High Performance Computing

Leopold Grinberg

T. J. Watson IBM Research Center,
USA

High Performance COmputing

Why do we need HPC?

High Performance computing

Amazon can ship products within hours... would it
be helpful if the process of processing customers
orders will take 2-3 days ?

Would it be useful to predict yesterdays weather
accurately ?

Oil/gas industry — it costs about S100M to drill ...
but where ?

High Performance computing

Why do we need high performance?

“... to compete we need to be at least three
month ahead in putting products on
supermarket shelves ... “ [Massimo N., Unilever]

How HPC fits into Scientific Computing

Physical process: self assembly of polymers

Mathematical model

Numerical simulation H PC

Fast 10,
Fast, high-res

; visualization,
Data analysis H PA Fast extraction
of O(10) useful

values out of
(O) 10100

In this course:

Concepts in parallel computing
Roof-line model

How to chose right computer for an algorithm

How to chose right algorithm for a computer

Shared memory model
Distributed memory model
Hybrid computing

High Performance Computer

Computer that can perform O(10%°)
operations per second

Computer that can move O(10'°) bytes per
second

Computer that consumes more energy than
produced by a (nuclear) power station.

Computer with operational cost of 7 million
dollar per hour

High Performance Computing

Use of fast processors
Use of many processors

Smart use of many fast processors (scalable
parallel algorithms)

Use of software and hardware in a way that
maximizes the output/input ratio

'k

W g

EAngnARGS

Beads

Beam

= Rods
Frame

. - : e 5 aad
... - -J LS & s ﬂwq “‘“ 4 ay B
k 'al-.'.oLl Ilr'nl""‘l WAL, S

T E e, i, i o
1 ﬁwﬁjﬁ..

. ,ﬂ.&.

iill’.

| CO— . C— — — - —

\ EEFE.FF&

— . — — e

In use from 1946 to 1955,
the ENIAC is commonly
accepted as the first
successful high-speed
electronic digital
computer (EDC).

e e —— -

Installation of
IBM BlueGene

- TTLT " B

CHINA'S STILL #1.

GREAT WALL OF COMPUTER.

Perf

Nodes
Mem

Power

Cool

ITET AL

54.9PFlops / 33.86PFlo . . s
= * Highlights of Tianhe-2
16000
14PB
125+8+13+24=170 (720m?) P -_'-
17.8 MW (1.9GFlops/W) E ‘ ol 1 {11-;-52’(Rl
Close-coupled chilled e 1 | Rack
water cooling d=" 4§ (8 x Frame)
~. /TH-Express2
APM, R T

< %A/ Frame i :: -
y (8 x board) :
> Compute wi

#32000
FT-1500
#4096 =ity
Hybrid Hierarchy shared storage System
ST LY C Y ; H?FS 12.4PB

&= National '(/'niwrsiry of Defense Technology

Tianhe-2

Compute Node

+ Neo-Heterogeneous Compute Node

a Similar ISA, different
ALU

a 2 Intel vy Bridge
CPU + 3 Intel Xeon
Phi

a 16 Registered ECC
DDR3 DIMMs, 64GB

a 3 PCI-E 3.0 with 16
lanes

a PDP Comm. Port
a Dual Gigabit LAN

a Peak Perf. :
3.432Tflops

Comm. Port

<15X PCIE:

18X PCIE,

.

18X PCIE,

Dual Gigabdt LAN
o° 0

Next-generation supercomputers
100-300 PFLOPS (in 2017)

(S8 B Sl B N 2 g7 A S

w—ﬁu- N T T
N —

/N 5.y Dg&ﬁj

Summit is the next leap (in USA) in leadership-
class computing systems for open science

ATTRIBUTE TITAN SUMMIT

Compute Nodes 18,688 ~ 3,400

Processor (1) 16-core AMD (Multiple) IBM POWER
Opteron per node @s per node

Accelerator (1) NVIDIA Kepler K20x (Multiple) NVIDIAVolta
per node & PUs per node

Memory per node 32GE (DDR3) *512GE (HEM+DDR4)

CPU-GPU Interconnect PCI GenZ MNYVLINK (5-12% PCle3)

System Interconnect Gemini Dual Rail EDR-IB (23

GB/s)
FPeak Power @MW 10 MWW

Consumption

How to drive at top speed?

http://www.baixaki.com.br/imagens/galeria/1829/14970.jpg

How to drive at top speed?

To start with — know what do you drive...

High Performance Computer —
what is inside?

von Neumann Architecture

Named after the Hungarian mathematician
John von Neumann who first authored the
general requirements for an electronic
computer in his 1945 papers.

Also known as "stored-program computer" -
both program instructions and data are kept in

electronic memory. Differs from earlier
computers which were programmed through
"hard wiring”

Four main components: Memory, Control
Units, Arithmetic Logic Units, Input-Output

4. Node Card

Blue Gene/Q packaging hierarchy 32 Compute Cards,
Optical Modules, Link Chips,
3. Compute Card Torus

One single chip module,
16 GB DDR3 Memory

2. Module
Single Chip

1. Chip
16 cores

5b. VO Drawer

8 1/0 Cards 6. Rack 7. System
8 PCle Gen2 slots 2 Midplanes 20PF/s
1,2 0r41/0 Drawers

5a. Midplane
16 Node Cards

What S100M machine does?

Not much ...

Add +
Subtract -
Multiply x
Divide =+
Mod %

Why does it cost so much?

Speed (and accuracy and reliability)

Performance Development

10 EF/s
1 EF/s
100 PF/s
10 PF/s
1 PF/s
100 TF/s
10 TF/s
1TF/s
100 GF/s
10 GF/s
1 GF/s
100 MF/s

Performance

1995 2000 2005 2010
Lists

MSum W # [l #500

How the speed is achieved ?

High clock frequency
High memory bandwidth

Parallel processing
of data and/or instructions
and fast communication

Not all processors and memory
subsystems are the same

Some have high clock frequency

Some have high memory bandwidth

Some can compute >1 instructions per cycle
and some can not

Some need a lot of energy, and some not

A compute node

Processor is the heart of a compute node

Memory subsystem is its vascular system

Understanding of computing starts with
the understanding of memory subsystem

in order to compute c=ag+b :
 a memory space for a, b and c should be reserved
g and b must be initialized

e data stored in &a and &b must be moved to the
processor’s registers

 computed data must be stored in &c

On chip
memory hierarchy

20 : . dilos P P sl %4 abhd &

POWERS8 Processor

Technology
= 22nm SOI, eDRAM, 15 ML 650mm2

Cores
= 12 cores (SMT8)
= B dispatch, 10 issue,
16 exec pipe Core | Core E Core | Core | Core
= 2Xinternal data g
flows/queues = a:fs g" THl [EEE T
= Enhanced prefetching E..“ﬁ“h‘l ; =
= 64K data cache, HenE L3 Cache & Chip Interconnect Mem._ Ciri.
32K instruction cache e
Accelerators 2 Rk 2 o 12 g% £2 o) Bt oo
: Cryptu_&mermry Core | Core | Core §§ Core | Core | Core
expansion “
= Transactional Memory
= VMM assist

Energy Management
= On-chip Power Management Micro-controller
* Integrated Per-core VRM
= (Cntical Path Monitors

= Data Move / VM Mobility

= dpund pud pu] pu Feu frul Fieul fipul fRu | P
08505 508 507, 2087 09 o 107G AT gf 1203 g 2

: o] EEIEiTiaeaT 1h

O e ey e HIE © SHH| G, & i 22

g e d HEEHE TS B T HHEE 12 S HHE (L2 HHHI R L2 SR Rl | B

PUT ’_i-l'{'i_oslin-}w S os:i'HH I tHE 09 StHH|HHE 10 RHHHEPUSAE U5

103 - (e ol e e T (R |4 e | R s

e e ey D) o [R S

02 SR TR (2 SIS S I (2 S | R (2 SR]

04{;*:&‘ 3:.07’1% 5 HHR 08 SHH|HHE 11 #HH e 2T
HE CERUPHERE © S v) LS o SRS o SHH ,="=_=’Df§ﬁ§

AN - - i E‘ R i Pl plis:

R | R U2 S S L2 STHITR = J| 2eims 50

: | FEES 00 it Fl R 15 R (o 2 = &,

A) (M| LEHE o SHERGE 92 fHH]D)

e | O e T

Lt) HHH L2 sy : HH'S L2 E!’HHHH{ : :}H“‘:'qs_ o ;.

g 01 KHAL M| {19 Rithilepy ot P

s b= | chl it 18 I

L R - ¥ :

Caches TRE4 | Hi e _ ;
- 512 KB SRAM L2/ core T l"G'J H A B
e ~RPUITRPU LA F

- 96MBeDRAMshared L3 & = Msg | o 8 Pilazi e | .

- Upto128MBeDRAML4 |- - Serdes unit!l""" " Serdes
(off-chip) : =

Memory

= Upto 230 GB/s
sustained bandwidth

Bus Interfaces

* Durable open memory
attach interface

* Integrated PCle Gen3
* SMP Interconnect

= CAPI (Coherent
Accelerator Processor
Interface)

BlueGene/Q Chip (top)

Power 8 (left)

Why memory model is important?

Processors can do
C=A+B Data locality is crucial

for performance!

Data flo
L3 cache) W

Main memory

Bandwidth and Latency

An airplane can lift 100M hard-drives, each holding 1TB of
data and fly from Beijing to Boston in 13 hours:

memory bandwidth: 100E6 *1TB/(13h*3600s/h) = 2,136.7
TB/s

latency : 13 hours

alternatively we can e-mail data in 2MB packets, it will take
60 seconds for each e-mail to be received:

memory bandwidth: 0.033MB/s
latency : 60 seconds
(882,639,730,639 hours to move 100E6*1TB)

Inside the machine...

for (i=0; i < N; i=i+1){
1. Allocate memory for vectors x and y,

Y[|] =d *X[l] + Y[I], 2. Assign values to a, y[i], x[i]
} 3. Perform multiply add operation.

Sends a request to operating system to
CPU g P g sy

allocate memory segments (in main memory) ﬁ

SR E I Main memory

Instructions —>
per cycle Bandwidth [GB/s],

(IPC) latency [ns]

Xeon Phi

Xeon Phi

The Intel Xeon Phi coprocessor implements very high
bandwidth memory subsystem. Each core is equipped with a
32KB L1 instruction cache and 32KB L1 data cache and a
512KB unified L2 cache. These caches are fully coherent and
implement the x86 memory order model. The L1 and L2
caches provide an aggregate bandwidth that is
approximately 15 and 7 times, respectively, faster compared
to the aggregate memory bandwidth. Hence, effective
utilization of the caches is key to achieving peak
performance on the Intel Xeon Phi coprocessor. In addition to
improving bandwidth, the caches are also more energy
efficient for supplying data to the cores than memory.

https://software.intel.com/en-us/articles/intel-xeon-phi-
coprocessor-codename-knights-corner

https://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-codename-knights-corner

Some Theory
and
Introduction to Parallelism

Parallel Computing: Memory Models

Shared Memory _

Distributed Memory

(Real) Parallel Computing: Memory Models

CPU 1 - CPU 2 CPU 1 . CPU 2

N v/ N v/ . v/ N v/
CPU 1 . CPU 2 CPU 1 . CPU 2

\ A N v/ & v N v/

CPU 1 . CPU 2 CPU 1 - CPU 2
NS A N v/ S A N v/

(Even more Real) Parallel Computing:
Memory Models

Additional
memory

Programming Models

1. Shared Memory
2. Distributed Memory

3. Hybrid — many pools of shared and
distributed memory

Shared Memory
Programming Model

Core 1 Core 2 Core 3

{ y $

{

Cored Core5 Coreb6

Shared memory programming model

is typically implemented by using
threads (OpenMP)

Example: 6 core CPU. Main
memory is shared. Thereis a
single address space. All cores can
read and write from/to the same
address.

Good: memory is accessible by
all cores at the same speed. Many
variables can be shared.

Bad: developers must be
careful and prevent from
different cores to write to the
same address, or read and write
to/from the same address at the
same time (race conditions).

Shared Memory
Programming Model

- . “\ / ! . . l\\ J/‘“

Example: two socket node, with one 6 core Pros: Larger memory pool.

CPU per socket. Main memories of each Cons: data locality becomes and issue.
socket can be mapped to a single address

space and shared. Here we have Non-Uniform

Memory Access (NUMA).

Shared Memory

Programming Model

POWERS8 Processor

Cores

12 cores (SMT8)

8 dispatch, 10 issue,
16 exec pipe

2X internal data
flows/queues

Enhanced prefetching

64K data cache,
32K instruction cache

Accelerators

Crypto & memory
expansion
Transactional Memory
VMM assist

Data Move / VM Mobility

Technology
= 22nm SOI, eDRAM, 15 ML 650mm2

Core | Core

[12] 12 | L2 |

Core | Core | Core

EYU] JNS B30T

Energy Management
= On-chip Power Management Micro-controller
» Integrated Per-core VRM
» Cntical Path Monitors

Caches
= 512 KB SRAM | 2 | core
= 96 MB eDRAM shared L3

= Upto 128 MB eDRAM L4
(off-chip)

Memory

= Upto 230 GB/s
sustained bandwidth

Bus Interfaces

Durable open memory
attach interface

Integrated PCle Gen3
SMP Interconnect

CAPI (Coherent
Accelerator Processor
Interface)

Main memory
is shared, L4 an
L3 cache are
shared. L2
cache is shared
only within a
core.

Distributed Memory
Programming Model

Example: 6 core CPU. Main
memory is partitioned into 6
address spaces associated with
each core (MPI rank).

Good: No race conditions.

Bad: effectively less memory
per core is available for
application. Need to perform
explicit message passing to
exchange data between different
address spaces.

Distributed memory programming
model is typically implemented using
Message Passing Interface (MPI).

Hybrid Distributed-Shared Memory
Programming Model,
Multiple Memory Pools

\ N
_

CPU
N
N

Additional
memory

Parallel computers require
parallelizable algorithms

Flynn's Classical Taxonomy

SISD

Single Instruction Stream
Single Data Stream

SIMD

Single Instruction Stream
Multiple Data Stream

MISD

Multiple Instruction Stream
Single Data Stream

MIMD

Multiple Instruction Stream
Multiple Data Stream

Flynn's Classical Taxonomy

SISD Load A

Single Instruction Stream
Single Data Stream Load B

C=A+8B

Store C

Single Instruction: Only one instruction during any one clock cycle.

Single Data: Only one data stream is being used as input/output during any one clock
cycle.

Deterministic execution: (no out of order execution)
No parallelism

Flynn's Classical Taxonomy

Load A(1) Load A(2) SIMD
Single Instruction Stream
Load B(1) Load B(2) Multiple Data Stream

C(1)=A(1)+B(1) C(2)=A(2)+B(2)

Store C(1) Store C(2)

v

Single Instruction: Only one instruction during any one clock cycle.

Multiple Data: Multiple data stream is being used as input/output during any one clock
cycle.

Data parallelism

Flynn's Classical Taxonomy

Load A(1) Load A(1)
Load B(1) Load B(1)

c(1)=A(1)+8(1) I C(2)=A(1)*B(1)

C(1)=C(1)*A(1) C(2)=C(2)+B(1)

MISD

Multiple Instruction Stream
Single Data Stream Store C(1) Store C(2)

Multiple Instructions: Multiple instruction during any one clock cycle.

Single Data: Single data stream is being used as input/output during any one clock
cycle. (not very strict - multiple output data)

Instruction Level parallelism

Flynn's Classical Taxonomy

Multiple Instruction: Every processor may be executing a different instruction
stream

Multiple Data: Every processor may be working with a different data stream
Execution can be synchronous or asynchronous, in order or out of order
Currently, the most common type of parallel computer

MIMD also includes SIMD

and SIMT MIMD

Multiple Instruction Stream
Multiple Data Stream

There are several ways to employ
many-core computers

1. Use of many cores to execute related
solvers concurrently. These cores do not
communicate (embarrassingly parallel
application)

2. Use of many core to solve one problem
(or more) problem(s) at a time with
communication between the cores

3. Combination of 1 and 2

Example of embarrassingly parallel
application

On CPU 1 do
for(1=1;1<M; 1++)
gzip file_%i.dat

On CPU 1 do

for(1=1;1<N; I++)
gzip file_$%i.dat

On CPU 2 do

for (1=M;i1<N; I++)
gzip file_$i.dat

Example of embarrassingly parallel
application

Solve a stochastic problem and compute the mean solution: (. x)=i[f (.1.x) - W]

On CPU 1 do: OnCPU1do: | OnCPU2do:
for (=0 < Nii + 41 for (i=0i<M:i++){ | for (i=M:i<N:i++){
.T:' (fﬂ}_‘}:f(ﬁ}f_r!x) .-1":'(3"- ‘T):f(ﬂ)i*r'-x) E .-I'Ff(r- x):f(mi"-r‘ ‘T}
! } B
€0= S0 | 7 00= S0
. _ . . . VLx)= yilo.r.x)-w, 1 v (I.X)= v.(o.1,x)-w,
v(t.x) = z_'l-,-(t'-'),-. 1.X)- W, = ' =~

i=1

Paradigm for solution of tightly
coupled problem

Solution of stochastic problem: y[t,x}=i[f{a:ﬂ_,-.,f._ x)-w;]
Tml

On CPUs 1-10000 do:

for (i=0i < N:i++){
y.(t.x) = f(o.t,x) Solve in parallel

}

M-1
$(1.%) = X 3,(@.1.5) v, T
i=1

Paradigm for solution of loosely-
tightly coupled problem

Solution of stochastic problem: }'(a‘,r}=i[f(ﬂa--.f.. x)-w;]

1=l

On CPUs 1-5000 do: On CPU 5001-10000 do:

Jor (i =0:f < Mii++)3 Solve in parallel Jor (=M< N+)i
y;(1.x) = fo.1,x)« using two non- v;(1.x) = f(w,.1,x)

} overlapping groups }

. e of processors . N
vitx)=D vi(o.t.x)-w, P vi(tx) =D v(o.tx)-w,
i=l1 i=M

Here we decompose the domain in physical space (x) and in a space of the
random variable.

Multiple levels of

parallelism
v(x)=Ax + Bx + Cx

*L (@3 On CPU 1 do Ax; on CPU 2 do Bx; on GPU do Cx

On CPU 1 and 2 do Ax and Bx; on GPU do Cx

Multilayer parallelism

[|
[PR

CPU™2 3 45 6 7 8 9 10 11 127

e]

H-;—hk_ b o I o o . o o I o I o o I o ¢ C d 1
R A B Ll et S & ode

CPU 1 Code 2

e e e e e e e e i = o e = e o o e = e = —

Black board exercise

Solve numerically
du/dt = d?u/dx?
use finite differences discretization
15t order in time, 2" order in space
write a parallel solver

