SOLVING SPARSE
LINEAR SYSTEMS OF
EQUATIONS

Chao Yang

Computational Research Division
Lawrence Berkeley National Laboratory
Berkeley, CA, USA

-
— A
rrrrrrr |"'|

BERKELEY LAB



OUTLINE

- Sparse matrix storage format

- Basic factorization algorithm
- Left-looking
- Right-looking
- Multi-frontal
- Supernodes and block algorithm
- Elimination tree and symbolic factorization
- Matrix ordering

- Parallel left-looking factorization algorithm for share-memory
machines

- Parallel right-looking factorization algorithm for distributed-
memory machines

- Parallel triangular substitution
- Sparse solvers: PARDISOL, SuperLU, MUMPS



Sparse Matrix and storage form

- Triplet format: 3 arrays: rowind, colind, nzvals

rowind  colind VAVELES / 1 \
1 1 1 4
2 6

3 1 2 A=

4 2 5 \3 5 i 89 /

- Compressed sparse column (CSC) format

nzvals 1 2 3 4 5 6 7 8 9

rowind 1 3 4 2 4 3 5 4 5

colptr 1 4 6 8 9 | 10

- Compressed sparse row (CSR) format
- Other format (skyline, ELLPACK format)



Sparse matrix-vector multiplication

«y « Ax

- non-symmetric version
forj=1:n
for i = colptr(j):colptr(j+1)-1
y(rowind(i))=y(rowind(i))+nzvals(i)*x(j)
end

end
- Symmetric version indirect addressing

forj=1:n
for 1 = colptr(j):colptr(j+1)-1
y(rowind(i))=y(rowind(i))+nzvals(i)*x(j)
If (rowind(i) !'=j) then
y(j) = y(j) + nzvals(i)*x(rowind(i))
end
end
end




Basic algorithm for sparse Cholesky

- Recall

Az(w_n )(1 A aaT>(\/“_11 aT/\/a_n)
a/V@; A I

- Left-looking:

| =—— (cdiv) Ae; = Ae; — eTliTe, (cmod)

V&i11
° Algorithm: forj=1:n _— exploit sparsity

If j>1) then

foreach k such that L;; # 0 do
cmod(j,k)

end

end

If (j<n) then
cdiv(j)

end

end




Non-zero fill

- The L factor can be much denser than the original matrix
- The extra nonzeros in L are called nonzero fills

- The positions of these nonzeros should be determined

(quickly) by a preprocessing procedure called symbolic
facotrization

- The number of nonzeros in L can be reduced/minimized
by properly reordering the rows and columns of the matrix

Ty /* \
\XXXXX/ \++@++/




Symbolic factorization and elimination tree

« Symbolic factorization is used to determine the nonzero
structure of L before the matrix A Is factored numerically

* The nonzero structure of the jth column of L is determined
by the nonzero structure of the kth column of L for all k < j
such that L, # 0

* The column dependency can be represented by a tree

called elimination tree G
{1 \., Each node is Kr
w 9 mapped to a f,j
2 matrix column kr
) number ' U
L= = o= o= 4 k[
®ooE D Parent(k) = the /KD\\
® = o= h smallest row f_,\) ?)
\ ” x % % T ) index j such k[ 2
that Ljj, # 0 (1)




Matrix reordering

- Reverse Cuthill-McGee (make reordered matrix narrow
banded)

- Minimum degree (greedy algorithm, heuristics to minimize
potential nonzero-fill)

« Minimum fill

- Nested dissection (divide-and-conguer, motivated by
mesh domain decomposition)



Reverse Cuthill-McKee

'a?

=

2 38 & 8 B




sob 1:""5:.‘"' 20 ..-1.‘._ -,
.

. , . Ly 4
matrix A L M v
R T o .
1 :L: ‘1 n * r
40 1_51 H'n_ ", 40 ) e
r'I :": .1" - | | . rr...
.,__1-‘2:1.':,. A L .,
=

60

matrix L

nz =514 nz = 348



11

Nested Dissection and Graph Partition

o
W

S22 S 2
- o - S1
e o o o|le|e o o =
e © o o|o|le (o o e
S2(e o e e)e|(¢+ o &« ) S2
o o o o|eo|e (0o ¢ o S|
C. e © o|lo|e o o o S3
® © () o|eo|le (6 o o
S2(s o o e)|e|(s (6| ¢ ) 5
® o o o|eo|le e o e
e o o o|le|e o o =
F:.‘:JZ ~ LE‘:2




Indirect address mapping

- The challenge of a sparse factorization is in cmod(j,k)
- Not all columns k<) contribute to the update of column j
- Columns k and | may have different sparsity structures

- Use symbolic factorization (to be discussed later) to
construct, for each column j, a list of contributing columns

(K<j).
- Can be achieved by converting L from CSC to CSR format.
- Can by done dynamically using an array of length n

- Use an index map to place nonzero update from columnk

In column |




Supernodes

« A supernode is a set of adjacent columns that share
Identical nonzero structure below the diagonal block

* The nonzero structure of a supernode can be index by a
single array (reduce the number of indirect addressing)

« Asupernode contains dense blocks that can take advantage
of BLAS3 T

[

i T2 1

T [




Left-looking, right-looking, multi-frontal

 Left-looking: use the factored

nodes below the node being Hg Q
factored in the elimination tree % P
to update § 9

_ _ ON ON

* right-looking: the node oflfo { 2)
being eliminated Is used to Q} nf
update all of its ancestors

« Multifrontal: the node being
eliminated passes its
contribution to all ancestors
as fronts to its parent




Parallel left-looking factorization for
shared memory parallel machines

1. Copy the nonzero entries of A to L
2. Compute the row structure of L;
3. do j=1,2, .. nsupin parallel
3.1 kusd = 0y
3.2 foreach (k < j] such that [, # 0 do

. . ' 3.2.1 if iready (k) = 1 then
1. Copy the nonzero entries of A to L; 5911 Helm]= velm £ 1-
2 do J' — 11 21 ceer 11 3.2.1.2 enode(nelm) = k;
. . . 3.2.2 else
2.1 if lr.lr = J-:I then 3.2.1.1 Save & in a linked list 1ink;
2.1.1 foreach k such that L;; # 0 do 3.2.3 endif
. 3.3 endfor
2.1.1.1 cmod(j, k); 3.4 for p = 1, nelm do
91.2 Eﬂdfﬂlﬁ' 3.4.1 k = enode(p]:
. 3.4.1 cmod(j, k);
2.2 endif ‘ 3.5 endfor;
. : 3.6 kusd = kusd + nelm;
2.3. if EJ {:_ H] thEﬂ 3.7 if kusd < rnnz then
2.3.1 ediv(j); 3.7.1 nelm = 0:
. 3.7.2 foreach & € 1link do
2.4. endif 3.7.2.1 if iready (k) = 1 then
J. Eﬂddﬂ: 3.7.2.1.1 remove & from link;
3.7.2.1.2 nelm = nelm + 1:

3.7.2.1.3 enode(nelm) = k;
3.7.2.2 endif
3.7.3 endfor
3.7.4 go to 3.4
3.8 endif
3.9. odiv(j]:
3.10. iready(j) = 1
4. enddo:




Parallel right-looking factorization for
distributed-memory machines

1. while some L;y with maplL;sJ= MyID is not complete do
2. receive some Ly
3. it I'=K /* diagonal block */
4. Di'-ﬂgx._”ﬂ_ﬂ = Lxr
5. foreach L, € H:;Iﬂ'”g_uy;p dao
6. Ly = LikLyy
7. gend Ly, to all P that could own blocks in
row J or column J
. elae
; gfﬂx.mtﬂ = Rscﬁéufmuwxg} Rothberg and Gupta, SISC
. Oreac JE € WNECK pMyrp GO
11. it map[Lys] = MyID then vol 15, pp 1413-1439, 1994
12. Find L;J
13. LJ’J’ = L;J—ij.[.i;x
14. nmod[ L] == nmod[L;s] =1
15. if (mmod|L;;] =0) then
16. if f=J then /* diagonal block */
17. Ly i=Factor(l )
18. send Ly to all P that could own blocks in
column J
19. else if (Diag,myp #W then
20. Lij:=LylL;)
21. send Lj;y to all P that could own blocks in
row [ or column [
22. else

23. Waitysyyp = Waityyup (L)



Sparse direct solver software

- MUMPS

- SuperLU, SuperLU_MT, SuperLU_DIST
- PARDISOL (Intel MKL)

- PSPASES

- CLIQUE (ELEMENTAL)



lterative methods for solving linear

systems

- Direct methods are good when the factorization does not
produce too many nonzero fills

- Iterative method only require a procedure to multiply a
matrix (and its transpose) with a vector

- The convergence of iterative method often depends on
the condition number of the coefficient matrix A

- Preconditioner are often used to accelerate convergence

- Performance largely depends on how efficient matrix-
vector multiplication can be performed

- Types of iterative methods:
- Matrix splitting based methods (Jacobi, Gauss-Seid
- Krylov subspace based methods (GMRES, Conjugate Gradient)
- Multigrid



Matrix splitting methods

- Matrix splitting: A = M — R
- Iterative method based on: Mx;,,; = Rx; + b
- Error recurrence: e,.; = M~ 1Re,, where
e = Xj, — X
- Convergence guaranteed If
[Amax(M™'R)| < 1



Jacobl iteration

- LetA=L+ D+ U, L strictly lower triangular, U strictly
upper triangular, D diagonal

- Recurrence defined by
Dxyi1=(—L—U)x, +b
or
Xp+1 = X + D7H(b — Axy)



Gauss-Seldel

- letA=L+D+U

- Gauss-Seidel Is defined by setting
M=L+D,andR =-U

- Recurrence:
*(L+D)xp41 =—-Ux + b



Successive Overrelaxation

- LetA=L+D+U
- ChooseM =D+ wL,R=(1—-—w)D —wU
- Recurrence:
Xpr1 = X + (D + wL)"Y(b — Ax},)
- Choose w to optimize the converge (i.e., the spectral
radius of M~1R



Krylov subspace method

- Krylov subspace K (4,v,) = {v,, Avy, A*vy, ..., A¥ 1y}

- Approximate the solution to Ax = b from the Krylov
subspace x = Vg, where span{lV'} = K(4, vy)

- Prefer VV to be an orthonormal basis. Can be generated by
Gram-Schmidt: Arnoldi algorithm

AV, =V, H,+ fel , VIV, =1, VIf=0

where H, is upper Hessenberg or tridiagonal when 4 is
symmetric

- Convergence depends on the condition number of A and
also the distribution of eigenvalues

- Precondition: solve M~ 1Ax = M~ 1b or L"*AL T (LTx) =
L~ 1p



How to extract approximation from a

Krylov subspace

- Recall X = Vg, where V contains an orthonormal
basis of a Krylov subspace

- We can choose g
- to minimize ||r|| = ||AX — b]|
- to minimize ||r||%-1 = (A2 — b)A™Y(A% — b) = |2 — x||5

- to ensure r = Ax — b is orthogonal to K (4, vy) (Galerkin
condition)
VIi(b—Ax) =0
- To ensure r = Ax — b Is orthogonal to some other
subspace (Petro-Galerkin condition)



GMRES (general minimum residual)

- R = (Vk,”;—”)g, choose g to minimize ||r|| = [|AX — b||,

- Because AV, =V, H, + fel , VIV, =1, VI f=0
- Equivalent to solving small least squares ||H,g — b||,

~ f He N -~ W )
wwere = (1rig) 5= (1)

- Incremental QR factorization of H, by Given’s rotation

- Monitor the convergence, terminate when the estimated
residual norm is small enough



The GMRES algorlthm

= lIrlla, v* = r/B; b = fe’
e is the first unit vector (of length m + 1)
fori=12.m
w = Avt
fork=1,..,1
hii = (V%) Tw, w = w — hy ;0"
Modified Gram-Schmidt é hivig = |lwlla, v = wihip
r1i = h1
for k=12, .1
Y = Ck—1Th—1,i + Sk—1fg 5

QR faCtorization é Thi= —8k-1Tk-14i T ':.lt-]l'i.l;,-i
Th—14i="7

"5-‘\/ +h,.|.1,-rﬂ1—fti.."ll‘6 8;i = hip1,4/8
Tti = CiTyi +3ihi+1 i

E'-.+1 —s5;by, b = ¢ by

Monitor the residual é f !b:+1| (= ”EIL - A$H_1)m+i||2}}

lfp iz small enough then
(ny = i, goto SOL)

Solve triangular Ty = 1M, Yn, = bn, [Ty,
system only when SOL: for k=mn, —1,..,1
the residual is small  s— v = (b — Dimkg1 TRV Th

= . if p small it
enough E‘_j ;ﬁv p enough qui



MINRES

- When 4 is symmetric (but not necessarily positive
definite), H;, is tridiagonal

- The orthonormal basis of K (4, v,) can be generated via a
3-term recurrence

- The solution of the tridiagonal least squares problem
min||H,g — Be,|| can be accumulated with a few vectors
g

- But the use of 3-term recurrence may quickly lead to loss
of orthogonality among the columns of V. (only three are
kept at one time)

- As a result, round off error can propagate rapidly



MINRES algorithm

Compute v = b — Arg for some initial guess
G = [lviflz; m = bh;
M=t=ka=c=0
vy = 05 wp = w-y =0
for:=1,2....
The Lanczos recurrence:
vi = Fvis o = vl Aug;
vy = Ay — oy — Gy
Biv1 = [lvisa]2
QR part:
old Givens rolalions on new colunn of T

& = vty — T il gy = v/ &% + ﬁ.’f_'_l

P2 = oy + i1l pa = o 5y

New Givens rotation for subdiag element:
Fir1 = 0/ p1; oivy = Big1/;m

Update of solution (with W; = ViR )
w; = (v — pawi—g — pawi-1)/ M
Ly = i1 + Tip1TWy
Irill2 = loaga] [lri-allz
check convergence; continue if necessary
= —Cit1n

end



Conjugate Gradient

-Letx =Tg
- Choose g such that VT (b — A%) = 0 (Galerkin condition)
- Equivalent to solving
H,g=V"h
if Ve, = b/||b||, the right hand side becomes ||b||e;
- If A iIs nonsymmetric, this is the FOM

- If A Is symmetric positive definite, this choice of g also
minimizes ||r|| ,-» = ||lell4, yields the conjugate gradient
method:

- £ =VH e ||b|l = VLD 1L e ||b|| =Py

- P =VLT satisfies PTAP = I

- Columns of P are successive A-conjugate search directions used to
minimize f(x) = %xTAx —xTh

- 3-term recurrence follows from the fact that H,, is tridiagonal



The CG algorithm

Compute ry = b — Airg for some initial guess x;

fori=1,2,....
Solve z,_ from Kz =1
Pi—1 = T;T_r’-‘i-l
ifi =1
P1

Chosen to enforce
i ) é Iﬂf ] = __1:‘

A-conjugation
Pi = zio1 + Gioapioa
Eﬂdif

Line search to i = Ap;

minimize f(x) é - ﬁ:q—:

along p; Ti = Ti—1 + P
Ty = Ti—1 — ()
check convergence; continue if necessary

end;



Precondition

- Suppose M = LL" is a good approximation to A

- We apply CGto L™*AL T (LTx) = L71b

- Gradient of the preconditioned problem
=L"1A% — L7b

cp=FlF=rTL T Yr =r"TM™1r



. S

Convergence rate of CG

- Let x® be the approximation obtained at the ith CG
iteration

- Error bound:

| Je@ =1\
nx—ﬂ%us( Jx = x|

k(A) +1

- The actual number of iterations required to reach
convergence depends on the number of eigenvalue
clusters and the right-hand side b



Bi-CG

- When A is nonsymmetric, the Arnoldi procedure does not lead
to a short recurrence

- Try to construct a short (3-term) recurrence AV, =V, H;, +
fei by giving up the orthonormality constraint V,/ V, = I

- Require W,/ V,, = D for some basis W, and diagonal matrix D

- Force Wl AV,, = H,, to be tridiagonal

- Generate W, from ATW,, = W, H. + he; (two-sided Lanczos)

- Make sure W,/ (b — A%) = 0 (Petro-Galerkin)

- Take ¥ =V, g, use a LU factorization of H;, = LU (both L and U
are bidiagonal) to construct short recurrences

- Serious breakdown: fTh =0
- Stabalization yields the BICGSTAB algorithm



BI-CG algorithm

Compute r® = b — Az® for some initial guess z(?)
Choose 7% {for instance, 7% = ¢(%))
fori=1,2,....

Solve zi~! from Kz*~1 = rli-1)

solve -1 from KTzi-1 = Fli-1)

iy = (Fli-1)y=zi-1

ifi=1
pt=2z"
p=3z
else
Bir = =L
pl=2"t 4 gttt
nft? 27+ Biapt?
endi
g =A
7= 4P
o = =1

check convergence; continue if necessary
end;



QMR (Quasi-Minimal Residual)

- Try to minimize ||r|| = ||b — A%||, where £ = V. g,

~ - H
- Recall: V,, satisfies AV, = V.., H;, where H, = ( “ )

1fllex
Virr = Wi f/1FN)
el # [Witha (b = A9 = [lIblley - Arg| because
Wik 1 Wirq # 1
- Minimize ||7|| = Hllblle1 — ﬁkgH anyway to yield quasi-
minimual residual norm
- Can show||7|| < Vk||7||



Restarted GMRES

- Limit the size of the Krylov subspace

- Use the last residual vector to start a new GMRES to seek
the correction to the previous approximation
-1 =b— Ax,
- While no convergence
- c=GMRES(4, 1, k);
* Xg=Xgt+C
- r=b— Ax,



