Parallel Computing

Distributed memory model
MPI

Leopold Grinberg

T. J. Watson IBM Research Center,
USA

Instructor: Leopold Grinberg

Why do we need to compute
In parallel

 |large problem size - memory constraints

« computation on a single processor takes
too long — time constrain

* combination of memory and time constrain

Instructor: Leopold Grinberg

(classical) classifications of

computer architecture*

CPU CPU

memory memory

> —1 memory

CPU

Interconnection network

distributed memory

.

lcru| [cru| [eru| ...

l

CPU

Interconnection

I memoryl l memoryl I memoryl SN

| memory |

shared memory

SMP

*appropriate for Multiple Instruction Multiple Data (MIMD) architecture

Instructor: Leopold Grinberg

Shared Memory Computer Architecture

All processors can access all memory (global address space)

Uniform Memory Access (UMA) Non-Uniform Memory Access (NUMA)

<xTVOZImMmZ
<xTVOZImMZ

HEMORY HE
T B B

M M
- .

Typically are Symmetric Multiprocessor (SMP) Typically made by physically linking several SMPs.

machines with identical processors SMP i can directly access memory of SMP j.

Equal access and access times to memory Non-equal speed in memory access.

Sometimes called CC-UMA - Cache Coherent UMA. May also be CC-NUMA

(Cache coherent means if one processor updates a location in
shared memory, all the other processors know about the update.
Cache coherency is accomplished at the hardware level.)

APMAZ2821; Instructor: Leopold Grinberg

Shared Memory Computer Architecture:
the good and the bad

1. User-friendly programming perspective
to memory.

2. Relatively fast access to data stored in
shared memory.

3. More memory / task

1. Lack of scalability between memory and CPUs. Adding
more CPUs can geometrically increases traffic on the
shared memory-CPU path, and for cache coherent
systems, geometrically increase traffic associated with
cache/memory management.

2. Programmer responsibility for synchronization constructs
that ensure "correct" access of global memory.

3. Expense: it becomes increasingly difficult and expensive to
design and produce shared memory machines with ever
increasing numbers of processors.

APMAZ2821; Instructor: Leopold Grinberg

Distributed Memory Computers

MEMORY MEMORY MEMORY MEMORY Data exchange between
attached to each CPU
memory requires inter-CPU

Memory is scalable with number of processors.
Memory is local — no concept of global address space and cache-

coherency.
Programmer is responsible for designing communication across CPUs

APMAZ2821; Instructor: Leopold Grinberg

Parallel Computers of 2010...

Most of the computers have hybrid memory architecture.

Several middleware have been developed to allow using
the hybrid computers as “distributed memory computers”
and also distributed memory computers as “shared
memory” machines.

For example it is possible to run MPI-based applications on
SGI computers where memory can be shared among
thousands of cores.

UPC allows use of “global” arrays, in fact it simply hides the
communication.

GPUs introduce another dimension. These compute cards can
be attached to CPUs such that the CPUs can “outsource” its
tasks to GPUs.

APMAZ2821; Instructor: Leopold Grinberg

Main (classical) approaches to
parallel programming

message-passing model (MPI)
This is the most commonly used model for parallel programming
on distributed-memory architectures.

directives-based data-parallel model (OpenMP)
The message-passing model is the most commonly used model
for parallel programming on distributed-memory architectures

Hybrid approach MPI+OpenMP

New hybrid approaches include use of CUDA (or openCL)
distributing work to CPUs and GPUs (or CELL processors)

Instructor: Leopold Grinberg

Trend

The core unit in a new (future) computer architecture
will be a “compute node”

[« | node

.

compute node will contain several
multicore processors
some type of accelerator(s)
(GPU or CELL or ?)
local communication network
probably local disk(s)
possibly different types of RAM

Instructor: Leopold Grinberg

Parallel Program with MPI

Parallel programs consist of multiple instances of a serial program that communicate by library calls (MPI).
These calls may be roughly divided into the following four classes:

1. Calls used to initialize, manage, and finally terminate communications.
These calls are used for starting communications, identifying the number of processes being used,
creating subgroups of processors, and identifying which process is running a particular instance of a program.

2. Calls used to communicate between pairs of processes.
These calls, called point-to-point communications operations, consist of different types of send-and-receive
operations.

3. Calls that perform communications operations among groups of processes.

These calls are the collective operations that provide synchronization, certain types of well-defined
communications

operations among groups of processes, and calls that perform communication/calculation operations.

4. Calls used to create arbitrary data types.
These provide flexibility in dealing with complicated data structures.

Instructor: Leopold Grinberg

Parallel Program Design

Your main goal when writing a parallel program is to get

better performance than you would get from a serial version.

You need to consider several issues when designing a parallel code:
* problem decomposition

algebraic or geometric decomposition; functional (task) decomposition;
 l[oad balancing (minimizing process idle time)
e concurrent computation and communication
e concurrent communications

 hierarchical structure of the modern high-performance computers

Instructor: Leopold Grinberg

Example of a Data Parallel Problem

o°u
— = f (X
W, (X)

o°u U, —2u +U.,
— 1— I 1+ — f X
OX’ AX® ()

i

000000000006 O OO0 O0O0O00

I

u, =0.5(u_, +u,,)—0.5Ax*f, u, =0.5(u_, +u,,)—0.5Ax*f,

Instructor: Leopold Grinberg

Example of a

Data Parallel Problem (2D)

\

2 2 v
o°u 8 P(0,0) P(0,1)
2 - f (X y) i 1=<i<=16 PP 1=<i<=16 I .
OX 8y 1<=j;=16 1re=je=32
v v
P(1,0) P(1,1)
52U N O°U Uip; —2U;; + U ; N U iq =20 +U; dov A7mcicess <4v 17mcicern +br
ax c ay 2 AX AX 2 1<=j:=16 17<=i<=32
' '
AX® (AX? j
Uy + (U ., +U ..)|—05Ax"f
_11 i+1,] 2 \7i,j-1 i, j+1
Ay* Ay

Instructor: Leopold Grinberg

Functional Parallelism

M|P|I C{lO|MM W|O|R|L|D

ﬂ TOPOLOGY AWARE DECOMPOSITION ﬂ

%‘
™ saf [T T I Isl2[T T 1] S

Slave # 1 Slave #2 T ﬂ TASK ORIENTED DECOMPOSITION @

1D

Instructor: Leopold Grinberg

Parallel Program Design:
execution time

Computation time

ldle time

minimize each of
this components!!!

Communication time

IO time

a k~ 0 DN PF

Computer boot-up time

Instructor: Leopold Grinberg

Load Balancing

Load balancing divides the required work equally among all of the available processes.

This ensures that one or more processes do not remain idle while the other processes
are actively working on their assigned sub-problems so that valuable computational
resources are not wasted.

Load balancing can be easy when the same operations are being performed by all the
processes on different pieces of data.

Most of the time load balancing is far from being trivial.
When there are large variations in processing time, you may need to adopt an alternative
strategy for solving the problem.

Instructor: Leopold Grinberg

MPI

The Message Passing Interface (MPI) is a standard library.

MPI is not a programming model !!!

Some MPI libraries are free and some are not (commercial)

Instructor: Leopold Grinberg

MP|

MPI allows for the coordination of a program running as multiple processes in

a distributed memory environment.

MPI also can be used in a shared memory system.

MPI also can be used in
a heterogeneous system.

CPU CPU

—l memory I

o] *

| Interconnection network

[cru| [cpul

[cru |

Interconnection

I memory| | memoryl | memoryl S @
CPU «— CPU
GPU GPU

The standardization of the MPI library makes it very powerful and enables source
code portability since MPI programs should compile and run as-is on any platform.

MPI also allows efficient implementations across a range of architectures.

Instructor: Leopold Grinberg

MPI-1 MPI-2 MPI-3

« MPI was developed over two years of discussions led by the MPI Forum, a group of
approximately sixty people representing about forty organizations. The MPI-1
standard was defined in 1994, and it consists of the following:

- It specifies the names, calling sequences, and results of subroutines and functions to
be called from Fortran 77 and C, respectively. All implementations of MPI must
conform to these rules, thus ensuring portability. MPI programs should compile and
run on any platform that supports the MPI standard.

-The detailed implementation of the library is left to individual vendors, who are thus
free to produce optimized versions for their machines.

« Implementations of the MPI-1 standard are available for a wide variety of platforms.

 An MPI-2 standard has also been defined. It provides for additional features,
including tools for parallel I/0, C++ and Fortran 90 bindings, and one-sided
communication.

e MPI-3.0 — year 2014

Instructor: Leopold Grinberg

Type of MPI routines

Point-to-point communication
Collective communication

Process groups

Process topologies

Environment management and inquiry

Instructor: Leopold Grinberg

A communicator

A communicator is an MPI object that defines a group of
processes that are permitted to communicate with one

another. Every MP| message must specify a
communicator via a “name” that is included as an explicit

parameter within the argument list of the MPI call.

MPI COMM_WORLD

Instructor: Leopold Grinberg

MPI Naming Conventions

All names have MPI prefix.

In FORTRAN:
— All subroutine names upper case, last argument is return code

call MPI XXXX(argl,argZ2,..,lierr)
call MPI XXXX XXXX(argl,argZ,..,lerr)

If ierr == MPI SUCCESS,
Everything is ok; otherwise,
something is wrong.

— A few functions without return code

In C++(C): mixed uppercase/lowercase

lerr = MPI Xxxx(argl,arg2,..);
lerr = MPI Xxxx xxx(argl,arg2,..);

MPI constants all uppercase

MPI COMM WORLD, MPI SUCCESS, MPI DOUBLE, MPI SUM, ..

Instructor: Leopold Grinberg

General MPI Program Structure

Ininahze MPT environment

Do work and make message passing calls

Terminate MPI Environment

Instructor: Leopold Grinberg

S o A

The minimal MPT subset.
MPTI program structure

MPI1_Init()
MPI_Finalize()
MPI_Comm_size()
MPI_Comm_rank()
MPI1_Send()
MPI_Recv()

#include <mpi.h>
#include <stdio.h>

int main (argc, *argv[]){
Int rank, size;

MPI_Init (&argc, &argv);
[* starts MPI */

MPI_Comm_rank (MPI_COMM_WORLD, &rank);
[* get current process id */

MPI Comm_size (MPI_COMM_WORLD, &size);
[* get number of processes */

printf("Hello world from process %d of %d\n",
rank, size);

MPI_Finalize();

return O;

}

Instructor: Leopold Grinberg

MPI include file

MPI| Header Files

e In C/C++:

Terminate MPI Environment

#include <mpi.h>, before including <stdio.h>

* In FORTRAN:

include ‘mpif.h’
or (in FORTRAN90 and later)

use MPI

Instructor: Leopold Grinberg

— Must be called before any other MPI routine
— Can be called only once; subsequent calls are erroneous.

Use MPI Initialized(int *flag) to check if
MPI_init has been called already.

int MPI Init(int *argc, char ***argv)

int main (int argc, char ** argv)

{

MPI Init(&argc, &argv);

int flag;
MPI Initialized(&flag);
if(flag != 0) .. // MPI Init called

MPI Finalize();
return 0O;

Instructor: Leopold Grinberg

Termination

« MPTI Finalize () cleans up MPI environment

— Must be called before exits.

— No other MPI routine can be called after this call,
even MPI INIT ()

— Exception: MPTI Initialized() (and
MPI Get version(),MPI Finalized()).

« Abnormal termination: MPI Abort ()
— terminates (all) MPI processes.

int MPI Finalize (void)
MPI_FINALIZE(IERR)
integer IERR

int MPI Abort (MPI Comm comm, int errorcode)
MPI ABORT (COMM, ERRORCODE, IERR)
integer COMM, ERRORCODE, IERR

Instructor: Leopold Grinberg

MPI Communications

* Point-to-point communications
— Involves a sender and a receiver
— Only the two processors participate in communication

« Collective communications

— All processors within a communicator participate in
communication (by calling same routine, may pass
different arguments);

— Barrier, reduction operations, gather, scatter...

Instructor: Leopold Grinberg

1.
2.

Point — to — point communication

rank I sends data, rank | receives data

rank | and rank | exchange data

message body:
buffer, size, datatype

message envelope:
source (destination), tag, communicator

Instructor: Leopold Grinberg

\

MPI| Datatypes

MPI_CHAR
MPI_SHORT
MPI_INT
MPI_LONG

MPI_UNSIGNED CHAR
MPI_UNSIGNED SHORT

MPI_UNSIGNED

MPI_UNSIGNED LONG

MPI_FLOAT
MPI_DOUBLE

MPI_LONG_DOUBLE

MPI_BYTE
MPI_PACKED

signed char
signed short int
signed int

signed long int
unsigned char
unsigned short int
unsigned int
unsigned long int
float

double

long double
(none)

(none)

Instructor: Leopold Grinberg

Blocking pojnt-ta- _pami_cownumca’rnon

int MPI Send(
void *buf, /* initial address of send buffer */
int count, /* number of elements in send buffer (nonnegative integer) */

MPI_Datatype datatype, /* datatype of each send buffer element */
int dest, /* rank of destination (integer)

int tag, /* message tag (integer) */
MPI_Comm comm /* communicator */
);
int MPI_Recv(
void *buf, /* initial address of receive buffer */
int count, /* number of elements in receive buffer (nonnegative integer) */
MPI_Datatype datatype, /* datatype of each receive buffer element */
int dest, /* rank of source (integer) */
int tag, [* message tag (integer) */
MPI_Comm comm, /* communicator */
MPI_Status *status /* status object */
);

Instructor: Leopold Grinberg

Deadlock

MPI_Comm_rank(MPI_COMM_WORLD,&rank);

If(rank==0)

{
MPI1_Recv(bufl,count,MPI_DOUBLE,1,tag,comm);
MPI1_Send(buf2,count, MPI_DOUBLE,1,tag,comm);

}

else if (rank==1)

{
MPI_Recv(bufl,count, MPI_DOUBLE,O,tag,comm);
MPI_Send(buf2,count,MPI_DOUBLE,0,tag,comm);

}

MPI_Comm_rank(MPl_COMM_WORLD,&rank);

If(rank==0)

{
MPI_Recv(bufl,count,MPI_DOUBLE,1,tag,comm);
MPI_Send(buf2,count,MPI_DOUBLE,1,tag,comm);

}

else if (rank==1)

{
MPI1_Send(buf2,count, MPI_DOUBLE,O,tag,comm);
MPI1_Recv(bufl,count,MPI_DOUBLE,O0,tag,comm);

}

Instructor: Leopold Grinberg

“"IPO T~

~=-|P1 | «-

May survive
on some computers

Blocking point-to-point communication

int MPI_Sendrecv(
void *sendbuf,
int sendcount,
MPI_Datatype sendtype,
int dest,
int sendtag,

void *recvbuf,

int recvcount,
MPI_Datatype recvtype,
int source,

int recvtag,

MPl_Comm comm,
MPI|_Status *status
);

Instructor: Leopold Grinberg

#include <mpi.h>
#include <stdio.h>

int main(int argc, char **argv)

{ Output:

int my rank, ncpus; P3 received from right neighbor: PO

int left neighbor, right neighbor;
int data_received;
int send tag = 101, recv_tag=101;
MPI Status status;

P2 received from right neighbor: P3
PO received from right neighbor: P1
P1 received from right neighbor: P2

MPI Init(&argc, &argv);
MPI Comm rank (MPI_COMM WORLD, &my rank);
MPI Comm size (MPI_COMM WORLD, é&ncpus);

left neighbor = (my rank-1 + ncpus) %$ncpus;
right neighbor = (my_ rank+l) %ncpus;

MPI Sendrecv(&my rank, 1, MPI INT, left neighbor, send tag,
&data received, 1, MPI INT, right neighbor, recv_tag,
MPI COMM WORLD, é&status);

printf (“P%d received from right neighbor: P%d\n",
my rank, data received);

// clean up
MPI Finalize();
return O;

}

Instructor: Leopold Grinberg

Non-blocking point-to-point
communication

int MPI_Isend(
void *buf, /[* initial address of send buffer */
int count, /* number of elements in send buffer (nonnegative integer) */
MPI_Datatype datatype, /* datatype of each send buffer element */
int dest, /*rank of destination (integer) */
int tag, [* message tag (integer) */
MPI_Comm comm, [* communicator */

);

MPI_Request *request /* communication request */

int MPI1_Irecv(

void *buf, /* initial address of receive buffer */

int count, /* number of elements in receive buffer (nonnegative integer) */
MPI_Datatype datatype, /* datatype of each receive buffer element */
int dest, [* rank of source (integer) */

int tag, [* message tag (integer) */

MPI_Comm comm, /* communicator */

MPI_Request *request /* communication request */

Instructor: Leopold Grinberg

MPI_ Wait(all,any,some)

will be covered later

Instructor: Leopold Grinberg

Communication Modes and
Completion Criteria

There are four communication modes available for sends:

e Standard (MP1_SEND)

« Synchronous (MPI_SSEND)
« Buffered (MPI1_BSEND)
* Ready (MPI_RSEND)

There is only one mode available for receive
(MPI_RECV)

Instructor: Leopold Grinberg

Communication Modes and Completion
Criteria: Standard Mode

Standard mode send is MPI’s general-purpose send mode.

When MPI executes a standard mode send, one of two things happens:

1. The message is copied into an MPI internal buffer and is transferred asynchronously to the destination
process

2. The source and destination processes synchronize on the message.

The MPI implementation is free to choose (on a case-by-case basis) between buffering and
synchronizing, depending on message size, resource availability, and so on. If the message is copied into
an MPI internal buffer, then the send operation is formally completed as soon as the copy is done. If the
two processes synchronize, then the send operation is formally completed only when the receiving
process has posted a matching receive and actually begun to receive the message.

MPI_SEND does not return until the send operation it invoked has completed. Completion can mean the
message was copied into an MPI internal buffer, or it can mean the sending and receiving processes
synchronized on the message.

MPI_ISEND initiates a send operation and then returns immediately, without waiting for the send
operation to complete. Completion has the same meaning as before: either the message was copied into
an MPI internal buffer or the sending and receiving processes synchronized on the message.

Variables passed to MPI_ISEND cannot be used (should not even be read) until the send operation
invoked by the call has completed.

One of the advantages of standard mode send is that the choice between buffering and synchronizing is
left to MPI on a case-by-case basis.

Instructor: Leopold Grinberg

Communication Modes and Completion
Criteria: Synchronous Mode

Synchronous mode send requires MPI to synchronize the sending
and receiving processes.

When a synchronous mode send operation is completed, the
sending process may assume the destination process has begun
receiving the message.

The destination process need not be done receiving the
message, but it must have begun receiving the message.

The nonblocking call has the same advantages the nonblocking

standard mode send has: the sending process can avoid blocking
on a potentially lengthy operation.

Instructor: Leopold Grinberg

Communication Modes and Completion
Criteria: Ready Mode

Ready mode send requires that a matching receive has
already been posted at the destination process before ready
mode send is called.

If a matching receive has not been posted at the destination, the
result is undefined. It is developers responsibility to make sure the
requirement is met.

In some cases, knowledge of the state of the destination process
is available without doing extra work. Communication overhead
may be reduced because shorter protocols can be used internally
by MPI when it is known that a receive has already been posted.

Instructor: Leopold Grinberg

Communication Modes and Completion
Criteria: Buffered Mode

Buffered mode send requires MPI to use buffering.

The downside is that developer is responsible for managing the
buffer. If at any point, insufficient buffer is available to complete
a call, the results are undefined.

The functions MPI_BUFFER_ATTACH and
MPI_BUFFER_DETACH allow a program to make buffer
available to MPI.

Instructor: Leopold Grinberg

Collective Communications

Collective communication involves the sending and receiving of data among
processes.

The collective routines are built using point-to-point communication routines.

Any collective communications can be substituted by MPI send and receive routines.

the "blackbox" (collective) routines hide a lot of the messy details and often
implement the most efficient algorithm known for that operation (for that
architecture,....).

Instructor: Leopold Grinberg

Collective Communications

Collective communication routines transmit data among all
processes in a group.

Collective communication calls do not use the tag mechanism of
send/receive for associating calls.

Rather, they are associated by order of program execution and
because of this developer must ensure that all processors execute
a given collective communication call.

Instructor: Leopold Grinberg

Barrier Synchronization

int MP1_Barrier (comm)

The MPI_BARRIER routine blocks the calling process until all
group processes have called the function. When MPI_BARRIER
returns, all processes are synchronized at the barrier.

MPI_BARRIER can incur a substantial overhead on some
machines.

In general, you should only insert barriers when they are truly
needed.

MPI_Barries is often used for debugging
and performance evaluations

Instructor: Leopold Grinberg

How would you substitute
MPI|_Barrier with point to point
communication?

Instructor: Leopold Grinberg

Broadcast Operation

The MPI_BCAST routine enables you to copy data from the
memory of the root processor to the same memory locations
for other processors in the communicator.

I ™\ r7 ™
L1 processons T L erocessos
p0 p0

A A
rl m-| Pl | A
p? P2 | A
3 3 A
int MP1_Broadcast (2) /
void *sendbuf,
int sendcnt,
MPI_Datatype sendtype,
int root,
MPI_Comm comm
);

Instructor: Leopold Grinberg

How would you substitute
MPI|_Broadcast with point-to-point
communication?

Instructor: Leopold Grinberg

#include <mpi.h>
#include <stdio.h>

int main(int argc, char **argv)
{

int my rank, ncpus;

MPI Init(&argc, &argv);
MPI Comm rank (MPI_COMM WORLD, &my rank);
MPI Comm size (MPI_COMM WORLD, é&ncpus);

double *parameters;
int Nparameters;

posix memalign((void**) ¶meters,16,Nparameters*sizeof (double)) ;

if (my_rank == 0)
read parameters from file(filename, parameters) ;

(parameters, Nparameters, MPI DOUBLE, 0, MPI_COMM WORLD) ;
//do more work

MPI Finalize();
return O;

}

Instructor: Leopold Grinberg

Broadcast Operation: example

A, A,
A, A
A, Al
L2,2
L3,2 L3,2
U1,2 U1,3
U2,2 U2,3
U3,3

Ax=b =2 LUx=b = Ly=Db, Ux=y

L,
= L2,1

_L3,1

Y, b
Y, = bz
y; b
X Y
X =Y,
X3 Y3

Ul,l U1,2 U1,3
L2,2 U 2,2 U 2,3
I—3,2 L3,2__ U3,3_
PO: solve for y, — and broadcast y,
P1: solve for y, — and broadcast y,
P3: solve for x; — and broadcast y,
P2: solve for x, — and broadcast x,

Instructor: Leopold Grinberg

Collective communication (all-to-one)

int MPI_Gather (i
void *sendbuf, P1 i ,l
int sendcnt, /I /
MPI_Datatype sendtype, PO ,' / /I
void *recvbuf, < ,' / II ,l
int recvcount, « {' 1 0y,

MPI _Datatype recvtype, <« root
int root,
MPI_Comm comm
); significant only at root

Instructor: Leopold Grinberg

Collective communication (all-to-one)

int MPI_Gatherv (_
void *sendbuf, b1 7
int sendcnt, / \’\
MPI1_Datatype sendtype, PO _ P //

void *recvbuf, < I ,' /'
int *recvcount,< I " I / message
nt G, < i ——

MPI_Datatype recvtype, < root

int root,

MPI_Comm comm significant only at root

Instructor: Leopold Grinberg

Gather(v): example

10 3
1 4
2 —E—
sway —
Data ¢ [—root
parallelism 0N
+ &)
owa <+root
Y 1o 3
Functional
parallelism l /
1 4
SR v

Instructor: Leopold Grinberg

if (my_rank == 0){
posix_memalign((void**)& rcvent, 16,comm_size*sizeof(int));
posix_memalign((void**)& displs ,16,comm_size*sizeof(int));

rcvent[0] = message_size per_rank[O];
displs[0] = O;
for (i=1; i <comm_size; ++i){
rcvent[i] = message_size per_rank]i];
displs[i] = displs[i-1]+rcvent[i-1];
}
MPI_Gatherv(sendbuf local, message size local, MPI_DOUBLE,
recv_buffer, rcvent, displs, MPI._ DOUBLE,
0, communicator);
free(rcvent); free(displs);

}

else
MPI_Gatherv(sendbuf local, message size local, MPI _DOUBLE,

NULL, NULL, NULL, MPI_DOUBLE,
0, communicator);

Instructor: Leopold Grinberg

Gather(v)

PO P1 P1 P1

/7

recvent = [4 3 3 1]
displs =[04812] + displs[i] = i*stride

Instructor: Leopold Grinberg

How would you substitute
MPI_Gather(v) with point-to-point
communication?

Instructor: Leopold Grinberg

Collective communication (all-to-all)

MPI_Allgather(v)

Gathers data from all tasks and distribute it to all

4i N ’T ™
Q Processors Q Processors
po0 po

Ao Ao |4, |4,
int MPI_Allgatherv (Pl |An | 1 A |dn |[40:|4s
void *sendbulf,
int sendcnt, o ol) s i
MPI_Datatype sendtype, 03 (4 o [A]d, [4..]4,,
void *recvbuf, ~ /N /
int *recvcount,
int *displs,
MPI|_Datatype recvtype,
MPI_Comm comm
);

Instructor: Leopold Grinberg

Collective communication (one-to-all)

int MPI_Scatter (P3
void *sendbuf, < P2 4 /
int sendcnt, < P1 4 / ,'
MPI_Datatype sendtype, « PO # / ,' /I
void *recvbuf, f I ,' /I /
int recvcount, : " ro,)
MPI_Datatype recvtype, root
int root,
MPI_Comm comm significant only at root

);

APMAZ2821; Instructor: Leopold Grinberg

Collective communication (one-to-all)

int MP1_Scatterv (

void *sendbuf,
int *sendcnt,
int *displs,
MPI_Datatype sendtype,
void *recvbuf,
int recvcount,
MPI_Datatype recvtype,
int root,
MPI_Comm comm

A

root

significant only at root

Instructor: Leopold Grinberg

P2
)/
t)/
/ / //
! /

\ Contiguous
memory

Scatter(v) operation: example

3
I
4
| |
pata | 22—

parallelism root

/

DISC

Functional
parallelism | _,

root

Al— W

Instructor: Leopold Grinberg

Scatter(v) operation: example
A>A’

PO Al,l Al,z A1,3 A1,4 PO All A21 A31
A A A
PL | Ay | | Ass | | A | | Asa il i =
A A A
.- Aar | | Aus || Ass | | Ass P2 1,3 2,3 3,3
- A -l

for (i=0; 1 < comm_size; ++i)
MPI_Scatterv(my_row,
recvbuf+offset[i], recvcount]i],
I, [* root*/
communicator);

sendcount, displs, MPI_DOUBLE,
MPI_DOUBLE,

Instructor: Leopold Grinberg

Reduction communication: all to one

MPI function Math Meaning
MP1_MAX maximum, max
int MP1_Reduce (MPI1_MIN minimum, min
void *sendbuf, MPI_MAXLOC maximum and location of maximum
void *recvbuf, MPI_MINLOC minimum and location of minimum
int count, MPI_SUM sum
MPI_Datatype datatype, MPI_PROD product
MPI_Op op, I MPI_LAND logical and
Int root, MPI_LOR logical or
MPI_Comm comm MPI_LXOR logical exclusive or
); MPI_BAND bitwise and
MPI1_BOR bitwise or
MPI_BXOR bitwise exclusive or

Implemented in integration, dot products, finding maxima or minima
Instructor: Leopold Grinberg

Reduction commumcahon all To all

MPI function Math Meaning
MP1_MAX maximum, max
int MPI_Allreduce (MPI_MIN minimum, min
void *sendbuf, MPI_MAXLOC maximum and location of maximum
void *recvbuf, MPI_MINLOC minimum and location of minimum
int count, MPI_SUM sum
MPI_Datatype datatype, | | MPI.PROD PIEEILE
MPI_Op op, "I MPI_LAND Iogllcal and
MPI_Comm S MPI_LOR logical or
— MPI_LXOR logical exclusive or
); MPI_BAND bitwise and
MPI1_BOR bitwise or
MPI_BXOR bitwise exclusive or

Implemented in integration, dot products, finding maxima or minima

Instructor: Leopold Grinberg

MPI_Allreduce: example

iter = O;

while (error > TOL){

stopping criteria
must be identical
on all processors!!!

u_new = parallel_solve(A,u_old);

for (i= 0, errpr = 0; i < Nlocal; ++i){
delta=(u_old-u_new);
error += delta*delta;

}

MPI_Allreduce (&error,&delta,1,MPI_DOUBLE, MPI_SUM,communicator);
error = sqrt(delta / Nglobal);

if (iter > MAX_ITER) break;

iter++;

MPI_Allreduce
guarantees that the value
of “delta” is identical

swap(u_old,u_new); in all ranks

Instructor: Leopold Grinberg

(simple) reduction algorithm

modern
core-> socket - node - rack
architecture requires more sophisticated algorithms

Instructor: Leopold Grinberg

Reduction communication:
o example

int main(int argc, char **argv)
{
int my rank, ncpus;
MPI Init(&argc, &argv);
MPI Comm rank (MPI_COMM WORLD, &my rank);
MPI Comm size (MPI_COMM WORLD, é&ncpus);

double *x, *y;

double y max,y max global;

int N;

N = 300;

posix memalign((void**)&x,16,N*sizeof (double)) ;
posix memalign((void**)&y,16,N*sizeof (double)) ;

eval function(N,x,y);
y max = find max(x,y);
MPI_Reduce (&y max, &y max global,l,MPI DOUBLE,MPI MAX,0,MPI_COMM WORLD) ;

if (my_rank == 0)
fprintf (stdout, “max(y) = %$£f\n”,y _max global) ;

// clean up

free (x); free(y):
MPI Finalize();
return O;

Instructor: Leopold Grinberg

MPI _Alltoall

MPI_Alltoall allows each task to send specific data to all other tasks all at once!

iInt MPI_Alltoall(

void *sendbulf,
iInt sendcount,
MPI_Datatype sendtype, Less overhead!
void *recvbuf,

Int recvcount,
MPI_Datatype recvtype,
MPl_Comm comm

All arguments on all processes are significant!
Zero-size messages are OK.

Instructor: Leopold Grinberg

MPI Alltoallv

Sends data from

all to all processes;

each process may send/recv a different amount of data at once!

int MP1_Alltoallv(
void *sendbulf,
Int *sendcount,
Int *senddispls,

MPI1_Datatype sendtype,

void *recvbuf,

int *recvcount,

int *recvdispls,
MPI_Datatype recvtype,
MPIl_Comm comm

PO A1,1 A1,2

P1 A2,1 A2,2

All arguments on all processes are significant!

Instructor: Leopold Grinberg

P1

P2
P3

Back to point-to-point
communication

Instructor: Leopold Grinberg

Non-blocking point-to-point
communications in "for" loops

and

MPI_Wait,
MPI1_Waitall,
MPI_Waitany,

MPI_Waitsome

Instructor: Leopold Grinberg

Example of a

Data Parallel Problem (2D)

o°u 52 0 1| 2 | 3
. = t(Xx,y)

X 8y 4 5 6 7
22U . 0% Uiy —2Up; +Uy,, LU 2U; + U 1, & || 9 | 10} 11
ox: oy Ax2 sz 12 || 13 || 14 | 15

AX? AX?
y —1] ul+1j + Ayz (ui,j 1 + I j+1) O SAX f

Instructor: Leopold Grinberg

MPI_Request *recv_request, *send_request;

recv_request = new MPI_Request [Nneighbors *2]; | 4 S 6 I
send_request = recv_request + Nneighbors;

@ for (i = 0; 1 < Nneighbors; ++i) 12 || 13 || 14 || 15
MPI_Irecv(recvbuf]i],
recvcount]i],
MPI_DOUBLE,
neighborfi],
tagli],
communicator, for (i = 0; i < Nneighbors; ++i)
&recv_request(i]); MPI_Isend(sendbuf(i],
@ for (i = 0: i < Nneighbors; ++i) sendcount[il,
fill_sendbuffer (i, sendbuf]i]); MPI1_DOUBLE,
neighborfi],
tagfi],
communicator,
2 and 3 can also be combined (and “properly” ordered) &send_request][i]);

Instructor: Leopold Grinberg

. 0 1 2 3
MPI_Irecv(..., &recv_request][i]);
@prepare data; 4 5 6 7 ‘
@ MPI_Isend(..., &send_request][i]);
8 9 || 10 || 11 ‘
MPI_Waitall (Nneighbors, recv_request, MPI_STATUS IGNORE); || 12 || 13 | 14 | 15 ‘
for (i = 0; I < Nneighbors; ++i)
procerss_recv_buffer(i, recvbufli]);
MPI_Waitall(Nneighbors, send _request, MPI_STATUS IGNORE); @
OR
MPI_Waitall(Nneighbors*2, recv_request, MPl_STATUS_ IGNORE); @
for (i = 0; i < Nneighbors; ++i)
procerss_recv_buffer(i, recvbuffi]);
OR
for (i = 0; i < Nneighbors: ++i){ @
MPI Wait(&recv_request[i], MPI_STATUS IGNORE);
procerss_recv_buffer(i, recvbufli]); OR

}
MPI_Waitall(Nneighbors, send request, MPl__STATUS IGNORE);

Instructor: Leopold Grinberg

_ 0 1] 2 | 3
MPI_lIrecv(..., &recv_request[i]);
@prepare data; 4 1| 5| 6|7 ‘
@ MPI_Isend(..., &send_request]i]);
38 9 | 10 | 11 ‘
12 || 13 || 14 || 15 ‘

for (i=0; i < Nneighbors; ++i){
MPI Waitany(Nneighbors, recv_request, &index, MPlI_STATUS IGNORE);
procerss_recv_buffer(index, recvbuf[index]);

}
MPI1_Waitall(Nneighbors, send_request, MPI_STATUS_IGNORE);

delete[] recv_request; @

Instructor: Leopold Grinberg

Element-wise matrix-vector multiplication

PO \ P1
B —®—®
O @ @ >
0—(2—G5 \

AX=b A1X;=b, A X,=b,

A is 9x9 operator A, is 6x6 operator A, IS 6x6 operator
: X, IS 6x1

X i1s 9x1 Xy IS 6x1 b, is 6x1

b is 9x1 b, is 6x1

Instructor: Leopold Grinberg

Element-wise matrix-vector
multiplication

local
numbering

0 0 global

1 1 numbering
21 2
-------------- 3] 0 3
______________________________ 4 é“i""i = 4
______________________________ 5 +2 5
____L___J____J_____l____J.____I E___3__i 7
.............................. 4 8
A X b

Instructor: Leopold Grinberg

Element-wise matrix-vector multiplication

PO

Local numbering

“““““““““““““““““““““

1 I

Local numbering

——————

o oI

Instructor: Leopold Grinberg

Element-wise matrix-vector multiplication

0 0
1 1
PO g Local numbering 2
4
5 3 0
4 |+ 1
b, 5| |2
0
1
2 .
P1 |3 Local numbering 3
A 4
S 2 b
b,

Instructor: Leopold Grinberg

Element-wise matrix-vector multiplication

PO:
MPI_lrecv(recvbuf,3,MPI_DOUBLE,1,1,communicator,&recv_request);
for (i=0;1<3; ++0)

sendbuf[i] = b[i+3];
MPI_lIsend(sendbuf,3,MPI_DOUBLE,1,1,communicator,&send_request);

Pl:
MPI_lIrecv(recvbuf,3,MPI_DOUBLE,0,1,communicator,&recv_request);
for (I=0;1<3; ++0)

sendbuffi] = bJi];
MPI_lIsend(sendbuf,3,MPI_DOUBLE,0,1,communicator,&send_request);

Instructor: Leopold Grinberg

Element-wise matrix-vector multiplication

PO:
MPI_Wait(&recv_request, MPI_STATUS IGNORE);
for (i=0;1<3; ++0)
b[i+3] = b[i+3]+recvbuf]i];
MPI_Wait(&send_request, MPI_STATUS IGNORE);

Pl:
MPI_Wait(&recv_request, MPI_STATUS IGNORE);
for (I=0;1<3; ++0)
b[i] = b[i]+recvbulf[i];
MPI_Wait(&send_request, MPI_STATUS IGNORE);

here we employ symmetric data exchange
(rank i exchanges data with rank j,
message sizes are identical)

Instructor: Leopold Grinberg

Element-wise matrix-vector multiplication:
general case (1)

Global IDs of degrees of freedom:

PO: [01257811 13 14 29 88]
P1: [235610 12 14 80]
P3: [02 20 21 28 81]

P4095: [1 2 88 110 90111 90112]

Instructor: Leopold Grinberg

Element-wise matrix-vector multiplication:
general case (2)

Global IDs of degrees of freedom:
1. Who are my neighbors ?

PO: [0125781113 14 29 88]
P1: [235610 12 14 80]
P3: [02 20 21 28 81]

_ Only certain
P4095: [1 2 88 110 90111 90112] All ranks can be subset of ranks
my neighbors include my
neighbors

/ |

This is going to be messy
Need a lot of memory for mapping
and/or a lot of communications

| am in better shape:
will need less memory and
less communications!

Instructor: Leopold Grinberg

Element-wise matrix-vector multiplication:
general case (3)

Global IDs of degrees of freedom: 2. How many d.o.f each my of
potential neighbors has?

PO: [0125781113 14 29 88]
P1: [235610 12 14 80]
P3: [02 20 21 28 81]

_ Only certain
P4095: [1 2 88 110 90111 90112] All ranks can be subset of ranks
my neighbors include my
neighbors

/ |

Use MPI_Isend / MPI_Irecv
to collect the number of
d.o.f of neighbors

Use MPI_Allgather to collect the number of d.o.f

Instructor: Leopold Grinberg

Element-wise matrix-vector multiplication:
general case (4)

Global IDs of degrees of freedom: 2. What d.o.f each my of potential
neighbors has?

PO: [0125781113 14 29 88]
P1: [235610 12 14 80]
P3: [02 20 21 28 81]

_ Only certain
P4095: [1 2 88 110 90111 90112] All ranks can be subset of ranks
my neighbors include my
neighbors

/ |

_ Use MPI_Alltoallv or
Use MPI_Allgatherv to collect the neighbors d.o.f MPI Isend / MPI Irecv to

collect neighbors d.o.f

May run out of memory

Instructor: Leopold Grinberg

Element-wise matrix-vector multiplication:
general case (5)

Global IDs of degrees of freedom: 2. What d.o.f each my of potential
neighbors has?

PO: [0125781113 14 29 88]
P1: [235610 12 14 80]
P3: [02 20 21 28 81]

_ Only certain
P4095: [1 2 88 110 90111 90112] All ranks can be subset of ranks
my neighbors include my
neighbors
\ /

Use MPI_Isend / MPI_Irecv
within a “for” loop to collect the neighbors d.o.f
one by one — do mapping and clean memory

(Alternative option is to use bit array)

Instructor: Leopold Grinberg

Element-wise matrix-vector multiplication:
general case (6)

for (partner = 0; partner < Npartners; ++ partner){
for (1= 0, ii=0; i < n; ++i){
for (j = 0; j < partner_map_size[partner]; ++j){
if (mapli] == partners_map[partner][j]){
message_send_map[partner][ii] =i

H++:
break;
}}}/ d of “for (i=0,... local d.o.f € - neighbors d.o.f
end of “for (i = 0,...

for j =0,]j = 0;] < partner_map_size[partner]; ++)1
for (I=0; 1 <n; ++i){
if (mapli] == partners_maplpartner][j]){
message_recv_map([partner |[jj] = I;
jjt+;
break;
} /I end of “if (map[i]...."
}
} /I end of “for (j =0,...7

1
Instructor: Leopold Grinberg

void NEKTAR_MEX::MEX_plus(double *val){ e .
double *dp: Element-wise matrix-vector
int *map; multiplication:
int i,j,partner,index; genera| case (7)

}

MEX_post_recv();

for (partner = 0; partner < Npartners; ++partner){
dp = send_buffer[partner];
map = message_send_map[partner];
for (i = 0; i < message_size[partner]; ++i)
dp[i] = local_values[mapli]];

Global
summation

}
MEX_post_send();

for (i = 0; i < Npartners; i++){
MPI_Waitany(Npartners,request_recv,&index,MPI_STATUS IGNORE);
dp = recv_buffer[index];
map = message_recv_map[index];
for (j = 0;] < message_size[index]; ++j)
local _values [map[j]] += dp[j];

}
MPI_Waitall(Npartners,request_send,MPl_STATUS_IGNORE);

Instructor: Leopold Grinberg

Instructor: Leopold Grinberg

