
High Performance Computing

Leopold Grinberg

T. J. Watson IBM Research Center,
USA

Why do we need HPC?

High Performance Computing

High Performance Computing

Amazon can ship products within hours… would it
be helpful if the process of processing customers
orders will take 2-3 days ?

Would it be useful to predict yesterdays weather
accurately ?

Oil/gas industry – it costs about $100M to drill …

but where ?

High Performance Computing

Why do we need high performance?

“ … to compete we need to be at least three
month ahead in putting products on
supermarket shelves … “ [Massimo N., Unilever]

How HPC fits into Scientific Computing

Physical process: self assembly of polymers

Mathematical model

Numerical simulation

Data analysis

HPC

HPA

Fast IO,
Fast, high-res
visualization,
Fast extraction
of O(10) useful
values out of
(O) 10100

In this course:

Concepts in parallel computing

Roof-line model

How to chose right computer for an algorithm

How to chose right algorithm for a computer

Shared memory model

Distributed memory model

Hybrid computing

High Performance Computer

• Computer that can perform O(1015)
operations per second

• Computer that can move O(1015) bytes per
second

• Computer that consumes more energy than
produced by a (nuclear) power station.

• Computer with operational cost of ¼ million
dollar per hour

• Use of fast processors

• Use of many processors

• Smart use of many fast processors (scalable
parallel algorithms)

• Use of software and hardware in a way that
maximizes the output/input ratio

High Performance Computing

Computers

Computing

In use from 1946 to 1955,
the ENIAC is commonly
accepted as the first
successful high-speed
electronic digital
computer (EDC).

Installation of
IBM BlueGene

Tianhe-2

Next-generation supercomputers
100-300 PFLOPS (in 2017)

Summit is the next leap (in USA) in leadership-
class computing systems for open science

How to drive at top speed?

http://www.baixaki.com.br/imagens/galeria/1829/14970.jpg

How to drive at top speed?

To start with – know what do you drive…

High Performance Computer –
what is inside?

Memory

Control Unit +
Arithmetic Logic Unit

Disks, cables, more
cables, fans, water

…

von Neumann Architecture

Named after the Hungarian mathematician
John von Neumann who first authored the
general requirements for an electronic
computer in his 1945 papers.

Also known as "stored-program computer" -
both program instructions and data are kept in
electronic memory. Differs from earlier
computers which were programmed through
"hard wiring”

Four main components: Memory, Control
Units, Arithmetic Logic Units, Input-Output

What $100M machine does?

Not much …

Add +

Subtract −

Multiply ×

Divide ÷

Mod %

Why does it cost so much?
Speed (and accuracy and reliability)

How the speed is achieved ?

High clock frequency

High memory bandwidth

Parallel processing
of data and/or instructions

and fast communication

Not all processors and memory
subsystems are the same

Some have high clock frequency

Some have high memory bandwidth

Some can compute >1 instructions per cycle

and some can not

Some need a lot of energy , and some not

….

A compute node

Processor is the heart of a compute node

Memory subsystem is its vascular system

Understanding of computing starts with
the understanding of memory subsystem

in order to compute c=a+b :

• a memory space for a, b and c should be reserved

• a and b must be initialized

• data stored in &a and &b must be moved to the
processor’s registers

• computed data must be stored in &c

On chip
memory hierarchy

BlueGene/Q Chip (top)

Power 8 (left)

Why memory model is important?

Processors can do
C = A + B

DISK

Main memory

L4 cache

L3 cache

L2

L1

R

Data flow

Data locality is crucial
for performance!

Bandwidth and Latency

An airplane can lift 100M hard-drives, each holding 1TB of
data and fly from Beijing to Boston in 13 hours:

memory bandwidth: 100E6 *1TB/(13h*3600s/h) = 2,136.7
TB/s

latency : 13 hours ….

alternatively we can e-mail data in 2MB packets, it will take
60 seconds for each e-mail to be received:

memory bandwidth: 0.033MB/s

latency : 60 seconds

(882,639,730,639 hours to move 100E6*1TB)

Inside the machine…

for (i=0; i < N; i=i+1){
y[i] = a*x[i] + y[i];

}

1. Allocate memory for vectors x and y,
2. Assign values to a, y[i], x[i]
3. Perform multiply add operation.

CPU Sends a request to operating system to
allocate memory segments (in main memory)

x

y

CPU xL3L2L1r Main memory

Bandwidth [GB/s],
latency [ns]

Instructions
per cycle
(IPC)

Xeon Phi

Xeon Phi

The Intel Xeon Phi coprocessor implements very high
bandwidth memory subsystem. Each core is equipped with a
32KB L1 instruction cache and 32KB L1 data cache and a
512KB unified L2 cache. These caches are fully coherent and
implement the x86 memory order model. The L1 and L2
caches provide an aggregate bandwidth that is
approximately 15 and 7 times, respectively, faster compared
to the aggregate memory bandwidth. Hence, effective
utilization of the caches is key to achieving peak
performance on the Intel Xeon Phi coprocessor. In addition to
improving bandwidth, the caches are also more energy
efficient for supplying data to the cores than memory.
https://software.intel.com/en-us/articles/intel-xeon-phi-
coprocessor-codename-knights-corner

https://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-codename-knights-corner

Some Theory
and

Introduction to Parallelism

Parallel Computing: Memory Models

Shared Memory

Distributed Memory

MEMORY

CPU
1

CPU
2

CPU
3

MEMORY

CPU
1

CPU
2

CPU
3

MEMORY MEMORY

Network

(Real) Parallel Computing: Memory Models

MEMORY CPU 2CPU 1 MEMORY CPU 2CPU 1

MEMORY CPU 2CPU 1 MEMORY CPU 2CPU 1

MEMORY CPU 2CPU 1 MEMORY CPU 2CPU 1

(Even more Real) Parallel Computing:
Memory Models

MEM
ORY

CPU 1

CPU 2

CPU
N

Co-processor 1

Co-processor 2

Co-processor N

MEM
ORY

CPU 1

CPU 2

CPU
N

Co-processor 1

Co-processor 2

Co-processor N

Additional
memory

Programming Models

1. Shared Memory

2. Distributed Memory

3. Hybrid – many pools of shared and
distributed memory

Shared Memory
Programming Model

MEMORY

Core 4 Core 5 Core 6

Core 1 Core 2 Core 3
Example: 6 core CPU. Main
memory is shared. There is a
single address space. All cores can
read and write from/to the same
address.

Good: memory is accessible by
all cores at the same speed. Many
variables can be shared.
Bad: developers must be
careful and prevent from
different cores to write to the
same address, or read and write
to/from the same address at the
same time (race conditions).

Shared memory programming model
is typically implemented by using
threads (OpenMP)

Shared Memory
Programming Model

MEMORY

Core 4 Core 5 Core 6

Core 1 Core 2 Core 3

MEMORY

Core 4 Core 5 Core 6

Core 1 Core 2 Core 3

Example: two socket node, with one 6 core
CPU per socket. Main memories of each
socket can be mapped to a single address
space and shared. Here we have Non-Uniform
Memory Access (NUMA).

Pros: Larger memory pool.
Cons: data locality becomes and issue.

Shared Memory
Programming Model

Main memory
is shared, L4 an
L3 cache are
shared. L2
cache is shared
only within a
core.

Distributed Memory
Programming Model

MEMORY

Core 4 Core 5 Core 6

Core 1 Core 2 Core 3
Example: 6 core CPU. Main
memory is partitioned into 6
address spaces associated with
each core (MPI rank).

Good: No race conditions.
Bad: effectively less memory
per core is available for
application. Need to perform
explicit message passing to
exchange data between different
address spaces.

Distributed memory programming
model is typically implemented using
Message Passing Interface (MPI).

Hybrid Distributed-Shared Memory
Programming Model,

Multiple Memory Pools

MEM
ORY

CPU 1

CPU 2

CPU
N

Co-processor 1

Co-processor 2

Co-processor N

MEM
ORY

CPU 1

CPU 2

CPU
N

Co-processor 1

Co-processor 2

Co-processor N

Additional
memory

Parallel computers require
parallelizable algorithms

Flynn's Classical Taxonomy

SISD
Single Instruction Stream

Single Data Stream

SIMD
Single Instruction Stream

Multiple Data Stream

MISD
Multiple Instruction Stream

Single Data Stream

MIMD
Multiple Instruction Stream

Multiple Data Stream

Flynn's Classical Taxonomy

SISD
Single Instruction Stream

Single Data Stream

Load A

Load B

C = A + B

Store C

Single Instruction: Only one instruction during any one clock cycle.
Single Data: Only one data stream is being used as input/output during any one clock
cycle.
Deterministic execution: (no out of order execution)
No parallelism ….

Flynn's Classical Taxonomy

SIMD
Single Instruction Stream

Multiple Data Stream

Load A(1)

Load B(1)

C(1)=A(1)+B(1)

Store C(1)

Load A(2)

Load B(2)

C(2)=A(2)+B(2)

Store C(2)

Single Instruction: Only one instruction during any one clock cycle.
Multiple Data: Multiple data stream is being used as input/output during any one clock
cycle.
Data parallelism

Flynn's Classical Taxonomy

MISD
Multiple Instruction Stream

Single Data Stream

Load A(1)

Load B(1)

C(1)=A(1)+B(1)

Store C(1)

Load A(1)

Load B(1)

C(2)=A(1)*B(1)

Store C(2)

C(1)=C(1)*A(1) C(2)=C(2)+B(1)

Multiple Instructions: Multiple instruction during any one clock cycle.
Single Data: Single data stream is being used as input/output during any one clock
cycle. (not very strict - multiple output data)
Instruction Level parallelism

Flynn's Classical Taxonomy

MIMD
Multiple Instruction Stream

Multiple Data Stream

Multiple Instruction: Every processor may be executing a different instruction
stream
Multiple Data: Every processor may be working with a different data stream
Execution can be synchronous or asynchronous, in order or out of order
Currently, the most common type of parallel computer

MIMD also includes SIMD
and SIMT

Black board exercise

Solve numerically
du/dt = d2u/dx2

use finite differences discretization
1st order in time, 2nd order in space

write a parallel solver

