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Why do we need HPC?

High Performance Computing



High Performance Computing

Amazon can ship products within hours… would it 
be helpful if the process of processing customers 
orders will take 2-3 days ?

Would it be useful to predict yesterdays weather 
accurately ?

Oil/gas industry – it costs about $100M to drill …

but where ? 



High Performance Computing

Why do we need high performance?

“ … to compete we need to be at least three 
month ahead in putting products on 
supermarket shelves … “ [Massimo N., Unilever]



How HPC fits into Scientific Computing 

Physical process:  self assembly of polymers

Mathematical model

Numerical simulation

Data analysis

HPC

HPA

Fast IO,
Fast, high-res 
visualization,
Fast extraction 
of O(10) useful 
values out of 
(O) 10100 



In this course: 

Concepts in parallel computing

Roof-line model

How to chose right computer for an algorithm

How to chose right algorithm for a computer

Shared memory model

Distributed memory model

Hybrid computing



High Performance Computer

• Computer that can perform O(1015) 
operations per second

• Computer that can move O(1015) bytes per 
second

• Computer that consumes more energy than 
produced by a (nuclear) power station.

• Computer with operational cost of ¼ million 
dollar per hour



• Use of fast processors

• Use of many processors

• Smart use of many fast processors (scalable 
parallel algorithms)

• Use of software and hardware in a way that 
maximizes the output/input ratio 

High Performance Computing



Computers

Computing





In use from 1946 to 1955, 
the ENIAC is commonly 
accepted as the first 
successful high-speed 
electronic digital 
computer (EDC). 

Installation of 
IBM BlueGene



Tianhe-2



Next-generation supercomputers
100-300 PFLOPS (in 2017)



Summit is the next leap (in USA) in leadership-
class computing systems for open science



How to drive at top speed?

http://www.baixaki.com.br/imagens/galeria/1829/14970.jpg



How to drive at top speed?

To start with – know what do you drive…



High Performance Computer –
what is inside?

Memory

Control Unit +
Arithmetic Logic Unit

Disks, cables, more 
cables, fans, water 

… 

von Neumann Architecture

Named after the Hungarian mathematician 
John von Neumann who first authored the 
general requirements for an electronic 
computer in his 1945 papers.

Also known as "stored-program computer" -
both program instructions and data are kept in 
electronic memory. Differs from earlier 
computers which were programmed through 
"hard wiring”

Four main components: Memory, Control 
Units, Arithmetic Logic Units, Input-Output





What $100M machine does?

Not much …

Add          +

Subtract  −

Multiply  ×

Divide      ÷

Mod        %



Why does it cost so much?
Speed (and accuracy and reliability)



How the speed is achieved ?

High clock frequency

High memory bandwidth

Parallel processing 
of data and/or instructions 

and fast communication 



Not all processors and memory 
subsystems are the same

Some have high clock frequency

Some have high memory bandwidth

Some can compute >1 instructions per cycle

and some can not

Some need a lot of energy , and some not

…. 



A compute node

Processor is the heart of a compute node

Memory subsystem is its vascular system 



Understanding of computing starts with 
the understanding of memory subsystem

in order to compute     c=a+b :

• a memory space for a, b and c should be reserved

• a and b must be initialized

• data stored in &a and &b must be moved to the 
processor’s registers

• computed data must be stored in &c



On chip 
memory hierarchy

BlueGene/Q Chip (top)

Power 8  (left)



Why memory model is important?

Processors can do 
C = A + B

DISK

Main memory

L4 cache

L3 cache

L2

L1

R

Data flow

Data locality is crucial 
for performance!



Bandwidth and Latency

An airplane can lift 100M hard-drives, each holding 1TB of 
data and fly from Beijing to Boston in 13 hours: 

memory bandwidth: 100E6 *1TB/(13h*3600s/h) = 2,136.7 
TB/s

latency : 13 hours …. 

alternatively we can e-mail data in 2MB packets, it will take 
60 seconds for each e-mail to be received:

memory bandwidth: 0.033MB/s

latency                       : 60 seconds

(882,639,730,639 hours to move 100E6*1TB ) 



Inside the machine…

for (i=0; i < N; i=i+1){
y[i] = a*x[i] + y[i];

}

1. Allocate memory for vectors x and y,
2. Assign values to a, y[i], x[i]
3. Perform multiply add operation.

CPU Sends a request to operating system to 
allocate memory segments (in main memory) 

x

y

CPU xL3L2L1r Main memory

Bandwidth [GB/s], 
latency [ns]

Instructions 
per cycle 
(IPC)



Xeon Phi



Xeon Phi

The Intel Xeon Phi coprocessor implements very high 
bandwidth memory subsystem. Each core is equipped with a 
32KB L1 instruction cache and 32KB L1 data cache and a 
512KB unified L2 cache. These caches are fully coherent and 
implement the x86 memory order model. The L1 and L2 
caches provide an aggregate bandwidth that is 
approximately 15 and 7 times, respectively, faster compared 
to the aggregate memory bandwidth. Hence, effective 
utilization of the caches is key to achieving peak 
performance on the Intel Xeon Phi coprocessor. In addition to 
improving bandwidth, the caches are also more energy 
efficient for supplying data to the cores than memory.
https://software.intel.com/en-us/articles/intel-xeon-phi-
coprocessor-codename-knights-corner

https://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-codename-knights-corner


Some Theory 
and 

Introduction to Parallelism



Parallel Computing: Memory Models

Shared Memory

Distributed Memory

MEMORY

CPU 
1

CPU 
2

CPU 
3

MEMORY

CPU 
1

CPU 
2

CPU 
3

MEMORY MEMORY

Network



(Real) Parallel Computing: Memory Models

MEMORY CPU 2CPU 1 MEMORY CPU 2CPU 1

MEMORY CPU 2CPU 1 MEMORY CPU 2CPU 1

MEMORY CPU 2CPU 1 MEMORY CPU 2CPU 1



(Even more Real) Parallel Computing: 
Memory Models

MEM
ORY

CPU 1

CPU 2

CPU 
N

Co-processor 1

Co-processor 2

Co-processor N

MEM
ORY

CPU 1

CPU 2

CPU 
N

Co-processor 1

Co-processor 2

Co-processor N

Additional 
memory



Programming Models

1.   Shared Memory

2. Distributed Memory

3. Hybrid – many pools of shared and 
distributed memory



Shared Memory 
Programming Model

MEMORY

Core 4 Core 5 Core 6

Core 1 Core 2 Core 3
Example:  6 core CPU. Main 
memory is shared.  There is a 
single address space. All cores can 
read and write from/to the same 
address.

Good:  memory is accessible by 
all cores at the same speed. Many 
variables can be shared. 
Bad:     developers must be 
careful and prevent from 
different cores to write to the 
same address, or read and write 
to/from the same address at the 
same time (race conditions).  

Shared memory programming model 
is typically implemented by using 
threads (OpenMP) 



Shared Memory 
Programming Model

MEMORY

Core 4 Core 5 Core 6

Core 1 Core 2 Core 3

MEMORY

Core 4 Core 5 Core 6

Core 1 Core 2 Core 3

Example:  two socket node, with one 6 core 
CPU  per socket. Main memories of each 
socket can be mapped to a single address 
space and shared. Here we have Non-Uniform 
Memory Access (NUMA). 

Pros: Larger memory pool. 
Cons: data locality becomes and issue.



Shared Memory 
Programming Model

Main memory 
is shared, L4 an 
L3 cache are 
shared. L2 
cache is shared
only within a 
core. 



Distributed Memory 
Programming Model

MEMORY

Core 4 Core 5 Core 6

Core 1 Core 2 Core 3
Example:  6 core CPU. Main 
memory is partitioned into 6 
address spaces associated with 
each core (MPI rank). 

Good:  No race conditions.
Bad:     effectively less memory 
per core is available for 
application. Need to perform 
explicit message passing to 
exchange data between different 
address spaces.  

Distributed memory programming 
model is typically implemented using 
Message Passing Interface (MPI).



Hybrid Distributed-Shared Memory 
Programming Model, 

Multiple Memory Pools 

MEM
ORY

CPU 1

CPU 2

CPU 
N

Co-processor 1

Co-processor 2

Co-processor N

MEM
ORY

CPU 1

CPU 2

CPU 
N

Co-processor 1

Co-processor 2

Co-processor N

Additional 
memory



Parallel computers require 
parallelizable algorithms



Flynn's Classical Taxonomy

SISD
Single Instruction Stream

Single Data Stream

SIMD
Single Instruction Stream

Multiple Data Stream

MISD
Multiple Instruction Stream

Single Data Stream

MIMD
Multiple Instruction Stream

Multiple Data Stream



Flynn's Classical Taxonomy

SISD
Single Instruction Stream

Single Data Stream

Load A

Load B

C = A + B

Store C

Single Instruction: Only one instruction during any one clock cycle.
Single Data: Only one data stream is being used as input/output during any one clock 
cycle.
Deterministic execution:  (no out of order execution)
No parallelism ….



Flynn's Classical Taxonomy

SIMD
Single Instruction Stream

Multiple Data Stream

Load A(1)

Load B(1)

C(1)=A(1)+B(1)

Store C(1)

Load A(2)

Load B(2)

C(2)=A(2)+B(2)

Store C(2)

Single Instruction: Only one instruction during any one clock cycle.
Multiple Data: Multiple data stream is being used as input/output during any one clock 
cycle.
Data parallelism



Flynn's Classical Taxonomy

MISD
Multiple Instruction Stream

Single Data Stream

Load A(1)

Load B(1)

C(1)=A(1)+B(1)

Store C(1)

Load A(1)

Load B(1)

C(2)=A(1)*B(1)

Store C(2)

C(1)=C(1)*A(1) C(2)=C(2)+B(1)

Multiple Instructions: Multiple  instruction during any one clock cycle.
Single Data: Single data stream is being used as input/output during any one clock 
cycle. (not very strict - multiple output data) 
Instruction Level parallelism



Flynn's Classical Taxonomy

MIMD
Multiple Instruction Stream

Multiple Data Stream

Multiple Instruction: Every processor may be executing a different instruction 
stream
Multiple Data: Every processor may be working with a different data stream
Execution can be synchronous or asynchronous, in order or out of order
Currently, the most common type of parallel computer

MIMD also includes SIMD 
and SIMT



















Black board exercise

Solve numerically 
du/dt = d2u/dx2

use finite differences discretization
1st order in time, 2nd order in space

write a parallel solver


