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 Governing Equations   
Compressible Navier-Stokes Equations: 
 

where the conservative state, inviscid flux, and viscous flux vectors  
 

Here ρ, p, and e denote the density, pressure, and specific total energy of 
the fluid, respectively, and ui  is the velocity of the flow in the coordinate 
direction xi 
δij : Kronecker tensor. 
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Compressible Navier-Stokes Equations  
 
The pressure, the viscous stress tensor σij and the heat flux vector qj are given 
by 

 

 

where γ(=1.4) ratio of the specific heats, µ: molecular viscosity, k: thermal 
conductivity coefficient. The molecular viscosity can be determined through 
Sutherland’s law  

 

µ0 denotes the viscosity at the reference temperature T0, and S is a constant 
which for air assumes the value S = 110oK. The temperature of the fluid T is 
determined by  

 

R: ideal gas constant. 
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Compressible Euler Equations 

If we neglect the loss of the heat by thermal diffusion (k=0) and the effects of 
viscosity(µ=0), the Navier-Stokes equations become the Euler equations:   
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Boundary Conditions 
 

•  Dirichlet boundary conditions 

 UΓ = Ub 

•  No-slip nall boundary conditions: 

 Isothermal wall:  VΓ = 0, and TΓ = Tw 

Adiabatic  wall :  VΓ = 0, and        
 

•  Slip wall boundary conditions: 

Vn|Γ=0 

•  Inflow/Outflow boundary conditions: characteristic boundary conditions  

•  Periodic boundary conditions: no boundary conditions 

 

 

.  .  

∂T
∂n Γ
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 Discontinuous Galerkin (DG) Finite Element Methods   

●  Advantages: 
●  Several useful mathematical properties with respect to conservation, stability, and convergence. 
●  Easy extension to higher-order (>2nd) schemes. 
●  Well suited for complex geometries. 
●  Easy adaptive strategies, allowing implementation of hp-refinement and hanging nodes. 
●  Compact and highly parallelizable. 
●  Accuracy for low Mach number flows. 

●  Disadvantages: 
●  Require higher-order boundary representation  

  →Geometric modeling capability 
  →Curved boundary elements 

●  High computing costs (more degrees of freedom) 
→ CPU time 
→ Storage Requirements 

●  Treatment of discontinuities (like all other high-order methods)  
→ Sensitive to the implementation of limiters 
→ Lead to loss of high-order accuracy 
 



Variational (Weak) formulation 

V: Solution space 
W: Test function 

Find U        such that 

∂U
∂tΩ

∫ WdΩ+ kF
Γ

∫ kn dΓ− Fk
∂W
∂xkΩ

∫ dΩ = kG
Γ

∫ kn dΓ− Gk
∂W
∂xkΩ

∫ dΩ,   ∀W ∈V

V∈



Semi-discrete form 

Find                      such as 

Uh: piecewise polynomial function of degree  pn , which is 
discontinuous between the cell interfaces. 

m: dimension of conservative state vector 
d: number of spatial dimension 

eΩ=Ω ∪ Vh
Pn = vh ∈ L2 (Ω)[ ]m : vh Ωe

∈ VPn

m#$ %&  ∀Ωe ∈Ω{ },
VPn

m = span ∏i=1
d xi

αi : 0 ≤αi ≤ pn, 0 ≤ i ≤ d{ },

Uh ∈Vh
Pn

d
dt

Uh
Ωe

∫ WhdΩ+ kF
Γe

∫ (Uh ) kn WhdΓ− Fk (Uh )∂Wh

∂xkΩe

∫ dΩ = kG
Γe

∫ (Uh ) kn WhdΓ− Gk (Uh )∂Wh

∂xkΩe

∫ dΩ,  ∀Wh ∈Vh
Pn



DG(Pn) Method 

 
 
 

 Bi(x): basis functions of the polynomials of degree Pn, 1≤i≤N. 
     N: dimension of the polynomial space Pn. 

↑ 
	
   	
   	
  Discontinuous Galerkin method of degree Pn (DG(Pn)) : O(hn+1) 

 
  Fk(Uh)nk =Hk(UL

h,UR
h,nk) ← Numerical Riemann flux function  
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The computation of the viscous fluxes has to properly resolve the 
discontinuities at the interfaces. 



DG(Pn) Method    

•   No global mass matrix needs to be inverted. 
•  Inter-element communications are minimal. 

                    Uh Ωe
= U j

Ωe

j=1

N

∑ (t)Bj
Ωe (x) = U j

j=1

N

∑ (t)Bj (x)

                           ( Bj
Ωe

∫ BidΩ)
dUj

dt
= Ri        1≤ i ≤N

Ri =− Fk
Γe

∫ nkBidΓ+ Fk
∂Bi
∂xkΩe

∫ dΩ + Gk
Γe

∫ nkBidΓ− Gk
∂Bi
∂xkΩe

∫ dΩ
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Computation of the domain integral   

Computer Implementation: 
 
do ielem = 1, nelem                              ! Loop over the elements 
     do igaus = 1, ngaus                          ! Loop over the Gauss points 
          ! Get the solution at the Gauss points 
          Unkno = … 
          ! Compute the fluxes at the Gauss points 
          Fluxes = … 
          ! Scatter it  to the RHS vector 
          rhsel = rhsel + … 

     enddo 
enddo 

Ri = Fk (Uh )∂Bi
∂xkΩe

∫ dΩ,      1≤ i ≤N



Computation of boundary integral   

 
Computer implementation (element-based data structure) 
 do ielem = 1, nelem                              ! Loop over the elements 
      do ifele = 1, nfele                            ! Loop over the face of this element 
      jelem = elsuel(ifele,ielem)              ! Adjacent element number 
         do igaus = 1, ngaus                          ! Loop over the Gauss points 
              ! Get the solutions at the Gauss points 
              Unkno_ielem = …                      ! Solution at the left of Gauss point  
              unkno_jelem = …                      ! Solution at the right of Gauss point 
              ! Compute the fluxes at the Gauss points by a Riemann flux functions 
              Fluxes = … 
             ! Scatter it  to the RHS vector 
             rhsel_ielem = rhsel _ielem + … 

        enddo      ! End of the do-loop over the Gauss points 
     enddo         ! End of the do-loop over the faces of this element 
Enddo              ! End of the do-loop over the elements 

Ri = − kF
Γe

∫ (Uh ) kn BidΓ,      1≤ i ≤N



Computation of boundary integral   

 
Computer implementation (faced-based data structure) 
 do iface = 1, nface                             ! Loop over the faces 
      ielem = intfac(1,iface)                 ! Left element of this  face 
      jelem = intfac(2,iface)                 ! Right element of this face   
      do igaus = 1, ngaus                      ! Loop over the Gauss points of this face 
              ! Get the solutions at the Gauss points 
              Unkno_ielem = …                      ! Solution at the left of Gauss point  
              unkno_jelem = …                      ! Solution at the right of Gauss point 
              ! Compute the fluxes at the Gauss points by a Riemann flux functions 
              Fluxes = … 
             ! Scatter it  to the RHS vector 
             rhsel_ielem = rhsel _ielem + … 

                   rhsel_jelem = rhsel_jelem - … 

     enddo      ! End of the do-loop over the Gauss points 
Enddo          ! End of the do-loop over the faces 

Ri = − kF
Γe

∫ (Uh ) kn BidΓ,      1≤ i ≤N



Numerical Integration  

Quadrature order requirements for the 2D Euler equations 
using conservative state variables for triangle 

where p is interpolation order and q is element geometry 
order. 

Boundary	
  (1-­‐D)	
   Domain	
  (2-­‐D)	
  

q=1	
   q=2	
   q=3	
   q=1	
   q=2	
   q=3	
  

P=0	
   1	
   3	
   5	
  

P=1	
   2	
   5	
   7	
   3	
   3	
   4	
  

P=2	
   3	
   7	
   7	
   4	
   5	
   6	
  

P=3	
   7	
   9	
   9	
   6	
   7	
   8	
  



Numerical Integration  

Quadrature order requirements for the 3D Euler equations 
using conservative state variables for tetrahedral 

where p is interpolation order and q is element geometry 
order. 

Boundary	
  (2-­‐D)	
   Domain	
  (3-­‐D)	
  

q=1	
   q=2	
   q=3	
   q=1	
   q=2	
   q=3	
  

P=0	
   1	
  

P=1	
   3	
   5	
   6	
   4	
   5	
   6	
  

P=2	
   6	
   7	
   8	
   5	
   6	
   7	
  

P=3	
   8	
   9	
   10	
   7	
   7	
   8	
  



Nodal Discontinuous Galerkin Methods 
  

The DG solutions in each element are represented using finite element 
shape functions: 

 
where Bi: finite element shape functions. 
 
 
 
 
 
The unknowns are the values of the conservative variables at the nodes. 
The shape (trial, test) functions depend on the shape of elements.   
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Lagrange Basis Functions  

•  1D 
•  Introduce reference coordinate ξ over an element with nodes 1 

and 2 
•  ζ=(x-x1)/(x2-x1) 
 

•  Linear basis functions over an element with nodes 1 and 2 
•  B1=1-ζ, B2=ζ 

•  Quadratic basis functions 
•  B1 = (1-ζ)(1-2ζ), B2 = -ζ(1-2ζ), B3 = 4ζ(1-ζ) 

 
•    
 
  



Finite Element Basis Functions for Triangles  

•  Introduce area (barycentric) coordinates ζi (i=1,2,3) for a point P(X) 
in a triangle with nodes 1, 2, and 3 

•  ζ1 = area of triangle P23/area of triangle 123 
•  ζ2 = area of triangle P31/area of triangle 123 
•  ζ3 = area of triangle P12/area of triangle 123 

•  Introduce reference coordinates (ξ, η)   
•  ξ = ζ2, and  η = ζ3  
•  X = ζiXi = (1-ξ- η)X1 +ξX2 + ηX3  

 



Shape Functions for Triangles  

•  Linear basis functions over a triangle with nodes 1, 2, and 3 
•  B1= ζ1 = 1-ξ-η   
•  B2= ζ2 = ξ 
•  B3= ζ3 = η 

•  Quadratic basis functions 
•  B1 = ζ1 (2ζ1-1) = (1-ξ-η)(1-2ξ-2η) 
•  B2 = ζ2 (2ζ2-1) = ξ(2ξ-1) 
•  B3 = ζ3 (2ζ3-1) = η(2η-1) 
•  B4 = 4ζ1 ζ2 = 4(1-ξ-η)ξ 
•  B5 = 4ζ2 ζ3 = 4ξη 
•  B6 = 4ζ3 ζ1 = 4η (1-ξ-η)  

1 2 

3 

6 5 

4 

3 

2 1 
Degree of freedom of quadratic 
triangle  

Degree of freedom of linear 
triangle  



Shape Functions for Quads 

•  Bi-linear Quad 
•  B1 = (1-ξ)(1-η)  
•  B2= ξ(1-η) 
•  B3 = ξη 
•  B4 = (1-ξ)η 

•  Quadratic Serendipity Quads Bi-linear Quad 
•  B1 = (1-ξ)(1-η)(1-2ξ-2η) 
•  B2 = -ξ(1-η)(1-2ξ+2η) 
•  B3 = -ξ(1-η)(3-2ξ-2η) 
•  B4 =-(1-ξ)η(1+2ξ-2η) 
•  B5 = 4ξ(1-ξ)(1-η) 
•  B6 = 4ξη (1-η) 
•  B7 = 4(1-ξ)ξη 
•  B8 = 4(1-ξ)(1-η)η 



Model Discontinuous Galerkin Methods 
  

The DG solutions in each element are represented using model basis 
functions: 

 
where Bi: model basis functions. 
 
 
 
 
 
The unknowns are the moments of the conservative variables in each 
elements. 
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Legendre Basis Functions  

•  1D Legendre Basis Function 
•  Introduce reference coordinate ξ over an element with nodes 1 

and 2 
•  ζ=2(x-xc)/(x2-x1) with xc= (x2+x1)/2 
 

•  Linear basis functions over an element with nodes 1 and 2 
•  B1=1, B2 = ζ 

•  Quadratic basis functions 
•  B1=1, B2 = ζ, B3 = (3ζ2-1)/2 

 
•  Bonnet’s recursion formula:  (n+1)Bn+2(ζ) = (2n+1) ζBn+1(ζ) – nBn(ζ) 
•  Multi-dimensional Basis Function can be derived using tensor-product 
  



 Taylor  Basis Functions 

The unknowns are the cell-averaged 
conservative variables and their 
derivatives at the center of the cells, 
regardless of element shapes. 
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Normalized Taylor basis functions 
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Xmax, xmin, ymax, ymin are the maximum and minimum coordinates in 
the cell Ωi in x-, and y-directions, respectively. 
 
Alleviate the stiffness of the system matrix for higher-order DG 
approximation 
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Features of Taylor Basis 

•  A finite volume code can be easily converted to a DG code. 
 
•  Same approximate polynomial solution for any shapes of 

elements: 
•  Can be easily extended and implemented on arbitrary meshes. 

•  Cell-averaged variables and their derivatives are handily available: 
•  Make implementation of WENO reconstruction easy and 

efficient 

•  Hierarchic basis  
•  Make implementation of p-multigrid methods and p-

refinement easy and efficient 



DG(P0) approximation 

N=1,   B1=1,  
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•  The classical first-order cell-centered finite volume 
     scheme exactly corresponds to the DG(P0) method.  
 
●  DG methods can be regarded as a natural generalization of 

finite volume methods to higher order methods. 

●  By simply increasing the degree o of polynomials DG 
methods of corresponding higher-orders are obtained. 



DG(P1) approximation 

321
~ BBB yxh UUUU ++=

1     ,0)(~
==Γ+Ω ∫∫

ΓΩ

idd
dt
d

khk
ee

nF UU

0
3

3

2
2

3323

3222
=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

Ω
∂

∂
−Γ

Ω
∂

∂
−Γ

+

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

ΩΩ

ΩΩ

∫∫

∫∫

∫∫
∫∫

ΩΓ

ΩΓ

ee

ee

d
y
BFdBnF

d
x
BFdBnF

dt
d
dt
d

dBBdBB

dBBdBB

k
kkk

k
kkk

y

x

U

U

N=3, 



DG(P2) approximation 
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Similarity and difference between FV and DG 

•  The discretized governing equations for cell-averaged 
variables and the assumption of a polynomial solution on 
each cell are exactly the same for both FV and DG 
methods. 

•  The only difference between them is the way how to obtain 
the polynomial solution, i.e., how to compute the 
derivatives. 



DG Methods  

•  The derivatives are computed in a manner similar to the 
mean variables, which is unique, compact, rigorous, and 
elegant mathematically. 

•  The higher order DG methods can be easily constructed by 
simply increasing the degree p of the polynomials locally, 
in contrast to the finite volume methods which use the 
extended stencils to achieve higher order of accuracy. 



Reconstruction Methods  

•  The polynomial solutions are reconstructed from cell-
averaged variables of neighbouring cells. The multi-
dimensional reconstruction schemes based on the 
extension of 1D MUSCL approach have two serious flaws: 
•  Uncertainty and arbitrariness in choosing the stencils 

and the methods to compute the derivatives; 
•  Formal second order accuracy is hardly obtained in 

practice !!! 
•  Extended stencils required for higher-order (>2nd) 

reconstruction. 
•  The finite volume methods are not practical at 

higher order and have remained second-order !!!  



Observation 

 
DG 

 
Reconstruction 

Efficiency (computing 
costs and storage 

requirements) 

 
Bad 

 
Good 

 
Robustness 

 
Good 

 
Bad 

 
Accuracy 

 
Good 

 
Bad 

 
Tolerance 

 to grid irregularity 

 
Good 

 
Bad 

Reconstruction and DG methods can be viewed as two 
ways to obtain higher accuracy of the first order finite 
volume methods 



In-cell Recovery/Reconstruction  

•  Objective:   
•  Combine the advantages of both reconstruction and DG 

methods in order to improve the efficiency of the DG methods 
•  PnPm schemes (Dumbser et al, 2008) 
•  Reconstruction-based DG (Luo et al, 2009) 
•  Hybrid DG/FV schemes (Zhang et al, 2010) 

•  How ? 
•  Recover/reconstruct a higher-order polynomial solution  from 

the underlying discontinuous DG polynomial solution 



Background 
To reduce high computing costs of the DG methods, Reconstructed 
DG (RDG(PnPm)) schemes  were introduced by Dumbser et al. 
 

•  Pn indicates that a piecewise polynomial of degree of n is 
used to represent a DG solution. 

•  Pm represents a reconstructed polynomial solution of degree 
of m (m≥n) that is used to compute the fluxes and source 
terms.  

•  Provide a unified formulation for both finite volume and DG 
methods, and contain both classical finite volume and 
standard DG methods as two special cases of RDG(PnPm) 
schemes. 



Background 
Classification of the RDG(PnPm) Schemes 
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O(1)                                   RDG(P0P0 ) (DG(P0)) 

O(2)                          RDG(P0P1 )      RDG(P1P1) (DG(P1)) 

O(3)               RDG(P0P2 )          RDG(P1P2 )        RDG(P2P2) 

O(4)        RDG(P0P3)      RDG(P1P3)     RDG(P2P3 )     RDG(P3P3) 

                                         : 

O(M+1)  RDG(P0Pm )  …               RDG(PnPm )        …       RDG(PmPm) 
        FV                            New Class                         DG 



Reconstructed Discontinuous Galerkine Method: RDG(PnPm)   

 
 
 

          : reconstructed polynomial solution of degree Pm  
 
     Bi(x) : basis functions of  polynomials of degree Pn  , 1≤i≤N 
 

     N: dimension of the polynomial space Pn 
 

↑ 
	
  Reconstructed Discontinuous Galerkin method  RDG(PnPm) : O(hm+1) 

  

d
dt

UPn
Ωe

∫ BidΩ+ Fk
Γe

∫ (UPm

R )nkBidΓ− Fk (UPm
R )∂Bi

∂xkΩe

∫ dΩ = Gk
Γe

∫ (UPm
R )nkBidΓ− Gk (UPm

R )∂Bi
∂xkΩe

∫ dΩ,     1≤ i ≤N

UPm
R



Background 

•  Observation: The construction of an accurate and efficient reconstruction 
operator is crucial to the success of the RDG(PnPm) schemes. 



Reconstructed DG method RDG(P1P2) 

•  From a linear polynomial DG solution in any cell i 
 

•  Reconstruct a quadratic polynomial solution UR 

 

•  Six degrees of freedom 
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Requirements For Reconstruction 

•  Conservation 
•  Compactness 

•  Maintain compactness of the underlying DG method 
•  Necessary for unstructured arbitrary grids 
•  Stencils involve only Von Neumann neighborhood 

(face-neighboring cells)  



Reconstruction  

•  Requiring conservation and reconstructed first 
derivatives equal to the ones of the underlying DG 
solution leads 

  due to the judicious choice of Taylor-basis in the DG 
formulation 

 
•  Three second derivatives only need to be reconstructed. 

R
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1. Least-squares Recovery (P1P2(rc)) (Dumbser et al.) 

•  This is achieved using a so-called in-cell recovery 
where recovered equations are obtained using a L2 
projection for each face-neighboring cell j, i.e.,  

 
•  The over-determined system of linear equations (9x3 

for a triangular cell and 12x3 for a quadrilateral cell) is 
solved using a least-squares method.   

(weak interpolation) 
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P1P2(rc) (Dumbser et al) 

•  2-exact reconstruction 
•  Able to reconstruct a quadratic polynomial exactly. 

•  Complex and expensive 
•  Require to compute the integral on both left and right-side of 

the recovered equations.   

•  Problematic 
•  For a boundary cell, the number of the face neighbouring 

cells might not be enough to recover a polynomial solution 
of a desired order.  

•  Use extended one-side stencils -> destroy the compactness. 



2. Least-squares Reconstruction (P1P2(RC)) (Luo et al) 

•  The remaining three degrees of freedom can be 
determined by requiring that the reconstructed solution 
and its first derivatives are equal to the underlying DG 
solution and its first derivatives for all the face 
neighboring cells.   

Strong interpolation 
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Least-Squares Reconstruction  

•  Similar equations can be written for all face-
neighboring cells, which leads to a non-square matrix. 

•  The number of face-neighboring cells for a triangular 
and quadrilateral cell is 3 and 4, respectively. As a 
result, the size of resulting non-square matrix is 9x3, 
and 12x3, respectively.  

•  This over-determined linear system of 9 or 12 
equations for 3 unknowns can be solved in the least-
squares sense.   



P1P2(RC) method  

•  Simple and straightforward 

•  The boundary conditions are used to obtain the 
reconstructed equations for the boundary cells, thus 
ensuring existence of an over-determined system.   

•  2-exact reconstruction 



3. Green-Gauss Reconstruction (P1P2(GG)) (Zhang et al) 

•  Green-Gauss reconstruction is widely used to 
reconstruct a gradient from the cell-averaged values in 
the finite volume methods. 

•  Similarly, the second derivatives in a cell i can be 
reconstructed from the first derivatives using Green’s 
theorem as follows, 
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Green-Gauss Reconstruction (P1P2(GG)) (Zhang et al) 

•  Simple, efficient. and robust 
•  No need to solve a least-squares problem. 

•  Less accurate 
•  Only use the information on first derivatives. 

•  Not 2-exact reconstruction 
•  Cannot reconstruct a quadratic polynomial exactly  



Cost Analysis (Tetrahedral Grids) 

RDG(P0P1) RDG(P1P1) RDG(P1P2) RDG(P2P2) 

Number of quadrature 
points for boundary 

integrals 

 
1 

 
3 

 
4 

 
7 

Number of quadrature 
points for domain 

integrals 

 
0 

 
4 

 
5 

 
11 

Reconstruction Yes No Yes No 

Order of Accuracy O(h2) O(h2) O(h3) O(h3) 

Storage for Implicit 
Diagonal Matrix 

25 words 
Per 

element 

 
400 

 
400 

 
2500 



Cost Analysis (Hexahedral Grid) 

Spatial method RDG(P1P1)) RDG(P1P2) RDG(P2P2) 

Nr. of quadrature points for 
boundary integrals 

4 4 9 

Nr. of quadrature points for domain 
integrals 

8 8 27 

Reconstruction NO YES NO 

Order of spatial accuracy O(h2) O(h3) O(h3) 

Storage for the implicit diagonal 
matrix per element 

400 words 400 words 2500 words 

The memory requirement for  RDG(P1P2) is much smaller than  DG(P2). 
  



Storage Consideration  
     Consider the memory requirements for storing only a block 

diagonal matrix 
 
D(ndegr2,neqns2,nelem) 
ndegr: degrees of freedom  
           for the polynomial 
neqns: number of unknowns  
           variables 
nelem: number of elements 
Storage requirements for  
Implicit DG method are very 
demanding, especially 
for higher-order methods !!! 

Storage for diagonal matrix 



Example 1. Convection of an isentropic vortex 

 
 



Example 1. isentropic vortex convection 
Sequences of three successively globally refined meshes 

 64x64 

16x16 32x32  



Solution Accuracy for different RDG methods 



Example 2. Subsonic inviscid flow  
past a circular cylinder (M=0.38) 

 
Assess the order of accuracy of the reconstructed 
discontinuous Galerkin methods.  

Entropy production is served as the error 
measurement. 
 



Example 2. Subsonic flow past a cylinder 

Sequences of three successively globally refined meshes 

 64x17 128x33 

32x9  



Computed density contours 

 P1P2(LS) 

DG(P1)  



Solution Accuracy for different RDG methods 



Example 3. Subsonic inviscid flow (M=0.5)   
through a channel with a smooth bump 

Assess the order of accuracy of the reconstructed 
discontinuous Galerkin methods for internal flows 

Entropy production is served as the error 
measurement. 
 



Example 3. Subsonic flow in a channel 
Sequences of three successively globally refined meshes 

 528 cells 

2,032 cells 

127 cells  



Computed velocity contours 

 P1P2(LS) DG(P1)  P1P2(GG)  



Solution Accuracy for different RDG methods 



Example 4. Subsonic inviscid flow   
past an NACA0012 airfoil (M∞=0.63, α=2o) 

This test case is designed to assess the accuracy  
and robustness of the reconstructed discontinuous 
Galerkin methods for inviscid solutions on viscous 
type grids. 
 



Example 4. Subsonic Flow past a NACA 0012 airfoil 

Nquad = 1,533, ntria=3,469, nbfac=157 



Subsonic flow past a NACA0012 Airfoil M∞=0.63, 
α=2o 

                    DG(P1)                           P1P2(GG)                         P1P2(LS) 

Computed Mach Number Contours 



Subsonic flow 
 past a NACA0012 airfoil M∞=0.63, α=2o 

Comparison of computed pressure coefficient (left) and entropy 
production (right) distributions on the surface of airfoil obtained by the 

RDG methods 



Concluding Remarks 

•  A class of RDG(P1P2) methods has been presented 
for solving the compressible flow problems.  

•  All three RDG methods are able to deliver the 
desired third order of accuracy and can significantly 
improve the accuracy of the underlying second-order 
method. 

•  The least-squares RDG provides the best 
performance in terms of accuracy, efficiency, and 
robustness.  



Observation   

•  The extension of the RDG(P1P2) method  to tetrahedral grids was 
unsuccessful. 

•  The RDG method suffers from linear instability, similar to RDG(P0P1) 
•  Instability occurs even for linear equations and in smooth flows. 
•  Reconstruction stencils only involve von Neumann neighborhood, 

i.e., adjacent face-neighboring cells 

•  To maintain the linear stability 
•  Augment stencils in the reconstruction 

    → Destroy the compactness of the underlying DGM. 
•  Use non-linear stability enforcement to achieve linear stability 

    → Limiters in the case of RDG(P0P1) method 
    → ENO/WENO reconstructions.   



Objective 

•  Develop an RDG(P1P2) method based Hermit WENO 
reconstruction for solving the Euler equations on tetrahedral grids. 

•   enhance the accuracy, and therefore reduce the high 
 computational costs of the underlying DG methods 

•   avoid the spurious oscillations in the vicinity of strong 
 discontinuities, and therefore maintain the non-linear stability, 
 and naturally linear stability.  

•  Attempt to address the two weakest links of the DG methods. 



Hermit WENO Reconstruction 
•  On a tetrahedral cell i, a convex combination of the least-squares 

reconstructed 2nd order derivatives at the cell itself and its four 
face-neighboring cells  

 
	
   	
   	
  wk: weighting function      ok : oscillation indicator 

 
 
 

 
 ε  → a small positive number 
 γ  → an integer parameter 
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Hermit WENO Reconstruction 

•  Central stencil 

→ the least-squares reconstructed polynomial at the cell itself 

•  Biased stencils 
 
→ the least-squares reconstructed polynomials on its four face-

neighboring cells 



Example 1. Convergence Study for  
the Quadratic Hermit WENO Reconstruction  

•  Access the order of accuracy on tetrahedral grids. 
•  A smooth function f(x,y,z)=sin(πx)cos(2πy)sin(3πz)  

547 elements 
156 points 
103 boundary pts 

35697 elements 
6973 points 
1785 boundary pts 

4406 elements 
990 points 
444 boundary pts 

286702 elements 
52093 points 
7094 boundary pts 



Solution Accuracy for 
the Quadratic Hermit WENO Reconstruction  

  
 L2-error and order of the convergence  

Number of cells L2-error Order 

547 3.44033E-2 - 

4,406 4.24326E-03 3.01 

35,697 4.46581E-04 3.23 

286,705 4.93515E-05 3.17 

The Hermit WENO reconstruction delivers  
the designed 3rd order of convergence !! 



Example 2. A Subsonic Flow through  
a Channel with a Smooth Bump (Ma=0.5, α=0°) 

•  Access the order of accuracy of the Hermit WENO RDG(P0P1, 
 P1P1, P1P2) method for internal flows. 

•  Entropy production is served as the error measurement. 

889 cells 
254 pts 
171 boundary pts 

449522 cells 
81567 pts 
10999 boundary pts 

449522 cells 
81567 pts 
10999 boundary pts 

6986 cells 
1555 pts 
691 boundary pts 



Computed Velocity Contours 

Obtained by the RDG(P0P1)  
on the finest grid 

Obtained by the RDG(P1P1)  
on the fine grid 

Obtained by the RDG(P1P2)  
on the fine grid 



Solution accuracy for different RDG methods 

•  Hermit WENO reconstruction-based RDG(P1P2) method  
•  significantly increases the accuracy of the underlying DG 

method 
•  greatly decreases its computational costs 



Example 3. Subsonic Flow past a Sphere (Ma=0.5) 

•  Access the order of accuracy of the Hermit WENO RDG(P0P1, 
 P1P1, P1P2) method for external flows. 

•  Entropy production is served as the error measurement.   

535 cells 
167 points 
124 boundary pts 

2426 cells 
598 points 
322 boundary pts 

16467 cells 
3425 points 
1188 boundary pts 

124706 cells 
23462 points 
4538 boundary pts 



Computed Velocity Contours 

Obtained by the  
RDG(P0P1)  
on the finest grid 

Obtained by the  
RDG(P1P1)  
on the fine grid 

Obtained by the  
RDG(P1P2)  
on the fine grid 



Efficiency Comparison for Different RDG Methods 

Convergence order 
versus 
number of degree of freedom 

Convergence history  
versus  
CPU time (Second) 



Efficiency Comparison for Different RDG Methods 

L2 norm versus CPU time 



Example 4. Low Mach Number Flow  
past a Sphere (Ma=0.01) 

Velocity contours  
obtained by the  
RDG(P0P1)  
on the finest grid 

Velocity contours  
obtained by the  
RDG(P1P1)  
on the fine grid 

Velocity contours  
obtained by the  
RDG(P1P2)  
on the fine grid 

•  Access the accuracy for solving low Mach number flow problems.  



Comparison of the Computed Velocity Distributions 
 on the Surface of the Sphere  



Example 5. Transonic Flow past  
an ONERA M6 Wing (Ma=0.699, α=3.06°) 

•  Access the accuracy and robustness of the RDG(P1P2) method for 
transonic flow problems.  

41,440 elements 
8,325 grid points 
2,575 boundary points 

coarseness of grids  
in the vicinity of  
the leading edge 



Computed Pressure Contours by RDG(P1P2) 



Computed Pressure Coefficient Distributions 
Compared with Experimental Data  

η=0.20 η=0.44 η=0.65  

η=0.80 η=0.90  η=0.95 



Example 6. Blasius Boundary Layer Solution 

•  Demonstrate that the RDG(P1P2) method is able to obtain the 
accurate solution for the viscous flow problems.  

 
•  Flow condition: Ma=0.5, Re=100,000 



Grids Used for Computing the Blasius Solution 

47,535 elements 
9,828 points 
3,631 boundary points 

 
Grids in the boundary layer  



Comparison of Computed skin friction coefficients  
between RDG(P1P2) and RDG(P1P1) 



Concluding Remarks 

•  An RDG(P1P2) method based on a Hermit WENO reconstruction, 
designed not only to enhance the underlying DG method but also 
to maintain non-linear stability, has been presented for solving the 
compressible Euler equations on tetrahedral grids.  

•  This RDG(P1P2) method is able to deliver the designed 3rd order of 
accuracy, and outperforms the second-order finite volume method 
RDG(P0P1) by orders of magnitudes to achieve the same accuracy.  

•  This RDG(P1P2) has also successfully been extended to problems 
with strong discontinuities using a hierarchical reconstruction and 
viscous flows, which will be discussed next.   



Background 
 
•  Objective: Develop a RDG method based on a hierarchical WENO 

reconstruction: HWENO(P1P2),  for compressible flows with strong 
discontinuities on hybrid grids. 
•  enhance the accuracy, and therefore reduce the high  computational 

costs of the underlying DG methods 
•  avoid the spurious oscillations in the vicinity of strong 

discontinuities, and therefore maintain the non-linear stability, and 
naturally linear stability.  

•  Attempt to address the two weakest links of the DG methods. 



WENO reconstruction at P2: WENO(P1P2)  

•  Objective: 
― Reconstruct a quadratic polynomial solution (P2)  from the 

underlying discontinuous linear polynomial DG polynomial 
solution (P1) based on a WENO reconstruction. 

  



2-exactness Least-squares Reconstruction  

•  From a linear polynomial DG solution in any cell i 

•  Reconstruct a quadratic polynomial solution UR 

•  10 degrees of freedom 

432
~ BB+B+= ziiii UUUUU yix +

1098

765

432
~

B+B+B+

B+B+B+

B+B+B+=

R
yzi

R
xzi

R
xyi

R
zzi

R
yyi

R
xxi

R
zi

R
yi

R
xi

R
i

R
i

UUU

UUU

UUUUU



Requirements for Reconstruction 

•  Conservation 

•  Compactness 

•  Maintain the  compactness of the underlying DG method 

•  Necessary for unstructured arbitrary grids 

•  Stencils involve only Von Neumann neighborhood (adjacent 
face-neighboring cells)  



Least-squares Reconstruction (P1P2)  

•  Requiring conservation and reconstructed first derivatives equal to 
the ones of the underlying DG solution leads 

 
 due to the judicious choice of Taylor-basis in the DG formulation 

•  Six second derivatives only need to be reconstructed 
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Least-squares Reconstruction (P1P2)  
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For a face-neighboring cell j:  



Least-squares Reconstruction (P1P2)  

•  Similar equations can be written for all face-neighboring cells, 
which leads to a non-square matrix. 

•  The size of resulting non-square matrix is (4xnface)×6, where 
nface is the number of face-neighboring cells. 
•  nface=4 for a tetrahedral cell 
•  nface=5 for a prismatic or pyramidal cell 
•  nface=6 for a hexhedral cell 

•  This over-determined linear system of  (4xnface) equations for 6 
unknowns  can be solved in the least-squares sense.   



Least-squares Reconstruction (P1P2)  

•  Simple and straightforward 

•  The boundary conditions are used to obtain the reconstructed 
equations for the boundary cells, thus ensuring existence of an 
over-determined system.   



Instability Issues of RDG Method in 3D  

•  The RDG method suffers from linear instability, similar to 
RDG(P0P1) 
•  Instability occurs even for linear equations and in smooth 

flows. 
•  Reconstruction stencils only involve von Neumann 

neighborhood, i.e., adjacent face-neighboring cells 

•  To maintain the linear stability 
•  Augment stencils in the reconstruction 

    → Destroy the compactness of the underlying DGM. 
•  Use non-linear stability enforcement to achieve linear stability 

    → Limiters in the case of RDG(P0P1) method 
    → ENO/WENO reconstructions.  



Hermite WENO Reconstruction 
•  On a tetrahedral cell i, a convex combination of the least-squares 

reconstructed 2nd order derivatives at the cell itself (k=0) and its 
face-neighboring cells (k=1,…,nface)  

 
	
   	
   	
  wk: weighting function      ok : oscillation indicator 

 
 
 

 
 ε  → a small positive number 
 γ  → an integer parameter 
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Hermite WENO Reconstruction 

•  Central stencil 

→ the least-squares reconstructed polynomial at the cell itself 

•  Biased stencils 
 
→ the least-squares reconstructed polynomials on its face-

neighboring cells 



WENO reconstruction at P1 : HWENO(P1P2)  

•  Observation: 
 Although the WENO(P1P2) method does not introduce any 
new oscillatory behavior for the reconstructed curvature terms 
(second derivatives) due to the WENO reconstruction, it 
cannot remove inherent oscillations in the underlying DG(P1) 
solutions, leading to non-linear instability. 

  
•  Objective: 

  Reconstruct and modify the linear part (first derivatives) of 
the resulting quadratic polynomial solution (P2)  in order to 
ensure non-linear instability for flows with strong 
discontinuities using WENO reconstruction.  



WENO reconstruction at P1 : HWENO(P1P2)  

•  The following nface stencils (i,j1), (i,j2), …, and (i,j_nface) are 
chosen to construct a Hermite polynomial such that 
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Hermite WENO Reconstruction 
•  On a cell i, a convex combination of these nface (k=1,2,…,nface) 

reconstructed 1st derivatives and the first derivatives at the cell 
itself (k=0) is used to modify the first derivatives  

 
	
   	
   	
  wk: weighting function      ok : oscillation indicator 

 
 
 

 
 ε  → a small positive number 
 γ  → an integer parameter 
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Hermite WENO Reconstruction 

•  Central stencil 

→ the gradient from the DG solution itself at cell itself 

•  Biased stencils 
 
→ the eight reconstructed gradients 



Numerical Examples 

Numerical examples are presented to demonstrate 

•  Accuracy 
•  Robustness 
•  Essentially oscillation-free property 

of the RDG method  
 

 



Example 1. Convection of a Gaussian and a square wave  

 

 
 

 The superior dissipation and dispersion property of DG !  

This simple test case is chosen to demonstrate the accuracy 
of the RDG method.  



      Convection of a Gaussian and a square wave  

 

 
 

Note  the high accuracy and oscillation-free of the RDG ! 



  Example 2 

Water/vapor flow in a convergent-
divergent nozzle 

 
Stiffened EOS is used. 

  
This example is chosen to demonstrate 

the robustness of the RDG method. 
 



      Water flow in a convergent-divergent nozzle 

 
 
  

 
 



      Vapor flow in a convergent-divergent nozzle 

 
 
  

 
 
No single parameter is changed !!! 
No time-derivative preconditioner is required !!! 



Example 3. Woodward-Collela blast wave problem  

 

 
 

This example is chosen to demonstrate the essentially non-
oscillatory property of the RDG method.  



 Example 4. A Subsonic Flow past a Sphere (M∞=0.5)  

•  Access the order of accuracy of the RDG(P1P1), WENO(P1P2) and 
HWENO(P1P2) methods for external flows. 

•  Entropy production is served as the error measurement. 

535 cells 
167 points 
124 boundary pts 

16467 cells 
3425 points 
1188 boundary pts 

62426 cells 
598 points 
322 boundary pts 



Computed Velocity Contours by HWENO(P1P2) 

  Coarse Grid                 Medium Grid                 Fine Grids  



Convergence Study for different RDG methods 

 L2-error and order of convergence for  the RDG(P1P1),  
WENO(P1P2),  and HWENO(P1P2) methods   

Both WENO(P1P2) and HWENO(P1P2) deliver  
the designed 3rd order of convergence !! 

RDG(P1P1) WENO(P1P2) HWENO(P1P2) 

Length 
scale 

L2-error Order L2-error Order L2-error Order 

7.760E-2 1.783E-2 1.052E-2 1.117E-2 

4.688E-2 5.010E-3 2.519 1.317E-3 4.124 1.503E-3 3.980 

2.476E-2 1.232E-3 2.198 1.978E-4 2.964 2.201E-4 3.009 



Example 5. Transonic Flow past  
an ONERA M6 Wing (M∞=0.84, α=3.06°) 

•  Access the accuracy and non-oscillatory property of the 
HWENO(P1P2) method for flows with discontinuities.  

                                      Computed Pressure Contours 
                  WENO(P0P1)                                        HWENO(P1P2) 
                 nelem = 593,169                                     nelem = 95,266 
                 npoin = 110,282                                      npoin = 18,806 
                 nboun = 19,887                                       nboun = 5,287 



Computed Pressure Coefficient and Entropy Production 
Distributions at different spanwise locations  

η=0.20 



Computed Pressure Coefficient and Entropy Production 
Distributions at different spanwise locations  

η=0.90 



Example 6. Transonic Flow past  past a Wing/Pylon/Finned-Store 
Configuration (M∞=0.95, α=0°) 

•  Access the accuracy and non-oscillatory property of the 
HWENO(P1P2) method for flows with strong discontinuities.  

Computed Pressure Contours 
 (nelem=319,134, npoin=61,075, nboun=14,373) 



Computed Pressure Coefficient  Distributions at different 
spanwise locations  

η=0.4077                                                                           η=0.51 
 



Example 7. An air blast wave past a wall    

This example is presented to demonstrate that the RDG method can be used for 
solving problems of practical interests for engineering-type configurations.  



 Example 8. Transonic flow past a B747 configuration 

•  Demonstrate that the HWENO(P1P2) method can be used for 
computing complicated flows of practical interest.  

•  Flow condition: M∞=0.85, α=2° 

 

 
 

  (nelem = 253,577, npoin = 48,851, nboun = 11,802)                                                 
Computed Mach Number Contours 



Concluding Remarks 

•  A reconstructed discontinuous Galerkin method based on a 
Hierarchical WENO reconstruction, HWENO(P1P2) has been 
developed for computing shock waves on hybrid grids.  

•  The HWENO(P1P2) method is able to provide sharp resolution 
of shock waves essentially without over- and under-shoots for 
discontinuities and achieve the designed third-order of accuracy 
for smooth flows.  

•  RDG methods have the potential to provide a superior 
alternative to the traditional FV methods, and to become a main 
choice for the next generation of CFD codes. 



  

Thank you !   



DG Methods for Elliptical Problems 

•  The main advantages of DGMs in dealing with hyperbolic 
equations do not come into play when considering purely 
elliptic problems. 

•  However, using greater flexibility of DGMs which is 
attained by not requiring continuity in inter-element 
boundaries may prove advantageous. 

•  The potential of DGMs in the context of the Navier-Stokes 
equations is still worth exploring.    

 



DG Method for Elliptical Problems 

•  Interior Penalty (IP) methods  
•  Local Discontinuous Galerkin (LDG) methods 
•  Bassi-Rebay Methods 
•  Recovery Methods 

•  J. Douglas, Jr. and T. Dupont, Interior penalty procedures for elliptic and 
parabolic Galerkin Method, Lectures Notes in Physics 58, Springer Verlag, 
Berlin, 1976. 

•  D. N. Arnold, An interior penalty finite element method with discontinuous 
element, SIAM J Numer. Anal. Vol. 19, pp. 742-760, 1982. 

•  B. Cockburn and C. W. Shu, The local discontinuous Galerkin method for 
time-dependent convection diffusion problems, SIAM J Numer Anal., Vol. 35, 
pp. 2440-2463, 1998. 

•  F. Bassi and S. Rebay, High-order accurate discontinuous finite element 
method for the numerical solution of the compressible Navier-Stokes 
equations, J Comp Phys , Vol. 131,  pp. 267-279, 1997. 

•  B. van Leer and M. Lo, A Discontinuous Galerkin Method  for Diffusion 
Based on Recovery, AIAA-2007-4083, 2007. 



DG Methods for Elliptical Problems 

•  Consider 1-D scalar Poisson‘s equation using DG(P1) 

•  The DG formulation leads  

•  The value of               at the interface is not unique and 
need to be defined. 
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DG Methods for Elliptical Problems 

•  A natural choice is to use central flux, as no upwind 
mechanism is provided. 

•  The DG formulation becomes  

•  The problem: Scheme is not consistent !!! 
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Inconsistency 

•  Examine Laplace’s equation with homogeneous Dirichlet 
BCs.  

•  The exact solution is u(x) = 0. 

•                      = 0 everywhere, discrete equations satisfied 
exactly regardless of magnitude of uh 

0
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2

==
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dx
ud
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First order system approach  

•  Background:  A central flux leads to an unstable scheme.  
•  Why? It does not take into account the fact that a DG 

solution is discontinuous at the cell interfaces. 
•  How to solve this issue ? Transform the second order 

equation into a first-order system of equations, as DG is 
naturally suitable for the first-order system of equations   

•   Consider the following Laplace’s equation   

 
•  This equation can be rewritten as a  a first-order system of 

equations by introducing an auxiliary vector variable q, 
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First order system approach 

•  Application of the DG formulation leads 
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First-order system approach 

•  Need to choose uh at the interface   
•  No upwind mechanism -> Choose central flux, 
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First-order system approach 

•  Define a global lifting operator  δ as 
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Bassi-Rebay 1 

•  Compute the lift-operator: 

•  The primal form is then given by   
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Bassi-Rebay 1 

•  Unstable for pure elliptic problems 

•  Stencil no longer compact   
 

                   



Bassi-Rebay 2 

•  Define a local lift operator δl for each interface or 
boundary face as 

•  The local lift operator δl is one interface (and boundary) 
contributions to the global lift operator δ. 

•  Replace the global lift operator in the interface integral by 
the local lift operator.  
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Bassi-Rebay 2 

•  The DG formulation in primal form becomes 

•  Compact !!! 

•  Stability can be established (proven) if a stabilization 
parameter η (>3) is used in the local lift operator. 
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 Recovery-based DG for Diffusion 

•  Idea:   Obtain a continuous polynomial solution on the 
union of two cells that shares an interface, where the 
diffusive fluxes need to be defined. 

 
•  How ? The smooth solution is locally recovered, that is 

indistinguishable from the discontinuous discrete solution 
in the weak sense. (can be thought as a weak 
interpolation.) 

                   



 Recovery-based DG for Diffusion 

•  Recovery in 1D, P=2. Shown are from left to right, the original quartic 
initial values U (dashed), the piecewise linear discretization u (bold) 
together with U, and the cubic recovered distribution f (thin) together 
with u and U, on the adjacent intervals (-1,0), and (0,1). All three 
distributions yield the same value when taking their inner product with 
either test function on either interval, making them indistinguishable in 
the weak sense.                    



 Recovery-based DG for Diffusion 

•  Following are the formulas for recovering the smooth 
solution uij from two discontinuous solution ui and uj on 
the union of neighboring cells Ωi and Ωj : 

 where Bi and Bj are the basis functions for cell I and j respectively, and 
N is the dimension of DG space.  
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 Recovery-based DG for Diffusion 

•  How to construct the basis Bij defined on ΩiUΩj is trivial 
in 1D. (although extremely challenging in 2D/3D). 



Objective 
•  Development of high accurate 3rd order temporal 

discretization methods for RDG methods for unsteady flow 
simulations. 
•  to reduce the temporal discretization error, 
•  for LES and DNS applications.   

 
•  A class of implicit RK schemes – ESDIRK: Explicit first 

stage, Single Diagonal coefficient, diagonally Implicit 
Runge-Kutta  
•  Allow variable time-step size. 
•  Can be constructed to be A- and L-stable for arbitrary order in time.  
•  Found to be more efficient in terms of computational cost for a given 

accuracy level as compared to the lower-order implicit schemes.  



Time Integration 

)U(RUM =
dt
d

Semi-discrete system of nonlinear equations: 

 

 

 

M: Mass matrix 

U: Global vector of  unknown conservative variables 

R: Residual vector 



Time integration schemes: explicit method 

•  Explicit three-stage third-order TVD Runge-Kutta Scheme: 

                     U(1) = Un + Δt M-1 R(Un) 
                     U(2) = 3/4Un + 1/4[U(1) + Δt M-1 R(U(1))] 
                     Un+1 = 1/3Un + 2/3[ U(2) + ΔtM-1R(U(2))] 
    This method is linearly stable for a Courant number less 

than or equal to 1/(2p+1). 
 
    TVDRK scheme is not efficient, when the maximum 

allowable time step imposed by an explicit stability 
requirement is much smaller than that imposed by the 
acceptable level of time accuracy.  



Time integration schemes: implicit method  

•  The m-stage ESDIRK scheme:  

 
  
 where asj are the Butcher coefficient of the scheme. The Butcher table for the 3rd-
 order ESDIRK3 scheme (m=4) is listed below (the values are given in Appendix): 

(i) U(1) =Un

(ii) For s = 2,... , m

U(s) =Un +Δt asjM
−1R(U( j ) )

j=1

s

∑

(iii) Un+1 =U(m)

c1=0 a11 (=0) 0 0 0 

c2 a21 a22=a44 0 0 
c3 a31 a32 a33=a44 0 
c4=1 a41=b1 a42=b2 a43=b3 a44 

Un+1 b1 b2 b3 b4 



The m-stage ESDIRK scheme   
•  The first stage is explicit since a11=0. 
•  A system of non-linear equation is solved at each individual 

stage since the set of asj has the form of a lower triangular 
matrix. 

•  The solution at the last stage is the solution at the next time 
step, and cs represents the point in the time interval [t, t
+Δt], and satisfies 

•  Note that ESDIRK2 (m=2) is nothing but the 2nd-order 
Crank-Nicholson scheme (CN2). 

145 

cs = asj
j=1

s

∑ s =1, 2, 3, ..., 4

Clearly, how to devise an efficient method  
for the solution of the non-linear system of the equations  

is crucial to the success of the ESDIRK scheme.  
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Computational Results 

•  Numerical Examples 
•  1. Inviscid shedding flow past a triangular wedge 
•  2. Kármán vortex street at Re = 200 
•  3. Viscous flow past an SD7003 airfoil 
•  4. Implicit large eddy simulation of a lid driven cavity 

•  Default parameters for solving the pseudo-time system  
•  Linear solver: LU-SGS preconditioned GMRES algorithm 
•  The pseudo time-step term is off, which is equivalent to solving a quasi-

Newton system at each implicit Runge-Kutta stage  
•  The relative residual tolerance is 1.0×10-4. 
•  The maximum iteration number is 5.  

•  Compilation and runtime toolkit 
•  METIS for domain partitioning 
•  PGI Fortran compiler + OpenMPI 



Example 1. Inviscid shedding flow past a triangular wedge 

•  Objective: illustrate the importance of the temporal discretization schemes 
on the accuracy of the numerical solutions  

•  Grid: 13, 250 hexahedral elements, 27, 026 grid point, and 27, 026 
quadrilateral faces 

•  Initial condition: we use intermediate solution (M∞ = 0.5, α=0°) obtained 
by DG(P0) as IC for the unsteady shedding flow 

Global view of the grid Local view of the grid 

Density contour by P0 solution Mach number contour by P0 solution 



Example 1. Inviscid shedding flow past a triangular wedge 

•  Comparison of computed density contours at t = 400 (M∞ = 0.5, α=0°) 
•  With a fixed time-step size of dt = 0.05 

 
•  With a fixed time-step size of dt = 0.10 

BDF1 + RDG(P1P2)       IRK2 +RDG(P1P2)                  IRK3+RDG(P1P2)              IRK3+DG(P1) 

BDF1 + RDG(P1P2) IRK2 + RDG(P1P2) IRK3 + RDG(P1P2) IRK3 + DG(P1) 

Reference solution: explicit 3-stage RK + RDG(P1P2) with a fixed dt = 0.0004 



Example 1. Inviscid shedding flow past a triangular wedge 

•  Animations (up to solution time t = 400) 
•  With a fixed time-step size of dt = 0.10 

BDF1 + RDG(P1P2)                                                          IRK3+DG(P1) 

IRK2 + RDG(P1P2)                                                           IRK3+RDG(P1P2) 



Example 1. Inviscid shedding flow past a triangular wedge 

•  Comparison of the CPU time (evaluated by running on 64 
cores) between the explicit and implicit methods.  

 
•  Performance of the LU-SGS preconditioned GMRES solver 

•  In average, a drop of 4 orders of magnitude for the 
unsteady residual can be achieved within 5 inner iterations 
at each implicit RK stage 

For solution at t = 40 Time-step size Time steps CPU time (sec) 

IRK2 + RDG(P1P2) dt = 0.05 800 1,770 

IRK3 + RDG(P1P2) dt = 0.05 800 5,182 

IRK2 + RDG(P1P2) dt = 0.10 400 1,008 

IRK3 + RDG(P1P2) dt = 0.10 400 2,825 

Explicit RK3 + RDG(P1P2) dt = 0.0004 800,000 13,498 

The IRK3+RDG(P1P2) method provides accurate solutions in space and time 
and requires much less CPU time compared with its explicit counterpart!  



Example 2. Kármán vortex street at Re = 200 

•  Grid: 10,204 hexahedral elements, 20,800 grid points, and 20,800 
boundary faces. The normal grid spacing near the cylinder surface is 0.001 
(normalized by the cylinder diameter)  

•  Boundary condition: no-slip, adiabatic condition on cylinder surface, 
symmetry condition on spanwise wall, characteristic condition at far-field. 

•  Initial condition: we use steady-state solution (M∞ = 0.2, α=3°, Re = 50) 
obtained by DG(P0) as IC for the vortex shedding 

Grid: global view               Grid: local View                Mach Number                       Entropy           
You can find the grid and report at the NASA website 
http://www.grc.nasa.gov/WWW/Acoustics/code/adpac/sample/CYLINDER_VORTEX_SHEDDING/ 



Example 2. Kármán vortex street at Re = 200 

•  Comparison of the computed instantaneous Mach number and entropy 
contours (M∞ = 0.2, α = 0°, Re = 200) 

 
 
 
 

•  Animations (up to solution time t = 40) 
IRK2+RDG(P1P2), dt=0.05            IRK3+RDG(P1P2), dt=0.05              IRK3+RDG(P1P2), dt=0.5 



Example 2. Kármán vortex street at Re = 200 

•  Time histories of lift and drag coefficients (Strouhal number = 1.923) 
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IRK2+RDG(P1P2), dt=0.05                  IRK3+RDG(P1P2), dt=0.05                IRK3+RDG(P1P2), dt=0.5 
      

Agree well with the results in the referred literature! 



Example 2. Kármán vortex street at Re = 200 

•  Comparison of the CPU time (evaluated by running on 128 
cores) between the explicit and implicit methods. 

 
•  Performance of the LU-SGS preconditioned GMRES solver 

•  In average, a drop of 4 orders of magnitude for the unsteady residual 
can be achieved within 5 inner iterations at each implicit RK stage 

For solution at t = 40 Time-step size Time steps CPU time (sec) 

IRK2 + RDG(P1P2) dt = 0.05 10,000 1,603 

IRK3 + RDG(P1P2) dt = 0.05 10,000 5,524 

IRK3 + RDG(P1P2) dt = 0.50 1,000 1,047 

Explicit RK3 + RDG(P1P2) dt = 0.00005 10,000,000 Estimated 77,960 

§  The IRK’s can greatly accelerate the solution over its explicit counterpart, 
while rendering accurate solution in time and space for viscous flows.  

§  The IRK3 enables the use of much larger time-step size and thus can improve 
the overall efficiency.  



Example 3. Viscous flow past an SD7003 airfoil  

•  Grid: 50,781 prismatic elements, 52,176 grid points, 101,562 triangular 
boundary faces, and 279 quadrilateral boundary faces.  

•  Boundary condition: no-slip, adiabatic condition on the airfoil surface, 
symmetry condition on spanwise wall, characteristic condition on far-field. 

•  Initial condition: uniform flow (M∞ = 0.1, α=4°, Re = 10,000) in the field. 

Airfoil: global view Airfoil: leading edge 

Airfoil: trailing edge 



Example 3. Viscous flow past an SD7003 airfoil  

•  Comparison of the computed instantaneous pressure number contours 

 
•  Comparison of the computed vorticity contours 

By the compact method*                                     By IRK3+RDG(P1P2), dt = 0.01 
 

               By the compact method*                                                 By IRK3+RDG(P1P2), dt = 0.01 
 
* Raymond E Gordnier and Miguel R Visbal. Compact Difference Scheme Applied to Simulation of Low-Sweep 
Delta Wing Flow. AIAA journal, 43(8):1744–1752, 2005.  



Example 3. Viscous flow past an SD7003 airfoil  

•  Local details of the computed instantaneous solution by 
IRK3+RDG(P1P2) 

 

•  Animations (up to solution time t = 100 with dt = 0.01 and 1 sec / frame) 

Pressure contours near the upper surface            Velocity vectors near the trailing edge  

           Entropy contours                                     vorticity Magnitude contiurs 



Example 3. Viscous flow past an SD7003 airfoil  

•  Comparison of the CPU time (evaluated by running on 256 cores) 
between the explicit and implicit methods.  

 
 
 

•  Performance of the LU-SGS preconditioned GMRES solver 
•  In average, a drop of 4 orders of magnitude for the unsteady residual 

can be achieved within 5 inner iterations at each implicit RK stage 

For solution at t = 100 Time-step size Time steps CPU time (sec) 

IRK3 + RDG(P1P2) dt = 0.01 10,000 83,178 

Explicit RK3 + RDG(P1P2) dt = 0.00001 10,000,000 Estimated 1,669,400 

A speedup factor of more than 200 by IRK3 over its explicit counterpart !  

Indeed, the relative tol. = 10-4 is a overkill in running these problems.  
If we use relative tol. = 10-2, even higher speedup may be achieved.  



Example 4. Implicit LES of a lid driven cavity 

•  Implicit LES 
•  Without the use of an explicit sub-grid scale model. 

•  Why DG methods? 
•  The DG methods only dissipate the scales that the model is not able to 

capture correctly, thus acting like a sub-grid scale model. 
•  Why RDG methods? 

•  DG methods like P2, P3, and P4 have shown the ability of helping 
improve the solution accuracy in a few benchmark DNS and LES 
problems. Yet they are expensive in terms of computing time and 
storage requirement.  

•  Assess the RDG methods like P1P2 and even P2P3 for computing 
large-scale.  

•  Why 3D lid driven cavity? 
•  The 3D lid driven cavity presents complex physical phenomena, though 

the geometry is simple. Therefore it is an adequate example to assess 
the performance of the implicit LES with the developed methods.  



Example 4. Implicit LES of a lid driven cavity 

•  Problem description 
•  Domain: x = [0, 1], y = [0, 1], and z = [-0.25, 0.25] (x: y: z = 1: 1: 0.5 ). 
•  Top lid velocity vb = (0.2, 0, 0), Re = 10,000. 
•  No-slip, adiabatic conditions for the rest of boundary walls. 
•  Grid: 64x64x32 grid points; hmin = 0.005 in x-y plane (y+ = 3.535); uniform 

grid distribution in spanwise z-direction.   

The 64x64x32 grid                             Instantaneous Mach No. iso-surface          Animated Mach No. iso-
surface 
      



Example 4. Implicit LES of a lid driven cavity 

•  Problem setup 
•  Step 1. Run 5000 time steps with BDF1+DG(P1) and CFL = 500 from zero-

velocity field, so that the flow filed reaches a cyclically oscillating status. 
•  Step 2. Restart the computation with a fixed time-step size of dt = 0.1, and use 

a desired method as shown below. The width of window for time averaging is 
30 second per frame (every 300 steps).  

Density residual vs. time steps (fixed dt = 0.1)                Total energy residual vs. time steps (fixed dt = 0.1) 
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Example 4. Implicit LES of a lid driven cavity 

•  Mean velocities 
•  Exp. (Prasad&Koseff,1989) 
•  LES (Zang et al., 1993) 
•  BDF1+RDG(P1P2) 
•  IRK2+RDG(P1P2) 
•  IRK3+RDG(P1P2) 
•  IRK2+DG(P1) 

Profiles along the x and y centerlines on spanwise mid-plane (z = 0) 

•  RDG(P1P2) match 
all well. 

•  DG(P1) is a little off 
near bottom region.  -1
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Example 4. Implicit LES of a lid driven cavity 

•  RMS velocities 
•  Exp. (Prasad&Koseff,1989) 
•  LES (Zang et al., 1993) 
•  BDF1+RDG(P1P2) 
•  IRK2+RDG(P1P2) 
•  IRK3+RDG(P1P2) 
•  IRK2+DG(P1) 

Profiles along the x and y centerlines on spanwise mid-plane (z = 0) 

•  DG(P1) is not accurate 
enough. 

•  RDG(P1P2) matches 
exp. data well! 

•  IRK’s are slightly 
better than BDF1. 

•  IRK3 is close to IRK2.  
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Example 4. Implicit LES of a lid driven cavity 

•  Reynolds stress tensor component <u’v’> 
•  Exp. (Prasad&Koseff,1989) 
•  LES (Zang et al., 1993) 
•  BDF1+RDG(P1P2) 
•  IRK2+RDG(P1P2) 
•  IRK3+RDG(P1P2) 
•  IRK2+DG(P1) 

Profiles along the x and y centerlines on spanwise mid-plane (z = 0) 

•  DG(P1) is far from 
good in lower region. 

•  RDG(P1P2) matches 
exp. data well! 

•  IRK’s are better than 
BDF1 in some regions. 

•  IRK3 is close to IRK2.  -1
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Example 4. Implicit LES of a lid driven cavity 

•  Comparison of the CPU time (evaluated by running on 256 cores) between 
the explicit and implicit methods.  

 
•  LU-SGS preconditioned GMRES solver 

•  In average, a drop of 4 orders of magnitude for the unsteady residual 
can be achieved within 5 inner iterations at each implicit RK stage. 

For solution at t = 3000 Time-step size Time steps CPU time (sec) 

BDF1 + RDG(P1P2) dt = 0.1 30,000 52,542 

IRK2 + RDG(P1P2) dt = 0.1 30,000 86,066 

IRK3 + RDG(P1P2) dt = 0.1 30,000 263,010 

IRK2 + DG(P1) dt = 0.1 30,000 69,050 

Explicit RK3 + RDG(P1P2) dt = 0.0001 30,000,000 Estimated 7,347,942 

•  A speedup factor of more than 85 by IRK over its explicit counterpart! 
•  IRK+RDG(P1P2) greatly improve solution accuracy for  implicit LES 

without much extra cost than the underlying IRK+DG(P1)!  



Concluding Remarks 
•  A reconstructed discontinuous Galerkin method based on a Hierarchical 

WENO reconstruction, HWENO(P1P2) has been developed for compressible 
flows at all speeds on hybrid grids.  

•  The HWENO(P1P2) method is able to provide sharp resolution of shock 
waves essentially without over- and under-shoots for discontinuities and 
achieve the designed third-order of accuracy for smooth flows.  

•  RDG methods have the potential to provide a superior alternative to the 
traditional FV methods, and to become a main choice for the next generation 
of CFD codes. 

 
•  A higher-order RDG-based CFD code will ultimately deliver a more 

accurate, efficient, robust, and reliable simulation tool with confidence that 
will enable us to solve flow problems at resolutions never before possible by 
the current state-of-the-art CFD technology. 



Current Work 

•  Extension of the RDG method for turbulent flows 

•  Implementation of hp-adaptation on hybrid grids 

•  Port of the RDGFLO code on hybrid CPU/GPU 
architectures 


