
Instructor: Leopold Grinberg

Parallel Computing

Distributed  memory model

MPI

Leopold Grinberg

T. J. Watson IBM Research Center, 

USA



Why do we need to compute

in parallel

• large problem size - memory constraints

• computation on a single processor takes 

too long – time constrain

• combination of memory and time constrain

Instructor: Leopold Grinberg



(classical) classifications of 

computer architecture*

distributed memory shared memory

*appropriate for Multiple Instruction Multiple Data (MIMD) architecture

SMP

Instructor: Leopold Grinberg



Shared Memory Computer Architecture

APMA2821; Instructor: Leopold Grinberg

All processors can access all memory (global address space)

MEMORY

CPU CPU CPU CPU

Uniform Memory Access (UMA)

Typically are Symmetric Multiprocessor (SMP) 

machines with identical processors

Equal access and access times to memory

Sometimes called CC-UMA - Cache Coherent UMA. 
(Cache coherent means if one processor updates a location in 

shared memory, all the other processors know about the update. 

Cache coherency is accomplished at the hardware level.)

Non-Uniform Memory Access (NUMA)

Typically made by physically linking several SMPs.

SMP i can directly access memory of SMP j.

Non-equal speed in memory access.

May also be CC-NUMA

M

E

M

O

R

Y

M

E

M

O

R

Y

M

E

M

O

R

Y

M

E

M

O

R

Y



APMA2821; Instructor: Leopold Grinberg

Shared Memory Computer Architecture:

the good and the bad

1. User-friendly programming perspective 

to memory.

2. Relatively fast access to data stored in 

shared memory.

3. More memory / task

1. Lack of scalability between memory and CPUs. Adding 

more CPUs can geometrically increases traffic on the 

shared memory-CPU path, and for cache coherent 

systems, geometrically increase traffic associated with 

cache/memory management.

2. Programmer responsibility for synchronization constructs 

that ensure "correct" access of global memory.

3. Expense: it becomes increasingly difficult and expensive to 

design and produce shared memory machines with ever 

increasing numbers of processors.



Distributed Memory Computers

APMA2821; Instructor: Leopold Grinberg

MEMORY

CPU

MEMORY

CPU

MEMORY

CPU

MEMORY

CPU

Data exchange between 

attached to each CPU 

memory requires inter-CPU

communication.

Memory is scalable with number of processors.

Memory is local – no concept of global address space and cache-

coherency.

Programmer is responsible for designing communication across CPUs



Parallel Computers of 2010...

APMA2821; Instructor: Leopold Grinberg

Most of the computers have hybrid memory architecture. 

Several middleware have been developed to allow using 

the hybrid computers as “distributed memory computers” 

and also distributed memory computers as “shared 

memory” machines.  

For example it is possible to run MPI-based applications on 

SGI computers where memory can be shared among 

thousands of cores.

UPC allows use of “global” arrays, in fact it simply hides the 

communication.

GPUs introduce another dimension. These compute cards can 

be attached to CPUs such that the CPUs can “outsource” its 

tasks to GPUs.



Main (classical) approaches to 

parallel programming 

1. message-passing model (MPI)
This is the most commonly used model for parallel programming 
on distributed-memory architectures. 

2. directives-based data-parallel model (OpenMP)
The message-passing model is the most commonly used model 
for parallel programming on distributed-memory architectures 

3. Hybrid approach MPI+OpenMP

New hybrid approaches include use of CUDA (or openCL)

distributing work to CPUs and GPUs (or CELL processors) 

Instructor: Leopold Grinberg



Trend

The core unit in a new (future) computer architecture

will be a “compute node”

compute node will contain several

multicore processors

some type of accelerator(s) 

(GPU or CELL or ?)

local communication network

probably local disk(s) 

possibly different types of RAM

RACK

(cabin)

node

Instructor: Leopold Grinberg



Parallel Program with MPI

Parallel programs consist of multiple instances of a serial program that communicate by library calls (MPI). 

These calls may be roughly divided into the following four classes:

1. Calls used to initialize, manage, and finally terminate communications.

These calls are used for starting communications, identifying the number of processes being used, 

creating subgroups of processors, and identifying which process is running a particular instance of a program. 

2. Calls used to communicate between pairs of processes.

These calls, called point-to-point communications operations, consist of different types of send-and-receive 

operations. 

3. Calls that perform communications operations among groups of processes.

These calls are the collective operations that provide synchronization, certain types of well-defined 

communications 

operations among groups of processes, and calls that perform communication/calculation operations. 

4. Calls used to create arbitrary data types.

These provide flexibility in dealing with complicated data structures. 

Instructor: Leopold Grinberg



Your main goal when writing a parallel program is to get 

better performance than you would get from a serial version.

Parallel Program Design

You need to consider several issues when designing a parallel code:

• problem decomposition

algebraic or geometric decomposition; functional (task) decomposition; 

• load balancing (minimizing process idle time)

• concurrent computation and communication

• concurrent communications

• hierarchical structure of the modern high-performance computers

Instructor: Leopold Grinberg



)(
2

2

11

2

2

i
iii xf

x

uuu

x

u









 

Example of a Data Parallel Problem

)(
2

2

xf
x

u






i i+1i-1

i i+1i-1

  iiii fxuuu 2

11 5.05.0     iiii fxuuu 2

11 5.05.0  

Instructor: Leopold Grinberg



Example of a 

Data Parallel Problem (2D)

),(
2

2

2

2

yxf
y

u

x

u











2

1,,1,

2

,1,,1

2

2

2

2 22

x

uuu

x

uuu

y

u

x

u jijijijijiji


















 

jijijijijii fxuu
y

x
uu

y

x
u ,

2

1,1,2

2

,1,12

2

5.0)(5.0)1( 

















 

Instructor: Leopold Grinberg



Functional Parallelism

M P I C O M M W O LR D

S1 S 2 S 3

1D 3 D D3 3 D

TOPOLOGY  AWARE  DECOMPOSITION

TASK ORIENTED DECOMPOSITION

Instructor: Leopold Grinberg



execution time

1. Computation time 

2. Idle time 

3. Communication time

4. IO time

5.  Computer boot-up time 

minimize each of 

this components!!!

Parallel Program Design:

Instructor: Leopold Grinberg



Load Balancing

Load balancing divides the required work equally among all of the available processes. 

This ensures that one or more processes do not remain idle while the other processes 

are actively working on their assigned sub-problems so that valuable computational 

resources are not wasted. 

Load balancing can be easy when the same operations are being performed by all the 

processes on different pieces of data. 

Most of the time load balancing is far from being trivial. 

When there are large variations in processing time, you may need to adopt an alternative 

strategy for solving the problem. 

Instructor: Leopold Grinberg



The Message Passing Interface (MPI) is a standard library. 

MPI is not a programming model !!!

MPI

Some MPI libraries are free and some are not (commercial)

Instructor: Leopold Grinberg



MPI allows for the coordination of a program running as multiple processes in 

a distributed memory environment.

MPI also can be used in a shared memory system. 

MPI also can be used in 

a heterogeneous system. 

The standardization of the MPI library makes it very powerful and enables source 

code portability since MPI programs should compile and run as-is on any platform. 

MPI also allows efficient implementations across a range of architectures.

MPI

CPU CPU

GPU GPU

Instructor: Leopold Grinberg



MPI-1  MPI-2  MPI-3 ….

• MPI was developed over two years of discussions led by the MPI Forum, a group of 
approximately sixty people representing about forty organizations. The MPI-1 
standard was defined in 1994, and it consists of the following:

- It specifies the names, calling sequences, and results of subroutines and functions to   
be called from Fortran 77 and C, respectively. All implementations of MPI must 
conform to these rules, thus ensuring portability. MPI programs should compile and 
run on any platform that supports the MPI standard. 

-The detailed implementation of the library is left to individual vendors, who are thus 
free to produce optimized versions for their machines. 

• Implementations of the MPI-1 standard are available for a wide variety of platforms.

• An MPI-2 standard has also been defined. It provides for additional features, 
including tools for parallel I/O, C++ and Fortran 90 bindings, and one-sided 
communication. 

• MPI-3.0 – year 2014 

Instructor: Leopold Grinberg



Type of MPI routines

• Point-to-point communication

• Collective communication

• Process groups 

• Process topologies 

• Environment management and inquiry 

Instructor: Leopold Grinberg



A communicator

A communicator is an MPI object that defines a group of 

processes that are permitted to communicate with one 

another. Every MPI message must specify a 

communicator via a “name” that is included as an explicit 

parameter within the argument list of the MPI call. 

Rank 1

Rank 3

Instructor: Leopold Grinberg



MPI Naming Conventions

• All names have MPI_ prefix.

• In FORTRAN:
– All subroutine names upper case, last argument is return code

– A few functions without return code

• In C++(C): mixed uppercase/lowercase

• MPI constants all uppercase

call MPI_XXXX(arg1,arg2,…,ierr)

call MPI_XXXX_XXXX(arg1,arg2,…,ierr)

ierr = MPI_Xxxx(arg1,arg2,…);

ierr = MPI_Xxxx_xxx(arg1,arg2,…);

MPI_COMM_WORLD, MPI_SUCCESS, MPI_DOUBLE, MPI_SUM, …

If ierr == MPI_SUCCESS,

Everything is ok; otherwise, 

something is wrong.

Instructor: Leopold Grinberg



General MPI Program Structure

Instructor: Leopold Grinberg



The minimal MPI subset. 
MPI program structure

1. MPI_Init()

2. MPI_Finalize()

3. MPI_Comm_size()

4. MPI_Comm_rank()

5. MPI_Send()

6. MPI_Recv()

#include <mpi.h>

#include <stdio.h>

int main (argc, *argv[ ]){

int rank, size; 

MPI_Init (&argc, &argv); 

/* starts MPI */

MPI_Comm_rank (MPI_COMM_WORLD, &rank); 

/* get current process id */

MPI_Comm_size (MPI_COMM_WORLD, &size); 

/* get number of processes */

printf( "Hello world from process %d of %d\n",

rank, size );

MPI_Finalize();

return 0;

} 

Instructor: Leopold Grinberg



MPI Header Files

• In C/C++:

• In FORTRAN:

#include <mpi.h>, before including <stdio.h>

include ‘mpif.h’

or (in FORTRAN90 and later)

use MPI

Instructor: Leopold Grinberg



• Initialization: MPI_Init() initializes MPI environment; 

– Must be called before any other MPI routine

– Can be called only once; subsequent calls are erroneous.

• Use MPI_Initialized(int *flag) to check if 

MPI_init has been called already. 

Initialization

int main(int argc, char ** argv)

{

MPI_Init(&argc, &argv);

int flag;

MPI_Initialized(&flag);

if(flag != 0) … // MPI_Init called

… …

MPI_Finalize();

return 0;

}

int MPI_Init(int *argc, char ***argv)

Instructor: Leopold Grinberg



Termination

• MPI_Finalize() cleans up MPI environment

– Must be called before exits.

– No other MPI routine can be called after this call, 
even MPI_INIT()

– Exception: MPI_Initialized() (and 

MPI_Get_version(), MPI_Finalized()).

• Abnormal termination: MPI_Abort()

– terminates (all) MPI processes.
int MPI_Finalize(void)

MPI_FINALIZE(IERR)

integer IERR

int MPI_Abort(MPI_Comm comm, int errorcode)

MPI_ABORT(COMM,ERRORCODE,IERR)

integer COMM, ERRORCODE, IERR

Instructor: Leopold Grinberg



MPI Communications

• Point-to-point communications

– Involves a sender and a receiver

– Only the two processors participate in communication

• Collective communications

– All processors within a communicator participate in 

communication (by calling same routine, may pass 

different arguments); 

– Barrier, reduction operations, gather, scatter…

Instructor: Leopold Grinberg



Point – to – point communication

1. rank i sends data, rank j receives data

2. rank i and rank j exchange data

message envelope:

source (destination), tag, communicator

message body:

buffer, size, datatype

message

Instructor: Leopold Grinberg



MPI Datatypes

MPI_CHAR signed char

MPI_SHORT signed short int

MPI_INT signed int

MPI_LONG signed long int

MPI_UNSIGNED_CHAR unsigned char

MPI_UNSIGNED_SHORT unsigned short int

MPI_UNSIGNED unsigned int

MPI_UNSIGNED_LONG unsigned long int

MPI_FLOAT float

MPI_DOUBLE double

MPI_LONG_DOUBLE long double

MPI_BYTE (none)

MPI_PACKED (none)

Instructor: Leopold Grinberg



int MPI_Send(

void *buf,    /* initial address of send buffer  */

int count,    /* number of elements in send buffer (nonnegative integer) */

MPI_Datatype datatype, /* datatype of each send buffer element */

int dest,      /* rank of destination (integer)   */ 

int tag,        /* message tag (integer)            */

MPI_Comm comm  /* communicator           */

);

int MPI_Recv(

void *buf,    /* initial address of receive buffer  */

int count,    /* number of elements in receive buffer (nonnegative integer) */

MPI_Datatype datatype, /* datatype of each receive buffer element */

int dest,      /* rank of source (integer)             */ 

int tag,        /* message tag (integer)               */

MPI_Comm comm,      /* communicator          */

MPI_Status   *status    /* status object             */

);

Blocking point-to-point communication

Instructor: Leopold Grinberg



Deadlock
MPI_Comm_rank(MPI_COMM_WORLD,&rank);

If(rank==0)

{

MPI_Recv(buf1,count,MPI_DOUBLE,1,tag,comm);

MPI_Send(buf2,count,MPI_DOUBLE,1,tag,comm);

} 

else if (rank==1) 

{

MPI_Recv(buf1,count,MPI_DOUBLE,0,tag,comm);

MPI_Send(buf2,count,MPI_DOUBLE,0,tag,comm);

}

P0

P1

MPI_Comm_rank(MPI_COMM_WORLD,&rank);

If(rank==0)

{

MPI_Recv(buf1,count,MPI_DOUBLE,1,tag,comm);

MPI_Send(buf2,count,MPI_DOUBLE,1,tag,comm);

} 

else if (rank==1) 

{

MPI_Send(buf2,count,MPI_DOUBLE,0,tag,comm);

MPI_Recv(buf1,count,MPI_DOUBLE,0,tag,comm);

}

May survive 

on some computers

Instructor: Leopold Grinberg



int MPI_Sendrecv( 

void *sendbuf, 

int sendcount, 

MPI_Datatype sendtype, 

int dest, 

int sendtag, 

void *recvbuf, 

int recvcount, 

MPI_Datatype recvtype,

int source, 

int recvtag, 

MPI_Comm comm, 

MPI_Status *status 
);

Blocking point-to-point communication

Instructor: Leopold Grinberg



#include <mpi.h>

#include <stdio.h>

int main(int argc, char **argv)

{

int my_rank, ncpus;

int left_neighbor, right_neighbor;

int data_received;

int send_tag = 101, recv_tag=101;

MPI_Status status;

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

MPI_Comm_size(MPI_COMM_WORLD, &ncpus);

left_neighbor = (my_rank-1 + ncpus)%ncpus;

right_neighbor = (my_rank+1)%ncpus;

MPI_Sendrecv(&my_rank, 1, MPI_INT, left_neighbor, send_tag,

&data_received, 1, MPI_INT, right_neighbor, recv_tag,

MPI_COMM_WORLD, &status);

printf(“P%d received from right neighbor: P%d\n",

my_rank, data_received);

// clean up

MPI_Finalize();

return 0;

}

Example

Output:

P3 received from right neighbor: P0

P2 received from right neighbor: P3

P0 received from right neighbor: P1

P1 received from right neighbor: P2

Instructor: Leopold Grinberg



Non-blocking point-to-point 
communication

int MPI_Isend(

void *buf,       /* initial address of send buffer             */

int     count,    /* number of elements in send buffer (nonnegative integer) */

MPI_Datatype datatype, /* datatype of each send buffer element          */

int     dest,      /* rank of destination (integer)               */ 

int     tag,        /* message tag (integer)                        */

MPI_Comm    comm,       /*  communicator                 */

MPI_Request  *request   /*  communication request   */

);

int MPI_Irecv(

void *buf,       /* initial address of receive buffer  */

int     count,    /* number of elements in receive buffer (nonnegative integer) */

MPI_Datatype datatype, /* datatype of each receive buffer element              */

int     dest,       /* rank of source (integer)             */ 

int     tag,         /* message tag (integer)               */

MPI_Comm      comm,      /* communicator          */

MPI_Request  *request /*  communication request */

);

Instructor: Leopold Grinberg



MPI_Wait(all,any,some)

will be covered later

Instructor: Leopold Grinberg



Communication Modes and 

Completion Criteria

There are four communication modes available for sends: 

• Standard        (MPI_SEND)

• Synchronous (MPI_SSEND)

• Buffered         (MPI_BSEND)

• Ready            (MPI_RSEND)

There is only one mode available for receive 
(MPI_RECV)

Instructor: Leopold Grinberg



Communication Modes and Completion 

Criteria: Standard Mode
Standard mode send is MPI’s general-purpose send mode. 

When MPI executes a standard mode send, one of two things happens:

1.  The message is copied into an MPI internal buffer and is transferred asynchronously to the destination 

process

2.  The source and destination processes synchronize on the message. 

The MPI implementation is free to choose (on a case-by-case basis) between buffering and 

synchronizing, depending on message size, resource availability, and so on. If the message is copied into 

an MPI internal buffer, then the send operation is formally completed as soon as the copy is done. If the 

two processes synchronize, then the send operation is formally completed only when the receiving 

process has posted a matching receive and actually begun to receive the message.

MPI_SEND does not return until the send operation it invoked has completed. Completion can mean the 

message was copied into an MPI internal buffer, or it can mean the sending and receiving processes 

synchronized on the message. 

MPI_ISEND initiates a send operation and then returns immediately, without waiting for the send 

operation to complete. Completion has the same meaning as before: either the message was copied into 

an MPI internal buffer or the sending and receiving processes synchronized on the message. 

Variables passed to MPI_ISEND cannot be used (should not even be read) until the send operation 

invoked by the call has completed. 

One of the advantages of standard mode send is that the choice between buffering and synchronizing is 

left to MPI on a case-by-case basis. 

Instructor: Leopold Grinberg



Communication Modes and Completion 

Criteria: Synchronous Mode

Synchronous mode send requires MPI to synchronize the sending 

and receiving processes. 

When a synchronous mode send operation is completed, the 

sending process may assume the destination process has begun

receiving the message.

The destination process need not be done receiving the 

message, but it must have begun receiving the message.

The nonblocking call has the same advantages the nonblocking 

standard mode send has: the sending process can avoid blocking 

on a potentially lengthy operation. 

Instructor: Leopold Grinberg



Communication Modes and Completion 

Criteria: Ready Mode

Ready mode send requires that a matching receive has 

already been posted at the destination process before ready 

mode send is called. 

If a matching receive has not been posted at the destination, the 

result is undefined. It is developers responsibility to make sure the 

requirement is met. 

In some cases, knowledge of the state of the destination process 

is available without doing extra work. Communication overhead 

may be reduced because shorter protocols can be used internally 

by MPI when it is known that a receive has already been posted. 

Instructor: Leopold Grinberg



Buffered mode send requires MPI to use buffering. 

The downside is that developer is responsible for managing the 

buffer. If at any point, insufficient buffer is available to complete 

a call, the results are undefined. 

The functions MPI_BUFFER_ATTACH and 

MPI_BUFFER_DETACH allow a program to make buffer 

available to MPI.

Communication Modes and Completion 

Criteria: Buffered Mode

Instructor: Leopold Grinberg



Collective Communications

Collective communication involves the sending and receiving of data among 

processes. 

The collective routines are built using point-to-point communication routines.

Any collective communications can be substituted by MPI send and receive routines. 

the "blackbox" (collective) routines hide a lot of the messy details and often 

implement the most efficient algorithm known for that operation (for that 

architecture,….). 

Instructor: Leopold Grinberg



Collective communication routines transmit data among all 

processes in a group.

Collective communication calls do not use the tag mechanism of 

send/receive for associating calls. 

Rather, they are associated by order of program execution and 

because of this developer must ensure that all processors execute 

a given collective communication call. 

Collective Communications

Instructor: Leopold Grinberg



Barrier Synchronization

The MPI_BARRIER routine blocks the calling process until all 

group processes have called the function. When MPI_BARRIER 

returns, all processes are synchronized at the barrier. 

MPI_BARRIER can incur a substantial overhead on some 

machines. 

In general, you should only insert barriers when they are truly 

needed. 

int MPI_Barrier ( comm ) 

MPI_Barries is often used for debugging 

and performance evaluations

Instructor: Leopold Grinberg



How would you substitute 

MPI_Barrier with point to point 

communication?

Instructor: Leopold Grinberg



Broadcast Operation

The MPI_BCAST routine enables you to copy data from the 

memory of the root processor to the same memory locations 

for other processors in the communicator. 

int MPI_Broadcast (

void                *sendbuf, 

int                    sendcnt, 

MPI_Datatype sendtype, 

int                    root, 

MPI_Comm     comm 

); 

Instructor: Leopold Grinberg



How would you substitute 

MPI_Broadcast with point-to-point 

communication?

Instructor: Leopold Grinberg



Broadcast Operation: example
#include <mpi.h>

#include <stdio.h>

int main(int argc, char **argv)

{

int my_rank, ncpus;

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

MPI_Comm_size(MPI_COMM_WORLD, &ncpus);

double *parameters;

int Nparameters; 

posix_memalign((void**)&parameters,16,Nparameters*sizeof(double));

if (my_rank == 0)

read_parameters_from_file(filename, parameters);

MPI_Broadcast(parameters, Nparameters, MPI_DOUBLE, 0, MPI_COMM_WORLD);

//do more work

MPI_Finalize();

return 0;

}

Instructor: Leopold Grinberg





















































3,3

3,22,2

3,12,11,1

2,32,31,3

2,21,2

1,1

3,32,31,3

3,22,21,2

3,12,11,1

U

UU

UUU

LLL

LL

L

AAA

AAA

AAA

Ax=b LUx=b  Ly=b, Ux=y

3

2

1

3

2

1

2,32,31,3

2,21,2

1,1

b

b

b

y

y

y

LLL

LL

L



















3

2

1

3

2

1

3,3

3,22,2

3,12,11,1

y

y

y

x

x

x

U

UU

UUU



















Broadcast Operation: example

P0: solve for y1 – and broadcast y1

P1: solve for y2 – and broadcast y2

P3: solve for x3 – and broadcast y3

P2: solve for x2 – and broadcast x2

Instructor: Leopold Grinberg



int MPI_Gather (

void                *sendbuf, 

int                    sendcnt, 

MPI_Datatype sendtype, 

void *recvbuf, 

int recvcount, 

MPI_Datatype recvtype, 

int                    root,

MPI_Comm     comm 

); 

Collective communication (all-to-one)

P0

P1

P2

P3

P4

root

significant only at root 

Instructor: Leopold Grinberg



int MPI_Gatherv (

void                *sendbuf, 

int                    sendcnt, 

MPI_Datatype sendtype, 

void                *recvbuf, 

int                   *recvcount, 

int                   *displs,

MPI_Datatype recvtype, 

int                    root,

MPI_Comm     comm 

); 

Collective communication (all-to-one)

P0

P1

P2

P3
P4

root

significant only at root 

0-size 

message

Instructor: Leopold Grinberg



Gather(v): example

P0

P1

P2

P3
P4

root

P0

P1

P2

P3
P4

root

D
IS

C

0 3

1 4

2 5

0 3

1 4

2 5

5way

Data

parallelism

+

2way

Functional

parallelism

Instructor: Leopold Grinberg



MPI_Gatherv: example

if (my_rank == 0){

posix_memalign((void**)& rcvcnt, 16,comm_size*sizeof(int));

posix_memalign((void**)& displs ,16,comm_size*sizeof(int));

rcvcnt[0] = message_size_per_rank[0];

displs[0] = 0;

for (i = 1; i < comm_size; ++i){

rcvcnt[i] = message_size_per_rank[i];

displs[i] = displs[i-1]+rcvcnt[i-1];

}

MPI_Gatherv(sendbuf_local, message_size_local, MPI_DOUBLE,

recv_buffer, rcvcnt, displs, MPI_DOUBLE,

0, communicator);

free(rcvcnt); free(displs);

}

else

MPI_Gatherv(sendbuf_local, message_size_local, MPI_DOUBLE,

NULL, NULL, NULL, MPI_DOUBLE,

0, communicator);

Instructor: Leopold Grinberg



Gather(v)

P0 P1 P1 P1

recvcnt = [4 3 3 1]

displs   = [0 4 8 12 ] displs[i] = i*stride

Instructor: Leopold Grinberg



How would you substitute 

MPI_Gather(v) with point-to-point 

communication?

Instructor: Leopold Grinberg



MPI_Allgather(v)

Gathers data from all tasks and distribute it to all

int MPI_Allgatherv (

void                *sendbuf, 

int                    sendcnt, 

MPI_Datatype sendtype, 

void *recvbuf, 

int *recvcount, 

int *displs,

MPI_Datatype recvtype, 

MPI_Comm     comm 

); 

Collective communication (all-to-all)

Instructor: Leopold Grinberg



APMA2821; Instructor: Leopold Grinberg

int MPI_Scatter (

void                *sendbuf, 

int                    sendcnt, 

MPI_Datatype sendtype, 

void                *recvbuf, 

int                    recvcount, 

MPI_Datatype recvtype, 

int                    root,

MPI_Comm     comm 

); 

Collective communication (one-to-all)

P0

P1

P2

P3

P4

root

significant only at root 



int MPI_Scatterv (

void                *sendbuf, 

int                   *sendcnt, 

int                   *displs,

MPI_Datatype sendtype, 

void                *recvbuf, 

int                    recvcount,

MPI_Datatype recvtype, 

int                     root,

MPI_Comm     comm 

); 

Collective communication (one-to-all)

P0

P1

P2

P3
P4

root

significant only at root Contiguous 

memory

Instructor: Leopold Grinberg



Scatter(v) operation: example

P0

P1

P2

P3
P4

root

P0

P1

P2

P3
P4

root

D
IS

C

0 3

1 4

2 5

0 3

1 4

2 5

Data

parallelism

+

Functional

parallelism

Instructor: Leopold Grinberg



Scatter(v) operation: example

AA’

A1,1 A1,2 A1,3 A1,4

A2,1 A2,2 A2,3 A2,4

A3,1 A3,2 A3,3 A3,4

A4,1 A4,2 A4,3 A4,4

P0

P1

P2

P3

for (i = 0; i < comm_size; ++i)

MPI_Scatterv(my_row,               sendcount, displs, MPI_DOUBLE,

recvbuf+offset[i],  recvcount[i],           MPI_DOUBLE,  

i,   /*  root */ 

communicator);   

A1,1 A2,1 A3,1 A4,1

A1,2 A2,2 A2,2 A4,2

A1,3 A2,3 A3,3 A4,3

A1,4 A2,4 A3,4 A4,4

P0

P1

P2

P3



Instructor: Leopold Grinberg



int MPI_Reduce ( 

void                *sendbuf, 

void                *recvbuf, 

int                    count, 

MPI_Datatype datatype, 

MPI_Op           op, 

int                    root, 

MPI_Comm     comm

); 

Reduction communication: all to one

Implemented in integration, dot products, finding maxima or minima …. 

MPI function                  Math Meaning

MPI_MAX maximum,       max

MPI_MIN minimum,         min

MPI_MAXLOC                 maximum and location of maximum

MPI_MINLOC                  minimum and location of minimum 

MPI_SUM                        sum

MPI_PROD                      product

MPI_LAND                       logical and 

MPI_LOR                         logical or 

MPI_LXOR                      logical exclusive or 

MPI_BAND                      bitwise and 

MPI_BOR                        bitwise or 

MPI_BXOR                      bitwise exclusive or 

Instructor: Leopold Grinberg



int MPI_Allreduce ( 

void                *sendbuf, 

void                *recvbuf, 

int                    count, 

MPI_Datatype datatype, 

MPI_Op           op, 

MPI_Comm     comm

); 

Reduction communication: all to all

Implemented in integration, dot products, finding maxima or minima …. 

MPI function                  Math Meaning

MPI_MAX maximum,       max

MPI_MIN minimum,         min

MPI_MAXLOC                 maximum and location of maximum

MPI_MINLOC                  minimum and location of minimum 

MPI_SUM                        sum

MPI_PROD                      product

MPI_LAND                       logical and 

MPI_LOR                         logical or 

MPI_LXOR                      logical exclusive or 

MPI_BAND                      bitwise and 

MPI_BOR                        bitwise or 

MPI_BXOR                      bitwise exclusive or 

Instructor: Leopold Grinberg



MPI_Allreduce: example

iter = 0;

while (error > TOL){

u_new = parallel_solve(A,u_old);

for (i = 0, errpr = 0; i < Nlocal; ++i){

delta=(u_old-u_new);

error +=  delta*delta;

}

MPI_Allreduce (&error,&delta,1,MPI_DOUBLE, MPI_SUM,communicator);

error = sqrt(delta / Nglobal);

if (iter > MAX_ITER) break;

iter++;

swap(u_old,u_new);   

}

stopping criteria

must be identical

on all processors!!!

MPI_Allreduce

guarantees that the value

of “delta” is identical

in all ranks

Instructor: Leopold Grinberg



(simple) reduction algorithm

Pi+1  Pi

Pi+2  Pi

Pi+4  Pi

P0 P4P1P2P3 P6P5 P7

modern 

core socket  node  rack 

architecture requires more sophisticated algorithms

Instructor: Leopold Grinberg



Reduction communication:
example

#include <mpi.h>

#include <stdio.h>

int main(int argc, char **argv)

{

int my_rank, ncpus;

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

MPI_Comm_size(MPI_COMM_WORLD, &ncpus);

double *x, *y;

double y_max,y_max_global; 

int N;

N = 300;  

posix_memalign((void**)&x,16,N*sizeof(double));

posix_memalign((void**)&y,16,N*sizeof(double));

eval_function(N,x,y);

y_max = find_max(x,y);

MPI_Reduce(&y_max,&y_max_global,1,MPI_DOUBLE,MPI_MAX,0,MPI_COMM_WORLD);

if (my_rank == 0)

fprintf(stdout,”max(y) = %f\n”,y_max_global);

// clean up

free(x); free(y); 

MPI_Finalize();

return 0;

}

Instructor: Leopold Grinberg



MPI_Alltoall

int MPI_Alltoall( 

void *sendbuf, 

int sendcount, 

MPI_Datatype sendtype, 

void *recvbuf, 

int recvcount, 

MPI_Datatype recvtype, 

MPI_Comm comm 

); 

All arguments on all processes are significant!

Zero-size messages are OK.

MPI_Alltoall allows each task to send specific data to all other  tasks all at once!

Less overhead!

Instructor: Leopold Grinberg



MPI_Alltoallv

int MPI_Alltoallv( 

void *sendbuf, 

int *sendcount,

int *senddispls, 

MPI_Datatype sendtype, 

void *recvbuf, 

int *recvcount,

int  *recvdispls,

MPI_Datatype recvtype, 

MPI_Comm comm 

); 

All arguments on all processes are significant!

Sends data from all to all processes; 

each process may send/recv a different amount of data at once! 

A1,1 A1,2 A1,3 A1,4

A2,1 A2,2 A2,3 A2,4

A3,1 A3,2 A3,3 A3,4

A4,1 A4,2 A4,3 A4,4

P0

P1

P2

P3

A1,1 A2,1 A3,1 A4,1

A1,2 A2,2 A2,2 A4,2

A1,3 A2,3 A3,3 A4,3

A1,4 A2,4 A3,4 A4,4

P0

P1

P2

P3

Instructor: Leopold Grinberg



Back to point-to-point 

communication

Instructor: Leopold Grinberg



MPI_Wait, 

MPI_Waitall, 

MPI_Waitany, 

MPI_Waitsome

Non-blocking point-to-point 
communications in “for” loops

and 

Instructor: Leopold Grinberg



Example of a 

Data Parallel Problem (2D)

),(
2

2

2

2

yxf
y

u

x

u











2

1,,1,

2

,1,,1

2

2

2

2 22

x

uuu

x

uuu

y

u

x

u jijijijijiji


















 

jijijijijii fxuu
y

x
uu

y

x
u ,

2

1,1,2

2

,1,12

2

5.0)(5.0)1( 

















 

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Instructor: Leopold Grinberg



MPI_Request *recv_request, *send_request;

recv_request = new MPI_Request [Nneighbors *2];

send_request = recv_request + Nneighbors;

for (i = 0; i < Nneighbors; ++i)

MPI_Irecv( recvbuf[i], 

recvcount[i],  

MPI_DOUBLE,

neighbor[i],

tag[i],

communicator,

&recv_request[i]);

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

for (i = 0; i < Nneighbors; ++i)

fill_sendbuffer (i, sendbuf[i]);

1

2

for (i = 0; i < Nneighbors; ++i)

MPI_Isend(sendbuf[i],

sendcount[i],

MPI_DOUBLE,

neighbor[i],

tag[i],

communicator,

&send_request[i] ); 

3

2 and 3 can also be combined (and “properly” ordered)

Instructor: Leopold Grinberg



MPI_Irecv(…, &recv_request[i]);  

prepare data;

MPI_Isend(…, &send_request[i]); 

1
2

3

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15MPI_Waitall (Nneighbors, recv_request, MPI_STATUS_IGNORE); 

for (i = 0; i < Nneighbors; ++i)

procerss_recv_buffer(i, recvbuf[i]);

MPI_Waitall(Nneighbors, send_request, MPI_STATUS_IGNORE); 

MPI_Waitall(Nneighbors*2, recv_request, MPI_STATUS_IGNORE); 

for (i = 0; i < Nneighbors; ++i)

procerss_recv_buffer(i, recvbuf[i]);

for (i = 0; i < Nneighbors; ++i){

MPI_Wait(&recv_request[i], MPI_STATUS_IGNORE);

procerss_recv_buffer(i, recvbuf[i]);

}

MPI_Waitall(Nneighbors, send_request, MPI_STATUS_IGNORE); 

OR

OR

OR

4

4

4

Instructor: Leopold Grinberg



MPI_Irecv(…, &recv_request[i]);  

prepare data;

MPI_Isend(…, &send_request[i]); 

1
2

3

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

for (i = 0; i < Nneighbors; ++i){

MPI_Waitany(Nneighbors, recv_request, &index, MPI_STATUS_IGNORE);

procerss_recv_buffer(index, recvbuf[index]);

}

MPI_Waitall(Nneighbors, send_request, MPI_STATUS_IGNORE); 

4

delete[] recv_request; 5

Instructor: Leopold Grinberg



0

8

5

3

2

4

6

1 7

Ax=b

A is 9x9 operator

x is 9x1

b is 9x1 

A1x1=b1

A1 is 6x6 operator

x1 is 6x1

b1 is 6x1

A2x2=b2

A2 is 6x6 operator

x1 is 6x1

b1 is 6x1

0

3

52

41

P0 P1

Element-wise matrix-vector multiplication

Instructor: Leopold Grinberg



Element-wise matrix-vector 

multiplication

=
+

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

6

7

8

A x b

0

3

52

41

P0 P1

local 

numbering

global 

numbering

Instructor: Leopold Grinberg



Element-wise matrix-vector multiplication

0

1

2

3

4

5

A2 x2 b2

0

1

2

3

4

5

=

=

0

1

2

3

4

5

0

1

2

3

4

5

A1 x1 b1

P0

P1

Local numbering

Local numbering

Instructor: Leopold Grinberg



Element-wise matrix-vector multiplication

0

1

2

3

4

5

P0

P1

Local numbering

0

1

2

3

4

5

b1

b2

b

Local numbering

0

1

2

3

4

5

0

1

2

3

4

5

+

0

1

2

3

4

5

6

7

8

Instructor: Leopold Grinberg



P0:

MPI_Irecv(recvbuf,3,MPI_DOUBLE,1,1,communicator,&recv_request);

for (i = 0; i < 3; ++0)

sendbuf[i] = b[i+3];      

MPI_Isend(sendbuf,3,MPI_DOUBLE,1,1,communicator,&send_request);

P1:

MPI_Irecv(recvbuf,3,MPI_DOUBLE,0,1,communicator,&recv_request);

for (i = 0; i < 3; ++0)

sendbuf[i] = b[i];      

MPI_Isend(sendbuf,3,MPI_DOUBLE,0,1,communicator,&send_request);

Element-wise matrix-vector multiplication

Instructor: Leopold Grinberg



P0:

MPI_Wait(&recv_request, MPI_STATUS_IGNORE);

for (i = 0; i < 3; ++0)

b[i+3] = b[i+3]+recvbuf[i];    

MPI_Wait(&send_request, MPI_STATUS_IGNORE); 

P1:

MPI_Wait(&recv_request, MPI_STATUS_IGNORE);

for (i = 0; i < 3; ++0)

b[i] = b[i]+recvbuf[i];      

MPI_Wait(&send_request, MPI_STATUS_IGNORE);

Element-wise matrix-vector multiplication

here we employ symmetric data exchange

(rank i exchanges data with rank j,

message sizes are identical) 

Instructor: Leopold Grinberg



Element-wise matrix-vector multiplication:

general case (1)

Global IDs of degrees of freedom:

P0:  [0 1 2 5 7 8 11 13 14 29 88]

P1:  [2 3 5 6 10  12 14 80]

P3:  [0 2 20 21 28 81]

.

.

.

P4095: [ 1 2 88 110 90111 90112]   

Instructor: Leopold Grinberg



Element-wise matrix-vector multiplication:

general case (2)

Global IDs of degrees of freedom:

P0:  [0 1 2 5 7 8 11 13 14 29 88]

P1:  [2 3 5 6 10  12 14 80]

P3:  [0 2 20 21 28 81]

.

.

.

P4095: [ 1 2 88 110 90111 90112]   

1. Who are my neighbors ?

All ranks can be 

my neighbors

Only certain

subset of ranks 

include my 

neighbors

This is going to be messy ….

Need a lot of memory for mapping 

and/or a lot of communications

I am in better shape:

will need less memory and 

less communications!

Instructor: Leopold Grinberg



Element-wise matrix-vector multiplication:

general case (3)

Global IDs of degrees of freedom:

P0:  [0 1 2 5 7 8 11 13 14 29 88]

P1:  [2 3 5 6 10  12 14 80]

P3:  [0 2 20 21 28 81]

.

.

.

P4095: [ 1 2 88 110 90111 90112]   

2. How many d.o.f each my of 

potential neighbors has? 

All ranks can be 

my neighbors

Only certain

subset of ranks 

include my 

neighbors

Use MPI_Allgather to collect the number of d.o.f
Use MPI_Isend / MPI_Irecv 

to collect the number of 

d.o.f of neighbors

Instructor: Leopold Grinberg



Element-wise matrix-vector multiplication:

general case (4)

Global IDs of degrees of freedom:

P0:  [0 1 2 5 7 8 11 13 14 29 88]

P1:  [2 3 5 6 10  12 14 80]

P3:  [0 2 20 21 28 81]

.

.

.

P4095: [ 1 2 88 110 90111 90112]   

2. What  d.o.f each my of potential 

neighbors has? 

All ranks can be 

my neighbors

Only certain

subset of ranks 

include my 

neighbors

Use MPI_Allgatherv to collect the neighbors d.o.f
Use MPI_Alltoallv or 

MPI_Isend / MPI_Irecv to 

collect neighbors d.o.f

May run out of memory …. 

Instructor: Leopold Grinberg



Element-wise matrix-vector multiplication:

general case (5)

Global IDs of degrees of freedom:

P0:  [0 1 2 5 7 8 11 13 14 29 88]

P1:  [2 3 5 6 10  12 14 80]

P3:  [0 2 20 21 28 81]

.

.

.

P4095: [ 1 2 88 110 90111 90112]   

2. What d.o.f each my of potential 

neighbors has? 

All ranks can be 

my neighbors

Only certain

subset of ranks 

include my 

neighbors

Use MPI_Isend / MPI_Irecv 

within a “for” loop to collect the neighbors d.o.f

one by one – do mapping and clean memory

(Alternative option is to use bit array)

Instructor: Leopold Grinberg



for (partner = 0; partner < Npartners; ++ partner ){

for (i = 0, ii=0; i < n; ++i){

for (j = 0; j < partner_map_size[partner]; ++j){

if (map[i] == partners_map[partner][j]){

message_send_map[partner][ii] = i;

ii++;

break;

} // end of if (map[i]

}

} // end of “for (i = 0,…” 

for (j = 0, jj = 0; j < partner_map_size[partner]; ++j){

for (i = 0; i < n; ++i){

if (map[i] == partners_map[partner][j]){

message_recv_map[partner ][jj] = i;

jj++;

break;

} // end of “if (map[i]….”

}

} // end of “for (j = 0,…” 

}

Element-wise matrix-vector multiplication:

general case (6)

mapping 

local  d.o.f  neighbors d.o.f

Instructor: Leopold Grinberg



Instructor: Leopold Grinberg

void NEKTAR_MEX::MEX_plus(double *val){

double *dp;

int *map;

int i,j,partner,index;

MEX_post_recv();

for (partner = 0; partner < Npartners; ++partner){

dp = send_buffer[partner];

map = message_send_map[partner];

for (i = 0; i < message_size[partner]; ++i)

dp[i] = local_values[map[i]];

}

MEX_post_send();

for (i = 0; i < Npartners; i++){

MPI_Waitany(Npartners,request_recv,&index,MPI_STATUS_IGNORE);

dp = recv_buffer[index];

map = message_recv_map[index];

for (j = 0; j < message_size[index]; ++j)

local_values [map[j]] += dp[j];

}

MPI_Waitall(Npartners,request_send,MPI_STATUS_IGNORE);

}

Global 

summation

Element-wise matrix-vector 

multiplication:

general case (7)



How to learn programming 
with MPI ?

Just do it!

Instructor: Leopold Grinberg


