
CUDA SKILLS

Yu-Hang Tang

June 23-26, 2015

CSRC, Beijing

• day1.pdf at /home/ytang/slides

• Referece solutions coming soon

Online CUDA API documentation

http://docs.nvidia.com/cuda/index.html

Yu-Hang Tang @ Karniadakis Group, Summer School on Parallel Computing, CSRC, Beijing June 23-26, 2015 1

RECAP

GPUs are massively parallel, energy-efficient processors

There are a variety of ways to harness the power of GPUs

• Language extensions, directives, libraries, scripts

NVCC is the C++ compiler for CUDA GPUs

Kernels are functions that run in parallel on GPUs

• need to be launched from host CPU (or otherwise by Dynamic Parallelism)

Threads are organized in a grid of blocks

June 23-26, 2015Yu-Hang Tang @ Karniadakis Group, Summer School on Parallel Computing, CSRC, Beijing 2

THE SIMT ARCHITECTURE

• Software

• Kernels run in warps of 32 parallel threads

• All threads in a warp must execute the same instruction at any given time

• Hardware – Kepler architecture

• Each GPU contains several, e.g. 15, Stream Multiprocessors (SMs)

• Each SM contains 192 cores, divided into 6 groups (i.e. 32 cores per group)

• Each SM can hold up to 2048 CUDA threads, i.e. 64 warps

• 2 blocks if block size is 1024, 4 blocks if block size is 512, etc…

• For each cycle, the SM can pick up to 4 warps and issue up to 2 instructions per warp

• Why: to hide instruction & memory latency

June 23-26, 2015Yu-Hang Tang @ Karniadakis Group, Summer School on Parallel Computing, CSRC, Beijing 3

OCCUPANCY

• Occupancy = number of actual threads per SM / max number of threads per
SM

• Why high occupancy is crucial for reaching peak performance: to hide latency

• Instruction latency: 9+ cycles

• Memory latency: 8 - 2000+ cycles

• CUDA core execute instructions in-order

• How much occupancy do we actually need?

June 23-26, 2015Yu-Hang Tang @ Karniadakis Group, Summer School on Parallel Computing, CSRC, Beijing 4

BRANCH DIVERGENCE

• A warp can only execute ONE common instruction at a time

• Divergence happens when threads of a warp disagree on their execution
path due to data-dependent conditional branch

• if, for, while/do, switch

• Warp serially executes each branch path, disabling threads that are not on
that path until all paths complete

Yu-Hang Tang @ Karniadakis Group, Summer School on Parallel Computing, CSRC, Beijing June 23-26, 2015 5

QUIZ

• Divergent or not?

__global__ void foo(...) {

if (threadIdx.x % 2) {

...

} else {

...

}

}

__global__ void foo(...) {

if ((threadIdx.x / warpSize) % 2) {

...

} else {

...

}

}

__global__ void foo(int *bar) {

if (bar[threadIdx.x]) {

...

} else {

...

}

}

__global__ void foo(int *bar) {

int tid = threadIdx.x;

for(int i = 0; i < bar[tid]; i++) {

...

}

}

Yu-Hang Tang @ Karniadakis Group, Summer School on Parallel Computing, CSRC, Beijing June 23-26, 2015 6

NOT ALL MEMORIES ARE BORN EQUAL

• HW

• Register files

• On-chip L1/L2 cache

• On-chip texture units

• Off-chip GRAM

GPU & On-chip memory

Off-chip GRAM

• SW

• registers

• per-thread private local memory

• per-block shared memory

• global memory: accessible to all threads

• constant and texture cache: global read-only
access

Yu-Hang Tang @ Karniadakis Group, Summer School on Parallel Computing, CSRC, Beijing June 23-26, 2015 7

GPU MEMORY FACT SHEET

Reg(32bit) Global Shared Const Texture

Capacity 255/thread 2-12 GB 16-48 KB/SM ~10s KB ~10s KB

Latency 2 ~1000 8 8 (hit) ~60 (hit)

Bandwidth - High Very High Low Very High

Scope thread global block global global

Yu-Hang Tang @ Karniadakis Group, Summer School on Parallel Computing, CSRC, Beijing June 23-26, 2015 8

GLOBAL MEMORY

• Allocatable from host/device

• cudaError_t cudaMalloc (void** devPtr, size_t size);

• cudaError_t cudaFree (void* devPtr) ;

• device-side malloc/new/free/delete

• Accessible from device

• Copiable from host

• cudaError_t cudaMemcpy (void* dst, const void* src, size_t count, cudaMemcpyKind kind);

• cudaError_t cudaMemset (void* devPtr, int value, size_t count);

• UVA

• Single address space for the host and all devices.

ptr[index] = value;

Yu-Hang Tang @ Karniadakis Group, Summer School on Parallel Computing, CSRC, Beijing June 23-26, 2015 9

ACCESS PATTERN

• Coalesced: adjacent
threads access
consecutive memory
locations

• Aligned: Starting address
of memory access is
multiple of 32 bytes
(write, non-caching read)
or 128 bytes (caching
read)

• Strided: memory access
spaced uniformly

Coalesced, Aligned Coalesced, Unaligned

Uncoalesced, UnalignedStrided

Yu-Hang Tang @ Karniadakis Group, Summer School on Parallel Computing, CSRC, Beijing June 23-26, 2015 10

QUIZ

• Coalesced or not?

__global__ void foo(int *bar) {

bar[thread_id()] = ...;

}

__global__ void foo(int *bar) {

bar[thread_id()+8] = ...;

}

__global__ void foo(int *bar) {

bar[thread_id()+13] = ...;

}

__global__ void foo(int *bar) {

int e = bar[thread_id()+16];

}

__global__ void foo(double *bar) {

double e = bar[thread_id()+16];

}

__global__ void foo(int2 *bar) {

int e = bar[thread_id()].x;

}

__global__ void foo(float4 *bar) {

float e = bar[thread_id()].z;

}

__global__ void foo(int *map, int *bar) {

int e = bar[map[thread_id()]];

}

Yu-Hang Tang @ Karniadakis Group, Summer School on Parallel Computing, CSRC, Beijing June 23-26, 2015 11

CONSTANT MEMORY

• Const memory

• __constant__

• low latency on hit, low bandwidth (broadcast only)

• const *: compiler automatically offload to constant cache

• Non-coherent cache

• const __restrict

• high bandwidth, medium latency

• compiler automatically offload to non-coherent cache

Yu-Hang Tang @ Karniadakis Group, Summer School on Parallel Computing, CSRC, Beijing June 23-26, 2015 12

SHARED MEMORY

• Shared

• visible to all threads of the block and within the lifetime of the block.

• allocated using the __shared__ qualifier

• much faster than global memory

• banked access, broadcasting

• Static allocation

• __shared__ int array[32];

• Dynamical allocation

• <<<numBlocks, threadsPerBlock, sharedMemSize >>>

• Template allocation

Yu-Hang Tang @ Karniadakis Group, Summer School on Parallel Computing, CSRC, Beijing June 23-26, 2015 13

READ-ONLY DATA CACHE (TEXTURE CACHE)

• Underlying memory region is assumed to be immutable during kernel launch.

• 48 KB per SM

• Better random access performance

• 32-byte load granularity, cached

• hardware takes care of multi-dimensional data locality

• Usage

__global__ void foo(int *bar, int *map) {

int x = __ldg(bar + map[threadIdx.x]);

}

__global__ void foo2(const int* __restrict bar, int *map) {

int x = bar[map[threadIdx.x]];

}

Yu-Hang Tang @ Karniadakis Group, Summer School on Parallel Computing, CSRC, Beijing June 23-26, 2015 14

EXAMPLE 5: IMAGE FILTERING REVISITED

• Shared memory version

• copy tiles to shared memory first

• __syncthreads()

• Non-coherent cache version

• decorate image as const * __restrict

Yu-Hang Tang @ Karniadakis Group, Summer School on Parallel Computing, CSRC, Beijing June 23-26, 2015 15

ATOMICS

• Race condition

• Atomicity: a guarantee that the operation will be performed without
interference from other threads.

• Performs a read-modify-write atomic operation on one 32-bit or 64-bit word
residing in global or shared memory

• modify = add, sub, exchange, etc...

• Only atomicExch() and atomicAdd() for float values

__shared__ int sum;

int b = ...;

sum += b;

__shared__ int sum;

int b = ...;

register r = sum;

r += b;

sum = r;

__shared__ int sum;

int b0 = ...;

register r0 = sum;

r0 += b0;

int b1 = ...;

register r1 = sum;

sum = r0;

r1 += b1;

sum = r1;

Yu-Hang Tang @ Karniadakis Group, Summer School on Parallel Computing, CSRC, Beijing June 23-26, 2015 16

WARP SHUFFLE

• Exchange a variable between threads within a warp (C.C. > 3.0)

• Signature

• type __shfl(type var, int srcLane, int width=warpSize);

• type = int / float

__shfl() Direct copy from indexed lane

__shfl_up() Copy from a lane with lower ID relative to caller

__shfl_down() Copy from a lane with higher ID relative to caller

__shfl_xor() Copy from a lane based on bitwise XOR of own lane ID

Yu-Hang Tang @ Karniadakis Group, Summer School on Parallel Computing, CSRC, Beijing June 23-26, 2015 17

EXAMPLE 6: PARALLEL REDUCTION

• Reduction: a summary of data

• summary = summation, mean, max, min, etc.

• Parallel summation: 𝑆𝑛 = 𝑖=0
𝑛−1𝑎𝑖

• The serial way: for(int i = 0 ; i < n ; i++) sum += a[i];

• How to reduce in parallel?

Yu-Hang Tang @ Karniadakis Group, Summer School on Parallel Computing, CSRC, Beijing June 23-26, 2015 18

ACKNOWLEDGEMENT

Thank you for coming to this workshop!

Y.H.T. appreciate invitation from Professor Wei Cai and support from CSRC.

Yu-Hang Tang @ Karniadakis Group, Summer School on Parallel Computing, CSRC, Beijing June 23-26, 2015 19

