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OUTLINE 

• Sparse matrix storage format 

• Basic factorization algorithm 
• Left-looking 

• Right-looking 

• Multi-frontal 

• Supernodes and block algorithm 

• Elimination tree and symbolic factorization 

• Matrix ordering 

• Parallel left-looking factorization algorithm for share-memory 
machines 

• Parallel right-looking factorization algorithm for distributed-
memory machines 

• Parallel triangular substitution 

• Sparse solvers: PARDISOL, SuperLU, MUMPS 
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Sparse Matrix and storage form 

• Triplet format: 3 arrays: rowind, colind, nzvals 

 

 

 

 

 

• Compressed sparse column (CSC) format 

 

 

 

 

• Compressed sparse row (CSR) format 

• Other format (skyline, ELLPACK format) 
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𝐴 =

1                    
  4            

2         6          
3    5       8     
          7     9 

 

rowind colind nzvals 

1 1 1 

3 1 2 

… … … 

4 2 5 

1 2 3 4 5 6 7 8 9 

1 3 4 2 4 3 5 4 5 

1 4 6 8 9 10 

nzvals 

rowind 

colptr 



Sparse matrix-vector multiplication 

• 𝑦 ← 𝐴𝑥 

• non-symmetric version 

 

 

 

• Symmetric version 
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for j = 1:n 

for i = colptr(j):colptr(j+1)-1 

y(rowind(i))=y(rowind(i))+nzvals(i)*x(j) 

end 

end 

indirect addressing 

for j = 1:n 

for i = colptr(j):colptr(j+1)-1 

y(rowind(i))=y(rowind(i))+nzvals(i)*x(j) 

if (rowind(i) != j) then 

y(j) = y(j) + nzvals(i)*x(rowind(i)) 

end 

end 

end 



Basic algorithm for sparse Cholesky  
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• Recall 

𝐴 =
𝛼11

𝑎/ 𝛼11 𝐼

1

𝐴 −
𝑎𝑎𝑇

𝛼11

𝛼11 𝑎𝑇/ 𝛼11

𝐼
 

• Left-looking:  

𝑙 =
𝑎

𝛼11
 (cdiv)     𝐴 𝑒1 = 𝐴 𝑒1 − 𝑒1

𝑇𝑙𝑙𝑇𝑒1 (cmod) 

• Algorithm:  for j = 1:n 

If (j>1) then 

foreach k such that 𝐿𝑗𝑘 ≠ 0 do 

cmod(j,k) 

end 

end 

If (j<n) then 

cdiv(j) 

end 

end 

exploit sparsity 



Non-zero fill 

• The L factor can be much denser than the original matrix 

• The extra nonzeros in L are called nonzero fills 

• The positions of these nonzeros should be determined 

(quickly) by a preprocessing procedure called symbolic 

facotrization 

• The number of nonzeros in L can be reduced/minimized 

by properly reordering the rows and columns of the matrix 
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𝐴 =

𝑋                      
  𝑋              

𝑋         𝑋           
𝑋   𝑋          𝑋     
            𝑋        𝑋  

 L=

+                        
 +             

+            +               
+    +   +  +       
             +       + 

 



Symbolic factorization and elimination tree 
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• Symbolic factorization is used to determine the nonzero 

structure of L before the matrix A is factored numerically 

• The nonzero structure of the jth column of L is determined 

by the nonzero structure of the kth column of L for all 𝑘 ≤ 𝑗 
such that 𝐿𝑗𝑘 ≠ 0 

• The column dependency can be represented by a tree 

called elimination tree 
Each node is 

mapped to a 

matrix column 

number 

 

Parent(k) = the 

smallest row 

index j such 

that 𝐿𝑗𝑘 ≠ 0  



Matrix reordering 

• Reverse Cuthill-McGee (make reordered matrix narrow 

banded) 

• Minimum degree (greedy algorithm, heuristics to minimize 

potential nonzero-fill) 

• Minimum fill 

• Nested dissection (divide-and-conquer, motivated by 

mesh domain decomposition) 
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Reverse Cuthill-McKee 
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Minimum degree 
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matrix 𝐴 

matrix 𝐿 



Nested Dissection and Graph Partition 
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separator 



Indirect address mapping 

• The challenge of a sparse factorization is in cmod(j,k) 

• Not all columns k<j contribute to the update of column j 

• Columns k and j may have different sparsity structures 

• Use symbolic factorization (to be discussed later) to 

construct, for each column j, a list of contributing columns 

(k<j).  

• Can be achieved by converting L from CSC to CSR format. 

• Can by done dynamically using an array of length n 

• Use an index map to place nonzero update from columnk 

in column j 
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Supernodes 
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• A supernode is a set of adjacent columns that share 

identical nonzero structure below the diagonal block 

• The nonzero structure of a supernode can be index by a 

single array (reduce the number of indirect addressing) 

• A supernode contains dense blocks that can take advantage 

of BLAS3 



Left-looking, right-looking, multi-frontal 
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• Left-looking: use the factored 

nodes below the node being 

factored in the elimination tree 

to update  

• right-looking: the node 

being eliminated is used to 

update all of its ancestors 

• Multifrontal: the node being 

eliminated passes its 

contribution to all ancestors 

as fronts to its parent 



Parallel left-looking factorization for 

shared memory parallel machines 
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Parallel right-looking factorization for 

distributed-memory machines 

16 

Rothberg and Gupta, SISC 

vol 15, pp 1413-1439, 1994 



Sparse direct solver software 

• MUMPS 

• SuperLU, SuperLU_MT, SuperLU_DIST 

• PARDISOL (Intel MKL) 

• PSPASES 

• CLIQUE (ELEMENTAL) 
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Iterative methods for solving linear 

systems 
• Direct methods are good when the factorization does not 

produce too many nonzero fills 

• Iterative method only require a procedure to multiply a 
matrix (and its transpose) with a vector 

• The convergence of iterative method often depends on 
the condition number of the coefficient matrix A 

• Preconditioner are often used to accelerate convergence 

• Performance largely depends on how efficient matrix-
vector multiplication can be performed 

• Types of iterative methods: 
• Matrix splitting based methods (Jacobi, Gauss-Seid 

• Krylov subspace based methods (GMRES, Conjugate Gradient) 

• Multigrid 
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Matrix splitting methods 
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• Matrix splitting: 𝐴 = 𝑀 − 𝑅 

• Iterative method based on: 𝑀𝑥𝑘+1 = 𝑅𝑥𝑘 + 𝑏 

• Error recurrence: 𝑒𝑘+1 = 𝑀−1𝑅𝑒𝑘, where 

𝑒𝑘 = 𝑥𝑘 − 𝑥 

• Convergence guaranteed if 

𝜆𝑚𝑎𝑥(𝑀−1𝑅) < 1 

 



Jacobi iteration 
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• Let 𝐴 = 𝐿 + 𝐷 + 𝑈, 𝐿 strictly lower triangular, 𝑈 strictly 

upper triangular, 𝐷 diagonal 

• Recurrence defined by 

𝐷𝑥𝑘+1 = −𝐿 − 𝑈 𝑥𝑘 + 𝑏 

or 

 𝑥𝑘+1 = 𝑥𝑘 + 𝐷−1(𝑏 − 𝐴𝑥𝑘)  

 



Gauss-Seidel 
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• Let 𝐴 = 𝐿 + 𝐷 + 𝑈 

• Gauss-Seidel is defined by setting 

𝑀 = 𝐿 + 𝐷, and 𝑅 = −𝑈 

• Recurrence: 

• 𝐿 + 𝐷 𝑥𝑘+1 = −𝑈𝑥𝑘 + 𝑏 
 



Successive Overrelaxation 
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• Let 𝐴 = 𝐿 + 𝐷 + 𝑈 

• Choose 𝑀 = 𝐷 + 𝜔𝐿, 𝑅 = 1 − 𝜔 𝐷 − 𝜔𝑈 

• Recurrence:  

𝑥𝑘+1 = 𝑥𝑘 + 𝜔 𝐷 + 𝜔𝐿 −1(𝑏 − 𝐴𝑥𝑘) 

• Choose 𝜔 to optimize the converge (i.e., the spectral 

radius of 𝑀−1𝑅 

 



Krylov subspace method 

• Krylov subspace 𝒦 𝐴, 𝑣0 = {𝑣0, 𝐴𝑣0, 𝐴2𝑣0, … , 𝐴𝑘−1𝑣0} 

• Approximate the solution to 𝐴𝑥 = 𝑏 from the Krylov 
subspace 𝑥 ≈ 𝑉𝑔, where span 𝑉 = 𝐾(𝐴, 𝑣0) 

• Prefer 𝑉 to be an orthonormal basis. Can be generated by 
Gram-Schmidt: Arnoldi algorithm 

𝐴𝑉𝑘 = 𝑉𝑘𝐻𝑘 + 𝑓𝑒𝑘
𝑇, 𝑉𝑘

𝑇𝑉𝑘 = 𝐼, 𝑉𝑘
𝑇𝑓 = 0 

where 𝐻𝑘 is upper Hessenberg or tridiagonal when 𝐴 is 
symmetric 

• Convergence depends on the condition number of 𝐴 and 
also the distribution of eigenvalues 

• Precondition: solve 𝑀−1𝐴𝑥 = 𝑀−1𝑏 or 𝐿−1𝐴𝐿−𝑇 𝐿𝑇𝑥 =
𝐿−1𝑏 
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How to extract approximation from a 

Krylov subspace 
• Recall 𝑥 ≈ 𝑉𝑔, where 𝑉 contains an orthonormal 

basis of a Krylov subspace 

• We can choose 𝑔 

• to minimize 𝑟 = 𝐴𝑥 − 𝑏 2 

• to minimize 𝑟 𝐴−1
2 = 𝐴𝑥 − 𝑏 𝐴−1 𝐴𝑥 − 𝑏 = 𝑥 − 𝑥 𝐴

2  

• to ensure 𝑟 = 𝐴𝑥 − 𝑏 is orthogonal to 𝒦 𝐴, 𝑣0  (Galerkin 

condition) 

𝑉𝑇 𝑏 − 𝐴𝑥 = 0 

• To ensure 𝑟 = 𝐴𝑥 − 𝑏 is orthogonal to some other 

subspace (Petro-Galerkin condition) 
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GMRES (general minimum residual) 

• 𝑥 = 𝑉𝑘 ,
𝑓

𝑓
𝑔, choose 𝑔 to minimize 𝑟 = 𝐴𝑥 − 𝑏 2 

• Because 𝐴𝑉𝑘 = 𝑉𝑘𝐻𝑘 + 𝑓𝑒𝑘
𝑇, 𝑉𝑘

𝑇𝑉𝑘 = 𝐼, 𝑉𝑘
𝑇𝑓 = 0 

• Equivalent to solving small least squares 𝐻 𝑘𝑔 − 𝑏 
2
 

where 𝐻 =
𝐻𝑘

𝑓 𝑒𝑘
𝑇 , 𝑏 =

𝑉𝑘
𝑇

𝑓𝑇/ 𝑓
𝑏 

• Incremental QR factorization of 𝐻 𝑘 by Given’s rotation 

• Monitor the convergence, terminate when the estimated 

residual norm is small enough 
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The GMRES algorithm 
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Modified Gram-Schmidt 

QR factorization 

Monitor the residual 

Solve triangular 

system only when 

the residual is small 

enough 



MINRES 

• When 𝐴 is symmetric (but not necessarily positive 

definite), 𝐻𝑘 is tridiagonal 

• The orthonormal basis of 𝒦 𝐴, 𝑣0  can be generated via a 

3-term recurrence 

• The solution of the tridiagonal least squares problem 

min
𝑔

𝐻 𝑘𝑔 − 𝛽𝑒1  can be accumulated with a few vectors 

• But the use of 3-term recurrence may quickly lead to loss 

of orthogonality among the columns of 𝑉𝑘 (only three are 

kept at one time) 

• As a result, round off error can propagate rapidly 
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MINRES algorithm 
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Conjugate Gradient 

• Let 𝑥 = 𝑉𝑔 

• Choose 𝑔 such that 𝑉𝑇 𝑏 − 𝐴𝑥 = 0 (Galerkin condition) 

• Equivalent to solving 

𝐻𝑘𝑔 = 𝑉𝑇𝑏 

  if 𝑉𝑒1 = 𝑏/ 𝑏 , the right hand side becomes 𝑏 𝑒1 

• If 𝐴 is nonsymmetric, this is the FOM  

• If 𝐴 is symmetric positive definite, this choice of 𝑔 also 
minimizes 𝑟 𝐴−1 = 𝑒 𝐴, yields the conjugate gradient 
method:  
• 𝑥 = 𝑉𝐻𝑘

−1𝑒1 𝑏 = 𝑉𝐿−𝑇𝐷−1𝐿−1𝑒1 𝑏 =Py 

• 𝑃 = 𝑉𝐿−𝑇 satisfies 𝑃𝑇𝐴𝑃 = 𝐼 

• Columns of 𝑃 are successive 𝐴-conjugate search directions used to 

minimize 𝑓 𝑥 =
1

2
𝑥𝑇𝐴𝑥 − 𝑥𝑇𝑏 

• 3-term recurrence follows from the fact that 𝐻𝑘 is tridiagonal 
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The CG algorithm 
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Chosen to enforce 

𝐴-conjugation 

Line search to 

minimize 𝑓(𝑥) 
along 𝑝𝑖 



Precondition 

• Suppose 𝑀 = 𝐿𝐿𝑇 is a good approximation to 𝐴 

• We apply CG to 𝐿−1𝐴𝐿−𝑇 𝐿𝑇𝑥 = 𝐿−1𝑏 

• Gradient of the preconditioned problem 

𝑟 = 𝐿−1𝐴𝑥 − 𝐿−1𝑏 

• 𝜌 = 𝑟 𝑇𝑟 = 𝑟𝑇𝐿−𝑇𝐿−1𝑟 = 𝑟𝑇𝑀−1𝑟 
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Convergence rate of CG 

• Let 𝑥(𝑖) be the approximation obtained at the ith CG 

iteration 

• Error bound: 

𝑥 − 𝑥 𝑖
𝐴

≤
𝜅 𝐴 − 1

𝜅 𝐴 + 1

𝑖

𝑥 − 𝑥 0
𝐴
 

• The actual number of iterations required to reach 

convergence depends on the number of eigenvalue 

clusters and the right-hand side 𝑏  
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Bi-CG 

• When 𝐴 is nonsymmetric, the Arnoldi procedure does not lead 

to a short recurrence 

• Try to construct a short (3-term) recurrence 𝐴𝑉𝑘 = 𝑉𝑘𝐻𝑘 +
𝑓𝑒𝑘

𝑇 by giving up the orthonormality constraint 𝑉𝑘
𝑇𝑉𝑘 = 𝐼 

•  Require 𝑊𝑘
𝑇𝑉𝑘 = 𝐷 for some basis 𝑊𝑘 and diagonal matrix 𝐷 

• Force 𝑊𝑘
𝑇𝐴𝑉𝑘 = 𝐻𝑘 to be tridiagonal 

• Generate 𝑊𝑘 from 𝐴𝑇𝑊𝑘 = 𝑊𝑘𝐻𝑘
𝑇 + ℎ𝑒𝑘

𝑇 (two-sided Lanczos) 

• Make sure 𝑊𝑘
𝑇 𝑏 − 𝐴𝑥 = 0 (Petro-Galerkin) 

• Take 𝑥 = 𝑉𝑘𝑔, use a LU factorization of 𝐻𝑘 = 𝐿𝑈 (both L and U 

are bidiagonal) to construct short recurrences 

• Serious breakdown: 𝑓𝑇ℎ = 0 

• Stabalization yields the BiCGSTAB algorithm 
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Bi-CG algorithm 
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QMR (Quasi-Minimal Residual) 

• Try to minimize 𝑟 = 𝑏 − 𝐴𝑥 , where 𝑥 = 𝑉𝑘𝑔,  

• Recall: 𝑉𝑘 satisfies 𝐴𝑉𝑘 = 𝑉𝑘+1𝐻 𝑘, where 𝐻 𝑘 =
𝐻𝑘

𝑓 𝑒𝑘
𝑇 , 

𝑉𝑘+1 = (𝑉𝑘 , 𝑓/ 𝑓 ) 

• 𝑟 ≠ 𝑊𝑘+1
𝑇 𝑏 − 𝐴𝑥 = 𝑏 𝑒1 − 𝐻 𝑘𝑔  because 

𝑊𝑘+1
𝑇 𝑊𝑘+1 ≠ 𝐼 

• Minimize 𝑟 = 𝑏 𝑒1 − 𝐻 𝑘𝑔  anyway to yield quasi-

minimual residual norm 

• Can show 𝑟 ≤ 𝑘 𝑟  
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Restarted GMRES 

• Limit the size of the Krylov subspace 

• Use the last residual vector to start a new GMRES to seek 

the correction to the previous approximation 

• 𝑟 = 𝑏 − 𝐴𝑥0 

• While no convergence 

• c=GMRES(𝐴, 𝑟, 𝑘); 

• 𝑥0 = 𝑥0 + 𝑐 

• 𝑟 = 𝑏 − 𝐴𝑥0 
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