
HIGH PERFORMANCE

NUMERICAL LINEAR

ALGEBRA
Chao Yang

Computational Research Division

Lawrence Berkeley National Laboratory

Berkeley, CA, USA

1

Why do we care?

• Numerical linear algebra is the building block of many
scientific computing codes and software tools
• Computational mechanics (structure analysis, fluids)

• Computational materials science and chemistry

• Optimization

• Data analysis

• Etc.

• Modern computer architecture and high performance
computers pose new challenges to numerical linear
algebra algorithm

• Lessons learned from designing high performance
numerical linear algebra algorithms can be leverage to
develop efficient algorithms for other types of computation

2

Goals

• Brief introduction to problems and issues in high

performance numerical linear algebra

• Current capability of numerical linear algebra and how

these capabilities are achieved through algorithmic

improvement and efficient implementation

• How algorithms are tied to machine architecture,

programming tools and libraries

• Concepts and ideas, not so much details

• Good scientific computing practices

3

Topics not covered

• Specific architectures (e.g. GPUs, Xeon Phi)

• Implementation details

• Problems with special structures (e.g. Toeplitz matrices,

Hamiltonian matrices, polynomial eigenvalue problems,

tensors)

• Many more software packages and toolboxes

• Latest performance comparisons

4

OUTLINE

1. Modern computer architecture and high performance

computing

2. BLAS and solving dense linear systems of equation

3. Solving dense linear least squares and eigenvalue

problems

4. Solving sparse linear systems of equations

5. Solving sparse eigenvalue problems

5

OUTLINE for TODAY

• Modern computer architecture and high performance
computing
• Instruction level parallelism

• Vectorization

• Memory hierarchy

• Concurrency at thread level and shared memory parallelism

• Inter-processor concurrency and message passing

• Bandwidth, latency

• Load balance

• Scalability (Amdah’s Law, Gustfason models)

• General good programming practices for scientific
computing

• Performance model, profiling and optimization

6

References

• Dongarra, Duff, Sorensen and Van der Vorst, Numerical
Linear Algebra for High Performance Computers, SIAM
1998

• J. Demmel, Applied Numerical Linear Algebra, SIAM

• J. Hennessy and D. Patterson, Computer Architecture: A
quantitative approach

• UC Berkeley CS267 web page and course materials

• V. Eijkhout, Introduction to High-Performance Scientific
Computing (online)
http://pages.tacc.utexas.edu/~eijkhout/istc/html/index.html

• NERSC web page http://www.nersc.gov

• Other latest research

7

http://pages.tacc.utexas.edu/~eijkhout/istc/html/index.html
http://pages.tacc.utexas.edu/~eijkhout/istc/html/index.html
http://www.nersc.gov/

Modern Computer Architecture

• Single processor • Parallel processors

8

 CPU

memory

Disk storage

Many-core

node

Many-core

node

Many-core

node

Functional units in a single processor

• Program counter (PC)

• Load (LD)

• Store (ST)

• Add (ADD)

• Subtract (SUB)

• Multiplication (MUL)

• Division (DIV)

They operate on registers

Each function is further divided in subtasks

Data must be moved into the register before operations can
be performed.

9

Pipelining

10

• Segmentation of a functional unit into different part (e.g.,

instruction fetch (IF), instruction decode(ID), execution

(EX) etc.)

• Facilitate instruction-level parallelism and reduce the

average number of cycles per instruction

• Successive tasks streamed into the pipe and get

executed in an overloaded fashion

IF ID EX

IF ID EX

IF ID EX

1 2 3 4 5 7 8

Instruction 1

Instruction 2

Instruction 3

Clock cycle

Completes one

instruction per

cycle (after the

3rd cycle)!

Instruction level of parallelism (ILP)

• Two instructions are parallel if they can execute

simultaneously in a pipeline of arbitrary depth without

causing any stalls

• e.g. A=B*C+D*E; V=W*X-Y*Z

• B*C and D*E can be pipelined, so are W*X and Y*Z

11

Improving ILP

• What prevents instruction level parallelism

• Data dependency

• Control dependency (branching)

• Techniques for improving ILP (often implemented in

compilers)

• Instruction reordering (scheduling, out-of-order execution) and loop

unrolling

• Branch prediction

• prefetching

• Details (see Hennessy and Patternson, Computer

Architecture: A Quantatative Approach, 4th edition, 2007

12

Vectorization

• Exploit data parallelism, e.g.,
• for j = 1:n

• Z(j) = X(j)+Y(j)

• end

• Use vector instruction to execute several components of
vectors (SIMD)
• for j = 1:4:n

• Z(j) = X(j)+Y(j)

• Z(j+1)=X(j+1)+Y(j+1)

• …

• end

• Intel SSE(P3), SSE2 (P4), …

• Intel Advanced Vector Extensions (AVX) can simultaneously
operate on 8 pairs of single precision (4 bytes) operands or 4
pairs of double precision (8 bytes) operands

• Intel compiler’s –vec-report1 and –vec-report2 options

13

Memory hierarchy and organization

14

register

Cache (1,2,3)

DRAM

NVRAM, DISK

performance
capacity

Bandwidth and Latency

• Memory bandwidth: volume of data moved per second

• e.g. NERSC Edison:

o L1/L2/L3 cache: 100/40/23GB/sec

• Latency: start up cost, typically small, but can accumulate

rapidly with large number of memory access requests

• Bandwidth improvement:

• Memory divided into banks, sequential memory access falling into

different bankds can be completed in parallel. Need to avoid bank

conflict when stride is larger than 1

• Avoid cache misses

• Avoid TLB (translational look aside buffer) misses (virtual memory

organized into pages)

• Latency improvement: vector instructions, data blocking

15

Performance models

• Metric

• FLOPS (r)=
floating point operations

time (seconds)

• 𝑟∞, 𝑛1/2: performance of a very long loop, and the length that

achieves half of that performance

• LINPACK BENCHMARK and TOP 500 list

http://www.top500.org/

• Amdahl’s Law: performance is limited by the slowest part

of the program

𝑡 = 𝑓
𝑊

𝐹𝐹
+ (1 − 𝑓)

𝑊

𝑆𝐹

16

Roofline model

• Arithmetic intensity:

floating point operations/data movement (in bytes)

• Roofline model

17

picture from Sam Williams

http://crd.lbl.gov/department

s/computer-

science/PAR/research/roofli

ne/

Gflops/sec

Arithmetic intensity

Memory bandwidth*arithmetic intensity

Theoretical peak

Techniques for improving single processor

performance
• Many of these can be done by compilers these days

• Still good to understand these techniques

• May require code restructuring

• Pay one-time overhead to reorganize data for kernels that

are used over and over again

• Optimization may produce (slightly) different results

• Useful tips and exercises can be found at

18

http://pages.tacc.utexas.edu/~eijkhout/istc/html/index.html

Improve pipeline by loop unrolling

• Inner products don’t pipeline well (why?)

for i=1:n

s=s+a(i)*b(i)

end

• Unrolled loop

for i = 1:n/2

s1 = s1 + a(2*i-1)*b(2*i-1)

s2 = s2 + a(2*i)*b(2*i)

end

s = s1+s2

19

Be aware of cache line size

• Underutilized cache line results in higher

bandwidth penalty

• Loops with non unit stride:

for i=1:stride

x[i] = 2.3*x[i]+1.2;

end

• Performance differs quite a bit for different

stride

20

Minimize TLB misses

• Recall: TLB maintains a small list of frequently used

memory pages and their locations

• accessing data on one of these pages is much faster than

data on multiple pages that have to be swapped in and

out;

21

/* traversal #1 */

for j=1:n

for i=0:m

a(i,j)=a(i,j)+1;

end

end

/* traversal #2 */

for i=1:m

for j=1:n

a(i,j)=a(i,j)+1

end

end

Loop tiling

• Sometimes performance can be improved by breaking a

loop into two nested loops

• The goal is to fit the inner loop in the cache

22

for I = 1: n

a[i] = …

end

for j = 1:nblocks

for i=(j-1)*nblocks+1:j*nblocks

 a[i] = …

end

end

Cache aware and cache oblivious

programming
• Cache aware: blocking according to L1, L2, L3 cache

sizes

• Different for different machines

• Tedious

• Autotuning by trying different sizes (FFTW, OSKI, ATLAS)

• Cache oblivious: recursive, divide and conquer algorithms

• Not all algorithms can be organized in such a way

• Low level tuning is still required

• e.g. matrix transpose

23

• Shared memory machines NEC-SX series, Cray T90, SGI

Origin

• Multicore (multiple processors on a single die)

• Thread is a light-weight process schedule to perform

various tasks

Share memory parallelism and threads

24

CPU 1 CPU 2 CPU 3

cache cache cache

main memory

Pthreads

• Unix POSIX threads: a set of primitives that can be used

to perform concurrent tasks

• Fork-join programming model

25

#define NTHREADS 50

int main() {

int i;

pthread_t threads[NTHREADS];

printf("forking\n");

for (i=0; i<NTHREADS; i++)

If (pthread_create(threads+i,NULL,&adder,NULL)!=0) return

i+1;

printf("joining\n");

for (i=0; i<NTHREADS; i++)

if (pthread_join(threads[i],NULL)!=0) return NTHREADS+i+1;

printf("Sum computed: %d\n",sum);

return 0; }

OpenMP

• Compiler directives

• Easy to use, but limited flexibility

26

!$OMP PARALLEL DO

!$OMP& SHARED(A,B,C,CHUNK)

PRIVATE(I)

!$OMP& SCHEDULE(STATIC,CHUNK)

DO I = 1, N

C(I) = A(I) + B(I)

ENDDO

!$OMP END PARALLEL DO

Cache coherence

• Problem: caching shared and private data accessed by
each thread

• Since cache is typically local to a core, we need to make
sure all cores have a consistent view of shared data after
one core modifies the data

• Various strategies to enforce cache coherence (at the OS
level) at some cost

• From a programmer’s point of view, make sure shared
data is not modified simultaneously by multiple cores at
the same time. Private data needs to be properly
initialized
• False sharing

 double x, y;

27

Distributed memory parallelism

• Purely distributed-memory machine

• Distributed multi-core systems (more common these

days); each CPU has multiple cores share local memory

28

CPU 1 CPU 2 CPU 3

cache cache cache

memory memory memory

Network topology

• Ring

• Mesh

• Hypercube

• Torus

• Dragonfly

29

: communication

graph : the set of

processes : message from u to

v

: interconnection network

: the set of compute nodes

: the set of physical links between nodes

: the capacity of link e

: defines a

mapping

Effective bandwidth and latency
: communication

graph : the set of

processes : message from u to

v

: interconnection network

: the set of compute nodes

: the set of physical links between nodes

: the capacity of link e

: defines a

mapping

Dilation:

Network

Traffic:

Congestion:

where is a shortest path uv

is the set of all shortest

paths uv

see T. Hoefler, M. Snir, ICS 2011 paper

Programming model

• SOCKETS: low-level primitives tightly coupled to network

operating system

• Message Passing Interface (MPI): high level

communication APIs that serve the needs of general

scientific computing

• Communication group and communicator,

MPI_COMM comm;

• Point-point communication: MPI_SEND, MPI_RECV

• Synchronous (blocking) and asynchronous communication:

MPI_ISEND, MPI_IRECV, MPI_WAIT

• Collective communication: MPI_REDUCE, MPI_ALLREDUCE,

MPI_BCAST, MPI_ALLGATHERV, MPI_SCATTER

31

MPI+OpenMP
• Suitable for distributed multi/many-core systems

• MPI across the distributed memory nodes;OpenMP within

each node

• Reduce memory requirement

• Overlap communication with computation

32

jiji vAw 

i

T

ijj vAw 

jvBroadcast

ivBroadcast

iw Reduce

jw Reduce

other

processing units

other

processing units

other

processing units

other

processing units
jiji vAw =

i

T

ijj vAw =

jvBroadcast

ivBroadcast

iw Reduce

jw Reduce

Other processing units

Other processing units

Other processing units

Other programming models

• CUDA and OpenACC for GPUs

• High Performance FORTRAN (HPF)
Data parallel model

New syntax for supporting parallel loops: e.g. FORALL

Compiler directives

Extrinsic procedure interface for interfacing with MPI

Additional library routines

• Partitioned Global Address Space (PGAS): program distributed
memory machines as if they have a large shared memory
address space
• UPC++

• Global Array

• One side communication such as RMA and asynchronous remote
function invocation

• Developers need to be aware of latency issues

• Co-array FORTRAN, Chapel, Fortress, X10,

33

Scalability

• Speedup: 𝑆𝑝 = 𝑡1/𝑡𝑝, where 𝑡1 is single processor time, 𝑡𝑝 is
time required to execute in parallel on 𝑝 processors

• Amdahl’s law (strong scaling) If a fraction 𝑓 of the program can
achieve 𝑝-fold speedup, the overall speedup is

𝑆𝑝 =
𝑝

𝑓 + 1 − 𝑓 𝑝

𝑝 = 100, 𝑓 = 0.9, 𝑆𝑝 ≈ 9, speed up limited by 1/(1-f)

𝑆𝑝 =
𝑡1

𝑡1/𝑝+𝑡𝑐
 , where 𝑡𝑐 is communication time

• Gustafson’s model (weak scaling)

Large machines are used to solve large problems

𝑓 may be a function of 𝑝

𝑆𝑝 = 𝑝 − (𝑝 − 1)(1 − 𝑓)

𝑆𝑝 = 𝑝(1 −
𝑡𝑐

𝑡1
𝑝)

34

Factors that impact the performance of a

parallel program
• Hardware capacity in terms of communication bandwidth

and latency

• The level of concurrency (Amdahl’s law and Gustafson

model)

• The length of the critical path

• How well the program is load balanced

• The number of synchronization points

35

Granularity

• Coarse grained parallelism tends to have lower

communication overhead or higher flops/communication

ratio, but maybe difficult to load balance

• Fine grained parallelism is easy to load balance

(dynamically), but may incur higher communication/thread

overhead

• Multiple levels of parallelism suitable for distributed

multicore machines

36

Techniques to improve parallel

performance
• Identify the problem by using proper performance analysis

tools

• Improve load balancing through proper data/task

distribution

• Topology-aware parallelization (ordering of the MPI ranks

may be important)

• Reduce communication as much as possible (both the

message size and the number of messages)

• Reduce communication overhead by overlapping

communication with computation (via asynchronous

communication)

37

Performance analysis tools

• A number of tools are available: IPM, CrayPAT, Vtune,

PAPI, TAU, PerfSuite, HPCToolkit

• Profile the program to identify the time-consuming part of

the computation

• Probe various performance characteristics to identify the

source of the problem

• Flop rate

• Load balancing

• Communication volume

• Message count

• Cache misses

• TLB misses

38

Sampling vs tracing

• Sampling

• Use hardware counter to find out what is being executed and what

and how frequent resources are used

• Code instrumentation

• Low overhead

• Useful for identifying performance hotspots and bottlenecks

• Tracing

• Focus on selected functions/subroutines to examine performance

in detail

• User specify which functions to trace

• Large overhead

39

Integrated Performance Monitoring (IPM)

• http://ipm-hpc.sourceforge.net/

• portable profiling

infrastructure, runtime

library

• high level report

• hardware counters data,

• MPI function timings

• memory usage.

40

Performance API (PAPI)

• http://icl.cs.utk.edu/pap
i/overview/

• Sample hardware
counters

• Require instrumenting
the code

• Open source
performance analysis
tools built on top of
PAPI (PerfSuite, TAU,
HPCToolkit)

i

n

t

PAPI_flops (float *rtime, float

*ptime, long long *flpops, float *mflops)

41

http://icl.cs.utk.edu/papi/overview/
http://icl.cs.utk.edu/papi/overview/
http://icl.cs.utk.edu/papi/overview/
http://icl.cs.utk.edu/papi/docs/d4/d8b/linux-nvml_8c.html#a61569f2965b7a369eb10b6d75d410d11
http://icl.cs.utk.edu/papi/docs/d4/d8b/linux-nvml_8c.html#a61569f2965b7a369eb10b6d75d410d11
http://icl.cs.utk.edu/papi/docs/d4/d8b/linux-nvml_8c.html#a61569f2965b7a369eb10b6d75d410d11
http://icl.cs.utk.edu/papi/docs/db/d93/group__high__api.html#ga8a3757fb85835a199dac3a7ae08b5bb8
http://icl.cs.utk.edu/papi/docs/d1/daf/iozone_8c.html#a3cc416a49d1b6814931b5bf0df557d12
http://icl.cs.utk.edu/papi/docs/d1/daf/iozone_8c.html#a3cc416a49d1b6814931b5bf0df557d12

PAPI example

42

int events[2] = {PAPI_L1_DCM, PAPI_FP_OPS };

ret = PAPI_start_counters(events, 2);

t0 = gettime();

 /* codes to be profiled */

...

t1 = gettime();

ret = PAPI_start_counters(events, 2);

printf("Total hardware flops = %lld\n",(float)values[1]);

printf("MFlop/s = %f\n", (float)(TOT_FLOPS/MEGA)/(t1-t0));

printf("L2 data cache misses is %lld\n", values[0]);

Vendor supplied performance tools

• Intel Vtune
• CrayPAT

43

Manual profiling of target functions and

events
• Using timing and simple counting (e.g., message size and

number) to measure performance characteristics

44

Final word on performance optimization

• Optimizing a single component of the code can often be

done with some effort

• Optimizing the overall performance of an application that

consists of several computational components (e.g. FFT

and matrix-matrix multiplication) is much harder

45

