
	
 	

Reconstructed Discontinuous Galerkin Methods

For Computational Fluid Dynamics

 Hong Luo
Department of Mechanical and Aerospace Engineering

North Carolina State University

Presented at Beijing University of Aeronautics and Astronautics
Beijing, China
June 30, 2014

1	
July 10, 2014	

 Outline
●  Governing Equations
●  Discontinuous Galerkin (DG) Finite Element Methods for the

Compressible Navier-Stokes Equations
●  Nodal DG Methods
●  Modal DG Methods

●  Discretization of Convective (Inviscid) Fluxes
●  Reconstructed DG (RDG(PnPm)) Methods
●  K-exact reconstruction
●  Green-Gauss Reconstruction
●  Least-Squares Reconstruction
●  WENO Reconstruction
●  Hierarchical WENO Reconstruction

●  Discretization of Diffusive (Viscous) Fluxes
●  Temporal Discretizations
●  Explicit Methods
●  Implicit Methods

 Governing Equations
Compressible Navier-Stokes Equations:

where the conservative state, inviscid flux, and viscous flux vectors

Here ρ, p, and e denote the density, pressure, and specific total energy of
the fluid, respectively, and ui is the velocity of the flow in the coordinate
direction xi
δij : Kronecker tensor.

k

k

k

k

x
t))(x,(=

x
t))(x,(+

t
t)(x,

∂

∂

∂

∂

∂

∂ UGUFU

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

=

e
ui
ρ

ρ

ρ

U
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

+

+=

)(peu
puu

u

j

ijji

j

j

ρ

δρ

ρ

F
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

+

=

jljl

ijj

quσ
σ

0
G

Compressible Navier-Stokes Equations

The pressure, the viscous stress tensor σij and the heat flux vector qj are given
by

where γ(=1.4) ratio of the specific heats, µ: molecular viscosity, k: thermal
conductivity coefficient. The molecular viscosity can be determined through
Sutherland’s law

µ0 denotes the viscosity at the reference temperature T0, and S is a constant
which for air assumes the value S = 110oK. The temperature of the fluid T is
determined by

R: ideal gas constant.

)
2
1()1(jjuuep −−= ργ ij

k

k

i

j

j

i
ij x

uµ)
x
u

+
x
uµ(=σ δ

∂

∂
−

∂

∂

∂

∂

3
2

j
j x

Tk=q
∂

∂

. .

S+T
S+T

T
T=

µ
µ 0

00

2
3

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

Rρ
p=T

Compressible Euler Equations

If we neglect the loss of the heat by thermal diffusion (k=0) and the effects of
viscosity(µ=0), the Navier-Stokes equations become the Euler equations:

0=
x
t))(x,(+

t
t)(x,

k

k

∂

∂

∂

∂ UFU

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

=

e
ui
ρ

ρ

ρ

U
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

+

+=

)(peu
puu

u

j

ijji

j

j

ρ

δρ

ρ

F

. .

)
2
1()1(jjuuep −−= ργ

Boundary Conditions

•  Dirichlet boundary conditions

 UΓ = Ub

•  No-slip nall boundary conditions:

 Isothermal wall: VΓ = 0, and TΓ = Tw

Adiabatic wall : VΓ = 0, and

•  Slip wall boundary conditions:

Vn|Γ=0

•  Inflow/Outflow boundary conditions: characteristic boundary conditions

•  Periodic boundary conditions: no boundary conditions

. .

∂T
∂n Γ

= 0

 Discontinuous Galerkin (DG) Finite Element Methods

●  Advantages:
●  Several useful mathematical properties with respect to conservation, stability, and convergence.
●  Easy extension to higher-order (>2nd) schemes.
●  Well suited for complex geometries.
●  Easy adaptive strategies, allowing implementation of hp-refinement and hanging nodes.
●  Compact and highly parallelizable.
●  Accuracy for low Mach number flows.

●  Disadvantages:
●  Require higher-order boundary representation

 →Geometric modeling capability
 →Curved boundary elements

●  High computing costs (more degrees of freedom)
→ CPU time
→ Storage Requirements

●  Treatment of discontinuities (like all other high-order methods)
→ Sensitive to the implementation of limiters
→ Lead to loss of high-order accuracy

Variational (Weak) formulation

V: Solution space
W: Test function

Find U such that

∂U
∂tΩ

∫ WdΩ+ kF
Γ

∫ kn dΓ− Fk
∂W
∂xkΩ

∫ dΩ = kG
Γ

∫ kn dΓ− Gk
∂W
∂xkΩ

∫ dΩ, ∀W ∈V

V∈

Semi-discrete form

Find such as

Uh: piecewise polynomial function of degree pn , which is
discontinuous between the cell interfaces.

m: dimension of conservative state vector
d: number of spatial dimension

eΩ=Ω ∪ Vh
Pn = vh ∈ L2 (Ω)[]m : vh Ωe

∈ VPn

m#$ %& ∀Ωe ∈Ω{ },
VPn

m = span ∏i=1
d xi

αi : 0 ≤αi ≤ pn, 0 ≤ i ≤ d{ },

Uh ∈Vh
Pn

d
dt

Uh
Ωe

∫ WhdΩ+ kF
Γe

∫ (Uh) kn WhdΓ− Fk (Uh)∂Wh

∂xkΩe

∫ dΩ = kG
Γe

∫ (Uh) kn WhdΓ− Gk (Uh)∂Wh

∂xkΩe

∫ dΩ, ∀Wh ∈Vh
Pn

DG(Pn) Method

 Bi(x): basis functions of the polynomials of degree Pn, 1≤i≤N.
 N: dimension of the polynomial space Pn.

↑
	
 	
 	
 Discontinuous Galerkin method of degree Pn (DG(Pn)) : O(hn+1)

 Fk(Uh)nk =Hk(UL

h,UR
h,nk) ← Numerical Riemann flux function

N1 , ≤≤
∂

∂
−

∂

∂
− ∫∫∫∫∫ idΩ

x
B)(dΓB)(=dΩ

x
B)(dΓB)(+dΩB

dt
d

eΩ k

i
hkikh

eΓ
k

eΩ k

i
hkikh

eΓ
ki

eΩ
h UGnUGUFnUFU

),,,,(),(v n
UU

UUHUUG n
i

R
h

i

L
hR

h
L
hk

i

h
hk xxx ∂

∂

∂

∂
=

∂

∂

The computation of the viscous fluxes has to properly resolve the
discontinuities at the interfaces.

DG(Pn) Method

•  No global mass matrix needs to be inverted.
•  Inter-element communications are minimal.

 Uh Ωe
= U j

Ωe

j=1

N

∑ (t)Bj
Ωe (x) = U j

j=1

N

∑ (t)Bj (x)

 (Bj
Ωe

∫ BidΩ)
dUj

dt
= Ri 1≤ i ≤N

Ri =− Fk
Γe

∫ nkBidΓ+ Fk
∂Bi
∂xkΩe

∫ dΩ + Gk
Γe

∫ nkBidΓ− Gk
∂Bi
∂xkΩe

∫ dΩ

 MN×N
d
dt

U1

U2

•
•

UN

)

*

+
+
+
+
+
+
+

,

-

.

.

.

.

.

.

.

=

R1

R2

•
•

RN

)

*

+
+
+
+
+
+
+

,

-

.

.

.

.

.

.

.

Computation of the domain integral

Computer Implementation:

do ielem = 1, nelem ! Loop over the elements
 do igaus = 1, ngaus ! Loop over the Gauss points
 ! Get the solution at the Gauss points
 Unkno = …
 ! Compute the fluxes at the Gauss points
 Fluxes = …
 ! Scatter it to the RHS vector
 rhsel = rhsel + …

 enddo
enddo

Ri = Fk (Uh)∂Bi
∂xkΩe

∫ dΩ, 1≤ i ≤N

Computation of boundary integral

Computer implementation (element-based data structure)
 do ielem = 1, nelem ! Loop over the elements
 do ifele = 1, nfele ! Loop over the face of this element
 jelem = elsuel(ifele,ielem) ! Adjacent element number
 do igaus = 1, ngaus ! Loop over the Gauss points
 ! Get the solutions at the Gauss points
 Unkno_ielem = … ! Solution at the left of Gauss point
 unkno_jelem = … ! Solution at the right of Gauss point
 ! Compute the fluxes at the Gauss points by a Riemann flux functions
 Fluxes = …
 ! Scatter it to the RHS vector
 rhsel_ielem = rhsel _ielem + …

 enddo ! End of the do-loop over the Gauss points
 enddo ! End of the do-loop over the faces of this element
Enddo ! End of the do-loop over the elements

Ri = − kF
Γe

∫ (Uh) kn BidΓ, 1≤ i ≤N

Computation of boundary integral

Computer implementation (faced-based data structure)
 do iface = 1, nface ! Loop over the faces
 ielem = intfac(1,iface) ! Left element of this face
 jelem = intfac(2,iface) ! Right element of this face
 do igaus = 1, ngaus ! Loop over the Gauss points of this face
 ! Get the solutions at the Gauss points
 Unkno_ielem = … ! Solution at the left of Gauss point
 unkno_jelem = … ! Solution at the right of Gauss point
 ! Compute the fluxes at the Gauss points by a Riemann flux functions
 Fluxes = …
 ! Scatter it to the RHS vector
 rhsel_ielem = rhsel _ielem + …

 rhsel_jelem = rhsel_jelem - …

 enddo ! End of the do-loop over the Gauss points
Enddo ! End of the do-loop over the faces

Ri = − kF
Γe

∫ (Uh) kn BidΓ, 1≤ i ≤N

Numerical Integration

Quadrature order requirements for the 2D Euler equations
using conservative state variables for triangle

where p is interpolation order and q is element geometry
order.

Boundary	
 (1-­‐D)	
 Domain	
 (2-­‐D)	

q=1	
 q=2	
 q=3	
 q=1	
 q=2	
 q=3	

P=0	
 1	
 3	
 5	

P=1	
 2	
 5	
 7	
 3	
 3	
 4	

P=2	
 3	
 7	
 7	
 4	
 5	
 6	

P=3	
 7	
 9	
 9	
 6	
 7	
 8	

Numerical Integration

Quadrature order requirements for the 3D Euler equations
using conservative state variables for tetrahedral

where p is interpolation order and q is element geometry
order.

Boundary	
 (2-­‐D)	
 Domain	
 (3-­‐D)	

q=1	
 q=2	
 q=3	
 q=1	
 q=2	
 q=3	

P=0	
 1	

P=1	
 3	
 5	
 6	
 4	
 5	
 6	

P=2	
 6	
 7	
 8	
 5	
 6	
 7	

P=3	
 8	
 9	
 10	
 7	
 7	
 8	

Nodal Discontinuous Galerkin Methods

The DG solutions in each element are represented using finite element
shape functions:

where Bi: finite element shape functions.

The unknowns are the values of the conservative variables at the nodes.
The shape (trial, test) functions depend on the shape of elements.

Q1/P1 Q2/P2
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

•

•=

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

•

•×

N

2

1

N

2

1

NN

R

R
R

U

U
U

dt
dM

),()(
N

1
xBt j

j
jh ∑

=

= UU

Lagrange Basis Functions

•  1D
•  Introduce reference coordinate ξ over an element with nodes 1

and 2
•  ζ=(x-x1)/(x2-x1)

•  Linear basis functions over an element with nodes 1 and 2
•  B1=1-ζ, B2=ζ

•  Quadratic basis functions
•  B1 = (1-ζ)(1-2ζ), B2 = -ζ(1-2ζ), B3 = 4ζ(1-ζ)

• 

Finite Element Basis Functions for Triangles

•  Introduce area (barycentric) coordinates ζi (i=1,2,3) for a point P(X)
in a triangle with nodes 1, 2, and 3

•  ζ1 = area of triangle P23/area of triangle 123
•  ζ2 = area of triangle P31/area of triangle 123
•  ζ3 = area of triangle P12/area of triangle 123

•  Introduce reference coordinates (ξ, η)
•  ξ = ζ2, and η = ζ3
•  X = ζiXi = (1-ξ- η)X1 +ξX2 + ηX3

Shape Functions for Triangles

•  Linear basis functions over a triangle with nodes 1, 2, and 3
•  B1= ζ1 = 1-ξ-η
•  B2= ζ2 = ξ
•  B3= ζ3 = η

•  Quadratic basis functions
•  B1 = ζ1 (2ζ1-1) = (1-ξ-η)(1-2ξ-2η)
•  B2 = ζ2 (2ζ2-1) = ξ(2ξ-1)
•  B3 = ζ3 (2ζ3-1) = η(2η-1)
•  B4 = 4ζ1 ζ2 = 4(1-ξ-η)ξ
•  B5 = 4ζ2 ζ3 = 4ξη
•  B6 = 4ζ3 ζ1 = 4η (1-ξ-η)

1 2

3

6 5

4

3

2 1
Degree of freedom of quadratic
triangle

Degree of freedom of linear
triangle

Shape Functions for Quads

•  Bi-linear Quad
•  B1 = (1-ξ)(1-η)
•  B2= ξ(1-η)
•  B3 = ξη
•  B4 = (1-ξ)η

•  Quadratic Serendipity Quads Bi-linear Quad
•  B1 = (1-ξ)(1-η)(1-2ξ-2η)
•  B2 = -ξ(1-η)(1-2ξ+2η)
•  B3 = -ξ(1-η)(3-2ξ-2η)
•  B4 =-(1-ξ)η(1+2ξ-2η)
•  B5 = 4ξ(1-ξ)(1-η)
•  B6 = 4ξη (1-η)
•  B7 = 4(1-ξ)ξη
•  B8 = 4(1-ξ)(1-η)η

Model Discontinuous Galerkin Methods

The DG solutions in each element are represented using model basis
functions:

where Bi: model basis functions.

The unknowns are the moments of the conservative variables in each
elements.

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

•

•=

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

•

•×

N

2

1

N

2

1

NN

R

R
R

U

U
U

dt
dM

),()(
N

1
xBt j

j
jh ∑

=

= UU

Legendre Basis Functions

•  1D Legendre Basis Function
•  Introduce reference coordinate ξ over an element with nodes 1

and 2
•  ζ=2(x-xc)/(x2-x1) with xc= (x2+x1)/2

•  Linear basis functions over an element with nodes 1 and 2
•  B1=1, B2 = ζ

•  Quadratic basis functions
•  B1=1, B2 = ζ, B3 = (3ζ2-1)/2

•  Bonnet’s recursion formula: (n+1)Bn+2(ζ) = (2n+1) ζBn+1(ζ) – nBn(ζ)
•  Multi-dimensional Basis Function can be derived using tensor-product

 Taylor Basis Functions

The unknowns are the cell-averaged
conservative variables and their
derivatives at the center of the cells,
regardless of element shapes.

∫

∫∫

Ω

ΩΩ

Ω−−−−−
∂∂

∂
+

Ω
−

−
−

∂

∂
+Ω

−
−

−

∂

∂
+

−
∂

∂
+−

∂

∂
+=

e

ee

dyyxxyyxx
yx

dyyyy
y

dxxxx
x

yy
y

xx
x

cccc
c

cc

c

cc

c

c
c

c
c

h

)))(())(((

)
2
)(

2
)(()

2
)(

2
)((

)()(~

2

22

2

222

2

2

U

UU

UUUU

))(()(
2
)()(

2
)()()()()x(x)()(

22

2

22

2

2

c cc
c

c

c

c

c
c

cc
ch yyxx

yx
tyy

y
txx

x
tyy

y
t

x
tt −−

∂∂

∂
+

−

∂

∂
+

−

∂

∂
+−

∂

∂
+−

∂

∂
+=

UUUUUUU

Normalized Taylor basis functions
11 =B x

B
Δ

−
= c

2
xx

y
B

Δ

−
= c

3
yy

∫
Ω

Ω
Δ

−

Ω
−

Δ

−
=

i

d
x
xx

x
xxB c

i

c
2

2

2

2

4 2
)(1

2
)(

∫
Ω

Ω
Δ

−

Ω
−

Δ

−
=

i

d
y
yy

y
yyB c

i

c
2

2

2

2

5 2
)(1

2
)(

∫
Ω

Ω
ΔΔ

−−

Ω
−

ΔΔ

−−
=

i

d
yx
yyxx

yx
yyxxB cc

i

cc))((1))((
6

2
minmax xxx −

=Δ
2

minmax yyy −
=Δ

Xmax, xmin, ymax, ymin are the maximum and minimum coordinates in
the cell Ωi in x-, and y-directions, respectively.

Alleviate the stiffness of the system matrix for higher-order DG
approximation

x,Δ
∂

∂
=

c
x x

UU y,Δ
∂

∂
=

c
y y

UU ,x22

2

Δ
∂

∂
=

c
xx x

UU ,y22

2

Δ
∂

∂
=

c
yy y

UU y
2

ΔΔ
∂∂

∂
= x

yx c
xy

UU

Uh = !UB1 +UxB2 +UyB3 +UxxB4 +UyyB5 +UxyB6

Features of Taylor Basis

•  A finite volume code can be easily converted to a DG code.

•  Same approximate polynomial solution for any shapes of

elements:
•  Can be easily extended and implemented on arbitrary meshes.

•  Cell-averaged variables and their derivatives are handily available:
•  Make implementation of WENO reconstruction easy and

efficient

•  Hierarchic basis
•  Make implementation of p-multigrid methods and p-

refinement easy and efficient

DG(P0) approximation

N=1, B1=1,

↓

)(th UU =

N1 ,0)()(≤≤=Ω
∂

∂
−Γ+Ω ∫∫∫

ΩΓΩ

id
x
BdBdB

dt
d

eee k

i
hkikhkih UFUU nF

0)(=Γ+Ω ∫∫
ΓΩ

ddt
dt
d

kk
ee

nFU

•  The classical first-order cell-centered finite volume
 scheme exactly corresponds to the DG(P0) method.

●  DG methods can be regarded as a natural generalization of

finite volume methods to higher order methods.

●  By simply increasing the degree o of polynomials DG
methods of corresponding higher-orders are obtained.

DG(P1) approximation

321
~ BBB yxh UUUU ++=

1 ,0)(~
==Γ+Ω ∫∫

ΓΩ

idd
dt
d

khk
ee

nF UU

0
3

3

2
2

3323

3222
=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

Ω
∂

∂
−Γ

Ω
∂

∂
−Γ

+

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

ΩΩ

ΩΩ

∫∫

∫∫

∫∫
∫∫

ΩΓ

ΩΓ

ee

ee

d
y
BFdBnF

d
x
BFdBnF

dt
d
dt
d

dBBdBB

dBBdBB

k
kkk

k
kkk

y

x

U

U

N=3,

DG(P2) approximation

654321
~ BBBBBB xyyyxxyxh UUUUUUU +++++=

1 ,0)(~
==Γ+Ω ∫∫

ΓΩ

idd
dt
d

khk
ee

nF UU

0

6
6

5
5

4
4

3
3

2
2

55 =

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

Ω
∂

∂
−Γ

Ω
∂

∂
−Γ

Ω
∂

∂
−Γ

Ω
∂

∂
−Γ

Ω
∂

∂
−Γ

+

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

∫∫

∫∫

∫∫

∫∫

∫∫

ΩΓ

ΩΓ

ΩΓ

ΩΓ

ΩΓ

ee

ee

ee

ee

ee

d
x
BFdBnF

d
x
BFdBnF

d
x
BFdBnF

d
x
BFdBnF

d
x
BFdBnF

dt
d
dt
d
dt
d
dt
d
dt
d

M

k
kkk

k
kkk

k
kkk

k
kkk

k
kkk

xy

yy

xx

y

x

x

U

U

U

U

U

N=6,

Similarity and difference between FV and DG

•  The discretized governing equations for cell-averaged
variables and the assumption of a polynomial solution on
each cell are exactly the same for both FV and DG
methods.

•  The only difference between them is the way how to obtain
the polynomial solution, i.e., how to compute the
derivatives.

DG Methods

•  The derivatives are computed in a manner similar to the
mean variables, which is unique, compact, rigorous, and
elegant mathematically.

•  The higher order DG methods can be easily constructed by
simply increasing the degree p of the polynomials locally,
in contrast to the finite volume methods which use the
extended stencils to achieve higher order of accuracy.

Reconstruction Methods

•  The polynomial solutions are reconstructed from cell-
averaged variables of neighbouring cells. The multi-
dimensional reconstruction schemes based on the
extension of 1D MUSCL approach have two serious flaws:
•  Uncertainty and arbitrariness in choosing the stencils

and the methods to compute the derivatives;
•  Formal second order accuracy is hardly obtained in

practice !!!
•  Extended stencils required for higher-order (>2nd)

reconstruction.
•  The finite volume methods are not practical at

higher order and have remained second-order !!!

Observation

DG

Reconstruction

Efficiency (computing
costs and storage

requirements)

Bad

Good

Robustness

Good

Bad

Accuracy

Good

Bad

Tolerance

 to grid irregularity

Good

Bad

Reconstruction and DG methods can be viewed as two
ways to obtain higher accuracy of the first order finite
volume methods

In-cell Recovery/Reconstruction

•  Objective:
•  Combine the advantages of both reconstruction and DG

methods in order to improve the efficiency of the DG methods
•  PnPm schemes (Dumbser et al, 2008)
•  Reconstruction-based DG (Luo et al, 2009)
•  Hybrid DG/FV schemes (Zhang et al, 2010)

•  How ?
•  Recover/reconstruct a higher-order polynomial solution from

the underlying discontinuous DG polynomial solution

Background
To reduce high computing costs of the DG methods, Reconstructed
DG (RDG(PnPm)) schemes were introduced by Dumbser et al.

•  Pn indicates that a piecewise polynomial of degree of n is
used to represent a DG solution.

•  Pm represents a reconstructed polynomial solution of degree
of m (m≥n) that is used to compute the fluxes and source
terms.

•  Provide a unified formulation for both finite volume and DG
methods, and contain both classical finite volume and
standard DG methods as two special cases of RDG(PnPm)
schemes.

Background
Classification of the RDG(PnPm) Schemes

Order of Accuracy 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Schemes 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

O(1) RDG(P0P0) (DG(P0))

O(2) RDG(P0P1) RDG(P1P1) (DG(P1))

O(3) RDG(P0P2) RDG(P1P2) RDG(P2P2)

O(4) RDG(P0P3) RDG(P1P3) RDG(P2P3) RDG(P3P3)

 :

O(M+1) RDG(P0Pm) … RDG(PnPm) … RDG(PmPm)
 FV New Class DG

Reconstructed Discontinuous Galerkine Method: RDG(PnPm)

 : reconstructed polynomial solution of degree Pm

 Bi(x) : basis functions of polynomials of degree Pn , 1≤i≤N

 N: dimension of the polynomial space Pn

↑
	
 Reconstructed Discontinuous Galerkin method RDG(PnPm) : O(hm+1)

d
dt

UPn
Ωe

∫ BidΩ+ Fk
Γe

∫ (UPm

R)nkBidΓ− Fk (UPm
R)∂Bi

∂xkΩe

∫ dΩ = Gk
Γe

∫ (UPm
R)nkBidΓ− Gk (UPm

R)∂Bi
∂xkΩe

∫ dΩ, 1≤ i ≤N

UPm
R

Background

•  Observation: The construction of an accurate and efficient reconstruction
operator is crucial to the success of the RDG(PnPm) schemes.

Reconstructed DG method RDG(P1P2)

•  From a linear polynomial DG solution in any cell i

•  Reconstruct a quadratic polynomial solution UR

•  Six degrees of freedom

321
~ BBB yixiii UUUU ++=

654321
~ BBBBBB R

xyi
R
yyi

R
xxi

R
yi

R
xi

R
i

R
i UUUUUUU +++++=

Requirements For Reconstruction

•  Conservation
•  Compactness

•  Maintain compactness of the underlying DG method
•  Necessary for unstructured arbitrary grids
•  Stencils involve only Von Neumann neighborhood

(face-neighboring cells)

Reconstruction

•  Requiring conservation and reconstructed first
derivatives equal to the ones of the underlying DG
solution leads

 due to the judicious choice of Taylor-basis in the DG
formulation

•  Three second derivatives only need to be reconstructed.

R
i

R
i UU ~~
= xi

R
xi UU = yi

R
yi UU =

1. Least-squares Recovery (P1P2(rc)) (Dumbser et al.)

•  This is achieved using a so-called in-cell recovery
where recovered equations are obtained using a L2
projection for each face-neighboring cell j, i.e.,

•  The over-determined system of linear equations (9x3

for a triangular cell and 12x3 for a quadrilateral cell) is
solved using a least-squares method.

(weak interpolation)

3,...,1 , =Ω=Ω ∫∫
ΩΩ

kdBdB j
kj

j
k

R
i

jj

UU

P1P2(rc) (Dumbser et al)

•  2-exact reconstruction
•  Able to reconstruct a quadratic polynomial exactly.

•  Complex and expensive
•  Require to compute the integral on both left and right-side of

the recovered equations.

•  Problematic
•  For a boundary cell, the number of the face neighbouring

cells might not be enough to recover a polynomial solution
of a desired order.

•  Use extended one-side stencils -> destroy the compactness.

2. Least-squares Reconstruction (P1P2(RC)) (Luo et al)

•  The remaining three degrees of freedom can be
determined by requiring that the reconstructed solution
and its first derivatives are equal to the underlying DG
solution and its first derivatives for all the face
neighboring cells.

Strong interpolation

jR
xyi

jR
yyi

jR
xxi

j
yi

j
xiij BBBBB 65432

~ UUUUUUU +++++=

i

j
R
xyi

i

j
R
yyi

i
yij

i

j
R
xyi

i

j
R
xxi

i
xij

y
BU

y
BU

y
U

y
U

x
BU

x
BU

x
U

x
U

Δ
+

Δ
+

Δ
=

∂

∂

Δ
+

Δ
+

Δ
=

∂

∂

23

32

1

1

Least-Squares Reconstruction

•  Similar equations can be written for all face-
neighboring cells, which leads to a non-square matrix.

•  The number of face-neighboring cells for a triangular
and quadrilateral cell is 3 and 4, respectively. As a
result, the size of resulting non-square matrix is 9x3,
and 12x3, respectively.

•  This over-determined linear system of 9 or 12
equations for 3 unknowns can be solved in the least-
squares sense.

P1P2(RC) method

•  Simple and straightforward

•  The boundary conditions are used to obtain the
reconstructed equations for the boundary cells, thus
ensuring existence of an over-determined system.

•  2-exact reconstruction

3. Green-Gauss Reconstruction (P1P2(GG)) (Zhang et al)

•  Green-Gauss reconstruction is widely used to
reconstruct a gradient from the cell-averaged values in
the finite volume methods.

•  Similarly, the second derivatives in a cell i can be
reconstructed from the first derivatives using Green’s
theorem as follows,

Γ
∂

∂
=

∂

∂
Ω=Ω

∂

∂
∫∫
ΓΩ

dn
x
U

x
Ud

x
U

x
i

i
i ii

2

2

2

2

Green-Gauss Reconstruction (P1P2(GG)) (Zhang et al)

•  Simple, efficient. and robust
•  No need to solve a least-squares problem.

•  Less accurate
•  Only use the information on first derivatives.

•  Not 2-exact reconstruction
•  Cannot reconstruct a quadratic polynomial exactly

Cost Analysis (Tetrahedral Grids)

RDG(P0P1) RDG(P1P1) RDG(P1P2) RDG(P2P2)

Number of quadrature
points for boundary

integrals

1

3

4

7

Number of quadrature
points for domain

integrals

0

4

5

11

Reconstruction Yes No Yes No

Order of Accuracy O(h2) O(h2) O(h3) O(h3)

Storage for Implicit
Diagonal Matrix

25 words
Per

element

400

400

2500

Cost Analysis (Hexahedral Grid)

Spatial method RDG(P1P1)) RDG(P1P2) RDG(P2P2)

Nr. of quadrature points for
boundary integrals

4 4 9

Nr. of quadrature points for domain
integrals

8 8 27

Reconstruction NO YES NO

Order of spatial accuracy O(h2) O(h3) O(h3)

Storage for the implicit diagonal
matrix per element

400 words 400 words 2500 words

The memory requirement for RDG(P1P2) is much smaller than DG(P2).

Storage Consideration
 Consider the memory requirements for storing only a block

diagonal matrix

D(ndegr2,neqns2,nelem)
ndegr: degrees of freedom
 for the polynomial
neqns: number of unknowns
 variables
nelem: number of elements
Storage requirements for
Implicit DG method are very
demanding, especially
for higher-order methods !!!

Storage for diagonal matrix

Example 1. Convection of an isentropic vortex

Example 1. isentropic vortex convection
Sequences of three successively globally refined meshes

 64x64

16x16 32x32

Solution Accuracy for different RDG methods

Example 2. Subsonic inviscid flow
past a circular cylinder (M=0.38)

Assess the order of accuracy of the reconstructed
discontinuous Galerkin methods.

Entropy production is served as the error
measurement.

Example 2. Subsonic flow past a cylinder

Sequences of three successively globally refined meshes

 64x17 128x33

32x9

Computed density contours

 P1P2(LS)

DG(P1)

Solution Accuracy for different RDG methods

Example 3. Subsonic inviscid flow (M=0.5)
through a channel with a smooth bump

Assess the order of accuracy of the reconstructed
discontinuous Galerkin methods for internal flows

Entropy production is served as the error
measurement.

Example 3. Subsonic flow in a channel
Sequences of three successively globally refined meshes

 528 cells

2,032 cells

127 cells

Computed velocity contours

 P1P2(LS) DG(P1) P1P2(GG)

Solution Accuracy for different RDG methods

Example 4. Subsonic inviscid flow
past an NACA0012 airfoil (M∞=0.63, α=2o)

This test case is designed to assess the accuracy
and robustness of the reconstructed discontinuous
Galerkin methods for inviscid solutions on viscous
type grids.

Example 4. Subsonic Flow past a NACA 0012 airfoil

Nquad = 1,533, ntria=3,469, nbfac=157

Subsonic flow past a NACA0012 Airfoil M∞=0.63,
α=2o

 DG(P1) P1P2(GG) P1P2(LS)

Computed Mach Number Contours

Subsonic flow
 past a NACA0012 airfoil M∞=0.63, α=2o

Comparison of computed pressure coefficient (left) and entropy
production (right) distributions on the surface of airfoil obtained by the

RDG methods

Concluding Remarks

•  A class of RDG(P1P2) methods has been presented
for solving the compressible flow problems.

•  All three RDG methods are able to deliver the
desired third order of accuracy and can significantly
improve the accuracy of the underlying second-order
method.

•  The least-squares RDG provides the best
performance in terms of accuracy, efficiency, and
robustness.

Observation

•  The extension of the RDG(P1P2) method to tetrahedral grids was
unsuccessful.

•  The RDG method suffers from linear instability, similar to RDG(P0P1)
•  Instability occurs even for linear equations and in smooth flows.
•  Reconstruction stencils only involve von Neumann neighborhood,

i.e., adjacent face-neighboring cells

•  To maintain the linear stability
•  Augment stencils in the reconstruction

 → Destroy the compactness of the underlying DGM.
•  Use non-linear stability enforcement to achieve linear stability

 → Limiters in the case of RDG(P0P1) method
 → ENO/WENO reconstructions.

Objective

•  Develop an RDG(P1P2) method based Hermit WENO
reconstruction for solving the Euler equations on tetrahedral grids.

•  enhance the accuracy, and therefore reduce the high
 computational costs of the underlying DG methods

•  avoid the spurious oscillations in the vicinity of strong
 discontinuities, and therefore maintain the non-linear stability,
 and naturally linear stability.

•  Attempt to address the two weakest links of the DG methods.

Hermit WENO Reconstruction
•  On a tetrahedral cell i, a convex combination of the least-squares

reconstructed 2nd order derivatives at the cell itself and its four
face-neighboring cells

	
 	
 	
 wk: weighting function ok : oscillation indicator

 ε → a small positive number
 γ → an integer parameter

k
jik

ki
ji xx

Uw
xx
U

∂∂

∂
=

∂∂

∂
∑
=

25

1

2

∑
=

−

−

+

+
= 5

1
)(

)(

i
i

k
k

o

ow
γ

γ

ε

ε 22
2

])([∫
Ω

Ω
∂∂

∂
=

i

d
xx
Uo k

ji
k

Hermit WENO Reconstruction

•  Central stencil

→ the least-squares reconstructed polynomial at the cell itself

•  Biased stencils

→ the least-squares reconstructed polynomials on its four face-

neighboring cells

Example 1. Convergence Study for
the Quadratic Hermit WENO Reconstruction

•  Access the order of accuracy on tetrahedral grids.
•  A smooth function f(x,y,z)=sin(πx)cos(2πy)sin(3πz)

547 elements
156 points
103 boundary pts

35697 elements
6973 points
1785 boundary pts

4406 elements
990 points
444 boundary pts

286702 elements
52093 points
7094 boundary pts

Solution Accuracy for
the Quadratic Hermit WENO Reconstruction

 L2-error and order of the convergence

Number of cells L2-error Order

547 3.44033E-2 -

4,406 4.24326E-03 3.01

35,697 4.46581E-04 3.23

286,705 4.93515E-05 3.17

The Hermit WENO reconstruction delivers
the designed 3rd order of convergence !!

Example 2. A Subsonic Flow through
a Channel with a Smooth Bump (Ma=0.5, α=0°)

•  Access the order of accuracy of the Hermit WENO RDG(P0P1,
 P1P1, P1P2) method for internal flows.

•  Entropy production is served as the error measurement.

889 cells
254 pts
171 boundary pts

449522 cells
81567 pts
10999 boundary pts

449522 cells
81567 pts
10999 boundary pts

6986 cells
1555 pts
691 boundary pts

Computed Velocity Contours

Obtained by the RDG(P0P1)
on the finest grid

Obtained by the RDG(P1P1)
on the fine grid

Obtained by the RDG(P1P2)
on the fine grid

Solution accuracy for different RDG methods

•  Hermit WENO reconstruction-based RDG(P1P2) method
•  significantly increases the accuracy of the underlying DG

method
•  greatly decreases its computational costs

Example 3. Subsonic Flow past a Sphere (Ma=0.5)

•  Access the order of accuracy of the Hermit WENO RDG(P0P1,
 P1P1, P1P2) method for external flows.

•  Entropy production is served as the error measurement.

535 cells
167 points
124 boundary pts

2426 cells
598 points
322 boundary pts

16467 cells
3425 points
1188 boundary pts

124706 cells
23462 points
4538 boundary pts

Computed Velocity Contours

Obtained by the
RDG(P0P1)
on the finest grid

Obtained by the
RDG(P1P1)
on the fine grid

Obtained by the
RDG(P1P2)
on the fine grid

Efficiency Comparison for Different RDG Methods

Convergence order
versus
number of degree of freedom

Convergence history
versus
CPU time (Second)

Efficiency Comparison for Different RDG Methods

L2 norm versus CPU time

Example 4. Low Mach Number Flow
past a Sphere (Ma=0.01)

Velocity contours
obtained by the
RDG(P0P1)
on the finest grid

Velocity contours
obtained by the
RDG(P1P1)
on the fine grid

Velocity contours
obtained by the
RDG(P1P2)
on the fine grid

•  Access the accuracy for solving low Mach number flow problems.

Comparison of the Computed Velocity Distributions
 on the Surface of the Sphere

Example 5. Transonic Flow past
an ONERA M6 Wing (Ma=0.699, α=3.06°)

•  Access the accuracy and robustness of the RDG(P1P2) method for
transonic flow problems.

41,440 elements
8,325 grid points
2,575 boundary points

coarseness of grids
in the vicinity of
the leading edge

Computed Pressure Contours by RDG(P1P2)

Computed Pressure Coefficient Distributions
Compared with Experimental Data

η=0.20 η=0.44 η=0.65

η=0.80 η=0.90 η=0.95

Example 6. Blasius Boundary Layer Solution

•  Demonstrate that the RDG(P1P2) method is able to obtain the
accurate solution for the viscous flow problems.

•  Flow condition: Ma=0.5, Re=100,000

Grids Used for Computing the Blasius Solution

47,535 elements
9,828 points
3,631 boundary points

Grids in the boundary layer

Comparison of Computed skin friction coefficients
between RDG(P1P2) and RDG(P1P1)

Concluding Remarks

•  An RDG(P1P2) method based on a Hermit WENO reconstruction,
designed not only to enhance the underlying DG method but also
to maintain non-linear stability, has been presented for solving the
compressible Euler equations on tetrahedral grids.

•  This RDG(P1P2) method is able to deliver the designed 3rd order of
accuracy, and outperforms the second-order finite volume method
RDG(P0P1) by orders of magnitudes to achieve the same accuracy.

•  This RDG(P1P2) has also successfully been extended to problems
with strong discontinuities using a hierarchical reconstruction and
viscous flows, which will be discussed next.

Background

•  Objective: Develop a RDG method based on a hierarchical WENO

reconstruction: HWENO(P1P2), for compressible flows with strong
discontinuities on hybrid grids.
•  enhance the accuracy, and therefore reduce the high computational

costs of the underlying DG methods
•  avoid the spurious oscillations in the vicinity of strong

discontinuities, and therefore maintain the non-linear stability, and
naturally linear stability.

•  Attempt to address the two weakest links of the DG methods.

WENO reconstruction at P2: WENO(P1P2)

•  Objective:
― Reconstruct a quadratic polynomial solution (P2) from the

underlying discontinuous linear polynomial DG polynomial
solution (P1) based on a WENO reconstruction.

2-exactness Least-squares Reconstruction

•  From a linear polynomial DG solution in any cell i

•  Reconstruct a quadratic polynomial solution UR

•  10 degrees of freedom

432
~ BB+B+= ziiii UUUUU yix +

1098

765

432
~

B+B+B+

B+B+B+

B+B+B+=

R
yzi

R
xzi

R
xyi

R
zzi

R
yyi

R
xxi

R
zi

R
yi

R
xi

R
i

R
i

UUU

UUU

UUUUU

Requirements for Reconstruction

•  Conservation

•  Compactness

•  Maintain the compactness of the underlying DG method

•  Necessary for unstructured arbitrary grids

•  Stencils involve only Von Neumann neighborhood (adjacent
face-neighboring cells)

Least-squares Reconstruction (P1P2)

•  Requiring conservation and reconstructed first derivatives equal to
the ones of the underlying DG solution leads

 due to the judicious choice of Taylor-basis in the DG formulation

•  Six second derivatives only need to be reconstructed

zi
R
ziyi

R
yixi

R
xii

R
i = UUUUUUUU === , , , ~~

Least-squares Reconstruction (P1P2)

i

R
yzi

i

R
xzi

i

R
zzi

i
zij

i

R
yzi

i

R
xyi

i

R
yyi

i
yij

i

R
xzi

i

R
xyi

i

R
xxi

i
xij

R
yzi

R
xzi

R
xyi

R
zzi

R
yyi

R
xxi

ziyixiij

z
B+

z
B+

z
B+

z
|

z

y
B+

y
B+

y
B+

y
|

y

x
B+

x
B+

x
B+

x
|

x

B+B+B+B+B+B+

B+B+B+=

ΔΔΔΔ
=

∂

∂

ΔΔΔΔ
=

∂

∂

ΔΔΔΔ
=

∂

∂

324

423

432

1098765

432

1

1

1

~

UUUUU

UUUUU

UUUUU
UUUUUU

UUUUU

For a face-neighboring cell j:

Least-squares Reconstruction (P1P2)

•  Similar equations can be written for all face-neighboring cells,
which leads to a non-square matrix.

•  The size of resulting non-square matrix is (4xnface)×6, where
nface is the number of face-neighboring cells.
•  nface=4 for a tetrahedral cell
•  nface=5 for a prismatic or pyramidal cell
•  nface=6 for a hexhedral cell

•  This over-determined linear system of (4xnface) equations for 6
unknowns can be solved in the least-squares sense.

Least-squares Reconstruction (P1P2)

•  Simple and straightforward

•  The boundary conditions are used to obtain the reconstructed
equations for the boundary cells, thus ensuring existence of an
over-determined system.

Instability Issues of RDG Method in 3D

•  The RDG method suffers from linear instability, similar to
RDG(P0P1)
•  Instability occurs even for linear equations and in smooth

flows.
•  Reconstruction stencils only involve von Neumann

neighborhood, i.e., adjacent face-neighboring cells

•  To maintain the linear stability
•  Augment stencils in the reconstruction

 → Destroy the compactness of the underlying DGM.
•  Use non-linear stability enforcement to achieve linear stability

 → Limiters in the case of RDG(P0P1) method
 → ENO/WENO reconstructions.

Hermite WENO Reconstruction
•  On a tetrahedral cell i, a convex combination of the least-squares

reconstructed 2nd order derivatives at the cell itself (k=0) and its
face-neighboring cells (k=1,…,nface)

	
 	
 	
 wk: weighting function ok : oscillation indicator

 ε → a small positive number
 γ → an integer parameter

k
ji

nface

k
ki

ji xx
Uw

xx
U

∂∂

∂
=

∂∂

∂
∑
=

2

0

2

∑
=

−

−

+

+
= nface

i
i

k
k

o

ow

0
)(

)(
γ

γ

ε

ε 22
2

])([∫
Ω

Ω
∂∂

∂
=

i

d
xx
Uo k

ji
k

Hermite WENO Reconstruction

•  Central stencil

→ the least-squares reconstructed polynomial at the cell itself

•  Biased stencils

→ the least-squares reconstructed polynomials on its face-

neighboring cells

WENO reconstruction at P1 : HWENO(P1P2)

•  Observation:
 Although the WENO(P1P2) method does not introduce any
new oscillatory behavior for the reconstructed curvature terms
(second derivatives) due to the WENO reconstruction, it
cannot remove inherent oscillations in the underlying DG(P1)
solutions, leading to non-linear instability.

•  Objective:

 Reconstruct and modify the linear part (first derivatives) of
the resulting quadratic polynomial solution (P2) in order to
ensure non-linear instability for flows with strong
discontinuities using WENO reconstruction.

WENO reconstruction at P1 : HWENO(P1P2)

•  The following nface stencils (i,j1), (i,j2), …, and (i,j_nface) are
chosen to construct a Hermite polynomial such that

i

R
yzi

i

R
xzi

i

R
zzi

i

R
zij

i

R
yzi

i

R
xyi

i

R
yyi

i

R
yij

i

R
xzi

i

R
xyi

i

R
xxi

i

R
xij

z
B+

z
B+

z
B+

z
|

z

y
B+

y
B+

y
B+

y
|

y

x
B+

x
B+

x
B+

x
|

x

ΔΔΔΔ
=

∂

∂

ΔΔΔΔ
=

∂

∂

ΔΔΔΔ
=

∂

∂

324

423

432

1

1

1

UUUUU

UUUUU

UUUUU

Hermite WENO Reconstruction
•  On a cell i, a convex combination of these nface (k=1,2,…,nface)

reconstructed 1st derivatives and the first derivatives at the cell
itself (k=0) is used to modify the first derivatives

	
 	
 	
 wk: weighting function ok : oscillation indicator

 ε → a small positive number
 γ → an integer parameter

k
i

nface

k
ki

i x
Uw

x
U

∂

∂
=

∂

∂
∑
=0

∑
=

−

−

+

+
= nface

i
i

k
k

o

ow

0
)(

)(
γ

γ

ε

ε 2/12])([∫
Ω

Ω
∂

∂
=

i

d
x
Uo k
i

k

Hermite WENO Reconstruction

•  Central stencil

→ the gradient from the DG solution itself at cell itself

•  Biased stencils

→ the eight reconstructed gradients

Numerical Examples

Numerical examples are presented to demonstrate

•  Accuracy
•  Robustness
•  Essentially oscillation-free property

of the RDG method

Example 1. Convection of a Gaussian and a square wave

 The superior dissipation and dispersion property of DG !

This simple test case is chosen to demonstrate the accuracy
of the RDG method.

 Convection of a Gaussian and a square wave

Note the high accuracy and oscillation-free of the RDG !

 Example 2

Water/vapor flow in a convergent-
divergent nozzle

Stiffened EOS is used.

This example is chosen to demonstrate

the robustness of the RDG method.

 Water flow in a convergent-divergent nozzle

 Vapor flow in a convergent-divergent nozzle

No single parameter is changed !!!
No time-derivative preconditioner is required !!!

Example 3. Woodward-Collela blast wave problem

This example is chosen to demonstrate the essentially non-
oscillatory property of the RDG method.

 Example 4. A Subsonic Flow past a Sphere (M∞=0.5)

•  Access the order of accuracy of the RDG(P1P1), WENO(P1P2) and
HWENO(P1P2) methods for external flows.

•  Entropy production is served as the error measurement.

535 cells
167 points
124 boundary pts

16467 cells
3425 points
1188 boundary pts

62426 cells
598 points
322 boundary pts

Computed Velocity Contours by HWENO(P1P2)

 Coarse Grid Medium Grid Fine Grids

Convergence Study for different RDG methods

 L2-error and order of convergence for the RDG(P1P1),
WENO(P1P2), and HWENO(P1P2) methods

Both WENO(P1P2) and HWENO(P1P2) deliver
the designed 3rd order of convergence !!

RDG(P1P1) WENO(P1P2) HWENO(P1P2)

Length
scale

L2-error Order L2-error Order L2-error Order

7.760E-2 1.783E-2 1.052E-2 1.117E-2

4.688E-2 5.010E-3 2.519 1.317E-3 4.124 1.503E-3 3.980

2.476E-2 1.232E-3 2.198 1.978E-4 2.964 2.201E-4 3.009

Example 5. Transonic Flow past
an ONERA M6 Wing (M∞=0.84, α=3.06°)

•  Access the accuracy and non-oscillatory property of the
HWENO(P1P2) method for flows with discontinuities.

 Computed Pressure Contours
 WENO(P0P1) HWENO(P1P2)
 nelem = 593,169 nelem = 95,266
 npoin = 110,282 npoin = 18,806
 nboun = 19,887 nboun = 5,287

Computed Pressure Coefficient and Entropy Production
Distributions at different spanwise locations

η=0.20

Computed Pressure Coefficient and Entropy Production
Distributions at different spanwise locations

η=0.90

Example 6. Transonic Flow past past a Wing/Pylon/Finned-Store
Configuration (M∞=0.95, α=0°)

•  Access the accuracy and non-oscillatory property of the
HWENO(P1P2) method for flows with strong discontinuities.

Computed Pressure Contours
 (nelem=319,134, npoin=61,075, nboun=14,373)

Computed Pressure Coefficient Distributions at different
spanwise locations

η=0.4077 η=0.51

Example 7. An air blast wave past a wall

This example is presented to demonstrate that the RDG method can be used for
solving problems of practical interests for engineering-type configurations.

 Example 8. Transonic flow past a B747 configuration

•  Demonstrate that the HWENO(P1P2) method can be used for
computing complicated flows of practical interest.

•  Flow condition: M∞=0.85, α=2°

 (nelem = 253,577, npoin = 48,851, nboun = 11,802)
Computed Mach Number Contours

Concluding Remarks

•  A reconstructed discontinuous Galerkin method based on a
Hierarchical WENO reconstruction, HWENO(P1P2) has been
developed for computing shock waves on hybrid grids.

•  The HWENO(P1P2) method is able to provide sharp resolution
of shock waves essentially without over- and under-shoots for
discontinuities and achieve the designed third-order of accuracy
for smooth flows.

•  RDG methods have the potential to provide a superior
alternative to the traditional FV methods, and to become a main
choice for the next generation of CFD codes.

Thank you !

DG Methods for Elliptical Problems

•  The main advantages of DGMs in dealing with hyperbolic
equations do not come into play when considering purely
elliptic problems.

•  However, using greater flexibility of DGMs which is
attained by not requiring continuity in inter-element
boundaries may prove advantageous.

•  The potential of DGMs in the context of the Navier-Stokes
equations is still worth exploring.

DG Method for Elliptical Problems

•  Interior Penalty (IP) methods
•  Local Discontinuous Galerkin (LDG) methods
•  Bassi-Rebay Methods
•  Recovery Methods

•  J. Douglas, Jr. and T. Dupont, Interior penalty procedures for elliptic and
parabolic Galerkin Method, Lectures Notes in Physics 58, Springer Verlag,
Berlin, 1976.

•  D. N. Arnold, An interior penalty finite element method with discontinuous
element, SIAM J Numer. Anal. Vol. 19, pp. 742-760, 1982.

•  B. Cockburn and C. W. Shu, The local discontinuous Galerkin method for
time-dependent convection diffusion problems, SIAM J Numer Anal., Vol. 35,
pp. 2440-2463, 1998.

•  F. Bassi and S. Rebay, High-order accurate discontinuous finite element
method for the numerical solution of the compressible Navier-Stokes
equations, J Comp Phys , Vol. 131, pp. 267-279, 1997.

•  B. van Leer and M. Lo, A Discontinuous Galerkin Method for Diffusion
Based on Recovery, AIAA-2007-4083, 2007.

DG Methods for Elliptical Problems

•  Consider 1-D scalar Poisson‘s equation using DG(P1)

•  The DG formulation leads

•  The value of at the interface is not unique and
need to be defined.

f
dx
ud
=− 2

2

∑ ∫∑ ∫
∈Ω Ω∈Ω Ω

∈∀=
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+−

∈

+

−
hi ihi i

i

i T

p
hhh

T

hh
x

xh
h

p
hh

Vvdxfvdx
dx
dv

dx
duv

dx
du

Vu

assuch Find

2
1

2
1

dx
duh

DG Methods for Elliptical Problems

•  A natural choice is to use central flux, as no upwind
mechanism is provided.

•  The DG formulation becomes

•  The problem: Scheme is not consistent !!!

∑ ∫∑ ∫
∈Ω Ω∈Ω Ω

∈∀=
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
++−

∈

+

−
hi ihi i

i

i T

p
hhh

T

hh
x

xh

R
h

L
h

p
hh

Vvdxfvdx
dx
dv

dx
duv

dx
du

dx
du

Vu

)(
2
1

assuch Find

2
1

2
1

)(
2
1

2
1

2
1

2
1

R

i

L

ii
x

h
x

h
x

h

dx
du

dx
du

dx
du

−−−

+=

Inconsistency

•  Examine Laplace’s equation with homogeneous Dirichlet
BCs.

•  The exact solution is u(x) = 0.

•  = 0 everywhere, discrete equations satisfied
exactly regardless of magnitude of uh

0

b][a,on 02

2

==

=−

u(b)u(a)
dx
ud

0=
dx
duh

First order system approach

•  Background: A central flux leads to an unstable scheme.
•  Why? It does not take into account the fact that a DG

solution is discontinuous at the cell interfaces.
•  How to solve this issue ? Transform the second order

equation into a first-order system of equations, as DG is
naturally suitable for the first-order system of equations

•  Consider the following Laplace’s equation

•  This equation can be rewritten as a a first-order system of

equations by introducing an auxiliary vector variable q,

 fu =Δ−

 0 =∇

=•∇−

u-
f

q
q

First order system approach

•  Application of the DG formulation leads

p
hhhhhhhh

p
hhhhhhh

p
h

p
hhh

dudud

Vvdxfvdvdv

Vu

iii

ii i

Wwnwwwq

nqq

Wq

∈∀=Γ•−Ω•∇+Ω•

∈∀=Γ•−Ω∇•

∈

∫∫∫

∫∫ ∫

ΓΩΩ

ΩΩ Γ

 0

assuch x),(Find

p
hh

j
hhhhhh dudud

ijii

Wwnwwwq ∈∀=Γ•−Ω•∇+Ω• ∑ ∫∫∫
ΓΩΩ

 0

First-order system approach

•  Need to choose uh at the interface
•  No upwind mechanism -> Choose central flux,

 [][]
ijiiji

jiij

hhhhh

hhh

uuuuu

uuu

ΓΩ∂Ω∂Ω∂Ω∂

Ω∂Ω∂Γ

+=−+=

+=

2
1)(

2
1

)(
2
1

p
hh

j
hhhhhh dudud

ijii

Wwnwwwq ∈∀=Γ•−Ω•∇+Ω• ∑ ∫∫∫
ΓΩΩ

 0

[][] p
hh

j j
hhhh

hhhh

dudu

dud

ij

ij

ij

i

ii

Wwnwnw

wwq

∈∀=Γ•−Γ•−

Ω•∇+Ω•

∑ ∑ ∫∫

∫∫

Γ
Γ

Γ

Ω∂

ΩΩ

 0
2
1

Jump operator

First-order system approach

•  Define a global lifting operator δ as

[][] p
hh

j
hhh dud

ij

ij

i

Wwnwwδ ∈∀=Γ•+Ω• ∑ ∫∫
Γ

Γ
Ω

 0
2
1

[][] p
hh

j j
hhhh

hhhh

dudu

dud

ij

ij

ij

i

ii

Wwnwnw

wwq

∈∀=Γ•−Γ•−

Ω•∇+Ω•

∑ ∑ ∫∫

∫∫

Γ
Γ

Γ

Ω∂

ΩΩ

 0
2
1

 δq −∇= hh u

Bassi-Rebay 1

•  Compute the lift-operator:

•  The primal form is then given by

[][] p
hh

j
hhh

p
h

dud
ij

ij

i

Wwnwwδ

Wδ

∈∀=Γ•+Ω•

∈

∑ ∫∫
Γ

Γ
Ω

 0
2
1

assuch Find

∫∫ ∑ ∫
ΩΩ Γ

∈∀=Γ•−∇−Ω∇•−∇
ii ij

p
hhh

j
hhhh Vvdxfvdvudvu)()(nδδ

∫∫ ∑ ∫
ΩΩ Γ

∈∀=Γ•−∇−Ω∇•−∇
ii ij

p
hhh

j
hhhh Vvdxfvdvudvu)()(nδδ

Average operator

Bassi-Rebay 1

•  Unstable for pure elliptic problems

•  Stencil no longer compact

Bassi-Rebay 2

•  Define a local lift operator δl for each interface or
boundary face as

•  The local lift operator δl is one interface (and boundary)
contributions to the global lift operator δ.

•  Replace the global lift operator in the interface integral by
the local lift operator.

[][] p
hhhhhl

p
hl

dud
ij

ij

i

Wwnwwδ

Wδ

∈∀=Γ•+Ω•

∈

∫∫
Γ

Γ
Ω

 0
2
1

assuch Find

Bassi-Rebay 2

•  The DG formulation in primal form becomes

•  Compact !!!

•  Stability can be established (proven) if a stabilization
parameter η (>3) is used in the local lift operator.

∫∫ ∑ ∫
ΩΩ Γ

∈∀=Γ•−∇−Ω∇•−∇
ii ij

p
hhh

j
hlhhh Vvdxfvdvudvu)()(nδδ

[][] p
hhhhhl

p
hl

dud
ij

ij

i

Wwnwwδ

Wδ

∈∀=Γ•+Ω•

∈

∫∫
Γ

Γ
Ω

 0
2
1

assuch Find

η

 Recovery-based DG for Diffusion

•  Idea: Obtain a continuous polynomial solution on the
union of two cells that shares an interface, where the
diffusive fluxes need to be defined.

•  How ? The smooth solution is locally recovered, that is

indistinguishable from the discontinuous discrete solution
in the weak sense. (can be thought as a weak
interpolation.)

 Recovery-based DG for Diffusion

•  Recovery in 1D, P=2. Shown are from left to right, the original quartic
initial values U (dashed), the piecewise linear discretization u (bold)
together with U, and the cubic recovered distribution f (thin) together
with u and U, on the adjacent intervals (-1,0), and (0,1). All three
distributions yield the same value when taking their inner product with
either test function on either interval, making them indistinguishable in
the weak sense.

 Recovery-based DG for Diffusion

•  Following are the formulas for recovering the smooth
solution uij from two discontinuous solution ui and uj on
the union of neighboring cells Ωi and Ωj :

 where Bi and Bj are the basis functions for cell I and j respectively, and
N is the dimension of DG space.

N1,...,k ,

N1,...,k ,

=Ω=Ω

=Ω=Ω

∫∫

∫∫

ΩΩ

ΩΩ

dBudBu

dBudBu

j
kj

j
kij

i
ki

i
kij

jj

ii

 Recovery-based DG for Diffusion

•  How to construct the basis Bij defined on ΩiUΩj is trivial
in 1D. (although extremely challenging in 2D/3D).

Objective
•  Development of high accurate 3rd order temporal

discretization methods for RDG methods for unsteady flow
simulations.
•  to reduce the temporal discretization error,
•  for LES and DNS applications.

•  A class of implicit RK schemes – ESDIRK: Explicit first

stage, Single Diagonal coefficient, diagonally Implicit
Runge-Kutta
•  Allow variable time-step size.
•  Can be constructed to be A- and L-stable for arbitrary order in time.
•  Found to be more efficient in terms of computational cost for a given

accuracy level as compared to the lower-order implicit schemes.

Time Integration

)U(RUM =
dt
d

Semi-discrete system of nonlinear equations:

M: Mass matrix

U: Global vector of unknown conservative variables

R: Residual vector

Time integration schemes: explicit method

•  Explicit three-stage third-order TVD Runge-Kutta Scheme:

 U(1) = Un + Δt M-1 R(Un)
 U(2) = 3/4Un + 1/4[U(1) + Δt M-1 R(U(1))]
 Un+1 = 1/3Un + 2/3[U(2) + ΔtM-1R(U(2))]
 This method is linearly stable for a Courant number less

than or equal to 1/(2p+1).

 TVDRK scheme is not efficient, when the maximum

allowable time step imposed by an explicit stability
requirement is much smaller than that imposed by the
acceptable level of time accuracy.

Time integration schemes: implicit method

•  The m-stage ESDIRK scheme:

 where asj are the Butcher coefficient of the scheme. The Butcher table for the 3rd-
 order ESDIRK3 scheme (m=4) is listed below (the values are given in Appendix):

(i) U(1) =Un

(ii) For s = 2,... , m

U(s) =Un +Δt asjM
−1R(U(j))

j=1

s

∑

(iii) Un+1 =U(m)

c1=0 a11 (=0) 0 0 0

c2 a21 a22=a44 0 0
c3 a31 a32 a33=a44 0
c4=1 a41=b1 a42=b2 a43=b3 a44

Un+1 b1 b2 b3 b4

The m-stage ESDIRK scheme
•  The first stage is explicit since a11=0.
•  A system of non-linear equation is solved at each individual

stage since the set of asj has the form of a lower triangular
matrix.

•  The solution at the last stage is the solution at the next time
step, and cs represents the point in the time interval [t, t
+Δt], and satisfies

•  Note that ESDIRK2 (m=2) is nothing but the 2nd-order
Crank-Nicholson scheme (CN2).

145

cs = asj
j=1

s

∑ s =1, 2, 3, ..., 4

Clearly, how to devise an efficient method
for the solution of the non-linear system of the equations

is crucial to the success of the ESDIRK scheme.

References

•  Xia, Y., Luo, H., Frisbey, M., and Nourgaliev, R., A Set of Parallel, Implicit

Methods for a Reconstructed Discontinuous Galerkin Method for the
Compressible Flows on 3D Arbitrary Grids, Computers & Fluids., 2014,
http://dx.doi.org/10.10.16/j.compfluid.2014.01.023

•  Xia, Y., Luo, H., and Nourgaliev, R., An implicit Hermite WENO reconstruction-
based discontinuous Galerkin method on tetrahedral grids, Computers &
Fluids., 2014, http://dx.doi.org/10.1016/j.compfluid.2014.02.027.

•  Xia Y, Luo, H., and Nourgaliev, R. An Implicit Reconstructed Discontinuous
Galerkin Method Based on Automatic Differentiation for the Navier-Stokes
Equations on Tetrahedron Grids, AIAA-2013-0687, 51st AIAA Aerospace
Sciences Meeting, Grapevine, Texas, Jan. 7-10, 2013.

•  Luo, H., Segawa, H., and Visbal, M.R., An Implicit Discontinuous Galerkin
Method for the Unsteady Compressible Navier-Stokes Equations, Computers &
Fluids, Vol. 53, pp. 133-144, 2012.

Computational Results

•  Numerical Examples
•  1. Inviscid shedding flow past a triangular wedge
•  2. Kármán vortex street at Re = 200
•  3. Viscous flow past an SD7003 airfoil
•  4. Implicit large eddy simulation of a lid driven cavity

•  Default parameters for solving the pseudo-time system
•  Linear solver: LU-SGS preconditioned GMRES algorithm
•  The pseudo time-step term is off, which is equivalent to solving a quasi-

Newton system at each implicit Runge-Kutta stage
•  The relative residual tolerance is 1.0×10-4.
•  The maximum iteration number is 5.

•  Compilation and runtime toolkit
•  METIS for domain partitioning
•  PGI Fortran compiler + OpenMPI

Example 1. Inviscid shedding flow past a triangular wedge

•  Objective: illustrate the importance of the temporal discretization schemes
on the accuracy of the numerical solutions

•  Grid: 13, 250 hexahedral elements, 27, 026 grid point, and 27, 026
quadrilateral faces

•  Initial condition: we use intermediate solution (M∞ = 0.5, α=0°) obtained
by DG(P0) as IC for the unsteady shedding flow

Global view of the grid Local view of the grid

Density contour by P0 solution Mach number contour by P0 solution

Example 1. Inviscid shedding flow past a triangular wedge

•  Comparison of computed density contours at t = 400 (M∞ = 0.5, α=0°)
•  With a fixed time-step size of dt = 0.05

•  With a fixed time-step size of dt = 0.10

BDF1 + RDG(P1P2) IRK2 +RDG(P1P2) IRK3+RDG(P1P2) IRK3+DG(P1)

BDF1 + RDG(P1P2) IRK2 + RDG(P1P2) IRK3 + RDG(P1P2) IRK3 + DG(P1)

Reference solution: explicit 3-stage RK + RDG(P1P2) with a fixed dt = 0.0004

Example 1. Inviscid shedding flow past a triangular wedge

•  Animations (up to solution time t = 400)
•  With a fixed time-step size of dt = 0.10

BDF1 + RDG(P1P2) IRK3+DG(P1)

IRK2 + RDG(P1P2) IRK3+RDG(P1P2)

Example 1. Inviscid shedding flow past a triangular wedge

•  Comparison of the CPU time (evaluated by running on 64
cores) between the explicit and implicit methods.

•  Performance of the LU-SGS preconditioned GMRES solver

•  In average, a drop of 4 orders of magnitude for the
unsteady residual can be achieved within 5 inner iterations
at each implicit RK stage

For solution at t = 40 Time-step size Time steps CPU time (sec)

IRK2 + RDG(P1P2) dt = 0.05 800 1,770

IRK3 + RDG(P1P2) dt = 0.05 800 5,182

IRK2 + RDG(P1P2) dt = 0.10 400 1,008

IRK3 + RDG(P1P2) dt = 0.10 400 2,825

Explicit RK3 + RDG(P1P2) dt = 0.0004 800,000 13,498

The IRK3+RDG(P1P2) method provides accurate solutions in space and time
and requires much less CPU time compared with its explicit counterpart!

Example 2. Kármán vortex street at Re = 200

•  Grid: 10,204 hexahedral elements, 20,800 grid points, and 20,800
boundary faces. The normal grid spacing near the cylinder surface is 0.001
(normalized by the cylinder diameter)

•  Boundary condition: no-slip, adiabatic condition on cylinder surface,
symmetry condition on spanwise wall, characteristic condition at far-field.

•  Initial condition: we use steady-state solution (M∞ = 0.2, α=3°, Re = 50)
obtained by DG(P0) as IC for the vortex shedding

Grid: global view Grid: local View Mach Number Entropy
You can find the grid and report at the NASA website
http://www.grc.nasa.gov/WWW/Acoustics/code/adpac/sample/CYLINDER_VORTEX_SHEDDING/

Example 2. Kármán vortex street at Re = 200

•  Comparison of the computed instantaneous Mach number and entropy
contours (M∞ = 0.2, α = 0°, Re = 200)

•  Animations (up to solution time t = 40)
IRK2+RDG(P1P2), dt=0.05 IRK3+RDG(P1P2), dt=0.05 IRK3+RDG(P1P2), dt=0.5

Example 2. Kármán vortex street at Re = 200

•  Time histories of lift and drag coefficients (Strouhal number = 1.923)

-1
-0.9
-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 100 200 300 400 500

Li
ft

Co
ef

fic
ie

nt

Time

Total
Pressure Contribution
Viscous Contribution

-1
-0.9
-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 100 200 300 400 500
Li

ft
Co

ef
fic

ie
nt

Time

Total
Pressure Contribution
Viscous Contribution

-1
-0.9
-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 100 200 300 400 500

Li
ft

Co
ef

fic
ie

nt

Time

Total
Pressure Contribution
Viscous Contribution

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1
 1.2
 1.3
 1.4
 1.5

 0 100 200 300 400 500

D
ra

g
Co

ef
fic

ie
nt

Time

Total
Pressure Contribution
Viscous Contribution

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1
 1.2
 1.3
 1.4
 1.5

 0 100 200 300 400 500

D
ra

g
Co

ef
fic

ie
nt

Time

Total
Pressure Contribution
Viscous Contribution

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1
 1.2
 1.3
 1.4
 1.5

 0 100 200 300 400 500

D
ra

g
Co

ef
fic

ie
nt

Time

Total
Pressure Contribution
Viscous Contribution

IRK2+RDG(P1P2), dt=0.05 IRK3+RDG(P1P2), dt=0.05 IRK3+RDG(P1P2), dt=0.5

Agree well with the results in the referred literature!

Example 2. Kármán vortex street at Re = 200

•  Comparison of the CPU time (evaluated by running on 128
cores) between the explicit and implicit methods.

•  Performance of the LU-SGS preconditioned GMRES solver

•  In average, a drop of 4 orders of magnitude for the unsteady residual
can be achieved within 5 inner iterations at each implicit RK stage

For solution at t = 40 Time-step size Time steps CPU time (sec)

IRK2 + RDG(P1P2) dt = 0.05 10,000 1,603

IRK3 + RDG(P1P2) dt = 0.05 10,000 5,524

IRK3 + RDG(P1P2) dt = 0.50 1,000 1,047

Explicit RK3 + RDG(P1P2) dt = 0.00005 10,000,000 Estimated 77,960

§  The IRK’s can greatly accelerate the solution over its explicit counterpart,
while rendering accurate solution in time and space for viscous flows.

§  The IRK3 enables the use of much larger time-step size and thus can improve
the overall efficiency.

Example 3. Viscous flow past an SD7003 airfoil

•  Grid: 50,781 prismatic elements, 52,176 grid points, 101,562 triangular
boundary faces, and 279 quadrilateral boundary faces.

•  Boundary condition: no-slip, adiabatic condition on the airfoil surface,
symmetry condition on spanwise wall, characteristic condition on far-field.

•  Initial condition: uniform flow (M∞ = 0.1, α=4°, Re = 10,000) in the field.

Airfoil: global view Airfoil: leading edge

Airfoil: trailing edge

Example 3. Viscous flow past an SD7003 airfoil

•  Comparison of the computed instantaneous pressure number contours

•  Comparison of the computed vorticity contours

By the compact method* By IRK3+RDG(P1P2), dt = 0.01

 By the compact method* By IRK3+RDG(P1P2), dt = 0.01

* Raymond E Gordnier and Miguel R Visbal. Compact Difference Scheme Applied to Simulation of Low-Sweep
Delta Wing Flow. AIAA journal, 43(8):1744–1752, 2005.

Example 3. Viscous flow past an SD7003 airfoil

•  Local details of the computed instantaneous solution by
IRK3+RDG(P1P2)

•  Animations (up to solution time t = 100 with dt = 0.01 and 1 sec / frame)

Pressure contours near the upper surface Velocity vectors near the trailing edge

 Entropy contours vorticity Magnitude contiurs

Example 3. Viscous flow past an SD7003 airfoil

•  Comparison of the CPU time (evaluated by running on 256 cores)
between the explicit and implicit methods.

•  Performance of the LU-SGS preconditioned GMRES solver
•  In average, a drop of 4 orders of magnitude for the unsteady residual

can be achieved within 5 inner iterations at each implicit RK stage

For solution at t = 100 Time-step size Time steps CPU time (sec)

IRK3 + RDG(P1P2) dt = 0.01 10,000 83,178

Explicit RK3 + RDG(P1P2) dt = 0.00001 10,000,000 Estimated 1,669,400

A speedup factor of more than 200 by IRK3 over its explicit counterpart !

Indeed, the relative tol. = 10-4 is a overkill in running these problems.
If we use relative tol. = 10-2, even higher speedup may be achieved.

Example 4. Implicit LES of a lid driven cavity

•  Implicit LES
•  Without the use of an explicit sub-grid scale model.

•  Why DG methods?
•  The DG methods only dissipate the scales that the model is not able to

capture correctly, thus acting like a sub-grid scale model.
•  Why RDG methods?

•  DG methods like P2, P3, and P4 have shown the ability of helping
improve the solution accuracy in a few benchmark DNS and LES
problems. Yet they are expensive in terms of computing time and
storage requirement.

•  Assess the RDG methods like P1P2 and even P2P3 for computing
large-scale.

•  Why 3D lid driven cavity?
•  The 3D lid driven cavity presents complex physical phenomena, though

the geometry is simple. Therefore it is an adequate example to assess
the performance of the implicit LES with the developed methods.

Example 4. Implicit LES of a lid driven cavity

•  Problem description
•  Domain: x = [0, 1], y = [0, 1], and z = [-0.25, 0.25] (x: y: z = 1: 1: 0.5).
•  Top lid velocity vb = (0.2, 0, 0), Re = 10,000.
•  No-slip, adiabatic conditions for the rest of boundary walls.
•  Grid: 64x64x32 grid points; hmin = 0.005 in x-y plane (y+ = 3.535); uniform

grid distribution in spanwise z-direction.

The 64x64x32 grid Instantaneous Mach No. iso-surface Animated Mach No. iso-
surface

Example 4. Implicit LES of a lid driven cavity

•  Problem setup
•  Step 1. Run 5000 time steps with BDF1+DG(P1) and CFL = 500 from zero-

velocity field, so that the flow filed reaches a cyclically oscillating status.
•  Step 2. Restart the computation with a fixed time-step size of dt = 0.1, and use

a desired method as shown below. The width of window for time averaging is
30 second per frame (every 300 steps).

Density residual vs. time steps (fixed dt = 0.1) Total energy residual vs. time steps (fixed dt = 0.1)

-8

-7

-6

-5

-4

-3

-2

-1

 5000 10000 15000 20000 25000 30000 35000

Re
sid

ua
l o

f d
en

sit
y

Time iterations

BDF1+P1P2
IRK2+P1P2
IRK3+P1P2
IRK2+P1

-8

-7

-6

-5

-4

-3

-2

-1

 5000 10000 15000 20000 25000 30000 35000

Re
sid

ua
l o

f t
ot

al
 e

ne
rg

y

Time iterations

BDF1+P1P2
IRK2+P1P2
IRK3+P1P2
IRK2+P1

Example 4. Implicit LES of a lid driven cavity

•  Mean velocities
•  Exp. (Prasad&Koseff,1989)
•  LES (Zang et al., 1993)
•  BDF1+RDG(P1P2)
•  IRK2+RDG(P1P2)
•  IRK3+RDG(P1P2)
•  IRK2+DG(P1)

Profiles along the x and y centerlines on spanwise mid-plane (z = 0)

•  RDG(P1P2) match
all well.

•  DG(P1) is a little off
near bottom region. -1

-0.5

 0

 0.5

 1

-1 -0.5 0 0.5 1
 0

 0.2

 0.4

 0.6

 0.8

 1
 0 0.2 0.4 0.6 0.8 1

<
v
>

/u
B

y
-c

o
o
rd

in
at

e

<u>/uB

x-coordinate

Exp. (1989)
LES (1993)

BDF1+P1P2
IRK2+P1P2
IRK3+P1P2
IRK2+P1

Example 4. Implicit LES of a lid driven cavity

•  RMS velocities
•  Exp. (Prasad&Koseff,1989)
•  LES (Zang et al., 1993)
•  BDF1+RDG(P1P2)
•  IRK2+RDG(P1P2)
•  IRK3+RDG(P1P2)
•  IRK2+DG(P1)

Profiles along the x and y centerlines on spanwise mid-plane (z = 0)

•  DG(P1) is not accurate
enough.

•  RDG(P1P2) matches
exp. data well!

•  IRK’s are slightly
better than BDF1.

•  IRK3 is close to IRK2.
-1

-0.5

 0

 0.5

 1

-1 -0.5 0 0.5 1
 0

 0.2

 0.4

 0.6

 0.8

 1
 0 0.2 0.4 0.6 0.8 1

1
0
<

v
’v

’>
1
/2

/u
B

y
-c

o
o
rd

in
at

e

10<u’u’>
1/2

/uB

x-coordinate

Exp. (1989)
LES (1993)

BDF1+P1P2
IRK2+P1P2
IRK3+P1P2
IRK2+P1

Example 4. Implicit LES of a lid driven cavity

•  Reynolds stress tensor component <u’v’>
•  Exp. (Prasad&Koseff,1989)
•  LES (Zang et al., 1993)
•  BDF1+RDG(P1P2)
•  IRK2+RDG(P1P2)
•  IRK3+RDG(P1P2)
•  IRK2+DG(P1)

Profiles along the x and y centerlines on spanwise mid-plane (z = 0)

•  DG(P1) is far from
good in lower region.

•  RDG(P1P2) matches
exp. data well!

•  IRK’s are better than
BDF1 in some regions.

•  IRK3 is close to IRK2. -1

-0.5

 0

 0.5

 1

-1 -0.5 0 0.5 1
 0

 0.2

 0.4

 0.6

 0.8

 1
 0 0.2 0.4 0.6 0.8 1

5
0
0
<

u
’v

’>
/u

B
2

y
-c

o
o
rd

in
at

e

500<u’v’>/uB
2

x-coordinate

Exp. (1989)
LES (1993)

BDF1+P1P2
IRK2+P1P2
IRK3+P1P2
IRK2+P1

Example 4. Implicit LES of a lid driven cavity

•  Comparison of the CPU time (evaluated by running on 256 cores) between
the explicit and implicit methods.

•  LU-SGS preconditioned GMRES solver

•  In average, a drop of 4 orders of magnitude for the unsteady residual
can be achieved within 5 inner iterations at each implicit RK stage.

For solution at t = 3000 Time-step size Time steps CPU time (sec)

BDF1 + RDG(P1P2) dt = 0.1 30,000 52,542

IRK2 + RDG(P1P2) dt = 0.1 30,000 86,066

IRK3 + RDG(P1P2) dt = 0.1 30,000 263,010

IRK2 + DG(P1) dt = 0.1 30,000 69,050

Explicit RK3 + RDG(P1P2) dt = 0.0001 30,000,000 Estimated 7,347,942

•  A speedup factor of more than 85 by IRK over its explicit counterpart!
•  IRK+RDG(P1P2) greatly improve solution accuracy for implicit LES

without much extra cost than the underlying IRK+DG(P1)!

Concluding Remarks
•  A reconstructed discontinuous Galerkin method based on a Hierarchical

WENO reconstruction, HWENO(P1P2) has been developed for compressible
flows at all speeds on hybrid grids.

•  The HWENO(P1P2) method is able to provide sharp resolution of shock
waves essentially without over- and under-shoots for discontinuities and
achieve the designed third-order of accuracy for smooth flows.

•  RDG methods have the potential to provide a superior alternative to the
traditional FV methods, and to become a main choice for the next generation
of CFD codes.

•  A higher-order RDG-based CFD code will ultimately deliver a more

accurate, efficient, robust, and reliable simulation tool with confidence that
will enable us to solve flow problems at resolutions never before possible by
the current state-of-the-art CFD technology.

Current Work

•  Extension of the RDG method for turbulent flows

•  Implementation of hp-adaptation on hybrid grids

•  Port of the RDGFLO code on hybrid CPU/GPU
architectures

