Iterative Methods for Solving Large-scale Eigenvalue Problems

Chao Yang
Lawrence Berkeley National Laboratory, Berkeley, CA

November 19, 2015

Outline

- Krylov subspace methods
- Jacobi-Davidson
- Locally optimal conjugate gradient

Matrix Eigenvalue Problem is Nonlinear

- Large-scale eigenvalue problem

$$
A x=\lambda x \text { or } A x=\lambda B x
$$

- A, B large, sparse, or structured
- $y \leftarrow A x$ and $y \leftarrow B x$ can be computed efficiently
- Set of nonlinear equations in x, since $\lambda=x^{T} A x / x^{T} B x$.
- When A are symmetric, B positive definite, it is an optimization problem

$$
\lambda_{1}=\min _{x^{\top} B x=1} \operatorname{trace}\left(x^{T} A x\right)
$$

Power iteration

Algorithm:

- Pick a starting vector v_{0}
- while convergence not reached
- $w \leftarrow A v_{0}$;
- $v_{0} \leftarrow w /\|w\| ;$

Convergence:

- linear convergence to the largest (magnitude) eigenvalue;
- rate of convergence is $\lambda_{2} / \lambda_{1}$;

Variations:

- To get the smallest eigenvalue, apply power iteration to A^{-1} (inverse iteration);
- To get eigenvalue closest to a target σ, apply the power iteration to $(A-\sigma I)^{-1}$;
- Rayleigh-Quotient iteration

Krylov subspace method

- Produces an orthonormal basis $V_{m}=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ associated with a Krylov Subspace

$$
\mathcal{K}\left(A, v_{1} ; m\right)=\operatorname{span}\left\{v_{1}, A v_{1}, \ldots, A^{m} v_{1}\right\}
$$

- A single step (Gram-Schmidt):

$$
f_{j} \leftarrow\left(I-V_{j} V_{j}^{H}\right) A v_{j} ; \quad v_{j+1} \leftarrow f_{j} /\left\|f_{j}\right\| ;
$$

- After m steps:

$$
A V_{m}=V_{m} H_{m}+f_{m} e_{m}^{H} ; \quad V_{m}^{H} V_{m}=I_{m} ; \quad V_{m}^{H} f_{m}=0 ;
$$

The Rayleigh-Ritz procedure

- Find $\left(\theta_{i}, y_{i}\right)$ such that

$$
V_{m}^{H}\left(A V_{m} y-\theta V_{m} y\right)=0 \quad(\text { Galerkin condition })
$$

- Equivalent to solving

$$
H_{m} y_{i}=\theta_{i} y_{i}, \quad \text { where } H_{m}=V_{m}^{H} A V_{m}
$$

- Approximation to

$$
\begin{array}{ll}
\text { eigenvalue } & \theta_{i} \text { (Ritz value) } \\
\text { eigenvector } & z_{i}=V_{m} y_{i} \quad \text { (Ritz vector) }
\end{array}
$$

Checking Convergence

- Let $z=V_{m} y$, where $H_{m} y=\theta y$;
- Residual norm

$$
\begin{aligned}
\|A z-\theta z\| & =\left\|A V_{m} y-\theta V_{m} y\right\| \\
& =\left\|\left(V_{m} H_{m}+f e_{m}^{H}\right) y-\theta V_{m} y\right\| \\
& =\|f\| e_{m}^{H} y
\end{aligned}
$$

Convergence of Lanczos/Arnoldi

- If $v_{1} \in$ an m-dimensional invariant subspace of A, Arnoldi converges in m or fewer steps:

$$
A V_{m}=V_{m} H_{m} .
$$

- One rarely finds such a good v_{1}. In general, extremal and well separated eigenvalues emerge rapidly (Kaniel, Paige, Saad theory, see Parlett's book)

Computation Cost and Acceleration Methods

Cost:

- Storage for $V_{m}, H_{m}: \mathcal{O}\left(n m+m^{2}\right)$;
- Orthogonalization $f_{m} \leftarrow\left(I-V_{m} V_{m}^{H}\right) A v_{m}: \mathcal{O}\left(n m^{2}\right)$;
- Eigen-analysis of $H_{m}: \mathcal{O}\left(m^{3}\right)$;
- MATVEC $y \leftarrow A x$: varies with applications;

Acceleration:

- Method of implicit restart $\left\{\begin{array}{l}\text { polynomial } \\ \text { rational }\end{array}\right.$
- Method of spectral transformation $\left\{\begin{array}{l}\text { polynomial } \\ \text { rational }\end{array}\right.$

Restart

Basic idea:

1. Fix the dimension m of $\mathcal{K}\left(A, v_{1} ; m\right)$ at a moderate value;
2. Modify the starting vector

$$
v_{1} \leftarrow \psi(A) v_{1}
$$

3. Repeat the Arnoldi process with the modified v_{1}; How to choose $\psi(\lambda)$? Suppose eigenvalues of A are:

$$
\underbrace{\lambda_{1}, \ldots, \lambda_{k}}_{\text {wanted }} \underbrace{\lambda_{k+1}, \ldots, \lambda_{n}}_{\text {unwanted }},
$$

and the corresponding eigenvector are $x_{1}, x_{2}, \ldots, x_{n}$.

$$
\begin{aligned}
\psi(A) v_{1} & =\underbrace{\gamma_{1} \psi\left(\lambda_{1}\right) x_{1}+\cdots+\gamma_{k} \psi\left(\lambda_{k}\right) x_{k}}_{\text {wanted }} \\
& +\underbrace{\gamma_{k+1} \psi\left(\lambda_{k+1}\right) x_{k+1}+\cdots+\gamma_{n} \psi\left(\lambda_{n}\right) x_{n}}_{\text {unwanted }}
\end{aligned}
$$

Two types of restarts

1. $\psi(\lambda)$ is a polynomial;
2. $\psi(\lambda)$ is a rational function;
$\psi(\lambda)$ must be large on $\lambda_{1}, \ldots, \lambda_{k}$ and small on $\lambda_{k+1}, \ldots, \lambda_{n}$. (a polynomial filter)

Implicit Restart

1. Do not form $v_{1} \leftarrow \psi(A) v_{1}$ explicitly;
2. Do not repeat the Arnoldi iteration from the first column;

Need to understand the connection between Arnoldi and $Q R$ ($R Q$)

QR and $R Q$ iteration

$$
\begin{aligned}
& A V^{+}=V^{+} H^{+}
\end{aligned}
$$

Difference

Arnoldi $=$ Truncated Hessenberg Reduction

Implicit Researt Arnoldi $=$ Truncated QR Iteration

$$
\begin{aligned}
A V_{m} & =V_{m} H_{m}+f e_{m}^{H} \\
A V_{m} & =V_{m} Q R+f e_{m}^{H} \\
A V_{m} Q & =\left(V_{m} Q\right)(R Q)+f e_{m}^{H} Q
\end{aligned}
$$

$A v_{1}=v_{1}^{+} \rho_{11}$ still holds

Shifts \& Polynomial filter

- Truncated Hessenberg reduction is shift-invariant

$$
(A-\mu I) V_{m}=V_{m}\left(H_{m}-\mu I\right)+f e_{m}^{H}
$$

- Applying p shifts $=$ Running p implicitly shifted QR iterations on H_{m} (bulge-chasing algorithm)

$$
v_{1}^{+}=\beta\left(A-\mu_{1} I\right)\left(A-\mu_{2} I\right) \cdots\left(A-\mu_{p} I\right) v_{1}
$$

- What to use for shifts? Eigenvalues of H_{m}.

$$
m=k+p
$$

Filtering Polynomials

Iert inxis

The Effect of a Polynomial Filter

The projection of v_{1} onto eigenvectors of A.

The IRA Algorithm and ARPACK

1. $A V_{m}=V_{m} H_{m}+f e_{m}^{T}$ (m-step Arnoldi iteration);
2. for iter $=1,2, \ldots$ until convergence
2.1 Choose p shifts $(p<m)$;
2.2 Perform implicit QR update (bulge chase) on H_{m} and V_{m}
2.3 Run p-step Arnoldi to restore truncated Hessenberg reduction;

ARPACK: http://www.caam.rice.edu/software/ARPACK

- Solve a variety of problems (sym, nonsym, real, complex)
- Location of the eigenvalues: which $=$ LM, SM, LA, SA, BE, LR, SR, LI, SI
- Choose k and $p(\mathrm{nev}=k, \mathrm{ncv}=k+p) . p$ is the degree of the filtering polynomial
- Reverse communication interface
- Level-2 BLAS

Example: Nuclear CI Calculation

- size of the matrix $n=114,735,000$
- number of eigenvalues $k=15$
- dimension of the Krylov subspace $k+p=30$
- number of processors used: 1,128
- time to solution: $657 \mathrm{sec}(10 \mathrm{~min})$
- number of restarts: 21
- number of MATVEC: 558

The Limitation of a Krylov Subspace

- May require a high degree polynomial $\phi(\lambda)$ to produce an accurate approximation $z=\phi(A) v_{0}$;
- Subspace of large dimension
- Many restarts
- Spectral transformation may be prohibitively costly (sometime impossible)
- Not easy to introduce a preconditioner

The Nonlinear Equation Point of View

Formulation:

- Because $\lambda(x)=x^{\top} A x / x^{\top} x$,

$$
A x=\lambda(x) x
$$

is a nonlinear equation in x;

- Alternative formulation

$$
\begin{aligned}
A x & =\left(x^{\top} A x\right) x \\
x^{\top} x & =1
\end{aligned}
$$

- Many solutions;

Solve by Newton's Correction:

- Given a starting guess u such that $u^{T} u=1$;
- Let $\theta=u^{T} A u$;
- Seek (z, δ) pair such that

$$
A(u+z)=(\theta+\delta)(u+z)
$$

- Ignore the 2nd order term δz (Newton correction) and impose

$$
u^{T} z=0
$$

The Correction Equation

- Augmented form

$$
\left(\begin{array}{cc}
A-\theta I & u \\
u^{T} & 0
\end{array}\right)\binom{z}{-\delta}=\binom{-r}{0}
$$

where $r=A u-\theta u$;

- Projected form

$$
\left(I-u u^{T}\right)(A-\theta I)\left(I-u u^{T}\right) z=-r
$$

where $u^{T} z=0$

Solving the Correction Eq (Directly)

- Assume θ not converged yet, block elimination yields

$$
\begin{aligned}
& \left(\begin{array}{cc}
I & 0 \\
u^{T}(A-\theta I)^{-1} & 1
\end{array}\right)\left(\begin{array}{cc}
A-\theta I & u \\
0 & \gamma
\end{array}\right)\binom{z}{-\delta}=\binom{-r}{0}, \\
& \text { where } \gamma=u^{T}(A-\theta)^{-1} u \\
& \qquad \delta=\frac{u^{T}(A-\theta I)^{-1} r}{u^{T}(A-\theta I)^{-1} u} .
\end{aligned}
$$

- Back substitution yields

$$
z=\delta(A-\theta I)^{-1} u-u
$$

Connection with the Inverse Iteration

- Adding correction z to u directly

$$
x=u+z=u+\delta(A-\theta I)^{-1} u-u=\delta(A-\theta I)^{-1} u
$$

- Quadratic convergence in general
- Cubic convergence for symmetric problems
- But requires solving

$$
(A-\theta I) x=u
$$

accurately

Jacobi-Davidson (JD)

- Solving the correction equation iteratively

$$
\left(I-u u^{T}\right)(A-\theta I)\left(I-u u^{T}\right) z=-r
$$

where $u^{T} z=0$

- Allows the use of a preconditioner;
- Instead of adding z to u, construct a search space $\mathcal{S}=\{u, z\}$;
- Extract Ritz pairs from \mathcal{S} through Rayleigh-Ritz

Practical issues:

- Choose an iterative solver and a preconditioner (for the correction equation);
- Set tolerance for the inner iteration;
- Shift selection;
- Restart (set a limit on the dimension of V);
- Compute more than one eigenpair (JDQR, JDQZ);

Example

- normal mode vibration analysis for macromolecules
- 3000-atom, $n=9000$, interested in low frequency modes (small eigenvalues)

The Effect of a Preconditioner

Convergence History

The Optimization View

- Only valid for symmetric problems, extreme eigenvalues
- Constrained optimization

$$
\min _{x^{T} x=1} x^{T} A x
$$

- Lagrangian $\mathcal{L}(x, \lambda)=x^{\top} A x-\lambda\left(x^{\top} x-1\right)$
- KKT condition

$$
\begin{array}{r}
A x-\lambda x=0 \\
x^{\top} x=1
\end{array}
$$

Geometry

Constrained Minimization

- Assume x_{k} is current approximation;
- Update by

$$
x_{k+1}=\alpha x_{k}+\beta p_{k}
$$

- p_{k} is a descent (search) direction;
- α, β are chosen so that
- $x_{k+1}^{T} x_{k+1}=1$;
- $\rho\left(x_{k+1}\right)<\rho\left(x_{k}\right)$, where $\rho(x)=x^{\top} A x$;

Search Direction

- Steepest descent

$$
r_{k}=-\nabla_{x} \mathcal{L}\left(x_{k}, \theta_{k}\right)=-\left(A x_{k}-\theta_{k} x_{k}\right)
$$

- Conjugate gradient

$$
p_{k}=p_{k-1}+\gamma r_{k}
$$

Choose γ so that $p_{k}^{T} A p_{k-1}=0$

- But what about orthonormality constraint?

$$
x_{k+}=\alpha x_{k}+\beta p_{k-1}+\gamma r_{k}
$$

Subspace Minimization

- Let $V=\left(x_{k}, p_{k-1}, r_{k}\right)$, then $x_{k+1}=V y_{k}$, for some y_{k};
- Must solve

$$
\min _{y_{k}^{T} V^{T} V_{y_{k}=1}} y_{k}^{T} V^{T} A V y_{k}
$$

- Equivalent to solving

$$
\begin{aligned}
G y_{k} & =\lambda B y_{k} \\
y_{k}^{T} B y_{k} & =1
\end{aligned}
$$

where $B=V^{T} V$ and $G=V^{T} A V$;

Compute More Eigenpairs

- Trace minimization

$$
\min _{X^{T} X=I_{m}} \frac{1}{2} \operatorname{trace}\left(X^{\top} A X\right)
$$

where $X \in \mathbb{R}^{n \times m}$;

- Gradient

$$
R_{k}=\nabla_{x} \mathcal{L}\left(X_{k}, \Lambda_{k}\right)=A X_{k}-X_{k} \Lambda_{k},
$$

where $\Lambda_{k}=X_{k}^{T} A X_{k} ;$
Practical issues:

- Choice of preconditioner
- Linear dependency between columns of V;
- Deflation (not all eigenpairs converge at the same rate)
- Extension to (symmetric) generalized eigenvalue problem (straightforward)

Example: Nuclear Cl calculation

Example: Electronic Structure Calculation (SiH4)

Conclusion

- It all starts from power iteration
- Krylov subspace methods
- Implcitly restarted Arnoldi and its connection with QR
- Jacobi-Davidson
- Optimization based approach

