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物质状态的统计物理研究 
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Matter: Collection of atoms/molecules 
 
States: gas, liquid, solid (as we learned in 

high school) 
 
 
We used to relate Structure ⇔ Mechanical 
Properties 
 
 
But there is a lot more to it… 
 

• Electrical conduction:  metal, insulator, semiconductor, superconductor 

• Magnetism: paramagnet, ferromagnet, etc  

• Optical: light absorption/emission, lasing, etc. 

• …… 

and 

• polymers, membranes, micelles 

• DNA, RNA, proteins, molecular motors, cell, tissue, brain…

liquid 
solid 

gas 

P 

T 

dynamics of 
electrons 
structures 

atomic structure 
and dynamics 
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Ludwig Boltzmann, who spent much of his life studying 

statistical mechanics, died in 1906, by his own hand. Paul Ehrenfest, 

carrying on the work, died similarly in 1933. Now it is our turn to 

study statistical mechanics.  
 

Perhaps it will be wise to approach the subject cautiously. We 

will begin by considering the simplest meaningful example, the 

perfect gas, in order to get the central concepts sorted out. In Chap. 

2 we will return to complete the solution of that problem, and the 

results will provide the foundation of much of the rest of the book. 

 
 
"What we seek. ..is a feeling for the essential nature of 
the stuff, and how one goes about studying it." 
 
-PROFESSOR GOODSTEIN 
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中文译本年底出版？ 
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A brief history of condensed matter and statistical physics 
1930’s:  development of band theory of solids soon after QM was established. Electronic 

origin of magnetism was also proposed and studied; The Fermi liquid theory; Landau 
theory of phase transitions 

1940’s: invention of semiconductor devices that changed the world; Onsager’s exact solution 
of the Ising model 

1950’s: theory of superconductivity was established; Feynman’s theory of superfluidity. 

1960’s: many-body theory of electronic states and various field theoretic methods were 
developed. Off-diagonal long-ranged order; Scaling theory of phase transitions 

1970’s: renormalization group theory applied to phase transitions and critical phenomena. 
Deeper view of ordered states and their stability. 

1980’s: study of glassy systems. New understanding of nonequilibrium systems and their 
dynamics. The quantum Hall effect. High-Tc superconductivity rekindled interest in 
electronic systems with strong correlation 

1990’s: nano-technologies and devices, improvements in computational techniques and 
capabilities. 

2000’s: complex networks and biological systems…  
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Classification of states of matter by their symmetry 

(Jim Sethna: Classification of Phases) 

 

Atoms/molecules can organize in many different forms 
 

 
 
 
 
 
 
 
 
 
 
 

 
Which one is more symmetric? 

 
 

 

Liquid is more symmetric than crystal because 
we can rotate it (or we rotate ourselves) in any 
way and won’t notice a difference. 
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For a single crystal, the basis vectors of the crystal lattice specifies 

the orientation of the atomic/molecular bonds and their spatial 

positions of the atoms. Even though we did not pick any special 

direction for the bonds nor special positions for the atoms, the 

molecules themselves organize into a structure that breaks both 

translational and rotational symmetry of space. 

 
 
Hence we could say the liquid and solid phases are separated by a symmetry change. 
 
Symmetry is a more fundamental concept 

than other properties as it is either there or 

not there. It can be used unambiguously to 

define the transition between different phases 

of matter. On the other hand, not all phase 

transitions are accompanied by a symmetry 

change. 

liquid 
solid 

gas 

P 

T 

b 
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Questions of more quantitative nature 

Questions: 

• Why do the water molecules form ice below T=273.16? 

• Why do they form the particular crystal structure? 

• How can one characterize the atomic structure of an ice crystal? 

• What are the consequences of symmetry breaking? 

 

Answers: 

• We need to know how water molecules interact with each other. (E&M and QM) 

• We need to use methods of Statistical Mechanics to find the state with the least free 

energy at a given temperature and pressure 

• We need to define an order parameter 

• We need to develop a general theory of deformations from a perfectly ordered structure 

(in this case phonons) 
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相变的热力学 
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Gibbs free energy and chemical potential 
The Gibbs free energy is defined as 

  Φ(T , P, N ) = E −TS + PV  (1.2.12) 

Eq. (1.1.20) yields, 

 dΦ = −SdT +VdP + µdN  (1.2.28) 

Since both P and T are intensive variables, we have 

 Φ = µN  (1.2.36) 

When two phases coexist, we may move particles from one phase into the other without 

changing the total Gibbs free energy. Therefore a condition for phase coexistence is 

  µ1(P,T ) = µ2 (P,T ) (1.2.123) 

Since there is only one equation but both P and T can vary, two phase coexistence in a single 

component system can take place along a line. On the other hand, for three phase 

coexistence, we have two equations and two unknowns. Hence it happens only at a point on 

the P-T diagram (the triple point). 
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Example: Liquid-gas transition 
 

At Point A on the P-T diagram, the particle 

system is in the liquid state. As one increases 

temperature at a constant pressure (i.e. 

heating up the system), the system initially 

stays in liquid form, but changes into gas 

form when one reaches the coexistence 

line.  
 

The thermodynamics of the phase change can be carried 

out by examining the behavior of the chemical potential in 

the two phases,   µL(T , P)  and   µG (T , P) , respectively.  At a 

given P and T, the phase with lower chemical potential is 

the equilibrium phase.  Note that µ  as a function of T is 

continuous at the transition but its slope isn’t! 

liquid 

solid 

gas 

P 

T 

A B 

T TS TB TA 
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Change of various quantities across a phase boundary: 

Gibbs free energy :  continuous 

First order derivatives 

 S = −∂Φ ∂T
P
:  jumps at the transition 

 V = −∂Φ ∂P
T

:  jumps at the transition (density) 

 E = Φ+TS − PV : jumps at the transition 

 

Second order derivatives 

  
CP = −T ∂2Φ ∂T 2

P
: infinite 

  
κ T = − 1

V
∂2Φ ∂P2

T

: infinite 
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At the critical point: 

 continuous, but specific heat and isothermal compressibility diverge.  

 

In general, phase transition point can be identified with the mathematical singularity of the free 

energy function. 
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格点伊辛模型 
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The Ising model 
 

i) Hamiltonian:  

The spin variables  are assigned to sites on a d-dimensional lattice.  

⎯ The simplest model to explain development of spontaneous magnetization of a magnetic 

system at low temperatures. (phase diagram?) 

⎯ Related to gas-liquid transition, phase separation in binary alloys etc. 

  

ii) Observations 

Ground state at h = 0 (ferromagnetic coupling, J > 0): 

 , all i, 

or  , all i. 

Either state breaks the symmetry  of the Hamiltonian 

 

At finite temperature:     should be minimized 
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At sufficiently low temperatures, due to the energetic 

preference, the system goes to a symmetry-breaking 

state. (Majority/minority) 

 

Symmetry is restored in the paramagnetic phase at high 

temperatures. (homogeneous) 

 

The ordering process is gradual and continuous. Large 

scale fluctuations at the transition point. 

 

The symmetry-breaking state is more ordered than the symmetric one. Thus the phase 

transition corresponds to the onset of order in the system, which can be described 

quantitatively with an order parameter:  
  
m = 1

N
σ i

i
∑ . 
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iii) Why is it a hard problem? 

  
ZN (T ,h) = exp −βH σ i{ }( )⎡

⎣
⎤
⎦

σ i=±1{ }
∑  

  2N  terms in the sum, to express the result in closed form function of T and h seems to be quite 

nontrivial. 

 

A case we know how to treat (stat phys I): noninteracting spins in a field (J = 0) 

  ZN (T ,h) = z N (T ,h)  

  
z(T ,h) = eβhσ

σ =±1
∑ = eβh + e−βh = 2cosh βh( )  

 

Key to success:  factorization! i.e., separate the degrees of freedom into independent ones, 

each involving a small number of terms.  

⎯ In this case, the scheme of separation is obvious. 

⎯ In the more general case, perhaps there are ways of doing it if we prepare (massage) the 

problem sufficiently. 
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Such “divide-and-conquer” tactic is used everyday in research! 

 

Back to the Ising model: 

 

⎯ Use the noninteracting case as the reference point: high temperature series expansion  

⎯ Representing the effect of neighbors by a “mean-field”, close the equation with a self-

consistent condition 

⎯ Use a factorized form to approximate the true Boltzmann distribution, and determine the 

parameters based on variational principle (Bragg-Williams, Bogoliubov inequality) 

⎯ Transfer matrix: generalization of the factorization to matrix products 

⎯ Coarse-graining: focus on degrees of freedom that represent local averages, and 

construct effective Hamiltonians for the “slow variables”. This is the basis for the 

Ginzburg-Landau theory and the renormalization group approaches. 
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iv) Bragg-Williams approximation formulated from a variational point of view. 

 

“Trial Hamiltonian”:   is the variational parameter  

  
p± =

e±β h

eβ h + e−β h ,    
   m = p+ − p− = tanh β h( ) ,  

   
β h = 1

2
ln

p+

p−

= 1
2

ln1+ m
1− m

 

   
F0 = −NkBT ln 2cosh β h( )⎡⎣ ⎤⎦ = −NkBT ln2+ 1

2
NkBT ln(1− m2 )  

   
H0 0

= −N hm = − 1
2

NkBTmln1+ m
1− m

,  
  

H
0
= −J Nq

2
m2 − Nhm  

 

  

Fvar (m) = F0 + H
0
− H0 0

= −J Nq
2

m2 − Nhm+ NkBT 1+ m
2

ln1+ m
2

+ 1− m
2

ln1− m
2

⎡

⎣
⎢

⎤

⎦
⎥

 

Minimizing w.r.t. m (equivalent to minimizing w.r.t.   h ) yields 

  m = tanh β qJm+ h( )⎡⎣ ⎤⎦  
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v) Nature of the solution and possible improvements 

 

Consider the above approximation at h=0 

⎯ at T = 0,   m = ±1,    F = −NqJ / 2   okey, dominant nearest neighbor interaction is taken care 

of. 

⎯ at  T = ∞ ,   m = 0 ,    F = −NkBT ln2 , also okey. 

⎯ However, the self-consistent equation yields   m = 0  and hence   E = 0  for any  T > Tc . This is 

not quite right. Reason: energetic preference for neighbors to align completely ignored in 

the high temperature phase. 

⎯ The above can be corrected by allowing for some correlation between nearest neighbors 

with an improved variational Hamiltonian. But the calculation will become much more 

involved. 

⎯ This way of improvement will probably never work sufficiently close to  Tc . 
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Success:  Since the calculation correctly reproduces the system behavior at zero and infinite 

temperatures, the spontaneous ordering phenomenon is captured. In addition, 

various thermodynamic quantities show singular behavior at the transition.  

 

Failure: Details of the ordering transition is not only incorrect at the quantitative level, it is 

incorrect at a qualitative level below four dimensions (as compared to experiments 

and computation). The origin of this failure lies in its inability to capture correlations 

on increasing larger scales as the critical point is approached. Such large scale 

correlations give rise to the singular behavior of various thermodynamic quantities.  

 

vi)  Properties of the solution (left as an exercise) 
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vii) Lessons learned 

⎯ A calculation that captures the limiting behavior can be used to learn more about the 

system, as a first step. 

⎯ Analytic solution/handle, even approximate ones, allows one to sketch an overall picture 

of the system’s behavior as a function of the controlling parameters, in this case 

temperature and external field. Various limiting properties and dependencies can be 

discussed, as well as how different quantities are related to each other, etc., even though 

important details are not all described accurately. 

⎯ The simplicity of the approximate solution, if done correctly, can be more useful in 

exposing the physics involved. 

⎯ Once the weaknesses of a particular approximation is understood, one can proceed to  

⎯ construct more refined theory targeted at the unsolved aspects of the problem. 

 
In this sense we can now move on to the more sophisticated treatments: coarse-grained 

continuum description as in the Ginzburg-Landau theory and the renormalization group 

treatment. 
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临界现象的标度律及临界指数 
 

Widom scaling – Kadanoff’s block spins  
– Ken Wilson’s renormalization group 

 
ME Fisher, Rev Mod Phys 70, 653-681 (1998) 
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Critical Point Exponents 
 

Summary of various “singular behavior” at the critical point: 

• order parameter vanishes 

• magnetic susceptibility/compressibility diverges 

• heat capacity jumps/diverges 

• correlation length diverges 

• …  

The mean-field theories give specific predictions on how these quantities go to zero or infinity 

as  T → Tc , but these often do not agree with experiments. 

 

Example: magnetic susceptibility 
 

Mean-field:    χT  (T −Tc )−1  

Better described by   χT  T −Tc( )−γ , with 

.

experiment 
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Definition of critical exponent: 

If a function  diverges or goes to zero as 
  
t ≡

T −Tc

Tc

→ 0, one may define a critical 

exponent (assuming the limit exists) 

  
λ ≡ lim

t→0

ln f (t)
ln t

 

and write, in the neighborhood of the critical point,    f (t)  tλ .  

 

In general, the function    f (t) = Atλ + Btλ1 +… ( ) may contain corrections to the 

leading-order term. This may generate a lot of headache in experimental or numerical 

determination of the critical exponents. 
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Most commonly used critical exponents 

Specific heat:    C  t−α  

Order parameter:   m  −t( )β  

Susceptibility/compressibility:   χ  t−γ  

Critical isotherm (  t = 0 ):   h  mδ  

Correlation length:   ξ  t
−ν

 

Pair correlation function (  t = 0 ):    c(r)  r−(d−2+η )  

 

Scaling laws (critical exponent identities) 

  

α + 2β + γ = 2, dν = 2−α
β δ −1( ) = γ , γ = 2−η( )ν  

But where do they come from?
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Scaling hypothesis 

Free energy per site:   g(t,h) = g0(t,h)+ gs(t,h)  

At ,    gs(t,0)  t
2−α

 

 “Scaling”:   t → bt,   gs → b2−α gs  

At ,    gs(0,h)  h1+1/δ  

 “Scaling”:   h→ bh,   gs → b1+1/δ gs  

Homogeneity hypothesis (Ben Widom, 1965):                gs(t,h) = λ−d gs(λ
yt,λ xh)  

(  take values that are model specific) 

With this assumption, we obtain,      

  

m(t,h) = − ∂g
∂h

= λ−d+xm(λ yt,λ xh)

ch(t,h) = −Tc
−1 ∂2 g
∂t2 = λ−d+2 ych(λ yt,λ xh)

χ(t,h) = − ∂2 g
∂h2 = λ−d+2xχ(λ yt,λ xh)
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Special cases: 

i)   h = 0,λ = t
−1/ y

; ii)   t = 0,λ = h
−1/x

 

  

m(t,0) = −t( )(d−x )/ y
m(−1,0)

ch(t,0) = t
(d / y )−2

ch(±1,0)

χ(t,0) = t
−(2x−d )/ y

χ(±,0)

   m(0,h) = h
(d /x )−1

m(0,±1)  

 

Hence, 

  

α = 2− (d / y)
β = (d − x) / y
γ = (2x − d) / y
δ = x / (d − x)

  

 

But why? 
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Kadanoff block spins 
 

For a historical account, read pages 10-18 of Leo Kadanoff’s article From 

Order to Chaos II. 

 

Block spin transformation (coarse-graining): 
   
σ i → σ J = sign σ i

i∈J
∑⎛⎝⎜

⎞
⎠⎟

   

known as the majority rule 

 
 

i) The original and transformed system share the same critical point ⇒ At this special point, 

the system becomes scale invariant! 

ii) Away from the critical point,        t → t = tLy ,    h→ h = hLx    (key assumption) 

iii) Free energy per site:     gs → gs = gs(t , h) = Ld gs(t,h) , or    gs(t,h) = L−d gs(Lyt, Lxh) ! 

 

L 

L 
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In addition, Kadanoff’s scaling analysis yields a prediction of the spatial structure of critical 

fluctuations. 
 

Scale of physical quantities in the critical region 

Correlation length:  

(Free) Energy:  kTc  

Upon the block transformation,    ξ(t,h)→ ξ = ξ(t , h) = ξ(t,h) / L  

Hence:        ξ(t,h) = Lξ(Lyt, Lxh)  
 

Divergence of  

   ξ  t
−ν

,   ν = 1/ y  

    ξ  h
−1/x

 

 

Hyperscaling relation:   α = 2− d / y = 2− dν  
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Evaluation and summary: testing the scaling laws 

 

1. Critical point exponents are difficult to measure experimentally.  

 

2. Experimental physicists have worked extremely hard to achieve the unachievable, and 

along the way improved their instruments as well as our understanding of Nature. 

 

3. The scientific process of verifying a hypothesis is often biased despite the presumed 

honesty and integrity shown by most scientists in their investigations. 

 

4. The scaling theory has been a tremendeous success when compared with experimental 

data. It is now part of the “established wisdom” of the scientific community. It has been 

applied to many different areas of science in addition to the equilibrium critical phenomena 

where the ideas were first developed. 
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5. Beyond the scaling theory, the renormalization group ideas were developed and 

implemented. The mean-field theories were shown to give a correct description above four 

dimensions, but fluctuations “renormalize” parameters in the Landau free energy functional 

as one goes to larger and larger scales, yielding different set of values for the exponents. 

 

6. With the availability of powerful computers, predictions of the scaling theory have been 

verified to great precision for many different types of phase transitions, and universality 

classes have been identified. 

 

7. We have witnessed a beautiful example of scientific research in modern history. From van 

der Waals to Ken Wilson, it took a century for the correct ideas to be developed and 

subtleties of Nature understood. 
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Ising Spins on the Diamond Fractal Lattice (Migdal-Kadanoff real-space RG) 
 

Lattice generated through an 

iterative procedure 

 
Placing Ising spins on the vertices 

of the lattice. 
 

Summation of spins on the middle vertices of a 

diamond renormalizes the interaction and field 

strength on the upper and lower vertices: 

 
 

 

 

 

 

 

Same as the 1D Ising chain 
except each time two 
branches contribute, so the 
results differ by a factor of 2. 
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Renormalization Group flow 

 

 

 

 

 

 

 

 

Critical point at 

  

h* = 0
J* = 0.60938
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Cusp singularity for the specific heat (with a 

negative α) 

 

 

 


