HIGH PERFORMANCE NUMERICAL LINEAR ALGEBRA

Chao Yang Computational Research Division Lawrence Berkeley National Laboratory Berkeley, CA, USA

Why do we care?

- Numerical linear algebra is the building block of many scientific computing codes and software tools
 - Computational mechanics (structure analysis, fluids)
 - Computational materials science and chemistry
 - Optimization
 - Data analysis
 - Etc.

- Modern computer architecture and high performance computers pose new challenges to numerical linear algebra algorithm
- Lessons learned from designing high performance numerical linear algebra algorithms can be leverage to develop efficient algorithms for other types of computation

Goals

- Brief introduction to problems and issues in high performance numerical linear algebra
- Current capability of numerical linear algebra and how these capabilities are achieved through algorithmic improvement and efficient implementation
- How algorithms are tied to machine architecture, programming tools and libraries
- Concepts and ideas, not so much details
- Good scientific computing practices

Topics not covered

- Specific architectures (e.g. GPUs, Xeon Phi)
- Implementation details
- Problems with special structures (e.g. Toeplitz matrices, Hamiltonian matrices, polynomial eigenvalue problems, tensors)
- Many more software packages and toolboxes
- Latest performance comparisons

OUTLINE

- 1. Modern computer architecture and high performance computing
- 2. BLAS and solving dense linear systems of equation
- 3. Solving dense linear least squares and eigenvalue problems
- 4. Solving sparse linear systems of equations
- 5. Solving sparse eigenvalue problems

OUTLINE for TODAY

- Modern computer architecture and high performance computing
 - Instruction level parallelism
 - Vectorization
 - Memory hierarchy
 - Concurrency at thread level and shared memory parallelism
 - Inter-processor concurrency and message passing
 - Bandwidth, latency
 - Load balance
 - Scalability (Amdah's Law, Gustfason models)
- General good programming practices for scientific computing
- Performance model, profiling and optimization

References

- Dongarra, Duff, Sorensen and Van der Vorst, Numerical Linear Algebra for High Performance Computers, SIAM 1998
- J. Demmel, Applied Numerical Linear Algebra, SIAM
- J. Hennessy and D. Patterson, Computer Architecture: A quantitative approach
- UC Berkeley CS267 web page and course materials
- V. Eijkhout, Introduction to High-Performance Scientific Computing (online) <u>http://pages.tacc.utexas.edu/~eijkhout/istc/html/index.html</u>
- NERSC web page <u>http://www.nersc.gov</u>
- Other latest research

Modern Computer Architecture

Single processor

Parallel processors

Functional units in a single processor

- Program counter (PC)
- Load (LD)
- Store (ST)
- Add (ADD)
- Subtract (SUB)
- Multiplication (MUL)
- Division (DIV)

They operate on registers Each function is further divided in subtasks Data must be moved into the register before operations can be performed.

Pipelining

- Segmentation of a functional unit into different part (e.g., instruction fetch (IF), instruction decode(ID), execution (EX) etc.)
- Facilitate instruction-level parallelism and reduce the average number of cycles per instruction
- Successive tasks streamed into the pipe and get executed in an overloaded fashion

Instruction level of parallelism (ILP)

- Two instructions are parallel if they can execute simultaneously in a pipeline of arbitrary depth without causing any stalls
 - e.g. A=B*C+D*E; V=W*X-Y*Z
 - B*C and D*E can be pipelined, so are W*X and Y*Z

Improving ILP

- What prevents instruction level parallelism
 - Data dependency
 - Control dependency (branching)
- Techniques for improving ILP (often implemented in compilers)
 - Instruction reordering (scheduling, out-of-order execution) and loop unrolling
 - Branch prediction
 - prefetching
- Details (see Hennessy and Patternson, Computer Architecture: A Quantatative Approach, 4th edition, 2007

Vectorization

- Exploit data parallelism, e.g.,
 - for j = 1:n
 - Z(j) = X(j) + Y(j)
 - end
- Use vector instruction to execute several components of vectors (SIMD)
 - for j = 1:4:n
 - Z(j) = X(j) + Y(j)
 - Z(j+1)=X(j+1)+Y(j+1)
 - ...
 - end
- Intel SSE(P3), SSE2 (P4), ...
- Intel Advanced Vector Extensions (AVX) can simultaneously operate on 8 pairs of single precision (4 bytes) operands or 4 pairs of double precision (8 bytes) operands
- Intel compiler's –vec-report1 and –vec-report2 options

Memory hierarchy and organization

Bandwidth and Latency

- Memory bandwidth: volume of data moved per second
 - e.g. NERSC Edison:
 - o L1/L2/L3 cache: 100/40/23GB/sec
- Latency: start up cost, typically small, but can accumulate rapidly with large number of memory access requests
- Bandwidth improvement:
 - Memory divided into banks, sequential memory access falling into different bankds can be completed in parallel. Need to avoid bank conflict when stride is larger than 1
 - Avoid cache misses
 - Avoid TLB (translational look aside buffer) misses (virtual memory organized into pages)
- Latency improvement: vector instructions, data blocking

Performance models

- Metric
 - FLOPS (r)= $\frac{\text{floating point operations}}{\text{time (seconds)}}$
 - r_{∞} , $n^{1/2}$: performance of a very long loop, and the length that achieves half of that performance
- LINPACK BENCHMARK and TOP 500 list

http://www.top500.org/

 Amdahl's Law: performance is limited by the slowest part of the program

$$t = f \frac{W}{FF} + (1 - f) \frac{W}{SF}$$

Roofline model

• Arithmetic intensity:

floating point operations/data movement (in bytes)

Techniques for improving single processor performance

- Many of these can be done by compilers these days
- Still good to understand these techniques
- May require code restructuring
- Pay one-time overhead to reorganize data for kernels that are used over and over again
- Optimization may produce (slightly) different results
- Useful tips and exercises can be found at

http://pages.tacc.utexas.edu/~eijkhout/istc/html/index.html

Improve pipeline by loop unrolling

Inner products don't pipeline well (why?)

```
for i=1:n
s=s+a(i)*b(i)
end
```

Unrolled loop

```
for i = 1:n/2

s1 = s1 + a(2^{i-1})^{b(2^{i-1})}

s2 = s2 + a(2^{i})^{b(2^{i})}

end

s = s1+s2
```

Be aware of cache line size

- Underutilized cache line results in higher bandwidth penalty
- Loops with non unit stride:

```
for i=1:stride
x[i] = 2.3*x[i]+1.2;
end
```

Performance differs quite a bit for different stride

Minimize TLB misses

- Recall: TLB maintains a small list of frequently used memory pages and their locations
- accessing data on one of these pages is much faster than data on multiple pages that have to be swapped in and out;

Loop tiling

- Sometimes performance can be improved by breaking a loop into two nested loops
- The goal is to fit the inner loop in the cache

```
for I = 1: n
    a[i] = ...
end
for j = 1:nblocks
    for i=(j-1)*nblocks+1:j*nblocks
        a[i] = ...
    end
end
```

Cache aware and cache oblivious programming

- Cache aware: blocking according to L1, L2, L3 cache sizes
 - Different for different machines
 - Tedious
 - Autotuning by trying different sizes (FFTW, OSKI, ATLAS)
- Cache oblivious: recursive, divide and conquer algorithms
 - Not all algorithms can be organized in such a way
 - Low level tuning is still required
 - e.g. matrix transpose

Share memory parallelism and threads

- Shared memory machines NEC-SX series, Cray T90, SGI Origin
- Multicore (multiple processors on a single die)
- Thread is a light-weight process schedule to perform various tasks

Pthreads

- Unix POSIX threads: a set of primitives that can be used to perform concurrent tasks
 - Fork-join programming model

```
#define NTHREADS 50
int main() {
    int i;
    pthread_t threads[NTHREADS];
    printf("forking\n");
    for (i=0; i<NTHREADS; i++)
        If (pthread_create(threads+i,NULL,&adder,NULL)!=0) return
        i+1;
    printf("joining\n");
    for (i=0; i<NTHREADS; i++)
        if (pthread_join(threads[i],NULL)!=0) return NTHREADS+i+1;
    printf("Sum computed: %d\n",sum);
return 0; }
```

OpenMP

- Compiler directives
- Easy to use, but limited flexibility

```
      !$OMP PARALLEL DO \\ $OMP& SHARED(A,B,C,CHUNK) \\ PRIVATE(I) \\ $OMP& SCHEDULE(STATIC,CHUNK) \\ DO I = 1, N \\ C(I) = A(I) + B(I) \\ ENDDO \\ $OMP END PARALLEL DO $
```

Cache coherence

- Problem: caching shared and private data accessed by each thread
- Since cache is typically local to a core, we need to make sure all cores have a consistent view of shared data after one core modifies the data
- Various strategies to enforce cache coherence (at the OS level) at some cost
- From a programmer's point of view, make sure shared data is not modified simultaneously by multiple cores at the same time. Private data needs to be properly initialized
 - False sharing

double x, y;

Distributed memory parallelism

Purely distributed-memory machine

 Distributed multi-core systems (more common these days); each CPU has multiple cores share local memory

Network topology

- Ring
- Mesh
- Hypercube
- Torus
- Dragonfly

 $\mathbf{\mathcal{H}} = (\mathcal{V}_{\mathcal{H}}, \mathcal{E}_{\mathcal{H}}, c_{\mathcal{H}}): \text{ interconnection network}$ $\mathcal{V}_{\mathcal{H}}: \text{ the set of compute nodes}$ $\mathcal{E}_{\mathcal{H}}: \text{ the set of physical links between nodes}$ $c_{\mathcal{H}}(e): \text{ the capacity of link } e$

see T. Hoefler, M. Snir, ICS 2011 paper

Programming model

- SOCKETS: low-level primitives tightly coupled to network operating system
- Message Passing Interface (MPI): high level communication APIs that serve the needs of general scientific computing
 - Communication group and communicator, MPI_COMM comm;
 - Point-point communication: MPI_SEND, MPI_RECV
 - Synchronous (blocking) and asynchronous communication: MPI_ISEND, MPI_IRECV, MPI_WAIT
 - Collective communication: MPI_REDUCE, MPI_ALLREDUCE, MPI_BCAST, MPI_ALLGATHERV, MPI_SCATTER

MPI+OpenMP

- Suitable for distributed multi/many-core systems
- MPI across the distributed memory nodes;OpenMP within each node
- Reduce memory requirement
- Overlap communication with computation

Other programming models

- CUDA and OpenACC for GPUs
- High Performance FORTRAN (HPF)
 - ✓ Data parallel model
 - New syntax for supporting parallel loops: e.g. FORALL
 - Compiler directives
 - Extrinsic procedure interface for interfacing with MPI
 - Additional library routines
- Partitioned Global Address Space (PGAS): program distributed memory machines as if they have a large shared memory address space
 - UPC++
 - Global Array
 - One side communication such as RMA and asynchronous remote function invocation
 - Developers need to be aware of latency issues
- Co-array FORTRAN, Chapel, Fortress, X10,

Scalability

- Speedup: $S_p = t_1/t_p$, where t_1 is single processor time, t_p is time required to execute in parallel on p processors
- Amdahl's law (strong scaling) If a fraction *f* of the program can achieve *p*-fold speedup, the overall speedup is

$$S_p = \frac{p}{f + (1 - f)p}$$

> $p = 100, f = 0.9, S_p \approx 9$, speed up limited by 1/(1-f)

 $> S_p = \frac{t_1}{t_1/p+t_c}$, where t_c is communication time

Gustafson's model (weak scaling)

Large machines are used to solve large problems *f* may be a function of *p*

$$S_p = p - (p - 1)(1 - f)$$

 $\succ S_p = p(1 - \frac{t_c}{t_1}p)$

Factors that impact the performance of a parallel program

- Hardware capacity in terms of communication bandwidth and latency
- The level of concurrency (Amdahl's law and Gustafson model)
- The length of the critical path
- How well the program is load balanced
- The number of synchronization points

Granularity

- Coarse grained parallelism tends to have lower communication overhead or higher flops/communication ratio, but maybe difficult to load balance
- Fine grained parallelism is easy to load balance (dynamically), but may incur higher communication/thread overhead
- Multiple levels of parallelism suitable for distributed multicore machines

Techniques to improve parallel performance

- Identify the problem by using proper performance analysis tools
- Improve load balancing through proper data/task distribution
- Topology-aware parallelization (ordering of the MPI ranks may be important)
- Reduce communication as much as possible (both the message size and the number of messages)
- Reduce communication overhead by overlapping communication with computation (via asynchronous communication)

Performance analysis tools

- A number of tools are available: IPM, CrayPAT, Vtune, PAPI, TAU, PerfSuite, HPCToolkit
- Profile the program to identify the time-consuming part of the computation
- Probe various performance characteristics to identify the source of the problem
 - Flop rate
 - Load balancing
 - Communication volume
 - Message count
 - Cache misses
 - TLB misses

Sampling vs tracing

- Sampling
 - Use hardware counter to find out what is being executed and what and how frequent resources are used
 - Code instrumentation
 - Low overhead
 - Useful for identifying performance hotspots and bottlenecks
- Tracing
 - Focus on selected functions/subroutines to examine performance in detail
 - User specify which functions to trace
 - Large overhead

Integrated Performance Monitoring (IPM)

- http://ipm-hpc.sourceforge.net/
- portable profiling infrastructure, runtime library
- high level report
 - hardware counters data,
 - MPI function timings
 - memory usage.

#	code : ./bin/cg.B.32	(completed)						
ŧ	host : s05601/006035	314C00_AIX	mpi_tasks : 32 on 2 nodes					
#	start : 11/30/04/14:3	5:34	wallclock : 29.975184 sec					
ŧ	stop : 11/30/04/14:3	%comm : 27.72						
ŧ	gbytes : 6.65863e-01 t	gflop/sec : 2.33478e+00 total						
#								
#								
ŧ		[total]	<av g=""></av>	min	па х			
¥	wallclock	953.272	29.7897	29.6092	29.9752			
#	user	837.25	26.1641	25.71	26.92			
¥	system	68.6	1.89375	1.52	2.59			
¥	mpi	264.267	8.25834	7.73025	8.70985			
¥	%c onn		27.7234	25.8873	29.3705			
¥	gflop/sec	2.33478	0.0729619	0.072284	0.0745817			
¥	gbytes	0.665863	0.0208082	0.0195503	0.0237541			
ŧ	PM_FPU0_CMPL	2.28827e+10	7.15084e+08	7.07373e+08	7.30171e+08			
¥	PM_FPU1_CMPL	1.70657e+10	5.33304e+08	5.28487e+88	5.42882e+08			
ŧ	PM_FPU_FMA	3.00371e+10	9.3865e+88	9.27762e+88	9.62547e+88			
¥	PM_INST_CMPL	2.78819e+11	8.71309e+09	8.20981e+09	9.21761e+09			
¥	PM_LD_CMPL	1.25478e+11	3.92118e+09	3.74541e+09	4.11658e+09			
¥	PM_ST_CMPL	7.45961e+10	2.33113e+09	2.21164e+09	2.46327e+09			
ŧ	PM_TLB_MISS	2.45894e+08	7.68418e+05	6.98733e+06	2.05724e+07			
¥	PM_CYC	3.0575e+11	9.55467e+09	9.36585e+09	9.62227e+09			
¥								
¥		[time]	[calls]	<%mpi>	<%wall>			
¥	MPI_Send	188.385	639616	71.29	19.76			
¥	MPI_Wait	69.5032	639616	26.38	7.29			
¥	MPI_Irecv	6.34936	639616	2.48	0.67			
¥	MPI_Barrier	0.0177442	32	0.01	0.00			
¥	MPI_Reduce	0.00540609	32	8.88	0.00			
#	MPI_Comm_rank	0.00465156	32	8.89	0.00			
# MPI_Comm_size 0.000145341 32 0.00 0.00								

. ...

Performance API (PAPI)

n

- <u>http://icl.cs.utk.edu/pap</u> i/overview/
- Sample hardware counters
- Require instrumenting the code
- Open source performance analysis tools built on top of PAPI (PerfSuite, TAU, HPCToolkit)

PAPI example

```
int events[2] = {PAPI_L1_DCM, PAPI_FP_OPS };
```

```
ret = PAPI_start_counters(events, 2);
t0 = gettime();
    /* codes to be profiled */
    ...
t1 = gettime();
ret = PAPI_start_counters(events, 2);
```

printf("Total hardware flops = %lld\n",(float)values[1]);
printf("MFlop/s = %f\n", (float)(TOT_FLOPS/MEGA)/(t1-t0));
printf("L2 data cache misses is %lld\n", values[0]);

Vendor supplied performance tools

Intel Vtune

💯 C:\Users\gcarlet\Documents\Amplifier XE\Projects\Tachyon - Intel VTune Amplifier 🦳 – 🗖 💌									
🕼 🖄 👦 🕨 🖗 📾	Welcome New A	mplifier r03	33hs	×		Ξ			
💹 Basic Hotspots Ho	tspots by CPU Usage viewp	oint (<u>chang</u>	<u>e</u>) ?						
Collection Log 0 A	inalysis Target 🔥 Analysis Type	🛍 Summary	🙈 В	ottom-i	цр	🗞 Caller/Callee 😽 Top 🕨			
Grouping: Function / Call Stack		~	∎ ↓⇒ ∎	`	×	Data Of Interest (CPU Met 🗸			
	CPU Time+			☆	^	☆Viewing ∢ 1 of 17 ▶ sele			
Function / Call Stack	Effective Time		Spin	Ove		13.2% (0.039s of 0.297s)			
			Time	Time		analyze_loc grid.cpp			
grid_intersect		38.9%	0s	0s		analyze_locrid.cpp:478 analyze_locrid.cpp:583			
Intersect_objects		37.3%	05	05					
Image: Book of the sect of	1.6%		0s	0s		analyze locect.cnn:114			
Selected 1 row(s):		3.7%	0s	0s	×.	analyze_loc. de comi120			
< >	<			>		analyze_locde.cpp.159			
Q %Q+ Q−Q#	1s 2s 3s 4s 5s	6s 7s	8s	9s	10s	Thread 🗸 ^			
g func@0x781329e1 (Tl	- was hadded at he have	with the Los Ally	HAUNH.			A Rupping			
يَّ func@0x781329e1 (Tl	A MARKANAL A . A A MARKAN	1 LL MARINE	in law			With CDU Time			
func@0x781329e1 (Tl	A REALISTIC AND A REAL AND	أستقاسك فاستلا				V Mail CPU nine			
CPU Usage						Spin and			
No filters are applied.	Any Process 🗸 Any	/ Thread	Any	Module		🗙 Any Utilization 💌 🔤			
Call Stack Mode: User functions + 1 V Inline Mode: on V Loop Mode: Functions only V									

Manual profiling of target functions and events

 Using timing and simple counting (e.g., message size and number) to measure performance characteristics

Final word on performance optimization

- Optimizing a single component of the code can often be done with some effort
- Optimizing the overall performance of an application that consists of several computational components (e.g. FFT and matrix-matrix multiplication) is much harder