## SOLVING SPARSE LINEAR SYSTEMS OF EQUATIONS

Chao Yang
Computational Research Division
Lawrence Berkeley National Laboratory
Berkeley, CA, USA


## OUTLINE

- Sparse matrix storage format
- Basic factorization algorithm
- Left-looking
- Right-looking
- Multi-frontal
- Supernodes and block algorithm
- Elimination tree and symbolic factorization
- Matrix ordering
- Parallel left-looking factorization algorithm for share-memory machines
- Parallel right-looking factorization algorithm for distributedmemory machines
- Parallel triangular substitution
- Sparse solvers: PARDISOL, SuperLU, MUMPS


## Sparse Matrix and storage form

- Triplet format: 3 arrays: rowind, colind, nzvals

| rowind | colind | nzvals |
| :---: | :---: | :---: |
| 1 | 1 | 1 |
| 3 | 1 | 2 |
| $\ldots$ | $\ldots$ | $\ldots$ |
| 4 | 2 | 5 |

$$
A=\left(\begin{array}{llll}
1 & & & \\
& 4 & & \\
2 & & 6 & \\
3 & 5 & & 8 \\
& & 7 & 9
\end{array}\right)
$$

- Compressed sparse column (CSC) format

|  | nzvals | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 9 |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
| rowind |  |  |  |  |  |  |  |  |  |
| colptr | 1 | 3 | 4 | 2 | 4 | 3 | 5 | 4 | 5 |
|  | 1 | 4 | 6 | 8 | 9 | 10 |  |  |  |

- Compressed sparse row (CSR) format
- Other format (skyline, ELLPACK format)


## Sparse matrix-vector multiplication

- $y \leftarrow A x$
- non-symmetric version

$$
\text { for } j=1: n
$$

$$
\text { for } \mathrm{i}=\text { colptr }(\mathrm{j}): \operatorname{colptr}(\mathrm{j}+1)-1
$$

$y($ rowind $(\mathrm{i}))=y($ rowind $(\mathrm{i}))+$ nzvals $(\mathrm{i})^{*} x(\mathrm{j})$
end
end

- Symmetric version
indirect addressing



## Basic algorithm for sparse Cholesky

- Recall

$$
A=\left(\begin{array}{cc}
\sqrt{\alpha_{11}} & \\
a / \sqrt{\alpha_{11}} & I
\end{array}\right)\left(\begin{array}{cc}
1 & \\
& \hat{A}-\frac{a a^{T}}{\alpha_{11}}
\end{array}\right)\left(\begin{array}{cc}
\sqrt{\alpha_{11}} & a^{T} / \sqrt{\alpha_{11}} \\
& I
\end{array}\right)
$$

- Left-looking:

$$
l=\frac{a}{\sqrt{\alpha_{11}}}(\text { cdiv }) \quad \hat{A} e_{1}=\hat{A} e_{1}-e_{1}^{T} l l^{T} e_{1}(\mathrm{cmod})
$$

- Algorithm:
for $j=1: n$
$\quad$ If $(j>1)$ then
$\quad$ foreach $k \operatorname{such}$ that $L_{j k} \neq 0$ do
$\quad \operatorname{cmod}(j, k)$
$\quad$ end
$\quad$ If ( $j<n$ ) then
$\quad \operatorname{cdiv}(j)$
end
end


## Non-zero fill

- The $L$ factor can be much denser than the original matrix
- The extra nonzeros in $L$ are called nonzero fills
- The positions of these nonzeros should be determined (quickly) by a preprocessing procedure called symbolic facotrization
- The number of nonzeros in $L$ can be reduced/minimized by properly reordering the rows and columns of the matrix

$$
A=\left(\begin{array}{llll}
X & & & \\
& X & & \\
X & & X & \\
X & X & & X \\
& & X & X
\end{array}\right) \quad L=\left(\begin{array}{lll}
+ & & \\
+ & + & \\
+ & + & \\
+ & + & + \\
+ & + & +
\end{array}\right)
$$

## Symbolic factorization and elimination tree

- Symbolic factorization is used to determine the nonzero structure of $L$ before the matrix $A$ is factored numerically
- The nonzero structure of the jth column of $L$ is determined by the nonzero structure of the kth column of L for all $k \leq j$ such that $L_{j k} \neq 0$
- The column dependency can be represented by a tree called elimination tree


| Each node is |
| :--- |
| mapped to a |
| matrix column |
| number |
|  |
| Parent(k) $=$ the |
| smallest row |
| index j such |
| that $L_{j k} \neq 0$ |



## Matrix reordering

- Reverse Cuthill-McGee (make reordered matrix narrow banded)
- Minimum degree (greedy algorithm, heuristics to minimize potential nonzero-fill)
- Minimum fill
- Nested dissection (divide-and-conquer, motivated by mesh domain decomposition)


## Reverse Cuthill-McKee




## Mininnun oegree

matrix $A$ (20


## Nested Dissection and Graph Partition



## Indirect address mapping

- The challenge of a sparse factorization is in cmod(j,k)
- Not all columns $k<j$ contribute to the update of column j
- Columns k and j may have different sparsity structures
- Use symbolic factorization (to be discussed later) to construct, for each column j, a list of contributing columns ( $\mathrm{k}<\mathrm{j}$ ).
- Can be achieved by converting L from CSC to CSR format.
- Can by done dynamically using an array of length n
- Use an index map to place nonzero update from columnk in column j



## Supernodes

－A supernode is a set of adjacent columns that share identical nonzero structure below the diagonal block
－The nonzero structure of a supernode can be index by a single array（reduce the number of indirect addressing）
－A supernode contains dense blocks that can take advantage of BLAS3

| 回 |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 回 |  |  |  |  |  |  |  |  |  |
|  |  | 回 |  |  |  |  |  |  |  |  |
|  |  | 50 | 回 |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  | 回 |  |  |  |  |  |
|  |  |  |  |  |  | T |  |  |  |  |
|  |  |  |  |  | － | $t$ | 回 |  |  | ＋ |
|  |  |  |  | 5888 |  |  |  | $\square$ |  |  |
|  |  |  |  |  | － |  | － | $1$ |  | 四 |



## Left-looking, right-looking, multi-frontal

- Left-looking: use the factored nodes below the node being factored in the elimination tree to update
- right-looking: the node being eliminated is used to update all of its ancestors

- Multifrontal: the node being eliminated passes its contribution to all ancestors as fronts to its parent


## Parallel left-looking factorization for shared memory parallel machines

1. Copy the nonzero entries of $A$ to $L$;
2. Compute the row structure of $L$;
3. do $j=1,2, \ldots$, nsup in parallel
3.1 kusd $=0$;
3.2 foreach $(k<j)$ such that $L_{j, k} \neq 0$ do
3.2.1 if iready $(\mathrm{k})=1$ then
3.2.1.1 nelm $=$ nelm +1 ;
3.2.1.2 enode(nelm) $=k ;$
3.2 .2 else
3.2.1.1 Save $k$ in a linked list link;
3.2 .3 endif
3.3 endfor
3.4 for $p=1$, nelm do
3.4.1 $k=\operatorname{enode}(p)$;
3.4.1 $\operatorname{cmod}(j, k)$;
3.5 endfor;
3.6 kusd $=$ kusd + nelm;
3.7 if kusd <rnnz then
3.7.1 nelm $=0$;
3.7.2 foreach $k \in$ link do
3.7.2.1 if iready $(k)=1$ then
3.7.2.1.1 remove $k$ from link;
3.7.2.1.2 nelm $=$ nelm +1 ;
3.7.2.1.3 enode(nelm) $=k$;
3.7.2.2 endif
3.7.3 endfor
3.7.4 go to $3.4 ;$
3.8 endif
3.9. cdiv( $j$ );
3.10. iready $(\mathrm{j})=1$;
4. enddo;

## Parallel right-looking factorization for distributed-memory machines

Rothberg and Gupta, SISC vol 15, pp 1413-1439, 1994

```
```

while some }\mp@subsup{L}{IJ}{}\mathrm{ with map[LIJ}]=MyID is not complete d

```
```

while some }\mp@subsup{L}{IJ}{}\mathrm{ with map[LIJ}]=MyID is not complete d
receive some LIT
receive some LIT
if I=K /* diagonal block */
if I=K /* diagonal block */
DiagK,MyID := L_KK
DiagK,MyID := L_KK
foreach LJJK}\in\mp@subsup{W}{\mathrm{ Wit }}{K,MyID
foreach LJJK}\in\mp@subsup{W}{\mathrm{ Wit }}{K,MyID
LJK}:=\mp@subsup{L}{JK}{}\mp@subsup{L}{KK}{-1
LJK}:=\mp@subsup{L}{JK}{}\mp@subsup{L}{KK}{-1
send }\mp@subsup{L}{JK}{}\mathrm{ to all P that could own blocks in
send }\mp@subsup{L}{JK}{}\mathrm{ to all P that could own blocks in
row }J\mathrm{ or column }
row }J\mathrm{ or column }
else
else
Rec}\mp@subsup{\boldsymbol{K},MyID}{}{:= Rec}\mp@subsup{\boldsymbol{RK,MyID}}{}{{}\cup{\mp@subsup{L}{IK}{}
Rec}\mp@subsup{\boldsymbol{K},MyID}{}{:= Rec}\mp@subsup{\boldsymbol{RK,MyID}}{}{{}\cup{\mp@subsup{L}{IK}{}
foreach }\mp@subsup{L}{JK}{}\in\mp@subsup{\operatorname{Rec}}{K,MYID}{}\mathrm{ do
foreach }\mp@subsup{L}{JK}{}\in\mp@subsup{\operatorname{Rec}}{K,MYID}{}\mathrm{ do
if map[LLJ]=MyID then
if map[LLJ]=MyID then
Find }\mp@subsup{L}{IJ}{
Find }\mp@subsup{L}{IJ}{
LIJ}:=\mp@subsup{L}{IJ}{}-\mp@subsup{L}{IK}{}\mp@subsup{L}{JK}{T
LIJ}:=\mp@subsup{L}{IJ}{}-\mp@subsup{L}{IK}{}\mp@subsup{L}{JK}{T
nmod}[\mp@subsup{L}{IJ}{\prime}]:=n\operatorname{mod}[\mp@subsup{L}{IJ}{}]-
nmod}[\mp@subsup{L}{IJ}{\prime}]:=n\operatorname{mod}[\mp@subsup{L}{IJ}{}]-
if ( }\operatorname{mmod}[\mp@subsup{L}{IJ}{}]=0) the
if ( }\operatorname{mmod}[\mp@subsup{L}{IJ}{}]=0) the
if I=J then /* diagonal block */
if I=J then /* diagonal block */
LJJ:= Factor( (LJJ)
LJJ:= Factor( (LJJ)
send }\mp@subsup{L}{JJ}{}\mathrm{ to all P that could own blocks in
send }\mp@subsup{L}{JJ}{}\mathrm{ to all P that could own blocks in
column J
column J
else if (DiagJ,MyID }\not=\emptyset\mathrm{ ) then

```
```

            else if (DiagJ,MyID }\not=\emptyset\mathrm{ ) then
    ```
```




```
```

                    send L}\mp@subsup{L}{IJ}{}\mathrm{ to all P that could own blocks in
    ```
```

                    send L}\mp@subsup{L}{IJ}{}\mathrm{ to all P that could own blocks in
                        row I or column I
                        row I or column I
            else
            else
                    Wait J,MyID := Wait J,MyID }\cup{\mp@subsup{L}{IJ}{}
    ```
```

                    Wait J,MyID := Wait J,MyID }\cup{\mp@subsup{L}{IJ}{}
    ```
```

12. 
13. 
14. 
15. 
16. 
17. 
18. 
19. 
20. 
21. 
22. 
23. 

## Sparse direct solver software

- MUMPS
- SuperLU, SuperLU_MT, SuperLU_DIST
- PARDISOL (Intel MKL)
- PSPASES
- CLIQUE (ELEMENTAL)


## Iterative methods for solving linear

## systems

- Direct methods are good when the factorization does not produce too many nonzero fills
- Iterative method only require a procedure to multiply a matrix (and its transpose) with a vector
- The convergence of iterative method often depends on the condition number of the coefficient matrix $A$
- Preconditioner are often used to accelerate convergence
- Performance largely depends on how efficient matrixvector multiplication can be performed
- Types of iterative methods:
- Matrix splitting based methods (Jacobi, Gauss-Seid
- Krylov subspace based methods (GMRES, Conjugate Gradient)
- Multigrid


## Matrix splitting methods

- Matrix splitting: $A=M-R$
- Iterative method based on: $M x_{k+1}=R x_{k}+b$
- Error recurrence: $e_{k+1}=M^{-1} R e_{k}$, where $e_{k}=x_{k}-x$
- Convergence guaranteed if

$$
\left|\lambda_{\max }\left(M^{-1} R\right)\right|<1
$$

## Jacobi iteration

- Let $A=L+D+U, L$ strictly lower triangular, $U$ strictly upper triangular, $D$ diagonal
- Recurrence defined by

$$
D x_{k+1}=(-L-U) x_{k}+b
$$

or

$$
x_{k+1}=x_{k}+D^{-1}\left(b-A x_{k}\right)
$$

## Gauss-Seidel

- Let $A=L+D+U$
- Gauss-Seidel is defined by setting $M=L+D$, and $R=-U$
- Recurrence:
- $(L+D) x_{k+1}=-U x_{k}+b$


## Successive Overrelaxation

- Let $A=L+D+U$
- Choose $M=D+\omega L, R=(1-\omega) D-\omega U$
- Recurrence:

$$
x_{k+1}=x_{k}+\omega(D+\omega L)^{-1}\left(b-A x_{k}\right)
$$

- Choose $\omega$ to optimize the converge (i.e., the spectral radius of $M^{-1} R$


## Krylov subspace method

- Krylov subspace $\mathcal{K}\left(A, v_{0}\right)=\left\{v_{0}, A v_{0}, A^{2} v_{0}, \ldots, A^{k-1} v_{0}\right\}$
- Approximate the solution to $A x=b$ from the Krylov subspace $x \approx V g$, where $\operatorname{span}\{V\}=K\left(A, v_{0}\right)$
- Prefer $V$ to be an orthonormal basis. Can be generated by Gram-Schmidt: Arnoldi algorithm

$$
A V_{k}=V_{k} H_{k}+f e_{k}^{T}, V_{k}^{T} V_{k}=I, V_{k}^{T} f=0
$$

where $H_{k}$ is upper Hessenberg or tridiagonal when $A$ is symmetric

- Convergence depends on the condition number of $A$ and also the distribution of eigenvalues
- Precondition: solve $M^{-1} A x=M^{-1} b$ or $L^{-1} A L^{-T}\left(L^{T} x\right)=$ $L^{-1} b$


## How to extract approximation from a Krylov subspace

- Recall $\hat{x} \approx V g$, where $V$ contains an orthonormal basis of a Krylov subspace
- We can choose $g$
- to minimize $\|r\|=\|A \hat{x}-b\|_{2}$
- to minimize $\|r\|_{A^{-1}}^{2}=(A \hat{x}-b) A^{-1}(A \hat{x}-b)=\|\hat{x}-x\|_{A}^{2}$
- to ensure $r=A x-b$ is orthogonal to $\mathcal{K}\left(A, v_{0}\right)$ (Galerkin condition)

$$
V^{T}(b-A x)=0
$$

- To ensure $r=A x-b$ is orthogonal to some other subspace (Petro-Galerkin condition)


## GMRES (general minimum residual)

- $\hat{x}=\left(V_{k}, \frac{f}{\|f\|}\right) g$, choose $g$ to minimize $\|r\|=\|A \hat{x}-b\|_{2}$
- Because $A V_{k}=V_{k} H_{k}+f e_{k}^{T}, V_{k}^{T} V_{k}=I, V_{k}^{T} f=0$
- Equivalent to solving small least squares $\left\|\hat{H}_{k} g-\hat{b}\right\|_{2}$
where $\widehat{H}=\binom{H_{k}}{\|f\| e_{k}^{T}}, \hat{b}=\binom{V_{k}^{T}}{f^{T} /\|f\|} b$
- Incremental QR factorization of $\widehat{H}_{k}$ by Given's rotation
- Monitor the convergence, terminate when the estimated residual norm is small enough


## The GMRES algorithm

Modified Gram-Schmidt

QR factorization

Monitor the residual


Solve triangular system only when the residual is small enough

$$
\begin{aligned}
& \beta=\|r\|_{2}, v^{1}=r / \beta ; \widehat{b}=\beta e^{1} \\
& e^{1} \text { is the first unit vector (of length } m+1 \text { ) } \\
& \text { for } i=1,2, \ldots, m \\
& w=A v^{i} \\
& \text { for } k=1, \ldots, i \\
& h_{k, i}=\left(v^{k}\right)^{T} w, w=w-h_{k, i} v^{k} \\
& h_{i+1, i}=\|w\|_{2}, v^{i+1}=w / h_{i+1, i} \\
& r_{1, i}=h_{1, i} \\
& \quad \text { for } k=2, \ldots, i \\
& \quad \gamma=c_{k-1} r_{k-1, i}+s_{k-1} h_{k, i} \\
& \quad r_{k, i}=-s_{k-1} r_{k-1, i}+c_{k-1} h_{k, i} \\
& r_{k-1, i}=\gamma \\
& \quad \delta=\sqrt{r_{i, i}^{2}+h_{i+1, i}^{2}, c_{i}=r_{i, i} / \delta, s_{i}=h_{i+1, i} / \delta} \\
& \quad r_{i, i}=c_{i} r_{i, i}+s_{i} h_{i+1, i} \\
& \widehat{b}_{i+1}=-s_{i} \widehat{b}_{i}, \widehat{b}_{i}=c_{i} \widehat{b}_{i} \\
& \left.\quad \rho=\left|\widehat{b}_{i+1}\right|\left(=\|b-A x-\| x^{(j-1) m+i} \|_{2}\right)\right) \\
& \text { if } \rho \text { is small enough then } \\
& \quad\left(n_{r}=i, \text { goto } S O L\right) \\
& n_{r}=m, y_{n_{r}}=\widehat{b}_{n_{r}} / r_{n_{r}, n_{r}} \\
& \text { for } k=n_{r}-1, \ldots, 1 \\
& y_{k}=\left(\widehat{b}_{k}-\sum_{i=k+1}^{n_{r}} r_{k, i} y_{i}\right) / r_{k, k} \\
& x=\sum_{i=1}^{n_{r}} y_{i} v^{i}, \text { if } \rho \text { small enough quit } \\
& r=b-A x
\end{aligned}
$$

## MINRES

- When $A$ is symmetric (but not necessarily positive definite), $H_{k}$ is tridiagonal
- The orthonormal basis of $\mathcal{K}\left(A, v_{0}\right)$ can be generated via a 3-term recurrence
- The solution of the tridiagonal least squares problem $\min _{g}\left\|\widehat{H}_{k} g-\beta e_{1}\right\|$ can be accumulated with a few vectors $g$
- But the use of 3-term recurrence may quickly lead to loss of orthogonality among the columns of $V_{k}$ (only three are kept at one time)
- As a result, round off error can propagate rapidly


## MINRES algorithm

Compute $v_{1}=b-A x_{0}$ for some initial guess $x_{0}$
$\beta_{1}=\left\|v_{1}\right\|_{2} ; \eta=\beta_{1}$;
$\gamma_{1}=\gamma_{0}=1 ; \sigma_{1}=\sigma_{0}=0 ;$
$v_{0}=0 ; w_{0}=w_{-1}=0$;
for $i=1,2, \ldots$.
The Lanczos recurrence:

$$
\begin{aligned}
& v_{i}=\frac{1}{\beta_{i}} v_{i} ; \alpha_{i}=v_{i}^{T} A v_{i} \\
& v_{i+1}=A v_{i}-\alpha_{i} v_{i}-\beta_{i} v_{i-1} \\
& \beta_{i+1}=\left\|v_{i+1}\right\|_{2}
\end{aligned}
$$

QR part:
old Givens rotations on new colurnn of $T$ :

$$
\begin{aligned}
& \delta=\gamma_{i} \alpha_{i}-\gamma_{i-1} \sigma_{i} \beta_{i} ; \rho_{1}=\sqrt{\delta^{2}+\beta_{i+1}^{2}} \\
& \rho_{2}=\sigma_{i} \alpha_{i}+\gamma_{i-1} \gamma_{i} \beta_{i} ; \rho_{3}=\sigma_{i-1} \beta_{i}
\end{aligned}
$$

New Givens rotation for subdiag element:

$$
\gamma_{i+1}=\delta / \rho_{1} ; \sigma_{i+1}=\beta_{i+1} / \rho_{1}
$$

Update of solution (with $W_{i}=V_{i} R_{i, i}^{-1}$ )

$$
\begin{aligned}
& w_{i}=\left(v_{i}-\rho_{3} w_{i-2}-\rho_{2} w_{i-1}\right) / \rho_{1} \\
& x_{i}=x_{i-1}+\gamma_{i+1} \eta w_{i} \\
& \left\|r_{i}\right\|_{2}=\left|\sigma_{i+1}\right|\left\|r_{i-1}\right\|_{2}
\end{aligned}
$$

check convergence; continue if necessary

$$
\eta=-\sigma_{i+1} \eta
$$

## Conjugate Gradient

- Let $\hat{x}=V g$
- Choose $g$ such that $V^{T}(b-A \hat{x})=0$ (Galerkin condition)
- Equivalent to solving

$$
H_{k} g=V^{T} b
$$

if $V e_{1}=b /\|b\|$, the right hand side becomes $\|b\| e_{1}$

- If $A$ is nonsymmetric, this is the FOM
- If $A$ is symmetric positive definite, this choice of $g$ also minimizes $\|r\|_{A^{-1}}=\|e\|_{A}$, yields the conjugate gradient method:
- $\hat{x}=V H_{k}^{-1} e_{1}\|b\|=V L^{-T} D^{-1} L^{-1} e_{1}\|b\|=P y$
- $P=V L^{-T}$ satisfies $P^{T} A P=I$
- Columns of $P$ are successive $A$-conjugate search directions used to minimize $f(x)=\frac{1}{2} x^{T} A x-x^{T} b$
- 3-term recurrence follows from the fact that $H_{k}$ is tridiagonal


## The CG algorithm

Compute $r_{0}=b-A x_{0}$ for some initial guess $x_{0}$ for $i=1,2, \ldots$.

Solve $z_{i-1}$ from $K z_{i-1}=r_{i-1}$
$\rho_{i-1}=r_{i-1}^{T} z_{i=1}$
if $i=1$

$$
p_{1}=z_{0}
$$

else

$$
\begin{aligned}
& \quad \beta_{i-1}=\frac{\rho_{i-1}}{\rho_{i}-2} \\
& p_{i}=z_{i-1}+\beta_{i-1} p_{i-1} \\
& \text { endif }
\end{aligned}
$$

Line search to
minimize $f(x)$

$$
\alpha_{i}=\frac{p_{i-1}}{p_{i}^{T} q_{i}}
$$ along $p_{i}$

$$
q_{i}=A p_{i}
$$

$$
x_{i}=x_{i=1}+\alpha_{i} p_{i}
$$

$$
T_{i}=r_{i-1}-\alpha_{i} q_{i}
$$

check convergence; continue if necessary end;

## Precondition

- Suppose $M=L L^{T}$ is a good approximation to $A$
- We apply CG to $L^{-1} A L^{-T}\left(L^{T} x\right)=L^{-1} b$
- Gradient of the preconditioned problem

$$
\tilde{r}=L^{-1} A \hat{x}-L^{-1} b
$$

- $\rho=\tilde{r}^{T} \tilde{r}=r^{T} L^{-T} L^{-1} r=r^{T} M^{-1} r$


## Convergence rate of CG

- Let $x^{(i)}$ be the approximation obtained at the ith CG iteration
- Error bound:

$$
\left\|x-x^{(i)}\right\|_{A} \leq\left(\frac{\sqrt{\kappa(A)-1}}{\kappa(A)+1}\right)^{i}\left\|x-x^{(0)}\right\|_{A}
$$

- The actual number of iterations required to reach convergence depends on the number of eigenvalue clusters and the right-hand side $b$


## Bi-CG

- When $A$ is nonsymmetric, the Arnoldi procedure does not lead to a short recurrence
- Try to construct a short (3-term) recurrence $A V_{k}=V_{k} H_{k}+$ $f e_{k}^{T}$ by giving up the orthonormality constraint $V_{k}^{T} V_{k}=I$
- Require $W_{k}^{T} V_{k}=D$ for some basis $W_{k}$ and diagonal matrix $D$
- Force $W_{k}^{T} A V_{k}=H_{k}$ to be tridiagonal
- Generate $W_{k}$ from $A^{T} W_{k}=W_{k} H_{k}^{T}+h e_{k}^{T}$ (two-sided Lanczos)
- Make sure $W_{k}^{T}(b-A \hat{x})=0$ (Petro-Galerkin)
- Take $\hat{x}=V_{k} g$, use a LU factorization of $H_{k}=L U$ (both L and U are bidiagonal) to construct short recurrences
- Serious breakdown: $f^{T} h=0$
- Stabalization yields the BiCGSTAB algorithm


## Bi-CG algorithm

Compute $r^{(0)}=b-A x^{(0)}$ for some initial guess $x^{(0)}$ Choose $\widehat{r}^{(0)}$ (for instance, $\widehat{r}^{(0)}=r^{(0)}$ )
for $i=1,2, \ldots$.
Solve $z^{i-1}$ from $K z^{i-1}=r^{(i-1)}$
solve $\widehat{z}^{i-1}$ from $K^{T} \hat{z}^{i-1}=\widehat{r}^{(i-1)}$
$\rho_{i-1}=\left(\hat{r}^{(i-1)}\right)^{*} z^{i-1}$
if $i=1$
$p^{1}=z^{0}$
$\widehat{p}^{1}=\hat{z}^{0}$
else

$$
\beta_{i-1}=\frac{\rho_{i-1}}{\rho_{i-2}} ;
$$

$$
p^{i}=z^{i-1}+\beta_{i-1} p^{i-1}
$$

$$
\widehat{p}^{i}=\widetilde{z}^{i-1}+\beta_{i-1} \widehat{p}^{i-1}
$$

endif

$$
\begin{aligned}
& q^{i}=A p^{i} \\
& \vec{q}^{i}=A^{*} \hat{p}^{i} \\
& \alpha_{i}=\frac{\rho_{i}-1}{\left(\widehat{p}^{i}\right)^{i} q^{i}} \\
& x^{(i)}=x^{(i-1)}+\alpha_{i} p^{i} \\
& r^{(i)}=r^{(i-1)}-\alpha_{i} q^{i} \\
& \widehat{r}^{(i)}=\widehat{r}^{(i-1)}-\alpha_{i} \vec{q}^{i}
\end{aligned}
$$

check convergence; continue if necessary end;

## QMR (Quasi-Minimal Residual)

- Try to minimize $\|r\|=\|b-A \hat{x}\|$, where $\hat{x}=V_{k} g$,
- Recall: $V_{k}$ satisfies $A V_{k}=V_{k+1} \widehat{H}_{k}$, where $\widehat{H}_{k}=\binom{H_{k}}{\|f\| e_{k}^{T}}$, $V_{k+1}=\left(V_{k}, f /\|f\|\right)$
- $\|r\| \neq\left\|W_{k+1}^{T}(b-A \hat{x})\right\|=\| \| b\left\|e_{1}-\widehat{H}_{k} g\right\|$ because $W_{k+1}^{T} W_{k+1} \neq I$
- Minimize $\|\tilde{r}\|=\| \| b\left\|e_{1}-\widehat{H}_{k} g\right\|$ anyway to yield quasiminimual residual norm
- Can show $\|\tilde{r}\| \leq \sqrt{k}\|r\|$


## Restarted GMRES

- Limit the size of the Krylov subspace
- Use the last residual vector to start a new GMRES to seek the correction to the previous approximation
- $r=b-A x_{0}$
- While no convergence
- $\mathrm{c}=\operatorname{GMRES}(A, r, k)$;
- $x_{0}=x_{0}+c$
- $r=b-A x_{0}$

