the overall efficiency.
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Grid: 50,781 prismatic elements, 52,176 grid points, 101,562 triangular
boundary faces, and 279 quadrilateral boundary faces.

Boundary condition: no-slip, adiabatic condition on the airfoil surface,

symmetry condition on spanw

.

se wall, characteristic condition on far-field.

Initial condition: uniform flow (M_ = 0.1, a=4°, Re = 10,000) in the field.
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Airfoil: global view

Airfoil: leading edge

Airfoil: trailing edge



By the compact method* By IRK3+RDG(P1P2), dt = 0.01

* Comparison of the computed (o P09 00 %0 %0t

Vortlclty Magnltikle: 5 15 25 35 45 55 65

By the compact method* By IRK3+RDG(P1P2), dt = 0.01

* Raymond E Gordnier and Miguel R Visbal. Compact Difference Scheme Applied to Simulation of Low-Sweep
Delta Wing Flow. AIAA journal, 43(8):1744-1752, 2005.
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Example 3. Viscous flow past an SD7003 air

* Comparison of the CPU time (evaluated by running on 256 cores)
between the explicit and implicit methods.

For solution at t =100 CPU time (sec)

[RK3 + RDG(P1P2) dt=0.01 10,000 83,178
Explicit RK3 + RDG(P1P2) dt=0.00001 10,000,000  Estimated 1,669,400

A speedup factor of more than 200 by IRK3 over its explicit counterpart !

* Performance of the LU-SGS preconditioned GMRES solver

* In average, a drop of 4 orders of magnitude for the unsteady residual
can be achieved within 5 inner iterations at each implicit RK stage

Indeed, the relative tol. = 10-* is a overkill in running these problems.
If we use relative tol. = 10-2, even higher speedup may be achieved.
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Example 4. Implicit LES of a lid driven ¢

Implicit LES
* Without the use of an explicit sub-grid scale model.
Why DG methods?
* The DG methods only dissipate the scales that the model is not able to
capture correctly, thus acting like a sub-grid scale model.
Why RDG methods?

* DG methods like P2, P3, and P4 have shown the ability of helping
improve the solution accuracy in a few benchmark DNS and LES
problems. Yet they are expensive in terms of computing time and
storage requirement.

* Assess the RDG methods like P1P2 and even P2P3 for computing
large-scale.
Why 3D lid driven cavity?

e The 3D lid driven cavity presents complex physical phenomena, though
the geometry is simple. Therefore it is an adequate example to assess
the performance of the implicit LES with the developed methods.
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Example 4. Implicit LES of a lid driven €

* Problem description
* Domain: x=[0, 1], y=[0, 1], and z=[-0.25,0.25] (x: y: z=1: 1: 0.5).
* Top lid velocity v, = (0.2, 0, 0), Re = 10,000.
* No-slip, adiabatic conditions for the rest of boundary walls.
* (rid: 64x64x32 grid points; h_. = 0.005 in x-y plane (y" = 3.535); uniform

grid distribution in spanwise z-direction.

The 64x64x32 grid Instantaneous Mach No. iso-surface Animated Mach No. iso-
surface



* Problem setup
e Step 1. Run 5000 time steps with BDF1+DG(P1) and CFL = 500 from zero-
velocity field, so that the flow filed reaches a cyclically oscillating status.

* Step 2. Restart the computation with a fixed time-step size of dt = 0.1, and use
a desired method as shown below. The width of window for time averaging is

30 second per frame (every 300 steps).
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IRK2+P1P2 --orev
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IRK2+P1
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Time iterations

Density residual vs. time steps (fixed dt = 0.1)
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Time iterations

Total energy residual vs. time steps (fixed dt = 0.1)
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* Mean velocities x-coordinate
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*  RMS velocities x-ooordinare
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Reynolds stress tensor component <u’v’>

x-coordinate

* Exp. (Prasad&Koseft,1989) 0 0.2 0.4 0.6

 LES (Zang et al., 1993)
« BDF1+RDG(P1P2)
 IRK2+RDG(P1P2)
 IRK3+RDG(P1P2)

* DG(PI) is far from
good in lower region.

* RDG(P1P2) matches
exp. data well!

* IRK’s are better than
BDF1 in some regions.

* IRK3 is close to IRK2.
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Example 4. Implicit LES of a lid driven cav

* Comparison of the CPU time (evaluated by running on 256 cores) between
the explicit and implicit methods.

For solution at t = 3000 CPU time (sec)

BDF1 + RDG(P1P2) dt=0.1 30,000 52,542
IRK2 + RDG(P1P2) dt=0.1 30,000 86,066
IRK3 + RDG(P1P2) dt=0.1 30,000 263,010
IRK2 + DG(P1) dt=0.1 30,000 69,050
Explicit RK3 + RDG(P1P2)  dt = 0.0001 30,000,000 Estimated 7,347,942

* LU-SGS preconditioned GMRES solver

* In average, a drop of 4 orders of magnitude for the unsteady residual
can be achieved within 5 inner iterations at each implicit RK stage.

* A speedup factor of more than 85 by IRK over its explicit counterpart!
* [RK+RDG(P1P2) greatly improve solution accuracy for implicit LES
without much extra cost than the underlying IRK+DG(P1)!
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* A reconstructed discontinuous Galerkin method based on a Hierarchical
WENO reconstruction, HWENO(P,P,) has been developed for compressible
flows at all speeds on hybrid grids.

 The HWENO(P,P,) method 1s able to provide sharp resolution of shock
waves essentially without over- and under-shoots for discontinuities and
achieve the designed third-order of accuracy for smooth flows.

* RDG methods have the potential to provide a superior alternative to the

traditional FV methods, and to become a main choice for the next generation
of CFD codes.

* A higher-order RDG-based CFD code will ultimately deliver a more
accurate, efficient, robust, and reliable simulation tool with confidence that
will enable us to solve flow problems at resolutions never before possible by
the current state-of-the-art CFD technology.



Current Work
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e Extension of the RDG method for turbulent flows

* Implementation of Ap-adaptation on hybrid grids

 Port of the RDGFLO code on hybrid CPU/GPU
architectures



