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Outline
• Ising model: from lattice to continuous field theory 

• Dimensional analysis, power counting, UV cut-off 

• Critical dimension, relevant-irrelevant operators 

• Renormalization group: the Gaussian model 

• Renormalization group: cumulant expansion 

• The fixed points: Gaussian and non-trivial 

•    -expansion, order one and higher orders. 

• Relation to Renormalization theory in QFT
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Ising model: From lattice model 
to continuous Field Theory

• Ising model: magnetic spins                along the z-
direction, in a magnetic field  

• Short range interactions                            between 
any pair of spins i and j . We study a ferromagnetic 
system               (e.g. nearest neighbor interactions) 

• Partition function 
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• Gaussian integral 

• so 

• Partition function
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The continuous limit

• If we are interested in correlation functions at 
distances large compared to lattice spacing ( near a 
critical point), we can take a continuous limit. 

• Exercise: shift field by magnetic field, redefine 
coefficients and rescale fields, expand log cosh, and 
show that the partition function can be written as 
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Dimensional analysis and  
power counting: canonical dimensions

• All the analysis and integrals will be done in 
momentum space (k-space) so do dimensional 
analysis in momentum space             UV cut-off 

• It follows that   
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• As we will see, an operator is relevant, marginal, 
irrelevant  if its dimension     is 

• The magnetic field is relevant in all dimensions.  

• The “mass”      is always relevant 

• In d=2, all operators are relevant 

• In d=3, only      relevant,      marginal 

• In d>3, only      relevant
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The      field-theory for critical 
phenomena

• As we will discuss a specific scheme of calculation 
(epsilon expansion), we will work around dimension 
4. Then only one relevant operator. Near criticality, 
near dimension 4, the system is thus well 
described by 

• Note that       is the difference between terms from  

•         and from the log cosh, so it can change sign
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Renormalization group:  
the Gaussian model

• Near criticality, correlation length  

• System is (nearly) scale invariant 

• Equivalent of block spins: momentum shell integration 

• Originally, UV cut-off  

• Define  

• (Try to) integrate over the fields  

• Rescale momenta from 
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The Gaussian Model
Assume u0 = 0
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System equivalent to original one, for large distances
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Cumulant expansion
Include the interaction term
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Take h=0
In Fourier space
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Make separation
� = �< + �>

In the high temperature phase (no symmetry breaking), 
do a cumulant expansion (equivalent to a loop expansion) 
to integrate over  �>
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Expanding to the second cumulant
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Wick Theorem
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Cumulant expansion
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Use Wick theorem
Order 1 in V: only term 2 contributes to r0

Order 2 in V: only term 2-2 contributes to u0
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Remains to do: 1) rescale momenta from     to 
                         2)  rescale      so that coefficient equal 1/2
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Fixed points: 
The epsilon expansion

Gaussian: r⇤ = u⇤ = h⇤ = 0

Non trivial: h⇤
= 0, r⇤ and u⇤
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Critical exponents to order  
one in epsilon
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• Relation to Renormalization 
theory in QFT


