
OpenMP

http://openmp.org/wp
https://computing.llnl.gov/tutorials/openMP
http://openmp.org/mp-documents/ntu-vanderpas.pdf
http://msdn.microsoft.com/en-us/library/tt15eb9t.aspx

http://openmp.org/mp-documents/ntu-vanderpas.pdf

OpenMP: Open Multi-Processing*

An Application Program Interface (API) that may be used to explicitly direct
multi-threaded, shared memory parallelism

Long version: OpenMP : Open specifications for Multi-Processing via collaborative
work between interested parties from the hardware and software industry,
government and academia.

What is OpenMP?

History,
source for information

In the early 90's, vendors of shared-memory machines supplied similar, directive-
based, Fortran programming extensions: The user would augment a serial Fortran
program with directives specifying which loops were to be parallelized.

The compiler would be responsible for automatically parallelizing such loops across
the SMP processors.

The OpenMP standards: 1.0 Fortran - 1997,

1.0 C/C++ - 1998

2.0 Fortran - 2000

2.0 C/C++ - 2002

2.5 F/C/C++ - 2005

3.0 F/C/C++ - 2008

3.1 - 2011

4.0 - 2013

http://openmp.org/wp/

CPU CPUCPUCPU

SHARED MEMORY

Idea: many CPUs can access the same memory space.
All data stored in this memory can be shared.
Different CPUs can:
1) operate on different chunks of memory (executing the same instruction)
2) execute different instructions while operating on the same data
3) mix of 1 and 3

Master thread

Parallel region

Master thread

Parallel region

Master thread

Parallel region, nested parallelism

Master thread

FORK: the master thread
creates a team of parallel
threads

JOIN: When the threads
complete they synchronize and
terminate, leaving only the
master thread

OpenMP Programming Model

An existing
sequential
code

OpenMP allows incremental parallelization of an existing code.
Starting with a working sequential code one can create parallel
regions one at a time.

Message passing approach requires more substantial changes in
the code.

Threads

We have 12 core processor

Each core can run up to 8 hardware threads

What is the total number of threads available for
an application?

Who is managing all those threads?

Threads and cores , affinity

OpenMP and Amdahl’s Law

OpenMP: example

int main () {
int i,N=5000;
double dx =0.1;
double *x;
x = new double[N];
for (i = 0; i < N; ++i)

x[i] = i*dx;
//do something with x

delete[] x;
return 0;

}

#include <omp.h>

int main () {
int i,N=5000;
double dx =0.1;
double *x;
x = new double[N];

#pragma omp parallel
{
#pragma omp for

for (i = 0; i < N; ++i)
x[i] = i*dx;

}
//do something with x

delete[] x;
return 0;

}

What OpenMP offers?

OpenMP is an explicit
programming model,
offering the programmer full
control over parallelization.

#include <omp.h>

int main () {
int i,N=5000;
double dx =0.1;
double *x;
x = new double[N];

#pragma omp parallel
{
#pragma omp for

for (i = 0; i < N; ++i)
x[i] = i*dx;

}
//do something with x

delete[] x;
return 0;

}

OpenMP is NOT:
Meant for distributed memory parallel systems.

Necessarily implemented identically by all vendors.

Guaranteed to make the most efficient use of shared memory.

Required to check for data dependencies, data conflicts, race conditions, or deadlocks.

Required to check for code sequences that cause a program to be classified as non-
conforming.

Meant to cover compiler-generated automatic parallelization and directives to the compiler
to assist such parallelization.

Designed to guarantee that input or output to the same file is synchronous when executed
in parallel.

The programmer is responsible for synchronizing input and output!

OpenMP provides the capability to
implement both coarse-grain and fine-

grain parallelism

A u =b

=

Granularity

In parallel computing, granularity is a qualitative measure of the ratio of
computation to communication (or synchronization).

Coarse: relatively large amounts of computational work are done between
communication events

Fine: relatively small amounts of computational work are done between
communication events

Fine-grain parallelism

=

for (row = 0; row < R; ++row){
sum = 0.0;

#pragma omp for (reduction +:sum)
for (col=0; col < C; ++col)

sum += A[row][col]*u[col]
b[row] = sum;

}

Coarse-grain parallelism

=

T0

T1

T2

T3

#pragma omp for
for (row = 0; row < R; ++row)

b[row] = _ddot(N,A[row],u);

Coarse-grain parallelism

Assume we solve a PDE using finite
element discretization.

We want to compute derivatives of some
function u.

The derivatives can be computed locally
(element-wise) using some derivative
operator: due=Aeue.

#pragma omp for
for (element = 0; element < Nel; ++element)

du[element] = _dgemv (Ae [element], u[element]);

When shall we use a fine-grain parallelism
and when coarse-grain?

CPU 0

CPU 2

CPU 1

CPU 3

M
EM

O
R

Y
M

EM
O

R
Y

M
EM

O
R

Y
M

EM
O

R
Y

When shall we use a fine-grain parallelism
and when coarse-grain?

CPU 1CPU 0 CPU 2 CPU 3

MEMORY

When shall we use a fine-grain parallelism
and when coarse-grain?

CPU 0

CPU 2

CPU 1

CPU 3

M
EM

O
R

Y
M

EM
O

R
Y

M
EM

O
R

Y
M

EM
O

R
Y

compute core

Lets get into details

Most OpenMP parallelism is specified through the use of compiler
directives which are imbedded in C/C++ or Fortran source code.

The OpenMP provides for dynamically altering the number of
threads which may used to execute different parallel regions.
(not always supported).

OpenMP specifies nothing about parallel I/O

The OpenMP provides for dynamically altering the number of
threads which may used to execute different parallel regions
(not always supported).

#include <omp.h>

int main () {
int i,N;
double dx =0.1;
double *x;
.

#pragma omp parallel
{

}
.
return 0;

}

Serial region: only
master threads

executes

Parallel region: executed
by all threads

#include <omp.h>

int main () {
int i,N;
double dx =0.1;
double *x;
.

#pragma omp parallel
{

}
.
return 0;

}

i, N, dx, x – are
shared variables

#include <omp.h>

int main () {
int i,N;
double dx =0.1;
double *x;
.

#pragma omp parallel
{
int j;
double a,b;
double *y;

}
.
return 0;

}

j, a, b, y– are
private variables

#include <omp.h>

int main () {
int i,N;
double dx =0.1;
double *x;
.

#pragma omp parallel private (N)
{
int j;
double a,b;
double *y;

}
.
return 0;

}

N – is a private
variable

C / C++ Directives Format

#pragma omp directive-name [clause, ...] newline

Required for all
OpenMP C/C++

directives

A valid
OpenMP

directive. Must
appear after
the pragma

and before any
clauses.

Optional.
Clauses can be
in any order,
and repeated
as necessary

unless
otherwise
restricted.

Required.
Precedes the

structured
block which is
enclosed by

this directive.

#pragma omp parallel shared (a, b, c, x) private (beta, pi)
{

}

PARALLEL Region Construct

A parallel region is a block of code
that will be executed by multiple
threads.

Parallel region is the fundamental
OpenMP parallel construct.

When a thread reaches a PARALLEL directive, it
creates a team of threads and becomes the
master of the team.

.

.
#pragma omp parallel
{

.

.

.
}
.

When a thread reaches a PARALLEL directive, it
creates a team of threads and becomes the
master of the team.

Starting from the beginning of this parallel
region, the code is duplicated and all threads
will execute that code.

.
double x = 0;
#pragma omp parallel
{

x = x *2.0;
.

}
.

Be aware
that all

threads are
executing
the same

instruction!

There is an implied barrier at the end of a
parallel section. Only the master thread
continues execution past this point.

If any thread terminates within a parallel
region, all threads in the team will terminate,
and the work done up until that point is
undefined.

.

void function (int N, double *x){

#pragma omp parallel

{

#pragma omp for

for (int k = 0; k < N; ++k){

x[k] = rand();

if (x(k] < 0.5) return;

}

.

}

}

Few more rules on PARALLEL region

A parallel region must be a structured block
that does not span multiple routines or
code files.

It is illegal to branch into or out of a parallel
region.

.

.
#pragma omp parallel
{

.
goto stage2;

.
}
stage2:

How Many Threads can we use?
Evaluation of the IF clause.
if n <= k  serial code.
Only a single IF clause is permitted!
Question: when shall we use it?

#pragma omp parallel if (n > k)

{

}

Setting of the NUM_THREADS clause.
Only a single NUM_THREADS clause is
permitted

Use of the omp_set_num_threads()
function

Setting of the OMP_NUM_THREADS
environment variable

export OMP_NUM_THREAD=8

./a.out

#pragma omp parallel num_threads(4)
{

int i = omp_get_thread_num();
printf("Hello from thread %d\n", i);

}

omp_set_num_threads(4);
#pragma omp parallel

{
int i = omp_get_thread_num();

printf("Hello from thread %d\n", i);
}

Parallel for

int k;

double *x, *y, *z, *a, *b, *c;

#pragma omp parallel

{

#pragma omp for

for (k = 0; k < N; ++k)

z[k] = x[k] * y[k];

#pragma omp for

for (k = 0; k < N; ++k)

a[k] = b[k]+c[k];

#pragma omp for

for (k = 1; k < N-1; k++)

d[k] = (z[k-1]+z[k+1]) / a[k];

}

}

Implicit
barrier

Implicit
barrier

Implicit
barrier

Parallel for

int k;

double *x, *y, *z, *a, *b, *c;

#pragma omp parallel

{

#pragma omp for nowait

for (k = 0; k < N; ++k)

z[k] = x[k] * y[k];

#pragma omp for

for (k = 0; k < N; ++k)

a[k] = b[k]+c[k];

#pragma omp for

for (k = 1; k < N-1; k++)

d[k] = (z[k-1]+z[k+1]) / a[k];

}

Implicit
barrier

Implicit
barrier

int k;

double *x, *y, *z, *a, *b, *c;

#pragma omp parallel

{

#pragma omp for nowait

for (k = 0; k < N; ++k)

z[k] = x[k] * y[k];

#pragma omp for nowait

for (k = 0; k < N; ++k)

a[k] = b[k]+c[k];

#pragma omp barrier

#pragma omp for

for (k = 1; k < N-1; k++)

d[k] = (z[k-1]+z[k+1]) / a[k];

}

Effect of barriers

�

�
�

T0

T1

T2

T3

�
Idle time

Minimizing the idle time reduces the total execution time and
improves scalability!

Designing your code look for opportunities to eliminate barriers

Private and shared variables

Private
No storage association with original object

All references are to the local object

Values are undefined on entry and exit

Shared
Data is accessible by all threads in the team

All threads access the same address space

All threads can modify the data

TET *dptr;
TET *Element;
#pragma omp parallel
{
#pragma omp for shared(Element) private

(dptr)
for (i = 0; i < N; ++i){

dptr = &Element[i];
}

}

Private and shared variables
TET *Element;
#pragma omp parallel
{
TET *dptr;
#pragma omp for shared(Element)

for (i = 0; i < N; ++i){
dptr = &Element[i];

}
}

Variable *dptr is
declared inside
parallel region,

hence it is
private

A shared variable exists in only one memory location and all threads
can read or write to that address.

It is the programmer's responsibility to ensure that multiple threads
properly access SHARED variables (such as via CRITICAL sections).
If the SHARED variables is not modified within a loop - no need to
synchronize an access to it, otherwise synchronization might be
required.

Private and shared variables

PRIVATE variables behave as follows:
A new object of the same type is declared once for each thread.

All references to the original object are replaced with references to the
new object.

Variables declared PRIVATE should be assumed to be uninitialized for
each thread.

TET *Element;
TET *dptr;
#pragma omp parallel
{
#pragma omp for private (dptr) shared

(Element)
for (i = 0; i < N; ++i){

dptr = &Element[i];
}

}

Private and shared variables

Variables declared PRIVATE should be assumed to be uninitialized for
each thread.

We may use FIRSTPRIVATE clause to initialize the private variable.

For a FIRSTPRIVATE clause on a parallel construct, the initial value of the
new private object is the value of the original object that exists
immediately prior to the parallel construct for the thread that encounters
it.

Double *x;
double sum = 0;
#pragma omp parallel
{
#pragma omp for firstprivate (sum) shared (x)

for (i = 0; i < N; ++i)
sum = sum + x[i];

}

Private and shared variables

For additional information see
THREADPRIVATE
LASTPRIVATE
COPYPRIVATE

Reduction operations
#include <omp.h>
main () {

int i, N = 100;
double *x;
x = new double[N];
function_evaluate(x);

double sum = 0;
#pragma omp parallel
{
#pragma omp for reduction(+:sum)

for (i = 0; i < N; ++i)
sum += x[i];

}
fprintf(stdout,” sum = %f\n“,sum);
delete[] x;
return 0;

}

A private copy for each list
variable (in our case - “sum”)
is created for each thread. At
the end of the reduction, the
reduction variable is applied
to all private copies of the
shared variable, and the final
result is written to the global
shared variable.

Reductions can be applied on
scalar variables only (at least
upto OpenMP 2.5)

SECTIONS

#pragma omp parallel
{
#pragma omp sections nowait
{

#pragma omp section
{
}
#pragma omp section
{
}
#pragma omp section
{
}

}
}

The SECTIONS directive is a non-iterative work-
sharing construct.

It specifies that the enclosed sections of code
are to be divided among the threads in the
team.

Independent SECTION directives are nested
within a SECTIONS directive.

Each SECTION is executed once by a thread in
the team.

Different sections may be executed by
different threads. It is possible that for a
thread to execute more than one section if it is
quick enough and the implementation permits
such.

Use sections for task (functional) parallelism!
Also maybe useful for coarse-grain
parallelism.

Sequential blocks inside PARALLEL region

for (i = 0; i < N; ++i)
function(x[i]);

Read_y_from_a_file(y);

for (i = 0; i < N; ++i)
function(y[i]);

#pragma omp parallel
{
#pragma omp for
for (i = 0; i < N; ++i)

function(x[i]);
}

Read_y_from_a_file(y);

#pragma omp parallel
{
#pragma omp for
for (i = 0; i < N; ++i)

function(y[i]);
}

Sequential blocks inside PARALLEL region:
SINGLE

#pragma omp parallel
{
#pragma omp for
for (i = 0; i < N; ++i)

function(x[i]);
}

Read_y_from_a_file(y);

#pragma omp parallel
{
#pragma omp for
for (i = 0; i < N; ++i)

function(y[i]);
}

#pragma omp parallel
{
#pragma omp for
for (i = 0; i < N; ++i)

function(x[i]);

#pragma omp single
Read_y_from_a_file(y);

#pragma omp for
for (i = 0; i < N; ++i)

function(y[i]);
}

double global_sum = 0;
#pragma omp parallel
{
double sum = 0;
#pragma omp for nowait
for (i = 0; i < N; ++i)

sum += function(x[i]);

#pragma omp critical
global_sum += sum;

}

Sequential blocks inside PARALLEL region:
CRITICAL

Sequential blocks inside PARALLEL region

The SINGLE directive specifies that the enclosed code is to be executed by only one
thread in the team. May be useful when dealing with sections of code that are not
thread safe (such as I/O). May be also useful in hybrid MPI-OpenMP codes.
Threads in the team that do not execute the SINGLE directive, wait at the end of the
enclosed code block, unless a NOWAIT/nowait clause is specified.

The CRITICAL directive specifies a region of code that must be executed by only one
thread at a time.

Threads synchronization

ATOMIC
FLUSH
BARRIER

OpenMP versus MPI

Why pure MPI applications scale better than OpenMP?

Remember the Amhdal’s law ?
#pragma omp parallel
{
#pragma omp for
for (i = 0; i < N; ++i)

function(x[i]);

#pragma omp single
Read_y_from_a_file(y);

#pragma omp for
for (i = 0; i < N; ++i)

function(y[i]);
}

“#pragma omp parallel” is a sequential
portion of the code and it costs about

60,000 – 80,000 cycles!

Reading a file from disk by less
MPI ranks may actually

speedup the code execution (if
sufficiently many MPI tasks are

involved)

Use of barriers isn’t helpful for scaling-up

Number of cores per compute node/socket will increase – more
opportunities to share memory.

Memory / core ration will most probably decrease – it might be
more important to share memory, particularly in “memory-hungry”
applications.

Cost (number of cycles) of creating thread is going down.

Networks for MPI communication are improved.

MPI is using shared memory blocks for intra-node communication.

Use of GPUs allows fine-grain parallelism on the chip plus MPI
communication between the cards (currently using CPUs).

OpenMP versus MPI: who is going to win?

Compiler Flag
IBM -qsmp=omp
Intel -openmp
PathScale -mp
PGI -mp
GNU -fopenmp

