
HIGH PERFORMANCE 

NUMERICAL LINEAR 

ALGEBRA 
Chao Yang 

Computational Research Division 

Lawrence Berkeley National Laboratory 

Berkeley, CA, USA  

1 



Solving Dense Linear System of Equations 

• Gauss elimination with partial pivoting 

• Error analysis 

• Iterative refinement 

• LAPACK 

• Choleksy & LDLT factorization 

• Left-looking, right-looking and Crout algorithms 

• Block algorithms 

• Parallel Cholesky factorization 

• Parallel triangular substitution 

• Communication avoiding algorithms 

• ScaLAPACK 

2 



Linear Least Squres and Eigenvalue 

Problems 
• QR factorization 

• The QR algorithm 

• Hessenberg reduction 

• Bulge chase 

• Divide conquer algorithm for symmetric tridiagonal 

eigenvalue problem 

3 



Gauss elimination with partial pivoting 

(GEPP) for solving Ax=b 
 

• Factorization and partial pivoting 

𝑃𝐴 = 𝐿𝑈, where 𝑃 is a permutation matrix 

• Forward substitution: 

Solve 𝐿𝑦 = 𝑃𝑏 

• Backward substitution 

Solve 𝑈𝑥 = 𝑦 

 

4 



LU without pivoting  

5 

• Basic algorithm (recursive) 

• Partition the matrix 𝐴 as 

𝐴 =
𝛼11 𝑏𝑇

𝑎 𝐴 
 

• First step: 

𝐴 =
1 0
𝑙 𝐼

𝛼11 𝑏𝑇

0 𝑆
,  

where 𝑙 =
𝑎

𝛼11
, 𝑆 = 𝐴 − 𝑙𝑏𝑇 (Schur complement, rank-1 update) 

• Apply the same procedure recursively on 𝑆 until it becomes 1 × 1 

• Not accurate in floating point arithmetic,cancellation error 

in Schur complement 



Example (from Demmel’s Applied Linear 

Algebra) 
• Assume 3-decimal-digit floating point unit 

• 𝐴 = 10−4 1
1 1

,  

• 𝐿 =
1 0

1/10−4 1
,  U=

10−4 1
0 𝑓𝑙(1 − 104 ⋅ 1)

 

• Multiply L and U back 

• 𝐿𝑈 =
1 0

1/10−4 1
 

10−4 1
0 𝑓𝑙(1 − 104 ⋅ 1)

= 10−4 1
1 0

 

 

6 



Partial pivoting 

• Algorithm: 

7 

for j = 1:n-1 

   [amax,p(j)] = max(abs(A(j:n,j)); 

   p(j) = p(j)+j-1; 

   %swap A(j,j:n) with A(p(j),j:n) 

   if (p(j)~=j) 

      a = A(j,j:n); 

      A(j,j:n) = A(p(j),j:n); 

      A(j,j:n) = a; 

   end 

   A(j:n,j) = A(j:n,j)/A(j,j); 

   A(j+1:n,j+1:n) = A(j+1:n,j+1:n) - 

A(j:n,j)*A(j,j:n)'; 

end 
 



Error Analysis Basics 

• Perturbation analysis: If the matrix 𝐴 is perturbed by Δ𝐴, and 

the right-hand side is perturbed by 𝛿𝑏, what is the maximum 

amount of error 𝛿𝑥 we expect from the computed solution 𝑥  

• Condition number 𝜅 𝐴 = 𝐴 ⋅ 𝐴−1 . In 2-norm, 𝜅 𝐴 =
𝜆𝑚𝑎𝑥𝑠

𝜆𝑚𝑖𝑛
. 

It is an intrinsic property of the problem. Error bound in the 

computed solution is often related to the perturbation of the 

data through 𝜅(𝐴) 

• Forward error analysis: analyze floating point error in each step 

and examine the cumulative effect 

• Backward error: treat floating point error as perturbation of the 

original matrix and/or data.  Backward stable if Δ𝐴 / 𝐴  and 

𝛿𝑏 / 𝑏  are on the order of machine precision 𝑂(𝜖) 

8 



Matrix and vector norms 

• Vector norms 

• 𝑥 ∞ = 𝑥𝑇𝑥, 𝑥 1 =  |𝑥𝑖|
𝑛
𝑖=1 , 𝑥 ∞ = max

𝑖
𝑥𝑖  

• Equivalence of norms, e.g.:  𝑥 2 ≤ 𝑥 1 ≤ 𝑛 𝑥 2 

• Matrix norm 

• 𝐴 𝐹 =  |𝑎𝑖𝑗|
2

𝑖,𝑗 = trace(𝐴𝑇𝐴) 

• 𝐴 = min
𝑥 =1

𝐴𝑥 , e.g.  

 𝐴 2 = 𝜆max(𝐴𝑇𝐴) 

 𝐴 ∞ = max
𝑖

𝑗  𝑎𝑖𝑗  

 𝐴 1 = max𝑗  𝑎𝑖𝑗𝑖  

• |𝑋| = 𝑋  holds for ⋅ 𝐹, ⋅ ∞, ⋅ 1 but not for ⋅ 2 

9 



Backward error analysis of GEPP 

• Residual: 𝑟 = 𝑏 − 𝐴𝑥  

• Solving 𝐴𝑥 = 𝑏 in floating point arithmetic is equivalent to 

solving 𝐴 + Δ𝐴 𝑥 = 𝑏 + 𝛿𝑏 in exact arithmetic with 

𝜔∞ =  max 
Δ𝐴 ∞

𝐴 ∞
,

𝛿𝑏 ∞

𝑏 ∞
≤

𝑟 ∞

𝐴 ∞ ⋅ 𝑥 + 𝑏 ∞

≤ 𝑝 𝑛 ⋅ machine precision 

• The factor 𝑝 𝑛  is related to the growth factor of GEPP 

defined by 𝑔 = 𝑈 / 𝐴 . In practice, 𝑝(𝑛) often satisfies 

𝑝 𝑛 ≤ 𝑛. In rare cases, 𝑝 𝑛 ~2𝑛 

• Gauss elimination with complete pivoting has a lower 

growth factor, but too costly in practice 

10 



Error bound and condition number 

estimation 

•
𝑥−𝑥 ∞

𝑥 ∞
≤ 2𝜔∞𝜅∞ 𝐴 = 2

𝑟 ∞ 𝐴 ∞ 𝐴−1
∞

𝐴 ∞⋅ 𝑥 + 𝑏 ∞
 

• Conditioner number estimator: Need to estimate 
𝐴−1

∞ 
• Solve an optimization problem: 

max
𝑥≠0

𝐴−1𝑥 ∞

𝑥 ∞
 

• Convex relaxation 

max
𝑥 ∞≤1

𝐴−1𝑥 ∞ 

• Practical bounds: 
𝑥 − 𝑥 ∞

𝑥 ∞
≤ 𝐴−1

∞

𝑟 ∞

𝑥 ∞
 

 

11 



Iterative refinement and Equibration 

• What can we do when 𝜅(𝐴) is large, and error in the 

computed solution is relatively large? 

• Use Newton’s method to refine the root of 𝑓 𝑥 = 𝐴𝑥 − 𝑏, 

starting from the previously computed solution 

 

 

 

 

 

• Solve 𝐷𝑟𝐴𝐷𝑐(𝐷𝑐
−1𝑥) = 𝐷𝑟𝑏. Choose 𝐷𝑟 and 𝐷𝑐 to reduce 

condition number, balance the matrix elements 

12 

For i = 1, 2, … 

1. Comput residual 𝑟 = 𝐴𝑥𝑖 − 𝑏 

2. Solve 𝐴𝑑 = 𝑟; 

3. Make correction 𝑥𝑖+1 = 𝑥𝑖 − 𝑑 



LAPACK 

• Assume matrix stored in A and right-hand side stored in B 

• Solve system; The solution X overwrites B 

 CALL SGESV( N, 1, A, LDA, IPIV, B, LDB, INFO )  

 

 

 

• Get reciprocal condition number RCOND of A  

 CALL SGECON( 'I', N, A, LDA, ANORM, RCOND, WORK, 

IWORK, INFO ) where  

ANORM = SLANGE( 'I', N, N, A, LDA, WORK )  is infinity-

norm of A  

 

 

13 

number of right-hand sides 

Leading dimension 

permutation 

vector  



Cholesky factorization 

• If 𝐴 is symmetric positive definite 𝐴 = 𝐿𝐿𝑇, where 𝐿 is 

lower triangular 

• Cholesky factorization 

𝐴 =
𝛼11 𝑎𝑇

𝑎 𝐴 
=

1
𝑎/𝛼11 𝐼

𝛼11 𝑎𝑇

𝐴 −
𝑎𝑎𝑇

𝛼11

  

𝐴 =
1

𝑎/𝛼11 𝐼
𝛼11

𝐼

1 𝑎𝑇/𝛼11

𝐴 −
𝑎𝑎𝑇

𝛼11

 

=
𝛼11

𝑎/ 𝛼11 𝐼

1

𝐴 −
𝑎𝑎𝑇

𝛼11

𝛼11 𝑎𝑇/ 𝛼11

𝐼
 

• No pivot is need, algorithm stable, grow factor moderate 

14 



LDLT factorization 

• Symmetric indefinite matrices can be factored as 

𝐴 = 𝐿𝐷𝐿𝑇, where 𝐷 may contain negative entries 

• 𝐴 =
1

𝑎/𝛼11 𝐼
𝛼11

𝐼

1 𝑎𝑇/𝛼11

𝐴 −
𝑎𝑎𝑇

𝛼11

 may not be 

numerically stable 

• Use Bunch-Kaufman algorithm to create 1x1 or 2x2 pivot, 

so that the 𝐷 matrix contains 1x1 and 2x2 blocks. 
• 𝑃𝐴𝑃𝑇 = 𝐿𝐷𝐿𝑇 

 

 

15 



Right-looking, Left-looking and Crout 

• Right-looking is usually how the algorithm is presented  

𝐴 =
1 0
𝑙 𝐼

𝛼11 𝑏𝑇

0 𝑆
,  

where 𝑙 =
𝑎

𝛼11
, the Schur complement update 𝑆 = 𝐴 − 𝑙𝑏𝑇 

is to the right of the column being eliminated 

• Left-looking: delay the update of the Schur complement 

until a column of L is to be eliminated. 
𝐴11 𝐴12

𝐴21 𝐴22
=

𝐿11

𝐿21 𝐼
𝑈11 𝑈12

𝑆
 

Assume 𝐿11, 𝐿21, 𝑈11, 𝑈12 are available, but not 𝑆. We now 

compute only the first column of 𝑆: 

𝑆𝑒1 = 𝐴22𝑒1 − 𝐿21𝑈12𝑒1 

16 



Block algorithms 

• Block LU factorization 

𝐴 =
𝐴11 𝐴12

𝐴21 𝐴22
=

𝐿11

𝐴21𝐿11
−1 𝐼

𝑈11 𝑈11
−1𝐴12

𝐴 − 𝐴21𝑈11
−1𝐿11

−1𝐴12

  

• Blocking factorization to improve memory locality 

• Leverage BLAS3 performance 

• Block size can be tuned 

 

17 



Parallelization for shared memory 

machines 
• LAPACK (thread parallelism): rely on threaded BLAS, 

limited scalability (because BLAS is used to multiply 

matrix blocks that may be too small for parallelism) 

• Exploit concurrency at block (tile level) level (triple loop) 

18 

Courtesy: J. Dongarra 



PLASMA & MAGMA 

• PLASMA: Parallel Linear Algebra Software for Multi-core 
Architectures 

• http://icl.cs.utk.edu/plasma 

• Dynamic DAG (direct acyclic graph) scheduling (using 
QUARK) 

• Fine granularity (to ensure load balance)  

• Block data layout to promote locality 

 

• MAGMA:  

• http://icl.cs.utk.edu/magma 

• For heterogeneous systems (e.g. systems that contain 
GPUs)  

19 

http://icl.cs.utk.edu/plasma
http://icl.cs.utk.edu/plasma
http://icl.cs.utk.edu/magma
http://icl.cs.utk.edu/magma


Parallel factorization for distributed 

memory machines 
• Data decomposition 

 

 

 

 

 

• Block cyclic to achieve load balance (no processor should 

be sitting idle while others complete distributed tasks) 

• Right-looking (fan-out) 

20 

1D 2D 

𝐴 =
1 0
𝑙 𝐼

𝛼11 𝑏𝑇

0 𝑆
 



21 

Algorithm  

for k = 1 to n − 1  

broadcast {𝑎𝑘𝑗: j ∈ mycols, j ≥ k} in process column  

if k ∈ mycols then  

for i ∈ myrows, i > k  

𝑙𝑖𝑘 = 𝑎𝑖𝑘/𝑎𝑘𝑘   { multipliers }  

end  

end  

broadcast {𝑙𝑖𝑘: i ∈ myrows, i > k} in process row  

for j ∈ mycols, j > k  

for i ∈ myrows, i > k,  

𝑎𝑖𝑗 = 𝑎𝑖𝑗 − 𝑙𝑖𝑘𝑎𝑘𝑗 { update }  

end  

end  

end CS 554 | CSE 512 – PARALLEL NUMERICAL ALGORITHMS 

(UNIV OF ILLINOIS, M. HEATH) 

http://courses.illinois.edu/cis/2011/fall/schedule/CS/554.html
http://courses.illinois.edu/cis/2011/fall/schedule/CSE/512.html


Cost analysis 

• Flops:  

• Updating by each process at step k requires 
about 𝑛 − 𝑘 2/𝑝 operations  

• Summing over 𝑛 − 1 steps 

𝑇 ≈ 𝑡𝑐  
𝑛−𝑘 2

𝑝
≈

𝑡𝑐𝑛3

3𝑝
𝑛−1
𝑘=1  

• Communication: 

• data broadcast at step 𝑘 along each process 
row/column is about (𝑛 − 𝑘)/ 𝑝 

• Bandwidth: Ω(log𝑝
𝑛2

𝑝
) latency: Ω(𝑛log 𝑝) 

22 



How far are we from optimal performance 

• Metric for optimal (lower bound for communication volume 

and frequency) See J. Demmel’s SC14 turtorial 
http://www.cs.berkeley.edu/~demmel/SC14_tutorial/Demmel_SC14_Tutorial_final_v2_2pp.pdf  

• Let M be “fast” memory (e.g. cache) size per processor 

• #words moved (per processor) = (#flops (per processor) / 

M1/2 ) 

• #messages sent = (#flops (per processor) / M3/2 ) 

• Schur complement updated by 2.5 matrix-matrix 

multiplication algorithm (require extra memory) 

23 

• Initially processor 𝑃 𝑖, 𝑗, 0  owns 𝐴(𝑖, 𝑗) and B(𝑖, 𝑗) each of size 

𝑛
𝑐

𝑃
× 𝑛

𝑐

𝑃
 

• 𝑃 𝑖, 𝑗, 0  broadcasts 𝐴(𝑖, 𝑗) and B(𝑖, 𝑗) to 𝑃 𝑖, 𝑗, 𝑘  

• Processors at level k perform 1/c-th of SUMMA, i.e. 1/c-th of  

 𝐴 𝑖, 𝑚 𝐵(𝑚, 𝑗)𝑚  

(3)  Sum-reduce partial sums  𝐴 𝑖, 𝑚 𝐵(𝑚, 𝑗)𝑚  along k-axis so 𝑃 𝑖, 𝑗, 0  

owns 𝐶(𝑖, 𝑗) 

𝑖 𝑗 

𝑘 



Reported Performance improvement 

• 2.5D SUMMA GEMM on 16,384 nodes of BlueGene/P 

with c=16, i.e., 32x32x16 processor grid 

• 12x speedup for matrices of size 𝑛 = 8,192, 95% reduction in 

communication 

• 2.7x speedup fo rmatrices of size 𝑛 = 131,072 

• LU on 16,384 BlueGene/P nodes, for 𝑛 = 131,072, 

observe 2x speedup using 2.5D algorithm with and 

without pivoting 

24 



ScaLAPACK 

• Extension of LAPACK for distributed-memory parallel 

computers 

• Build on top of BLACS (Basic Linear Algebra 

Communication Subroutine) and PBLAS (parallel BLAS) 

• Example: 
CALL PDGEMM( TRANSA, TRANSB, M, N, K, ALPHA, A, IA, 

JA, DESC_A, B, IB, JB, DESC_B, BETA, C, IC, JC, 

DESC_C ) 

Array descriptors: DESC_A, DESC_B, DESC_C specifies  

the communication (BLACS) context/group (no inter-context comm) 

#of rows/columns in the distributed matrix,  

row/col block size 

Leading dimension 

25 



References 

• J. W. Demmel, M. T. Heath, and H. A. van der Vorst, 
Parallel numerical linear algebra, Acta Numerica 2:111-
197, 1993  

• G. A. Geist and C. H. Romine, LU factorization algorithms 
on distributed-memory multiprocessor architectures, SIAM 
J. Sci. Stat. Comput. 9:639-649, 1988  

• L. Grigori, J. Demmel, and H. Xiang, CALU: A 
communication optimal LU factorization algorithm, SIAM 
J. Matrix Anal. Appl. 32:1317-1350, 2011  

• B. A. Hendrickson and D. E. Womble, The torus-wrap 
mapping for dense matrix calculations on massively 
parallel computers, SIAM J. Sci. Stat. Comput. 15:1201-
1226, 1994 

26 



27 

• J. M. Ortega, Introduction to Parallel and Vector Solution 

of Linear Systems, Plenum Press, 1988  

• J. M. Ortega and C. H. Romine, The ijk forms of 

factorization methods II: parallel systems, Parallel 

Comput. 7:149-162, 1988  

• Y. Robert, The Impact of Vector and Parallel Architectures 

on the Gaussian Elimination Algorithm, Wiley, 1990  

• E. Solomonik and J. Demmel, Communication-optimal 

parallel 2.5D matrix multiplication and LU factorization 

algorithms, 17th Euro-Par Conf. on Parallel Processing, 

LNCS 6853, Springer, 2011  

• S. A. Vavasis, Gaussian elimination with pivoting is P-

complete, SIAM J. Disc. Math. 2:413-423, 1989 



Linear Least Squares Problem 

• min
𝑥

𝑏 − 𝐴𝑥 2, 𝐴 is 𝑚 × 𝑛, with 𝑚 > 𝑛 

• Application in (high-dimensional) data/curve fitting, 

tomography, statistical estimation (inference) 

• Weighted least square: replace 2-norm with another norm 

induced by a positive definite matrix 𝑊 

• 𝐴 can be full-rank or rank-deficient (numerically) 

 

28 



Basic Strategies 

• Normal equation:  

Optimality condition:  
𝛻 𝑏 − 𝐴𝑥 2 = 0 → 𝐴𝑇 𝑏 − 𝐴𝑥 = 0 → 𝐴𝑇𝐴𝑥 = 𝐴𝑇𝑏 

Not preferred due to the squaring of the condition number 

𝜅 𝐴𝑇𝐴 = 𝜅 𝐴 2 

• QR factorization 

• 𝐴 = 𝑄𝑅, where 𝑄𝑇𝑄 = 𝐼, 𝑅 is upper triangular 

• 𝑏 − 𝐴𝑥 = 𝑄𝑇𝑏 − 𝑅𝑥  

• Rank-revealing QR 𝐴𝑃 = 𝑄𝑅, diagonal of 𝑅 decreasing 

• Singular Value Decomposition 

• 𝐴 = 𝑈Σ𝑉𝑇, 𝑈𝑇𝑈 = 𝐼, 𝑉𝑉𝑇 = 𝐼, Σ diagonal with possibly zeros on the 

diagonal 

• 𝑏 − 𝐴𝑥 = 𝑈𝑇𝑏 − Σ(𝑉𝑥)  

29 



QR factorization 

• Householder reflector  

𝑃𝑥 = 𝐼 − 2𝑢𝑢𝑇 𝑥 = 𝑥 𝑒1 

• Successive elimination 

 

30 

𝑥 

𝑢 

X X X X 

X X X X 

X X X X 

X X X X 

X X X X 

X X X X 

X X X 

X X X 

X X X 

X X X 

X X X X 

X X X 

X X 

X X 

X X 

X X X X 

X X X 

X X 

X 

⋯ 

𝑃 = 𝑃1𝑃2 ⋯ 

𝑃1 𝑃2 



Block Householder transform 

• Accumulate several householder transformation into a 

single block low-rank update 

𝐼 − 𝛼𝑢1𝑢1
𝑇 𝐼 − 𝛼𝑢2𝑢2

𝑇 ⋯ = 𝐼 − 𝑌𝑇𝑌𝑇 = 𝐼 − 𝑌𝑊𝑇 

• Obtain 𝑢1, 𝑢2,… by constructing and apply Householder 

reflectors from/to the first few columns of 𝐴 

• Apply the transform 𝐼 − 𝑌𝑇𝑌𝑇 using GEMM (BLAS3) to 

subsequent columns of 𝐴 

𝐴 = 𝐴 − 𝑌𝑇(𝑌𝑇𝐴 ) 

31 



Other ways to perform QR 

• Given’s rotation  

cos 𝜃 −sin 𝜃
sin  𝜃 cos 𝜃

𝑥
𝑦 = 𝑥2 + 𝑦2

0
 

Applying Given’s rotation (BLAS1 operation) 

• Gram-Schmidt 

𝑞 ← 𝐼 − 𝑄𝑄𝑇 𝑎𝑗, 𝑞 ← 𝑞/ 𝑞  

BLAS2 operation 

• Cholesky QR 

𝐴𝑇𝐴 = 𝐿𝐿𝑇, 𝑄 = 𝐴𝐿−𝑇 

Less stable numerically 

32 



Rank-revealing QR 

• QR with column pivoting 𝐴𝑃 = 𝑄𝑅 

Choose the column with the largest norm in the trailing 

(unfinished) part of the matrix 

 

 

 

• Rank-revealing QR (M. Gu, SIAM J. Sci. Comp, vol 17, 

1996) 

• Additional permutations to make the algorithm more stable 

• Randomized algorithm 

33 



Talk skinny QR (TSQR) 

𝐴 =

𝐴1

𝐴2

𝐴3

𝐴4

=

𝑄1𝑅1

𝑄2𝑅2

𝑄3𝑅3

𝑄4𝑅4

=

𝑄1

𝑄2

𝑄3

𝑄4

𝑅1

𝑅2

𝑅3

𝑅4

 

𝑅1

𝑅2

𝑅3

𝑅4

=
𝑄 1𝑅 1

𝑄 2𝑅 2

=
𝑄 1

𝑄 2

𝑅 1

𝑅 2

 

𝑅 1

𝑅 2

= 𝑄 𝑅  

34 

# flops: 
2𝑚𝑛2

𝑃
+

2

3
𝑛3log 𝑃   # words: 

𝑛2

2
log 𝑃  # messages: log P 



Communication avoiding QR 

• Based on TSQR 𝐴 = 𝑄1𝑅11  𝐴  

• Right-looking update (GEMM) 

• For details: see LAWN204 

 

35 

Panel factorization by TSQR 

𝑌 

𝑅 

Deta 

CAQR ScaLAPACK 

# flops 
2𝑚𝑛2

𝑃
−

2𝑛3

3𝑃
 same 

# words 
𝑚𝑛3

𝑃
log𝑃 −

1

4

𝑛5

𝑚𝑃
log

𝑛𝑃

𝑚
 same 

# messages 
𝑛𝑃

𝑚
log2

𝑚𝑃

𝑛
log 𝑃

𝑚𝑃

𝑛
 



Eigenvalue problem 

• Standard 𝐴𝑥 = 𝜆𝑥 

• Generalized 𝐴𝑥 = 𝜆𝐵𝑥 

• 𝐴 can be symmetric, nonsymmetric, 𝐵 often symmetric 

positive definite 

 

36 



The QR algorithm 

• Hessenberg reduction: 𝐴𝑉 = 𝑉𝐻 

• Shifted QR algorithm: 

37 

for j = 1, 2, … until convergence 

𝜇=select_shift(𝐻); 
QR factorization: 𝐻 − 𝜇𝐼 = 𝑄𝑅; 
𝐻+ = 𝑅𝑄 + 𝜇𝐼 = 𝑄∗𝐻𝑄; 
𝑉 ← 𝑉𝑄; 

end 



Hessenberg reduction 

• Use Householder transformation 

• Apply from both sides (two sided transformation) 

38 

𝑄1𝐴 =

𝑋 𝑋 𝑋 𝑋 𝑋
𝑋 𝑋 𝑋 𝑋 𝑋
0 𝑋 𝑋 𝑋 𝑋
0 𝑋 𝑋 𝑋 𝑋
0 𝑋 𝑋 𝑋 𝑋

 𝐴1 = 𝑄1𝐴𝑄1
𝑇 =

𝑋 𝑋 𝑋 𝑋 𝑋
𝑋 𝑋 𝑋 𝑋 𝑋
0 𝑋 𝑋 𝑋 𝑋
0 𝑋 𝑋 𝑋 𝑋
0 𝑋 𝑋 𝑋 𝑋

 

𝑄2𝐴1 =

𝑋 𝑋 𝑋 𝑋 𝑋
𝑋 𝑋 𝑋 𝑋 𝑋
0 𝑋 𝑋 𝑋 𝑋
0 0 𝑋 𝑋 𝑋
0 0 𝑋 𝑋 𝑋

 𝑄2𝐴1𝑄2
𝑇 =

𝑋 𝑋 𝑋 𝑋 𝑋
𝑋 𝑋 𝑋 𝑋 𝑋
0 𝑋 𝑋 𝑋 𝑋
0 0 𝑋 𝑋 𝑋
0 0 𝑋 𝑋 𝑋

 



2-stage algorithm and parallelization 

• Reduce to r-Hessenberg form first 

 

 

 

 

 

• From r-Hessenberg to Hessenberg 

39 

r 



Bulge chase 

 

40 



Symmetric tridiagonal eigensolver 

 

41 


