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Thermal phase transitions
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» At critical point, divergent length o Y
scale leads to singularity, which is . ’,‘
the result of thermal fluctuations ' i

0.2

» Quantum mechanics is largely .

irrelevant 0 02 04 06 08 1

TIT,

3D Ising FM-Paramagnetic transition (MC simulation)

» The coarse grained continuum field description:
Landau-Ginzburg-Wilson Hamiltonian

H(@):/dV((V@)2+s<I’2+ (®)?%); 2= /D@ e”

where ® is the order parameter, s is a function of T.
» Meanfield: &> = —s/2ufor T < T.(s ~ s'(T — T.)).
» well understood within Wilson’s RG framework;

e longrange order (®) = 0: spontaneous symmetry breaking
e universality class: symmetry and dimensions



Quantum phase transitions

» happens at zero temperature, when adapt g in
H = Hy + gHy; [Hy, Hi] # 0, continueous transition

» at g., the correlation length diverges, due to quantum
fluctuations

» path integral maps D-dim quantum systems onto classical
field theories in D + 1-dim

S(®) = / AVAr((0:8)2 + V2 (V,®)? + 582 + u(®2)?)

7 = / DP ¢ 5(®)

» many of these transitions can be understood in the
conventional Landau-Ginzburg-Wilson framework



» for example: AF Néel-Paramagnetic transition
H, is AF Heisenberg Hamiltonian, g = J,/J;

9=J2/J1

Jo J2
J1 J1
M A A = spin gap
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e 3D classical Heisenberg universality class: confirmed by
QMC
e Experimental realized



However, many strongly-correlated quantum materials seem to
defy such a description and call for new ideas

for example, continuous transition from Néel to VBS state



Non-trivial non-magnetic ground state

i A ) 2
» Valence bond Ty = (lila = Lla)/v2

e resonating valence-bond (RVB) spin RVB/-/ o A

liquid W >/ /
exotic state without any e / e

long-range order

e valence-bond solid (VBS) b

breaking the translation and

rotation symmetry of the lattice

VBS order parameter (D, D,)

Dy = 4 300 (= 1) - Sips, Dy = 3 2o (—1)S; - Siys
» valence-bond state: the overcomplete basis

Zf%‘ (my) = (4 5 8i(~ 1)) =0



Deconfined quantum criticality

describe the direct continuous transition from Néel to VBS
in 2D Read and Sachdev, 1989; Senthil, Vishwanath, Balents, Sachdev, Fisher (2004)

e the direct continous transition
violates the "Landau rule”:

Néel-param should be in 3D O(3)
universality class;

. but transition away from VBS

order parameter

JnY) —— sould be in 3D O(2) (Z,
(11t | . .
rery = anisotropy is dangerously

irrelevant, Léonard and Delamotte, PRL 2015 )
universality class.

either first order or a phase in
between

reason: Berry phase related interference effect in path integral,
complex statistical weight in the field theories, NOT like classical
statistical systems

New physics is called



Deconfined quantum criticality

Field-theory description with spinor field z

e Order parameters of the Néel state and the VBS state are
NOT the fundamental objects, they are composites of
fractional quasiparticles carrying S = 1/2

® = 7,0.528
z: spinor field (2-component complex vector); o: Pauli
S, = /dr2dT[|(BM—iAM)za|2+s|za\2+u(\za\2)2)+/<&(GWA3VA/\)2]
A is a U(1) symmetric gauge field; related to the VBS order

parameter (Dy, Dy)
Non-compact CP' action



Physical picture

Levin and Senthil, PRB 70, 2004

At the core of the Z, vortex, there
is a spinon

Blue-shaded regions are domain walls
(Not a line). The thickness &pw
diverges faster than the correlation
length &: two length scales , emergent
U(1) symmetry

e Spinons bind together in the VBS state (confinement) and
condensate the Néel state, deconfine at the critical point
leading to a continuous phase transition



e Only SU(N) generalization can be sloved when N — oo,
nonperturbative numerical simulations are required to
study small N

e The most natural physical realization of the Néel-VBS
transition for SU(2) spins is in frustrated quantum
magnets

however, notoriously difficult to study numerically:
sign problem in QMC



Designer Hamiltonian: J-Q model
Sandvik designs the J-Q model

QK

1
:_JZPU_QZPUPklem z'j:(Z_Si'Sj)

(ijkimn)

Lattice symmetries are kept (J/ — Q, version similar)
e large Q, columnar VBS

VBS order parameter
D, =&Y (—1)%8; - Siys,
Dy = %Zf’zl(_l)ysi “Sits

e small 0, Néel )

order parameter

Néel order parameter
m = 4 >, Si(—1)% e No sign problem for QMC simulations,

o ideal for QMC study of the DQC physics

Sandvik, PRL 98, 227202(2007)



Finite-size scaling
e Correlation length divergent for T — T.: { o< |6] 77,0 =T — T,

e Other singular quantity: A(T, L — co) o |8]* oc £€4/¥
e For L-dependence at T, just let ¢ — L: A(T = T,, L) oc L=%/*

e Close to critical point: A(7,L) = L™"/Vg(L/&) = L™"/"f(5L'/")

For example

2 o—e [ =]28

X(T,L — o0) o< 67 10 —— L=1632,64

data collapse

R10F
xX(T, L)LY = f(6L1/")
2D Ising model v = 7/4,v =1 10°F o
T, =2/In(1 + V2) ~ 2.2692
When these are not known, treat 20 25 30 35

as fitting parameters T



Finite-size scaling
e Correlation length divergent for T — T.: { o< |6] 77,0 =T — T,

e Other singular quantity: A(T, L — co) o |8]* oc £€4/¥
e For L-dependence at T, just let ¢ — L: A(T = T,, L) oc L=%/*
e Close to critical point: A(7,L) = L™"/Vg(L/&) = L™"/"f(5L'/")

For example

00sf
X(T,L — o0) o< 67

data collapse
X(T, L)LY = (L") 0.02

2D Ising model v =7/4,v =1 0.01
T, =2/In(1 +V/2) ~ 2.2692

When these are not known, treat
as fitting parameters




systematic critical-point analysis
e consider a quantity with « = 0, or, with known « /v
ALFY = F(SLMY L™ up L™, .. )

corrections to scaling are included (RG theory); u; are
irrelevant fields

e (almost) size-independent at 7, leads to crosssings at 7.

Binder cumulant U = (3 — <<m”’24>>2), dimensionless k = 0
2D Ising model; MC results
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e correlation-length exponent v
can be extracted from the slope of U: s(T,L) = %

s(T*,2L)
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numerical study of the J-Q model



FSS of squared order parameter(A)
Ag,L) = L~ UDfBLYY], 5 =q—qe,(a=Q/(J+ Q)

Data "collapse”:
M? and D? simutaneously — single continous transition!

25R T T T T T T T ™
- | *a
£ 2 ™ - 10, i
:’q L Spin d
o J-0, model; ¢, = 0.961(1) Tusf E;%\. .
= . = « =
s = 0.35(2); 14 = 0.20(2); oI et
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e J-Q3 model; g, = 0.600(3) =% o 0 10
7y = 0.33(2); ns = 0.20(2); AT T
v =0.69 (2) Lou,Sandvik and Kawashima, PRB % 3 N ‘q ‘ J-Q, * ]
2009 ;LJ 25 C -« Spin *" .
[T # e L=24 ]
e Comparable results for = 15p & L=32 -
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scaling violation
Spin stiffness p, o 6“(@+2-2) | susceptibility y o §(¢—2)¥
Conventional FSS

po(6.L) = L2 GLY), (5,1) = LML)

At critical point: py oc L=(@+=2) = =2y o L7479
7= 1 for J- Q model psL and xL should be constants at g,

Fl— a1+ +al” 1 0150f ,/. +xL+12L +a3L
— a " ral’

020F = L=256
— bl o L=48 04,9, 128,192
o L=32

"
1 Fo.4st

(a)

0 20 4‘(}“ % 80 0.]4()(; 20 4‘(;“ ) 8‘07 003 004 o 0055 005
e z # 1 does not work
e large scaling corrections? sanavik PRL 2010, Bartosch PRB 2013
o weak first-order transition? cneneta prL 2013
The enigmatic current state is well summed up in

Nahum et al arXiv: 1506.06798




In this talk, we will try to resolve this puzzle
¢ study the deconfinement of spions
e VBS domain wall thickness

¢ introduce scaling form with two-length scales and give
phenomenological explanation

e anomalous critical scaling at finite temperature



Quantum Monte Carlo method

General idea of QMC :

e rewrite a quantum-mechanical trace or expectation value
into a classical form
Tr{AePH TIA|W AW,
y = TA) AN Y A
Tr e—AH (U|¥) > We

W, is the weight of a configuration, A, is the estimator of A.

e There are many different ways of doing it:
Worldline (worm), SSE, Fermion determinant, - - -



SSE Quantum Monte Carlo method

e A SSE configuration:
spin state + operator
string

-1 41 -1 -1 +1 -1 +1 +1 .
e diagonal and loop updates

©0 0000800 e observables and estimators
®@ 00 @®@0®O0 » energy estimator : number of
@@ 00@O0@eo0 operators, H. = —n/3
@@ 0@ 00 @O0 » spin stiffness estimator : winding
e T number fluctuations
—

@@ 0C@0@O00 w2
@ee@®@00@®@O00@@O00 b= pa—2g
@@ 0O@0 @00 o
580008006 » staggered magnetization:
©e©00008®O0 Mg = 3 i(=1)"Ths; /N
@@ 0@00®@O0
@@ 00@O0®eO0

—
@@ 0O0O@O0®@O0



Projector Quantum Monte Carlo method

For ground state calculations
Apply the imaginary time evolution operator to an initial state

U(T — 00)|¥o) — |0)

where U(r) = (—H)" or U(1) = exp (—HT)

(W|UAU (D)) | 5, AW
WUUDIT) > We

(A) =

A, is the estimator of A.



Projector Quantum Monte Carlo method

e using VB basis (in the singlet sector)

0) = AV, v) = (a1, b1) -~ (an 2, b y2))

St = (Tilj = 1:15)/V2 ¥

e take U(7) = exp (—7H), SSE representation - Z =" W,
¢ loop update algorithm are used

C LD
C. HOHOH )




Expectation values

e energy estimator: H. = —n/27
e correlation functions computed using transition graphs

Vi) [Ve) Vilv;.)
0, ()l

Si-Sj) = -

( ]> { %gf)ija (la])L7

¢ij = £1, i,j on the same/different sublattice



spinons and Deconfinement of spinons

e The excitations of VBS carry
S=1

P T e T S S

» bound spinon pair P N S S

» confining string P~ N N N N

e The confining string weakens <« ® « > « > < @
as g, is approached e s
) Y Y s S

» deconfinement . o™ ™ ™

The distance A diverages,
o Epw(?)

QMC simulations can be carried out in the S = 1 space

2)))2))



Extend valence-bond basis to total spin S > 0 states

Tang and Sandvik PRL 2011, Banerjee and Damle JSTAT 2010

Consider S, = §
e for even N spins: N/2 — S bonds, 2S upaired "up” spins

(Vs|Va), 2 loops
$=0 €3 ¢ 3 f ¢
(Vs (i, D Vali k),

§=1 w 1 loop, 2 strings

e transition grap has 2S5 open strings
study spinon bound states and unbinding



The two-spinon distance in the J-Q, model

A QMC transition graph representing (v.|yr) of S = 1 states

e two strings (spinons) in a background of loops formed by
valence bonds.

o two strings represent two spinons in bound state




J-Q model in deep VBS phase

animation at VBS



J-Q model at the critical point

animation at ¢,



The two-spinon distance in the J-Q, model

Define the size of spinon bound state A as root-mean-square
string distance

0.055¢
*
%0 0.050

0.045F

0.4090
5 04085}

<
0.4080
0.4075F
161

¥r4ar
S

~

1.2-

1.0r

T T
From 2-spinon distance

0 0.02 0.04 0.06
/L

1 Crossing-point analysis of A/L

e We find that A/L at g. is dimensionless,
like the Binder ratio R; of Néel order
parameter.

e The crossing points of (L,2L) converge
monotonicly

¢ —qeoc LW/VH) AL /L — R L™

1/v' can be extracted from slopes at the
crossing point

> we find g. = 0.04463(4),/ = 0.58(2)

Transition is associated with spinon deconfinement



The Binder ratio in the J-Q, model

Similar crossing-point analysis of the Binder
—] ratio
e From Binder ratio, we have v = 0.446
which controls the correlation.
0.041 ; : L e whatis v/?
» DQC theory: two diverging length scales

T T
 From Binder ratio

’
v

£ x(qg—qc)", Epw < (q—qc) ™V vV > v

» v/ =0.77(3) agrees with the result
obtained from the VBS domain-Wall
energy calculations
suggesting v/ is the domain wall

0 om0 0 thickness exponent




fundamental lenght scale: domain wall thickness
In some classical systems (clock models, XY model with
symmetry breaking field) the thickness of a domain wall is
larger than the correlation length

5 ~ 571/, §DW ~ 571/7 l// >v

VBS domain wall behaves similarly




VBS domain-wall scaling in the critical J-Q model
p=m/2

two kinds of VBS domain walls are

imposed in open-boundary
systems
7 wall splits into two 7 /2 walls

OF = Fyan — Funiform
K= 6F/Ld+z_1

p=m

0.01}

= g=1.0 (VBS).‘ B=L/8
1E o 0q=10 (VBS), B=3L/16
[ e—eq=0.6 (critical), B=L/8
r e—q=0.6 (critical), p=L/4
[ 0-0q=0.6 (critical), p=3L/8 o —
0.1F A

At deconfined critical point g., x oc L™", b ~ 1.80(1)

Shao, Guo and Sandvik, PRB 2015

1/L



At deconfined critical point

e domain-wall energy can be expressed as k = p,/A
ps is a stiffness: energy cost of a twist of the VB order
A is the width of the region over which the twist distributes.

e According to DQC theory,
Ps X l/f, A x Epw
kX 5§LW o (g —qc)

e translate to finite size at ¢.:
Epw =L, § = 5};{4/1/

v+’

1+o/v’

w(ge) oc LU

we have b =1+ v/v/,and v/ = 0.80(1)
e The only other estimate from analysis of the emergent U(1)
symmetry: v/v" = 0.83((4), J. Louetal PRE 80, 180414(R)(2009)



Domain wall scaling in classical model
3D g-state clock model(g > 3): basic example of dangerously
irrelevant perturbation
H = —JZCOS
(i) £~ Z{,;,j,y/y ~0.47, V' is
universal Léonard and Delamotte, PRL 2015

10'F T ‘ E
» 0 restriction: ; E

The prediction for the domain wall
energy in L — oo

1
f fDW 10°F

But, finite-size scaling at 7. shows o 1/2

KR~

K~ L—2 ?é L—(l—i—y/,/)
The dangerously irrelevant perturbation in the J-Q model is
more serious



Quantum criticality with two lengths
Two divergent lengths tuned by one parameter:

Ex o, ¢ 5V
A quantity A « §", finte-size scaling of A
e Conventional scenario
A(S,L) = L~V f(SLMV 6LV, A6 =0,L) o< L™V

When L — oo, f(6L'/" 6L'/Y') — (5L'/7)"
e We propose

A(6,L) = L~V 6LV LYYy, A8 = 0,L) oc L™/
When L — oo, (6L, 6L/ — (5L'/V')%
Example: spin stiffness p, oc 6°@122) k= v(d + z — 2). At g,

ps X L—(d+z—2) or py L—(d+z—2)y/]//



General scaling theory for p; and y, single length scale

Fisher et al PRB,40,546(1989)
Free energy density scales

6L 5) ~ @

b I S

° ps L2 is the excess energy due to a twist along apace:

§ & m
AF(6,L, ) ~ €V, e
Y has to behave like (¢£/L)?, thus
ps ~ 270
replacing & to L we have p, ~ L~(@+2-2)
e Simmilarly, x £ is the excess energy density needed to
enforce the tW|st which means Y ~ £%/3?

X~ €Ty )



Two correlation lengths scenario
Free energy density scales

AGL ) ~e@ayE &8 L

L"B’'L" B

the excess energy due to a twist along apace:
Ad., @y & & &€&
ps(L) AfF(6,L,B) ~ &~ YS(L,B,L,B)

which means i ¢
? ~ (24> \2—a
()
The larger correlation length ¢’ reaches L first, so L ~ &' ~ 5V
we have a = 2, and
Ps ~ 5_(d+z_2)
but, since L = ¢, ¢ = LY/,

ps ~ L~ (d+z=2)v /v

Similarly, we have
y ~ L= /v



Evidence for unconventional scaling in J-Q model

We have

ps~ L~

X ~ L—(d—z)u/u’ ~

(z+d=2)v/v" _ L—z//u’

L—I//V 7

instead of p, ~ L~(+4-2) !

instead of y ~ L™@"9) ~ 7!

0.55

02 0
— a,L "+a,L'+a)L

0.2 0
— a)l +al

T
-3.27

0.150

0.2 0
— b L b L

02 0 -0.58
— a, L +aL +a,l " +a,L

T
-1.05

0.50F :
* . *
3 045} 1 Zouast 1
040F :
035} {  ou0p E
0 20 40 60 80 0 20 40 60 80
L L

e this unexplains drifts in Lp; and xL in J-Q and other models

(z=1,d=2)

e Behavior was interpreted as flow to first-order
transition is due to unconventional scaling!




Anomalous critical scaling at finite Temperature

Quantum critical point at T = 0 governs the behaviorina 7 > 0
region which expands out from (g., T = 0): experimentally

important

TEMPERATURE

e
s\ “o‘
.
A Quantum /
s critical 4
Y region Y
- 4
+ L
£y ¥
[y £
L) 4
Classical spin waves % 4 Dilute triplon gas
[}
H..,!—_» ‘.‘ '.' @ <E>
- - - -
[ u v
et i = A=
>
& 8



Anomalous critical scaling at finite Temperature

e 3=1/Tis also a ‘finite-size’: L — 3!/
e convetional scaling (z = 1 for J-Q)

» ¢~ Lleadsto ¢, o B/ =T,

» x ~ L™ Jeadsto x, x B~@I/i=T
e new scaling with v/v/":

£ oc TV x ~L7"/" leads to x, oc T"/"'

0.048 |-

0.046

x/T

0.044

0.042




Conclusions

Two length scales observed explicitly in the J-Q model
No sign of first-order transition in the J-Q model

Simple two-length scaling hypothesis explains scaling
violation of spin stiffness and susceptibility

For T > 0 we find scaling laws from finite-size scaling forms
experimentally important

Thank you !
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