
SOLVING SPARSE

LINEAR SYSTEMS OF

EQUATIONS
Chao Yang

Computational Research Division

Lawrence Berkeley National Laboratory

Berkeley, CA, USA

1

OUTLINE

• Sparse matrix storage format

• Basic factorization algorithm
• Left-looking

• Right-looking

• Multi-frontal

• Supernodes and block algorithm

• Elimination tree and symbolic factorization

• Matrix ordering

• Parallel left-looking factorization algorithm for share-memory
machines

• Parallel right-looking factorization algorithm for distributed-
memory machines

• Parallel triangular substitution

• Sparse solvers: PARDISOL, SuperLU, MUMPS

2

Sparse Matrix and storage form

• Triplet format: 3 arrays: rowind, colind, nzvals

• Compressed sparse column (CSC) format

• Compressed sparse row (CSR) format

• Other format (skyline, ELLPACK format)

3

𝐴 =

1
 4

2 6
3 5 8
 7 9

rowind colind nzvals

1 1 1

3 1 2

… … …

4 2 5

1 2 3 4 5 6 7 8 9

1 3 4 2 4 3 5 4 5

1 4 6 8 9 10

nzvals

rowind

colptr

Sparse matrix-vector multiplication

• 𝑦 ← 𝐴𝑥

• non-symmetric version

• Symmetric version

4

for j = 1:n

for i = colptr(j):colptr(j+1)-1

y(rowind(i))=y(rowind(i))+nzvals(i)*x(j)

end

end

indirect addressing

for j = 1:n

for i = colptr(j):colptr(j+1)-1

y(rowind(i))=y(rowind(i))+nzvals(i)*x(j)

if (rowind(i) != j) then

y(j) = y(j) + nzvals(i)*x(rowind(i))

end

end

end

Basic algorithm for sparse Cholesky

5

• Recall

𝐴 =
𝛼11

𝑎/ 𝛼11 𝐼

1

𝐴 −
𝑎𝑎𝑇

𝛼11

𝛼11 𝑎𝑇/ 𝛼11

𝐼

• Left-looking:

𝑙 =
𝑎

𝛼11
 (cdiv) 𝐴 𝑒1 = 𝐴 𝑒1 − 𝑒1

𝑇𝑙𝑙𝑇𝑒1 (cmod)

• Algorithm: for j = 1:n

If (j>1) then

foreach k such that 𝐿𝑗𝑘 ≠ 0 do

cmod(j,k)

end

end

If (j<n) then

cdiv(j)

end

end

exploit sparsity

Non-zero fill

• The L factor can be much denser than the original matrix

• The extra nonzeros in L are called nonzero fills

• The positions of these nonzeros should be determined

(quickly) by a preprocessing procedure called symbolic

facotrization

• The number of nonzeros in L can be reduced/minimized

by properly reordering the rows and columns of the matrix

6

𝐴 =

𝑋
 𝑋

𝑋 𝑋
𝑋 𝑋 𝑋
 𝑋 𝑋

 L=

+
 +

+ +
+ + + +
 + +

Symbolic factorization and elimination tree

7

• Symbolic factorization is used to determine the nonzero

structure of L before the matrix A is factored numerically

• The nonzero structure of the jth column of L is determined

by the nonzero structure of the kth column of L for all 𝑘 ≤ 𝑗
such that 𝐿𝑗𝑘 ≠ 0

• The column dependency can be represented by a tree

called elimination tree
Each node is

mapped to a

matrix column

number

Parent(k) = the

smallest row

index j such

that 𝐿𝑗𝑘 ≠ 0

Matrix reordering

• Reverse Cuthill-McGee (make reordered matrix narrow

banded)

• Minimum degree (greedy algorithm, heuristics to minimize

potential nonzero-fill)

• Minimum fill

• Nested dissection (divide-and-conquer, motivated by

mesh domain decomposition)

8

Reverse Cuthill-McKee

9

Minimum degree

10

matrix 𝐴

matrix 𝐿

Nested Dissection and Graph Partition

11

separator

Indirect address mapping

• The challenge of a sparse factorization is in cmod(j,k)

• Not all columns k<j contribute to the update of column j

• Columns k and j may have different sparsity structures

• Use symbolic factorization (to be discussed later) to

construct, for each column j, a list of contributing columns

(k<j).

• Can be achieved by converting L from CSC to CSR format.

• Can by done dynamically using an array of length n

• Use an index map to place nonzero update from columnk

in column j

12

Supernodes

13

• A supernode is a set of adjacent columns that share

identical nonzero structure below the diagonal block

• The nonzero structure of a supernode can be index by a

single array (reduce the number of indirect addressing)

• A supernode contains dense blocks that can take advantage

of BLAS3

Left-looking, right-looking, multi-frontal

14

• Left-looking: use the factored

nodes below the node being

factored in the elimination tree

to update

• right-looking: the node

being eliminated is used to

update all of its ancestors

• Multifrontal: the node being

eliminated passes its

contribution to all ancestors

as fronts to its parent

Parallel left-looking factorization for

shared memory parallel machines

15

Parallel right-looking factorization for

distributed-memory machines

16

Rothberg and Gupta, SISC

vol 15, pp 1413-1439, 1994

Sparse direct solver software

• MUMPS

• SuperLU, SuperLU_MT, SuperLU_DIST

• PARDISOL (Intel MKL)

• PSPASES

• CLIQUE (ELEMENTAL)

17

Iterative methods for solving linear

systems
• Direct methods are good when the factorization does not

produce too many nonzero fills

• Iterative method only require a procedure to multiply a
matrix (and its transpose) with a vector

• The convergence of iterative method often depends on
the condition number of the coefficient matrix A

• Preconditioner are often used to accelerate convergence

• Performance largely depends on how efficient matrix-
vector multiplication can be performed

• Types of iterative methods:
• Matrix splitting based methods (Jacobi, Gauss-Seid

• Krylov subspace based methods (GMRES, Conjugate Gradient)

• Multigrid

18

Matrix splitting methods

19

• Matrix splitting: 𝐴 = 𝑀 − 𝑅

• Iterative method based on: 𝑀𝑥𝑘+1 = 𝑅𝑥𝑘 + 𝑏

• Error recurrence: 𝑒𝑘+1 = 𝑀−1𝑅𝑒𝑘, where

𝑒𝑘 = 𝑥𝑘 − 𝑥

• Convergence guaranteed if

𝜆𝑚𝑎𝑥(𝑀−1𝑅) < 1

Jacobi iteration

20

• Let 𝐴 = 𝐿 + 𝐷 + 𝑈, 𝐿 strictly lower triangular, 𝑈 strictly

upper triangular, 𝐷 diagonal

• Recurrence defined by

𝐷𝑥𝑘+1 = −𝐿 − 𝑈 𝑥𝑘 + 𝑏

or

 𝑥𝑘+1 = 𝑥𝑘 + 𝐷−1(𝑏 − 𝐴𝑥𝑘)

Gauss-Seidel

21

• Let 𝐴 = 𝐿 + 𝐷 + 𝑈

• Gauss-Seidel is defined by setting

𝑀 = 𝐿 + 𝐷, and 𝑅 = −𝑈

• Recurrence:

• 𝐿 + 𝐷 𝑥𝑘+1 = −𝑈𝑥𝑘 + 𝑏

Successive Overrelaxation

22

• Let 𝐴 = 𝐿 + 𝐷 + 𝑈

• Choose 𝑀 = 𝐷 + 𝜔𝐿, 𝑅 = 1 − 𝜔 𝐷 − 𝜔𝑈

• Recurrence:

𝑥𝑘+1 = 𝑥𝑘 + 𝜔 𝐷 + 𝜔𝐿 −1(𝑏 − 𝐴𝑥𝑘)

• Choose 𝜔 to optimize the converge (i.e., the spectral

radius of 𝑀−1𝑅

Krylov subspace method

• Krylov subspace 𝒦 𝐴, 𝑣0 = {𝑣0, 𝐴𝑣0, 𝐴2𝑣0, … , 𝐴𝑘−1𝑣0}

• Approximate the solution to 𝐴𝑥 = 𝑏 from the Krylov
subspace 𝑥 ≈ 𝑉𝑔, where span 𝑉 = 𝐾(𝐴, 𝑣0)

• Prefer 𝑉 to be an orthonormal basis. Can be generated by
Gram-Schmidt: Arnoldi algorithm

𝐴𝑉𝑘 = 𝑉𝑘𝐻𝑘 + 𝑓𝑒𝑘
𝑇, 𝑉𝑘

𝑇𝑉𝑘 = 𝐼, 𝑉𝑘
𝑇𝑓 = 0

where 𝐻𝑘 is upper Hessenberg or tridiagonal when 𝐴 is
symmetric

• Convergence depends on the condition number of 𝐴 and
also the distribution of eigenvalues

• Precondition: solve 𝑀−1𝐴𝑥 = 𝑀−1𝑏 or 𝐿−1𝐴𝐿−𝑇 𝐿𝑇𝑥 =
𝐿−1𝑏

23

How to extract approximation from a

Krylov subspace
• Recall 𝑥 ≈ 𝑉𝑔, where 𝑉 contains an orthonormal

basis of a Krylov subspace

• We can choose 𝑔

• to minimize 𝑟 = 𝐴𝑥 − 𝑏 2

• to minimize 𝑟 𝐴−1
2 = 𝐴𝑥 − 𝑏 𝐴−1 𝐴𝑥 − 𝑏 = 𝑥 − 𝑥 𝐴

2

• to ensure 𝑟 = 𝐴𝑥 − 𝑏 is orthogonal to 𝒦 𝐴, 𝑣0 (Galerkin

condition)

𝑉𝑇 𝑏 − 𝐴𝑥 = 0

• To ensure 𝑟 = 𝐴𝑥 − 𝑏 is orthogonal to some other

subspace (Petro-Galerkin condition)

24

GMRES (general minimum residual)

• 𝑥 = 𝑉𝑘 ,
𝑓

𝑓
𝑔, choose 𝑔 to minimize 𝑟 = 𝐴𝑥 − 𝑏 2

• Because 𝐴𝑉𝑘 = 𝑉𝑘𝐻𝑘 + 𝑓𝑒𝑘
𝑇, 𝑉𝑘

𝑇𝑉𝑘 = 𝐼, 𝑉𝑘
𝑇𝑓 = 0

• Equivalent to solving small least squares 𝐻 𝑘𝑔 − 𝑏
2

where 𝐻 =
𝐻𝑘

𝑓 𝑒𝑘
𝑇 , 𝑏 =

𝑉𝑘
𝑇

𝑓𝑇/ 𝑓
𝑏

• Incremental QR factorization of 𝐻 𝑘 by Given’s rotation

• Monitor the convergence, terminate when the estimated

residual norm is small enough

25

The GMRES algorithm

26

Modified Gram-Schmidt

QR factorization

Monitor the residual

Solve triangular

system only when

the residual is small

enough

MINRES

• When 𝐴 is symmetric (but not necessarily positive

definite), 𝐻𝑘 is tridiagonal

• The orthonormal basis of 𝒦 𝐴, 𝑣0 can be generated via a

3-term recurrence

• The solution of the tridiagonal least squares problem

min
𝑔

𝐻 𝑘𝑔 − 𝛽𝑒1 can be accumulated with a few vectors

• But the use of 3-term recurrence may quickly lead to loss

of orthogonality among the columns of 𝑉𝑘 (only three are

kept at one time)

• As a result, round off error can propagate rapidly

27

MINRES algorithm

28

Conjugate Gradient

• Let 𝑥 = 𝑉𝑔

• Choose 𝑔 such that 𝑉𝑇 𝑏 − 𝐴𝑥 = 0 (Galerkin condition)

• Equivalent to solving

𝐻𝑘𝑔 = 𝑉𝑇𝑏

 if 𝑉𝑒1 = 𝑏/ 𝑏 , the right hand side becomes 𝑏 𝑒1

• If 𝐴 is nonsymmetric, this is the FOM

• If 𝐴 is symmetric positive definite, this choice of 𝑔 also
minimizes 𝑟 𝐴−1 = 𝑒 𝐴, yields the conjugate gradient
method:
• 𝑥 = 𝑉𝐻𝑘

−1𝑒1 𝑏 = 𝑉𝐿−𝑇𝐷−1𝐿−1𝑒1 𝑏 =Py

• 𝑃 = 𝑉𝐿−𝑇 satisfies 𝑃𝑇𝐴𝑃 = 𝐼

• Columns of 𝑃 are successive 𝐴-conjugate search directions used to

minimize 𝑓 𝑥 =
1

2
𝑥𝑇𝐴𝑥 − 𝑥𝑇𝑏

• 3-term recurrence follows from the fact that 𝐻𝑘 is tridiagonal

29

The CG algorithm

30

Chosen to enforce

𝐴-conjugation

Line search to

minimize 𝑓(𝑥)
along 𝑝𝑖

Precondition

• Suppose 𝑀 = 𝐿𝐿𝑇 is a good approximation to 𝐴

• We apply CG to 𝐿−1𝐴𝐿−𝑇 𝐿𝑇𝑥 = 𝐿−1𝑏

• Gradient of the preconditioned problem

𝑟 = 𝐿−1𝐴𝑥 − 𝐿−1𝑏

• 𝜌 = 𝑟 𝑇𝑟 = 𝑟𝑇𝐿−𝑇𝐿−1𝑟 = 𝑟𝑇𝑀−1𝑟

31

Convergence rate of CG

• Let 𝑥(𝑖) be the approximation obtained at the ith CG

iteration

• Error bound:

𝑥 − 𝑥 𝑖
𝐴

≤
𝜅 𝐴 − 1

𝜅 𝐴 + 1

𝑖

𝑥 − 𝑥 0
𝐴

• The actual number of iterations required to reach

convergence depends on the number of eigenvalue

clusters and the right-hand side 𝑏

32

Bi-CG

• When 𝐴 is nonsymmetric, the Arnoldi procedure does not lead

to a short recurrence

• Try to construct a short (3-term) recurrence 𝐴𝑉𝑘 = 𝑉𝑘𝐻𝑘 +
𝑓𝑒𝑘

𝑇 by giving up the orthonormality constraint 𝑉𝑘
𝑇𝑉𝑘 = 𝐼

• Require 𝑊𝑘
𝑇𝑉𝑘 = 𝐷 for some basis 𝑊𝑘 and diagonal matrix 𝐷

• Force 𝑊𝑘
𝑇𝐴𝑉𝑘 = 𝐻𝑘 to be tridiagonal

• Generate 𝑊𝑘 from 𝐴𝑇𝑊𝑘 = 𝑊𝑘𝐻𝑘
𝑇 + ℎ𝑒𝑘

𝑇 (two-sided Lanczos)

• Make sure 𝑊𝑘
𝑇 𝑏 − 𝐴𝑥 = 0 (Petro-Galerkin)

• Take 𝑥 = 𝑉𝑘𝑔, use a LU factorization of 𝐻𝑘 = 𝐿𝑈 (both L and U

are bidiagonal) to construct short recurrences

• Serious breakdown: 𝑓𝑇ℎ = 0

• Stabalization yields the BiCGSTAB algorithm

33

Bi-CG algorithm

34

QMR (Quasi-Minimal Residual)

• Try to minimize 𝑟 = 𝑏 − 𝐴𝑥 , where 𝑥 = 𝑉𝑘𝑔,

• Recall: 𝑉𝑘 satisfies 𝐴𝑉𝑘 = 𝑉𝑘+1𝐻 𝑘, where 𝐻 𝑘 =
𝐻𝑘

𝑓 𝑒𝑘
𝑇 ,

𝑉𝑘+1 = (𝑉𝑘 , 𝑓/ 𝑓)

• 𝑟 ≠ 𝑊𝑘+1
𝑇 𝑏 − 𝐴𝑥 = 𝑏 𝑒1 − 𝐻 𝑘𝑔 because

𝑊𝑘+1
𝑇 𝑊𝑘+1 ≠ 𝐼

• Minimize 𝑟 = 𝑏 𝑒1 − 𝐻 𝑘𝑔 anyway to yield quasi-

minimual residual norm

• Can show 𝑟 ≤ 𝑘 𝑟

35

Restarted GMRES

• Limit the size of the Krylov subspace

• Use the last residual vector to start a new GMRES to seek

the correction to the previous approximation

• 𝑟 = 𝑏 − 𝐴𝑥0

• While no convergence

• c=GMRES(𝐴, 𝑟, 𝑘);

• 𝑥0 = 𝑥0 + 𝑐

• 𝑟 = 𝑏 − 𝐴𝑥0

36

