
© 2014 IBM Corporation1 2015, Beijing, China

Roofline Model

Leopold Grinberg
IBM, T.J. Watson Research Center, USA

© 2014 IBM Corporation2

DATA

DATA

CALCULATIONS
(+, -, /, *,)

The Roofline Model

2015, Beijing, China

© 2014 IBM Corporation3

The Roofline Model

The roofline model was introduced in 2009 by Williams et.al.
Samuel Williams, Andrew Waterman, and David Patterson. 2009. Roofline: an insightful visual performance

model for multicore architectures. Commun. ACM 52, 4 (April 2009), 65-76. DOI=10.1145/1498765.1498785

http://doi.acm.org/10.1145/1498765.1498785

 It provides an easy way to get performance bounds for compute and memory bandwidth

bound computations.

 It relies on the concept of Computational Intensity (CI) – sometimes also called Arithmetic

or Operational Intensity (AI or OI).

The Roofline Model provides a relatively simple way for performance estimates

based on the computational kernel and hardware characteristics.

Performance [GF/s] = function (hardware and software characteristics)

2015, Beijing, China

http://doi.acm.org/10.1145/1498765.1498785

© 2014 IBM Corporation4

DATA

DATA

CALCULATIONS

(+, -, /, *,)

for (i=0; i < N; i=i+1)
a[i] = b[i]

for (i=0; i < N; i=i+1)
a[i] = b[i]*b[i]+b[i]

for (i=0; i < N; i=i+1)
a[i] = b[i]*b[i]+sin(b[i])+exp(b[i])

DATA TRANSFER,
NO FLOPS

DATA TRANSFER,
ADDs and MULs

DATA TRANSFER,
FLOPS

FLOPS : Bytes Balance

FLOPS:Bytes ratio is
the basic variable of the
Roofline model

2015, Beijing, China

© 2014 IBM Corporation5

Commu
nication

Locality

Comput
ation

Performance can be estimated

from hardware and kernel characteristics

Some hardware is more communication oriented than another (high memory BW)

Some hardware is more computation oriented than another (high FLOPs)

Mapping kernel characteristics to hardware characteristics (or vice-versa) → performance

Kernels can be Compute bounded (DGEMM) or Communication bounded (DAXPY)
(kernels are rarely well balanced)

The Roofline Model: Principal Components to Performance

2015, Beijing, China

© 2014 IBM Corporation6

DATA

DATA

CALCULATIONS
(+, -, /, *,) MEMORY

BANDWIDTH
(WRITE)

MEMORY
BANDWIDTH

(READ)

FLOPS

Performance Limiting Factors

2015, Beijing, China

© 2014 IBM Corporation7

The Roofline Model - is a tool to understand the kernel/hardware limitation
and it is also a tool for kernel optimization

Performance is upper bounded by:

1) the peak flop rate

2) the streaming bandwidth

P
e
rf

o
rm

a
n
c
e
 [

G
F

/s
]

Arithmetic Intensity (FLOPS/BYTE)

The Roofline Model

BW
limited

FLOP
limited

2015, Beijing, China

© 2014 IBM Corporation8

for (i=0; i < N; i=i+1)
a[i] = 2.3*b[i]

for (i=0; i < N; i=i+1)
a[i] = b[i]*b[i]+b[i]

for (i=0; i < N; i=i+1)
a[i] = b[i]*b[i]+sin(b[i])+exp(b[i])

P
e
rf

o
rm

a
n
c
e
 [

G
F

/s
]

Arithmetic Intensity (FLOPS/BYTE)

The Roofline Model

2015, Beijing, China

© 2014 IBM Corporation9

FLOPS / Bytes ratio – one of the basic characteristics of a kernel

for (i = 0; i < N; ++i)
z[i] = x[i]+y[i]

1 ADD
2 (8 byte) loads
1 (8 byte) write

AI = 1 / (2*8 + 8) = 1/24*

for (i = 0; i < N; ++i)
z[i] = x[i]+y[i]*x[i]

1 ADD
1 MUL
2 (8 byte) loads
1 (8 byte) write

AI = 2 / (2*8 + 8) = 1/12*

for (i = 0; i < N; ++i){
I1 = A_offset[i]; I2 = A_offset[i+1];
sum = 0.0
for (j = 0; j < (I2-I1); ++j)

sum += A[I1+j] * x[col_index [I2+j]];
y[i] = sum;

}

1 ADD
1 MUL

2 (8 byte) + 1 (4 bytes) loads
1 (8 byte) write

AI = 2 / (2*8 + 4 + 8) = 1/14

* because of write-allocate traffic cache-based systems kernel
would actually require an extra read for Z and have even lower AI.

The Roofline Model: Arithmetic Intencity (AI)

2015, Beijing, China

© 2014 IBM Corporation10

Arithmetic Intensity

BLAS L1,
SpMv

stencil
FFT

BLAS L3

Particle
methods

The Roofline Model: Arithmetic Intencity (AI)

2015, Beijing, China

© 2014 IBM Corporation11

 The trend is for architectures to have ever

decreasing machine balance (the point

where the bandwidth roof meets the ceiling

moves to the right).

 More and more algorithms are going to find

themselves memory bound.

 Even DGEMM can run into trouble

depending on the blocking factor chosen.

 A “balanced” architecture can also be a

“crippled” one, e.g. low-end GPUs with

1/24th the DP peak performance.

You can achieve a higher percentage of a

lower peak.

How Will the Fast Multipole Method Fare in the Exascale Era?

SIAM News, Volume 46, Number 6, July/August 2013

By Lorena A. Barba and Rio Yokota (Boston University & KAUST)

The Roofline Model: Kernel-Hardware mapping

2015, Beijing, China

© 2014 IBM Corporation

It is an art to find a perfect match between kernel and hardware characteristics

In another words, it requires a lot of work to create a kernel that will exhaust both, the memory BW and

FLOPs capacity at the same time. (many times it is even impossible ….)

P
e
rf

o
rm

a
n
c
e
 [

G
F

/s
]

Computational Intensity
(FLOPS/BYTE)

2015, Beijing, China

© 2014 IBM Corporation13

Performance depends on
how well a given kernel
fits node/processor
architecture,

and/or how well a given
kernel is translated by a
compiler.

Recall: hardware-kernel
characteristics mapping.

The Roofline Model: Performance Limiting Factors
P

e
rf

o
rm

a
n
c
e
 [

G
F

/s
]

Arithmetic Intensity (FLOPS/BYTE)

SIMD

ILP

TLP

2015, Beijing, China

© 2014 IBM Corporation14

Performance depends on
how well a given kernel
fits node/processor
architecture,

and/or how well a given
kernel is translated by a
compiler.

Recall: hardware-kernel
characteristics mapping.

The Roofline Model: Performance Limiting Factors
P

e
rf

o
rm

a
n
c
e
 [

G
F

/s
]

Arithmetic Intensity (FLOPS/BYTE)

Data
prefetch NUMA

Stride
access

2015, Beijing, China

© 2014 IBM Corporation15

N – is large, i.e., buffer does not fit
cache

--

for (i=0; i < N; ++i)
a[i] = buffer[i] + b[i];

for (i=0; i < N; ++i)
c[i] = buffer[i] + d[i];

AI_total = 2 / (2 * 3 * 8) = 1/24;

--

for (i=0; i < N; ++i){
a[i] = buffer[i] + b[i];
c[i] = buffer[i] + d[i];

}

AI = 2/(5*8) = 1 / 20;

--

P
e
rf

o
rm

a
n
c
e
 [

G
F

/s
]

Computational Intensity (FLOPS/BYTE)

The Roofline Model: Performance limiting factors

2015, Beijing, China

© 2014 IBM Corporation16

sum = 0;
for (i=0; i < N; ++i)

sum = sum + a[i];

sum0 = sum1 = sum2 = sum3 = 0;
for (i=0; i < N; i+=4){

sum0 = sum0 + a[i];
sum1 = sum1 + a[i+1];
sum2 = sum2 + a[i+2];
sum3 = sum3 + a[i+3];

}
sum0 = sum0+sum1;
sum2 = sum2+sum3;
sum = sum0+sum2;

The Roofline Model: Performance Limiting Factors -
Instruction Level Parallelism (ILP)

P
e
rf

o
rm

a
n
c
e
 [

G
F

/s
]

Arithmetic Intensity (FLOPS/BYTE)

2015, Beijing, China

© 2014 IBM Corporation

EXAMPLES and EXERCISES

2015, Beijing, China

© 2014 IBM Corporation18

Consider DAXPY : for (i = 0; i < N; ++i) y[i] = a*x[i]+y[i]

For each “i” : 1 addition , 1 multiplication
2 loads of 8 bytes each
1 store

Execution on BlueGene/Q (Peak 204.8 GFLOP/node)

P
e
rf

o
rm

a
n
c
e
 [

G
F

/s
]

Arithmetic Intensity (FLOPS/BYTE)

204.8

7.11

Performance estimates:

AI = 2/(3*8) = 1 / 12

1/12 < 7.11 →
We are in the memory BW
limited area on the
Roofline plot
7.11 / (1 / 12) = 85.32
204.8 / 85.32 = 2.4 GF/s

Example 1: DAXPY

2015, Beijing, China

© 2014 IBM Corporation19

Consider DAXPY : for (i = 0; i < N; ++i) y[i] = a*x[i]+y[i]

For each “i” : 1 addition , 1 multiplication
2 loads of 8 bytes each
1 store

Execution on BlueGene/Q (Peak 204.8 GFLOP/node):

threads Time [s] GFLOPS DDR traffic
per node
(Bytes/cycle)

1 0.0879111 0.455 3.519

2 0.044039 0.907 7.022

4 0.022151 1.801 13.94

8 0.0174019 2.284 17.686

16 0.017447 2.287 17.719

Performance estimates:

AI = 2/(3*8) = 1 / 12

1/12 < 7 →
We are in the memory BW
limited area on the roofline
plot
7.11 / (1 / 12) = 85.32
204.8 / 85.32 = 2.4 GF/s

Example 1: DAXPY

2015, Beijing, China

© 2014 IBM Corporation20

Consider DAXPY : for (i = 0; i < N; ++i) y[i] = a*x[i]+y[i] + x[i]*x[i]

For each “i” : 2 addition , 2 multiplication
2 loads of 8 bytes each
1 store

Execution on BlueGene/Q (Peak 204.8 GFLOP/node):

P
e
rf

o
rm

a
n
c
e
 [

G
F

/s
]

Arithmetic Intensity (FLOPS/BYTE)

204.8

7.11

Performance estimates:

AI = 4/(3*8) = 1 / 6

1/6 < 7 →
We are in the memory BW
limited area on the roofline
plot
7.11 / (1 / 6) = 42.66
204.8 / 42.66 = 4.8 GF/s

Example 2

2015, Beijing, China

© 2014 IBM Corporation21

Consider : for (i = 0; i < N; ++i) y[i] = a*x[i]+y[i] +x[i]*x[i]

For each “i” : 2 addition , 2 multiplication
2 loads of 8 bytes each
1 store

Execution on BlueGene/Q (Peak 204.8 GFLOP/node): Performance estimates:

AI = 4/(3*8) = 1 / 6

1/6 < 7 →
We are in the memory BW
limited area on the roofline
plot
7.11 / (1 / 6) = 42.66
204.8 / 42.66 = 4.8 GF/s

threads Time [s] GFLOPS DDR traffic
per node

1 0.106501 0.751 2.906

2 0.053323 1.499 5.802

4 0.0267339 2.989 11.566

8 0.0176179 4.532 17.545

16 0.0174541 4.573 17.712

Example 2

2015, Beijing, China

© 2014 IBM Corporation22

Consider for (i = 0; i < N; ++i) y[i] = a*x[i]+y[i] + x[i]*x[i] + SIN(x[i])

Execution on BlueGene/Q (Peak 204.8 GFLOP/node):

threads Time [s] GFLOPS DDR traffic
per node

1 0.615393 1.755 0.503

2 0.307695 3.51 1.006

4 0.153861 7.018 2.244

8 0.076983 14.023 4.02

16 0.0385199 28.008 8.034

32 0.0217798 49.461 14.202

64 0.018496 58.137 16.73

Example 3

2015, Beijing, China

© 2014 IBM Corporation23

y[i] = a*x[i]+y[i]

Loads that hit in L1 d-cache = 50.01 %
L1P buffer = 49.98 %
L2 cache = 0.00 %
DDR = 0.01 %

y[i] = a*x[i]+y[i] + x[i]*x[i] + SIN(x[i])

Loads that hit in L1 d-cache = 97.30 %
L1P buffer = 2.70 %
L2 cache = 0.00 %
DDR = 0.00 %

We spend too much
time

moving data:
2.284 GF/s

We spend
less time

moving data
than computing

58.137 GF/s

Examples 1 and 3

2015, Beijing, China

© 2014 IBM Corporation24

y[i] = a*x[i]+y[i]

Loads that hit in L1 d-cache = 50.01 %
L1P buffer = 49.98 %
L2 cache = 0.00 %
DDR = 0.01 %

y[i] = a*x[i]+y[i] + x[i]*x[i] + SIN(x[i])

Loads that hit in L1 d-cache = 97.30 %
L1P buffer = 2.70 %
L2 cache = 0.00 %
DDR = 0.00 %

We spend too much
time

moving data:
2.284 GF/s

solve time: 17.5 ms

We spend
less time

moving data
than computing

58.137 GF/s
solve time: 18.5 ms

Examples 1 and 3

2015, Beijing, China

© 2014 IBM Corporation25

Consider two
arrays A, and B,
both have
dimension of NxN

B is computed from:
B[i][j] = A[i-2][j] + A[i-1][j] + C*A[i][j] + A[i+1][j] + A[i+2][j] +

A[i][j-2] + A[i][j-1] + A[i][j+1] + A[i][j+2]

Arithmetic intensity: 7 adds, 1 mul, 1 load and 1 store →
AI = 8 / (2*8) = 1 / 2
Estimated performance on BG/Q: 7.11 / (½) = 14.22;

204.8 / 14.22 = 14.4 GF/s

Example: 2D stencil

2015, Beijing, China

© 2014 IBM Corporation26

2D Stencil: Algorithm No. 1

#pragma omp parallel for private(row,col)

for (row = 2; row < (N-2); ++row){
for (col = 2; col < (N-2); ++col) {

B[row][col] = C*A[row][col] +
A[row][col-1] + A[row][col+1] +
A[row][col-2] + A[row][col+2] +
A[row-1][col] + A[row+1][col] +
A[row-2][col] + A[row+2][col] ;

}
}

HPM info:
Total weighted GFlops = 4.922
Loads that hit in L1 d-cache = 93.05 %

L1P buffer = 5.08 %
L2 cache = 0.00 %
DDR = 1.86 %

Average DDR traffic per node: ld = 13.680, st = 2.757, total = 16.437 (Bytes/cycle)

We run on a single BGQ node
1 mpi rank, 64 threads

We estimated 14.4GF/s

What have we done wrong?

2015, Beijing, China

© 2014 IBM Corporation27

2D Stencil: Algorithm No. 2

#pragma omp parallel for private(rb,cb,row,col)

for (rb = 2; rb < N; rb = rb + row_block_size){ //ROW BLOCKING
for (cb = 2; cb < N; cb = cb + col_block_size){ // COLUMN BLOCKING

for (row = rb; row < MIN(N-2,rb + row_block_size+1); ++row){
for (col = cb; col < MIN(N-2,cb + col_block_size+1); ++col){
B_rcb[row][col] = C*A[row][col] +

A[row][col-1] + A[row][col+1] +
A[row][col-2] + A[row][col+2] +
A[row-1][col] + A[row+1][col] +
A[row-2][col] + A[row+2][col] ;

}
}

}
}

HPM info:
Total weighted GFlops = 12.264
Loads that hit in L1 d-cache = 97.69 %

L1P buffer = 1.26 %
L2 cache = 0.34 %
DDR = 0.70 %

Average DDR traffic per node: ld = 7.599, st = 6.746, total = 14.346 (Bytes/cycle)

We estimated 14.4GF/s
We got 12.264GF/s …

2015, Beijing, China

© 2014 IBM Corporation28

Exercise No 1.

• Copy /lustre/home/ibmleopold/FOR_STUDENTS/DAXPY/ex0.c

• Compile and execute daxpy

• Use 1 to 16 threads to run the program

• Estimate performance.

• Find the crossover point.

Calculate the location (x-coordinate) of the crossover point based on hardware

(2-socket Intel(R) Xeon(R) CPU E5-2670 @2.6GHz node) and kernel characteristics

2015, Beijing, China

© 2014 IBM Corporation29

Exercise No 2.

• Compile and execute 2D stencil code

• Use 1 to 16 threads to run the program

• Estimate performance for 2-socket Intel(R) Xeon(R) CPU E5-2670 @2.6GHz

• Compare to the achieved performance

2015, Beijing, China

© 2014 IBM Corporation30

Questions ?

2015, Beijing, China

© 2014 IBM Corporation

How to compile

1. ssh

2. Type

MODULEPATH=/lustre/utility/modulefiles:$MODULEPATH

3. Load module

module load icc/13.1.1

Now we can use compiler icc or icpc

2015, Beijing, China

© 2014 IBM Corporation32

Communication
[GB/s]

Locality

Computation
[GF/s]

The Roofline Model: Principal Components to Performance

18 cores BGQ chip

2015, Beijing, China

