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Solving Dense Linear System of Equations

- Gauss elimination with partial pivoting
- Error analysis

- Iterative refinement

- LAPACK

- Choleksy & LDLT factorization

- Left-looking, right-looking and Crout algorithms
- Block algorithms

- Parallel Cholesky factorization

- Parallel triangular substitution

- Communication avoiding algorithms

- ScaLAPACK



Linear Least Squres and Eigenvalue

Problems

- QR factorization

- The QR algorithm

- Hessenberg reduction
- Bulge chase

- Divide conquer algorithm for symmetric tridiagonal
eigenvalue problem



Gauss elimination with partial pivoting
(GEPP) for solving Ax=Db

- Factorization and partial pivoting
PA = LU, where P Is a permutation matrix
- Forward substitution:
Solve Ly = Pb
- Backward substitution
Solve Ux =y



LU without pivoting

- Basic algorithm (recursive)
- Partition the matrix A as

o
a A

_ (1 0\(a11 bT)
4= (l 1)( 0 S/
where | = —, § = A — IbT (Schur complement, rank-1 update)

a11

- Apply the same procedure recursively on S until it becomes 1 x 1

- Not accurate in floating point arithmetic,cancellation error
In Schur complement

- First step:



Example (from Demmel's Applied Linear
Algebra)

- Assume 3-decimal-digit floating point unit
—4
DA = (10 1),
1 1

1=(y0 1) U=('Y ja—10t)

- Multiply L and U back

LU= (1/110-4 (1)) (1%_4 fl(1 —1104 - 1)) B (101_4 (1))



Partial pivoting

- Algorithm: for j = 1l:n-1
[amax,p(j)] = max(abs(A(j:n,]));
p(J) = p(J)+3-1;
gswap A(j,j:n) with A(p(j),J:n)
if (p(J)~=])
a =~2A(Jj,j:n);

A(j,j:n) = A(p(J),J:n);
A(j,J:n) = a;
end

A(j:n,j) = A(J:n,])/A(3,3);
A(j+1l:n,j+1l:n) = A(j+1l:n,j+1l:n) -
A(j:n,j)*A(],J:n)";
end



Error Analysis Basics

- Perturbation analysis: If the matrix A is perturbed by AA, and
the right-hand side is perturbed by b, what is the maximum
amount of error 6x we expect from the computed solution x

. Condition number k(4) = ||A|| - |A~1]|. In 2-norm, k(A) = 2mazs,

Amin
It is an intrinsic property of the problem. Error bound in the
computed solution is often related to the perturbation of the

data through x(A)

- Forward error analysis: analyze floating point error in each step
and examine the cumulative effect

- Backward error: treat floating point error as perturbation of the
original matrix and/or data. Backward stable if ||AA]|/||A]| and
l6b]|/||b]|| are on the order of machine precision 0(e¢)



Matrix and vector norms

- Vector norms

lxlleo = VaTx, llxlly = Xfeyq Il Ixlleo = max|x;|

- Equivalence of norms, e.g.: ||xll; < lIxll; < Vnllx|l,
- Matrix norm

Al = Jzi,j a2 = |/trace(ATA)
Al = min l4x]l, e.g.
lx]|=1

#|Allz = Amax (AT 4)
Al = ml.aXJ'Z |aij]
~lAlly = max; ¥, |ay;|
[ X|Il = llX]| holds for [|-||z, [|-[l, II-]l1 but not for |||l




Backward error analysis of GEPP

- Residual: r = b — AX
- Solving Ax = b in floating point arithmetic is equivalent to
solving (A + AA)X = b + &b in exact arithmetic with

AA|| s 0 o0
|AA]le, |I6DI| >< 17l

1Alleo * 1Bl / — lAlleo - 121l + 1151l oo
< p(n) - machine precision
- The factor p(n) is related to the growth factor of GEPP

defined by g = ||U||/||Al|]. In practice, p(n) often satisfies
p(n) < n. Inrare cases, p(n)~2"

- Gauss elimination with complete pivoting has a lower
growth factor, but too costly in practice

We = Max (



Error bound and condition number
estimation

A _1
lx—%| 170l All o ||A72|
- ® < 2WopK oo (A) = 2 : 0

1|l 0 | Al oo I1X][+]|P ]l o

- Conditioner number estimator: Need to estimate

-1
A7 |l
- Solve an optimization problem:
1A~ x|l o,
max
220 || x| o

- Convex relaxation
max [|[A7 x|

llx]loo =1
- Practical bounds:
lx — X|| o _ 7] o
< 1A o 7=
|1 |] 1 %]



lterative refinement and Equibration

- What can we do when k(4) is large, and error in the
computed solution is relatively large?

- Use Newton’s method to refine the root of f(x) = Ax — b,
starting from the previously computed solution

Fori=1,2, ...

1. Computresidual r = Ax; — b
2. Solve Ad =r;

3. Make correction x;,; = x; —d

- Solve D, AD.(D:1x) = D,.b. Choose D, and D, to reduce
condition number, balance the matrix elements



L APACK

- Assume matrix stored in A and right-hand side stored in B
- Solve system; The solution X overwrites B

CALL SGESV( N,1, A, LT.’)A, IPI\,_B, LDB, INFO )

number of right-hand sides permutation
: : . vector
Leading dimension .

- Get reciprocal condition number RCOND of A

CALL SGECON('l', N, A, LDA, ANORM, RCOND, WORK,
IWORK, INFO ) where

ANORM = SLANGE('I', N, N, A, LDA, WORK) is infinity-
norm of A



Cholesky factorization

- If A is symmetric positive definite A = LLT, where L is
lower triangular

- Cholesky factorization

T
d11 a
A =% a’ =( 1 ) . aal
a A a/ay; 1 A———

) 1 aT/cxli(11
_ a
A_<a/a11 1)( b I)< A—a;J>
@11
1
_ ( \/C(11 ) R aaT (\/all aT/'\/all)
a/\Jai1 1 A— 0(_11 I

- No pivot is need, algorithm stable, grow factor moderate



LDLT factorization

- Symmetric indefinite matrices can be factored as
A =LDLT, where D may contain negative entries

1 o 1 al/ay,
. — 11 R
A (a/an 1)( I) A_“LT may not be

d11
numerically stable

- Use Bunch-Kaufman algorithm to create 1x1 or 2x2 pivot,

so that the D matrix contains 1x1 and 2x2 blocks.
-« PAPT = LDLT




Right-looking, Left-looking and Crout

- Right-looking is usually how the algorithm is presented
(1 O\ [« bT
= D% %)

where [ = —, the Schur complement update S = A — [bT

x11

IS to the right of the column being eliminated

- Left-looking: delay the update of the Schur complement
until a column of L is to be eliminated.

(A11 A12)=(L11 )(Un U12)
Az1 Az L1 1 S

Assume L4, L4, U{¢, U;, are available, but not S. We now
compute only the first column of S:
Sei = Ayyey — Ly1Urzeq



Block algorithms

- Block LU factorization

4 = (A11 A12) _ L1y U1 Ui'As,
Ap1 A/ \Aplii 1 A — A3 Ui LiTAq;

- Blocking factorization to improve memory locality
- Leverage BLAS3 performance
- Block size can be tuned



Parallelization for shared memory
machines

- LAPACK (thread parallelism): rely on threaded BLAS,
limited scalability (because BLAS is used to multiply
matrix blocks that may be too small for parallelism)

- Exploit concurrency at block (tile level) level (triple loop)
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PLASMA & MAGMA

- PLASMA: Parallel Linear Algebra Software for Multi-core
Architectures

- http://icl.cs.utk.edu/plasma
- Dynamic DAG (direct acyclic graph) scheduling (using
QUARK)

- Fine granularity (to ensure load balance)
- Block data layout to promote locality

- MAGMA:
- http://icl.cs.utk.edu/magma

- For heterogeneous systems (e.g. systems that contain
GPUs)



http://icl.cs.utk.edu/plasma
http://icl.cs.utk.edu/plasma
http://icl.cs.utk.edu/magma
http://icl.cs.utk.edu/magma

Parallel factorization for distributed

memory machines
- Data decomposition

o|1(o0(1|o0|1(0|1

2|3 (2(3|2(F3|2]|3

W
23 |2|3F|2|3F3|2|3

2D o|1(o0(1|0|1(0|1
|3 (23| 23| 2|3

.- 51 K3 Kl E
2312|323 |2|3

- Block cyclic to achieve load balance (no processor should
be sitting idle while others complete distributed tasks)

- Right-looking (fan-out) l l l

a=(; D) Enm

111




Algorithm

fork=1ton-1
broadcast {ay;: | € mycols, j 2 k} in process column
If K € mycols then
for 1 € myrows, | > Kk
Lix = a;i/ax, { multipliers }
end
end
broadcast {l;;: | € myrows, i > k} in process row
for | € mycols, | > k
for 1 € myrows, | > Kk,
ajj = Q;j — likakj { Update }
end
end
end

CS 554 | CSE 512 - PARALLEL NUMERICAL ALGORITHMS
(UNIV OF ILLINOIS, M. HEATH)



http://courses.illinois.edu/cis/2011/fall/schedule/CS/554.html
http://courses.illinois.edu/cis/2011/fall/schedule/CSE/512.html

Cost analysis

- Flops:
- Updating by each process at step k requires
about (n — k)?/p operations
- Summing over n — 1 stgeps
T~ t o T
- Communication:

- data broadcast at step k along each process
row/column is about (n — k)/+/p

. Bandwidth: Q(logp 3—;) latency: Q(nlog p)



How far are we from optimal performance

- Metric for optimal (lower bound for communication volume

and frequency) See J. Demmel’'s SC14 turtorial
http://www.cs.berkeley.edu/~demmel/SC14 _tutorial/Demmel _SC14 Tutorial _final _v2 2pp.pdf

- Let M be “fast” memory (e.g. cache) size per processor

- #words moved (per processor) = Q(#flops (per processor) /
M1/2)

- #messages sent = Q(#flops (per processor) / M3/2)

- Schur complement updated by 2.5 matrix-matrix
multiplication algorithm (require extra memory)

Initially processor P(i, j,0) owns A(i,j) and B(i, j) each of size

Jon;
nl=xn |-
p p
P(i,j,0) broadcasts A(i,j) and B(i, j) to P(i,j, k)
Processors at level k perform 1/c-th of SUMMA, i.e. 1/c-th of
Xm AL, m)B(m, )
(3) Sum-reduce partial sums }.,,, A(i, m)B(m,j) along k-axis so P(i, j, 0)
owns C(i,j)




Reported Performance improvement

- 2.5D SUMMA GEMM on 16,384 nodes of BlueGene/P
with ¢c=16, I.e., 32x32x16 processor grid

- 12x speedup for matrices of size n = 8,192, 95% reduction in
communication

- 2.7x speedup fo rmatrices of size n = 131,072

- LU on 16,384 BlueGene/P nodes, for n = 131,072,
observe 2x speedup using 2.5D algorithm with and
without pivoting



ScaLAPACK

- Extension of LAPACK for distributed-memory parallel
computers

- Build on top of BLACS (Basic Linear Algebra
Communication Subroutine) and PBLAS (parallel BLAS)

- Example:

CALL PDGEMM( TRANSA, TRANSB, M, N, K, ALPHA, A, IA,
JA, DESC A, B, IB, JB, DESC B, BETA, C, IC, JC,
DESC C )

Array descriptors: DESC_A, DESC_B, DESC_C specifies

v'the communication (BLACS) context/group (no inter-context comm)
v #of rows/columns in the distributed matrix,

v'row/col block size

v'Leading dimension
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Linear Least Squares Problem

- min||b — Ax||,, Aism xXn,withm >n
X

- Application in (high-dimensional) data/curve fitting,
tomography, statistical estimation (inference)

- Weighted least square: replace 2-norm with another norm
iInduced by a positive definite matrix W

- A can be full-rank or rank-deficient (numerically)



Basic Strategies

- Normal equation:
< Optimality condition:
V[Ib—Ax||?’] =0-> AT(b —Ax) =0 - ATAx = ATb
<Not preferred due to the squaring of the condition number
k(ATA) = k(4)?
- QR factorization
- A = QR, where QTQ = I, R is upper triangular
- |Ib — Ax|l = 11Q"b — Rx||
- Rank-revealing QR AP = QR, diagonal of R decreasing
- Singular Value Decomposition

- A=UxVT, UTU =1,VVT =, ¥ diagonal with possibly zeros on the
diagonal

b = Ax|l = [JU"b = Z(Vx)|



QR factorization

- Householder reflector
Px = (I — 2uul)x = ||x||e;

- Successive elimination

P = PP,

X[ XXX X|X]X|X X | X | X|X X | X | X|X

X | X | X| P, X | X |X| P, X | X | X X | X | X
XX X[ X | X X | X |y X | %

X | X | X | X X | X | X Ol x X
X | X | X | X X/ X | x X | X




Block Householder transform

- Accumulate several householder transformation into a
single block low-rank update
(I —auud))U —auul) - =1-YTYT =] —-YWT
- Obtain u4, u,,... by constructing and apply Householder
reflectors from/to the first few columns of 4

- Apply the transform I — YTYT using GEMM (BLAS3) to
subsequent columns of A
A=A-YT(YTA)




Other ways to perform QR

- Given'’s rotation
(c_os 6 —sin 9) (x) _ (\/xz + yz)
sin & cosf/\Y 0
Applying Given's rotation (BLAS1 operation)
- Gram-Schmidt
q < {-Q0Maj, q < q/llqll
BLAS2 operation
- Cholesky QR
ATA=LL", Q = AL T
Less stable numerically




Rank-revealing OR

- QR with column pivoting AP = QR

Choose the column with the largest norm in the trailing
(unfinished) part of the matrix

- Rank-revealing QR (M. Gu, SIAM J. Sci. Comp, vol 17,
1996)

- Additional permutations to make the algorithm more stable
- Randomized algorithm



Talk skinny QR (TSQR)

Ay Q1R4 /Q1 \ R4
A= <A2) _ <Q2R2> _ Q> <R2)

A3 Q3R3 QS R3

Ay QR4 \ Q4/ Ry

Ry R . .
Rz _ (?1}51) — (Ql ~ )(61)
R3 Qsz QZ RZ

2 2
% +Zn’log P #words: Z-log P # messages: log P

# flops: -



Communication avoiding QR

- Based on TSQR 4 = (Q,Ry; A) [
- Right-looking update (GEMM)
- For detalls: see LAWN204

s CAQR Scal APACK

2 3
# flops 2m 2 same

3
# words /mn logP —— / 10g same
# messages nPl 1 P
g m og? T 08 n

Panel factorization by TSQR




Eigenvalue problem

- Standard Ax = Ax
- Generalized Ax = ABx

- A can be symmetric, nonsymmetric, B often symmetric
positive definite



The QR algorithm

- Hessenberg reduction: AV = VH
- Shifted QR algorithm:

forj=1, 2, ... until convergence
u=select_shift(H);
OR factorization: H — ul = QR;
H* =RQ + ul = Q*HQ;
V < 10;

end



Hessenberg reduction

- Use Householder transformation
- Apply from both sides (two sided transformation)

X X X X X X X X X X
X X X X X X X X X X
0 A=|l0 X X X X A;=0A0F =10 X X X X
0 X X X X 0 X X X X
0 X X X X 0 X X X X
X X X X X X X X X X
X X X X X X X X X X
QA =10 X X X X Q407 =10 X X X X
0 0 X X X 0 0 X X X
0 0 X X X 0 0 X X X
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2-stage algorithm and parallelization

- Reduce to r-Hessenberg form first

1
—

- From r-Hessenberg to Hessenberg

!-




Bulge chase



Symmetric tridiagonal eigensolver



