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Thermal phase transitions

I At critical point, divergent length
scale leads to singularity, which is
the result of thermal fluctuations

I Quantum mechanics is largely
irrelevant
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3D Ising FM-Paramagnetic transition (MC simulation)

I The coarse grained continuum field description:
Landau-Ginzburg-Wilson Hamiltonian

H(Φ) =

∫
dV((∇Φ)2 + sΦ2 + u(Φ2)2); Z =

∫
DΦ e−H(Φ)

where Φ is the order parameter, s is a function of T.
I Meanfield: Φ2 = −s/2u for T < Tc(s ∼ s′(T − Tc)).
I well understood within Wilson’s RG framework;

• longrange order 〈Φ〉 6= 0: spontaneous symmetry breaking
• universality class: symmetry and dimensions



Quantum phase transitions

I happens at zero temperature, when adapt g in
H = H0 + gHI; [H0,HI] 6= 0, continueous transition

I at gc, the correlation length diverges, due to quantum
fluctuations

I path integral maps D-dim quantum systems onto classical
field theories in D + 1-dim

S(Φ) =

∫
dVdτ((∂τΦ)2 + v2(∇xΦ)2 + sΦ2 + u(Φ2)2)

Z =

∫
DΦ e−S(Φ)

I many of these transitions can be understood in the
conventional Landau-Ginzburg-Wilson framework



I for example: AF Néel-Paramagnetic transition
H0 is AF Heisenberg Hamiltonian, g = J2/J1

• 3D classical Heisenberg universality class: confirmed by
QMC

• Experimental realized



However, many strongly-correlated quantum materials seem to
defy such a description and call for new ideas

for example, continuous transition from Néel to VBS state



Non-trivial non-magnetic ground state

I Valence bond

• resonating valence-bond (RVB) spin
liquid
exotic state without any
long-range order

• valence-bond solid (VBS)
breaking the translation and
rotation symmetry of the lattice

VBS order parameter (Dx,Dy)

Dx = 1
N

∑N
i=1(−1)xiSi · Si+x̂, Dy = 1

N

∑N
i=1(−1)yiSi · Si+ŷ

I valence-bond state: the overcomplete basis

〈ms〉 = 〈 1
N

∑
i Si(−1)xi+yi〉 = 0



Deconfined quantum criticality
describe the direct continuous transition from Néel to VBS
in 2D Read and Sachdev, 1989; Senthil, Vishwanath, Balents, Sachdev, Fisher (2004)

• the direct continous transition
violates the ”Landau rule”:
Néel-param should be in 3D O(3)
universality class;
but transition away from VBS
sould be in 3D O(2) (Z4
anisotropy is dangerously
irrelevant, Léonard and Delamotte, PRL 2015 )
universality class.
either first order or a phase in
between

• reason: Berry phase related interference effect in path integral,
complex statistical weight in the field theories, NOT like classical
statistical systems

New physics is called



Deconfined quantum criticality

Field-theory description with spinor field z
• Order parameters of the Néel state and the VBS state are

NOT the fundamental objects, they are composites of
fractional quasiparticles carrying S = 1/2

Φ = z∗ασαβzβ

z: spinor field (2-component complex vector); σ: Pauli

Sz =

∫
dr2dτ [|(∂µ−iAµ)zα|2+s|zα|2+u(|zα|2)2)+κ(εµνλ∂νAλ)2]

A is a U(1) symmetric gauge field; related to the VBS order
parameter (Dx,Dy)
Non-compact CP1 action



Physical picture
Levin and Senthil, PRB 70, 2004

At the core of the Z4 vortex, there
is a spinon

Blue-shaded regions are domain walls
(Not a line). The thickness ξDW

diverges faster than the correlation
length ξ: two length scales , emergent
U(1) symmetry

• Spinons bind together in the VBS state (confinement) and
condensate the Néel state, deconfine at the critical point
leading to a continuous phase transition



• Only SU(N) generalization can be sloved when N →∞,
nonperturbative numerical simulations are required to
study small N

• The most natural physical realization of the Néel-VBS
transition for SU(2) spins is in frustrated quantum
magnets

however, notoriously difficult to study numerically:
sign problem in QMC



Designer Hamiltonian: J-Q model
Sandvik designs the J-Q model

H = −J
∑
〈ij〉

Pij − Q
∑
〈ijklmn〉

PijPklPmn, Pij = (
1
4
− Si · Sj)

Lattice symmetries are kept (J − Q2 version similar)

Q3

• large Q, columnar VBS

VBS order parameter
Dx = 1

N

∑N
i=1(−1)xi Si · Si+x̂,

Dy = 1
N

∑N
i=1(−1)yi Si · Si+ŷ

• small Q, Néel

Néel order parameter
ms = 1

N

∑
i Si(−1)xi+yi

Sandvik, PRL 98, 227202(2007)

• No sign problem for QMC simulations,

• ideal for QMC study of the DQC physics



Finite-size scaling
• Correlation length divergent for T → Tc: ξ ∝ |δ|−ν , δ = T − Tc

• Other singular quantity: A(T,L→∞) ∝ |δ|κ ∝ ξ−κ/ν

• For L-dependence at Tc just let ξ → L: A(T ≈ Tc,L) ∝ L−k/ν

• Close to critical point: A(T,L) = L−κ/νg(L/ξ) = L−κ/ν f (δL1/ν)

For example

χ(T,L→∞) ∝ δ−γ

data collapse

χ(T,L)L−γ/ν = f (δL1/ν)

2D Ising model γ = 7/4, ν = 1
Tc = 2/ ln(1 +

√
2) ∼ 2.2692

When these are not known, treat
as fitting parameters
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FIGURE 14. Monte Carlo results for the susceptibility (55) of the Ising model on several different L×L
lattices. (a) shows the temperature dependence, with the vertical line indicating Tc. Note the vertical log
scale. In (b) the data has been scaled using the exact values of the Ising exponents, γ = 7/4 and ν = 1,
and the exact value of Tc in t = (T −Tc)/Tc.

which, using ξ ∼ |t|−1/ν , we can also write as

Q(t,L) = Lσg(tL1/ν). (65)

This scaling law should hold both above (t > 0) and below (t < 0) the critical point.
Exactly at Tc, we recover the size-scaling Q(0,L) ∼ Lσ . To relate σ to the standard
critical exponents, we can use the fact that, for fixed t close to 0, as the system grows the
behavior for any t $= 0 eventually has to be given by Eq. (59);Q(t,L→∞)∼ |t|−κ (where
κ is negative for a singular non-divergent quantity, e.g., the for the order parameter we
have κ =−β ). To obtain this form, the scaling function g(x) in (65) must asymptotically
behave as g(x)∼ x−κ for x→ ∞. In order for the size-dependence in (65) to cancel out,
we therefore conclude that σ = κ/ν , i.e.,

Q(t,L) = Lκ/νg(tL1/ν). (66)

To extract the scaling function g(x) using numerical data, one can define

yL = Q(t,L)L−κ/ν , xL = tL1/ν , (67)

and plot yL versus xL for different system sizes. If the scaling hypothesis is correct,
data for different (large) system sizes should fall onto the same curve, which then is
the scaling function (this is referred to as curves collapsing onto each other); g(x) =
yL→∞(x). Fig. 14 illustrates this using Monte Carlo data for the magnetic susceptibility
of the 2D Ising model. The peak location in panel (a) clearly moves toward the known
Tc with increasing L. After scaling the data according to the above procedures, as shown
in panel (b), the curves indeed collapse almost onto each other close to t = 0, but further
away from the critical point deviations are seen for the smaller systems. These are due to
corrections to scaling, which in principle can be described with subleading exponents.
We can apply the scaling form (66) to the correlation length itself, for which κ = ν and

the L-scaling is independent of model-specific exponents. In cases where the universality
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systematic critical-point analysis
• consider a quantity with κ = 0, or, with known κ/ν

ALκ/ν = f (δL1/ν , u1L−ω1 , u2L−ω2 , . . . )

corrections to scaling are included (RG theory); ui are
irrelevant fields
• (almost) size-independent at Tc leads to crosssings at Tc

Binder cumulant U = 1
2(3− 〈m4〉

〈m2〉2 ), dimensionless κ = 0
2D Ising model; MC results
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Figure 3: Binder cumulant for the 2D Ising model with L = 16, 32, 64 in the neighborhood of
the points at which the curves cross each other. The vertical and horizontal dashed lines indicate
the critical temperature Tc and the value of the cumulant at Tc, respectively. The solid curves
are cubic polynomial fits to the data sets. Error bars are much smaller than the plot symbols.

Fig. 3 shows examples of data for three different system sizes, where cubic polynomials
have been fitted to the data. The crossing points are extracted numerically to machine precision
using bisection. In order to analyze Tc and Uc in the thermodynamic limit, it suffices to consider
a small number of points very close to each crossing point to be analyzed. To obtain ⌫ from the
slopes according to Eq. (17), where the derivative in Eq. (13) is taken of the fitted polynomials,
it is better to have a more extended range of points. However, for a very large range a high order
of the polynomial has to be used in order to obtain a good fit, and it is then better in practice
to adapt the window size so that a relatively low order polynomial can be used. In the tests
reported here, cubic polynomials were used and all fits were statistically sound.

In order to compute error bars of the crossing points T ⇤(L) and the corresponding values
U⇤(L), a bootstrap method is used, i.e., with a large number of random samples of the binned
MC data, with each sample computed using B(L, T ) randomly chosen bins for each system
size and temperature, where B(L, T ) is the total number of data bins available for (L, T ). The
standard deviations of the values computed for these bootstrap samples correspond to the error
bars of the crossing points and values. Note that in the evaluation of the cumulant (19), for
the full data set or a bootstrap sample, the individual expectation values hm2

i i and hm4
i i are

computed first based on all the bins, after which the ratio is evaluated. If one instead uses ratios
computed for each bin separately, a statistically significant systematical error can be introduced
due to the nonlinear contributions to the statistical error propagated from the denominator.
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Drift in (L, 2L) crossing points
• scaling corrections in

crossings
T∗ = Tc + aL−(1/ν+ω)

U∗ = Uc + bL−ω

ω: unkown correction to scaling,
free exponent in fits

Q(T,L) = f (δL1/ν , uL−ω)
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Figure 4: (a) Crossing temperature of the Binder cumulant for system-size pairs (L, 2L) versus
the inverse of the smaller size, along with a fit to the form (10) to the data points with L � 12.
(b) The value of the cumulant at the crossing points, along with a fit to the form (11) for L � 14.
In both (a) and (b), error bars are much too small to be visible. The insets shows the data minus
the fitted functions including the error bars.

Clearly this criterion is sensitive to the quality of the data—if the elements of the covariance ma-
trix are very small, even fits including only relatively large system sizes can detect the presence
of higher-order corrections and not pass our test, while with noisy data also small system sizes
can be included. If a fit satisfies the �2 criterion it can still not be completely guaranteed that no
effects of the higher-order corrections are present in the final result, but in general one would
expect any remaining systematical errors to be small relative to the statistical error. In principle
one can estimate the magnitude of the systematical error using the parameters obtained from the
fit and some knowledge or estimate of the nature of the higher-order corrections. We will not
attempt to do that here because in general such knowledge will be very limited. To minimize
any remaining systematical errors one can continue to exclude more system sizes even after
the soundness criterion (23) is satisfied, at the price of increasing the statistical errors of the
parameters extracted from the fits.

19



• correlation-length exponent ν
can be extracted from the slope of U: s(T,L) = dU(T,L)

dT

ln(
s(T∗, 2L)

s(T∗,L)
)/ ln 2 =

1
ν

+ aL−ω + · · ·
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Figure 5: Estimate of the inverse of the correlation-length exponent ⌫ of the 2D Ising model
based on the slope expression (17) applied to the Binder cumulant. The curve is a fit to the form
(10) including all points (L � 6).

along with a fit including all the system sizes (L � 6). Remarkably, the fit is statistically perfect,
with h�2/Ndofi < 1, already at this small minimum size and the inverse exponent extrapolates
to 1/⌫ = 1.0001(7), in excellent agreement with the exact result 1. The slope data are much
more noisy than the underlying U values and the error bars grow very rapidly with L for the
largest sizes. The fit is therefore dominated by the smaller sizes. Naturally, the large error bars
mask the effects of higher-order corrections, as discussed above. It is nevertheless remarkable
that the extracted exponent 1/⌫ does not show any effects of the neglected corrections at all,
even though, again, the leading correction exponent, which comes out to ! = 1.57(7), is not
very close to the correct value 1.75 and its error bar is large. Again, the flexibility of the leading
finite-size term allows it to mimic the effects of the correction terms without significant effects
in the extrapolation of the fit.

These results demonstrate the unbiased nature of the crossing-point analysis when it is car-
ried out properly. We advocate this systematic way to determine the critical temperature (or
critical coupling of a quantum phase transition) and study the critical exponents, instead of of-
ten used [also in DQC studies (14,19,21)] data-collapse techniques where many choices have to
be made of the range of data included, use of corrections, etc. Although trends when increasing
the system size can also be studied with data collapse [as done in ref. (19))], the solid grounding
of the present scheme directly to the finite-size scaling form (7) makes it the preferred method.
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numerical study of the J-Q model



FSS of squared order parameter(A)

A(q,L) = L−(1+η)f [δL1/ν ], δ = q− qc, (q = Q/(J + Q))

Data ”collapse”:
M2 and D2 simutaneously→ single continous transition!

• J-Q2 model; qc = 0.961(1)
ηs = 0.35(2); ηd = 0.20(2);
ν = 0.67(1)

• J-Q3 model; qc = 0.600(3)
ηs = 0.33(2); ηd = 0.20(2);
ν = 0.69(2) Lou,Sandvik and Kawashima, PRB

2009

• Comparable results for
honeycomb J-Q model
Alet and Damle, PRB 2013 Kaul et al., PRL 2014



scaling violation
Spin stiffness ρs ∝ δν(d+z−2), susceptibility χ ∝ δ(d−z)ν

Conventional FSS

ρs(δ, L) = L−ν(d+z−2)/ν f (δL1/ν), χ(δ, L) = L−ν(d−z)/ν f (δL1/ν)

At critical point: ρs ∝ L−(d+z−2) = L−z, χ ∝ L−(d−z)

z = 1 for J-Q model, ρsL and χL should be constants at qc
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• z 6= 1 does not work
• large scaling corrections? Sandvik PRL 2010, Bartosch PRB 2013

• weak first-order transition? Chen et al PRL 2013

The enigmatic current state is well summed up in
Nahum et al arXiv: 1506.06798



In this talk, we will try to resolve this puzzle

• study the deconfinement of spions

• VBS domain wall thickness

• introduce scaling form with two-length scales and give
phenomenological explanation

• anomalous critical scaling at finite temperature



Quantum Monte Carlo method

General idea of QMC :
• rewrite a quantum-mechanical trace or expectation value

into a classical form

〈A〉 =
Tr{Ae−βH}

Tr e−βH or
〈Ψ|A|Ψ〉
〈Ψ|Ψ〉 →

∑
c AcWc∑

c Wc

Wc is the weight of a configuration, Ac is the estimator of A.

• There are many different ways of doing it:
Worldline (worm), SSE, Fermion determinant, · · ·



SSE Quantum Monte Carlo method
• A SSE configuration:

spin state + operator
string

• diagonal and loop updates
• observables and estimators

I energy estimator : number of
operators, Hc = −n/β

I spin stiffness estimator : winding
number fluctuations

ρs =
〈W2

α〉
Ld−2β

I staggered magnetization:
msz =

∑
i(−1)ix+iy siz/N



Projector Quantum Monte Carlo method

For ground state calculations
Apply the imaginary time evolution operator to an initial state

U(τ →∞)|Ψ0〉 → |0〉

where U(τ) = (−H)τ or U(τ) = exp (−Hτ)

〈A〉 =
〈Ψ0|U(τ)AU(τ)|Ψ0〉
〈Ψ0|U(τ)U(τ)|Ψ0〉

→
∑

c AcWc∑
c Wc

Ac is the estimator of A.



Projector Quantum Monte Carlo method

• using VB basis (in the singlet sector)

|Ψ〉 =
∑

v

fv|v〉, |v〉 = |(a1, b1) · · · (aN/2, bN/2)〉

• take U(τ) = exp (−τH), SSE representation→ Z =
∑

c Wc

• loop update algorithm are used



Expectation values

• energy estimator: Hc = −n/2τ

• correlation functions computed using transition graphs

〈Si · Sj〉 = { 0, (i)L(j)L
3
4φij, (i, j)L,

φij = ±1, i, j on the same/different sublattice



spinons and Deconfinement of spinons

• The excitations of VBS carry
S = 1

I bound spinon pair
I confining string

• The confining string weakens
as qc is approached

I deconfinement

The distance Λ diverages,
∝ ξDW (?)

QMC simulations can be carried out in the S = 1 space



Extend valence-bond basis to total spin S > 0 states

Tang and Sandvik PRL 2011, Banerjee and Damle JSTAT 2010

Consider Sz = S

• for even N spins: N/2− S bonds, 2S upaired ”up” spins

S = 0

S = 1

〈Vβ|Vα〉, 2 loops

〈Vβ(j, l)|Vα(i, k)〉,
1 loop, 2 strings

• transition grap has 2S open strings
study spinon bound states and unbinding



The two-spinon distance in the J-Q2 model

A QMC transition graph representing 〈ψL|ψR〉 of S = 1 states

• two strings (spinons) in a background of loops formed by
valence bonds.
• two strings represent two spinons in bound state



J-Q model in deep VBS phase

animation at VBS



J-Q model at the critical point

animation at qc



The two-spinon distance in the J-Q2 model

Define the size of spinon bound state Λ as root-mean-square
string distance

Crossing-point analysis of Λ/L

• We find that Λ/L at qc is dimensionless,
like the Binder ratio R1 of Néel order
parameter.
• The crossing points of (L, 2L) converge

monotonicly

g∗ − qc ∝ L−(1/ν′+ω), Λ∗(L)/L− R ∝ L−ω

1/ν′ can be extracted from slopes at the
crossing point

I we find qc = 0.04463(4), ν′ = 0.58(2)

Transition is associated with spinon deconfinement



The Binder ratio in the J-Q2 model

Similar crossing-point analysis of the Binder
ratio
• From Binder ratio, we have ν = 0.446

which controls the correlation.
• what is ν ′?

I DQC theory: two diverging length scales

ξ ∝ (q−qc)
−ν , ξDW ∝ (q−qc)

−ν′
, ν′ > ν

I ν/ν′ = 0.77(3) agrees with the result
obtained from the VBS domain-Wall
energy calculations
suggesting ν′ is the domain wall
thickness exponent



fundamental lenght scale: domain wall thickness
In some classical systems (clock models, XY model with
symmetry breaking field) the thickness of a domain wall is
larger than the correlation length

ξ ∼ δ−ν , ξDW ∼ δ−ν
′
, ν ′ > ν

VBS domain wall behaves similarly

3. Results
We chose a basis state |ψ0〉 = |Vr〉 as the trial state and consider the cases that |Vr〉 in different
winding number sectors W . The detailed definition of the winding number of a VB state can
be found, e.g., in Refs. [3, 2]. In the PQMC simulations, besides the energy, we also sample the
probability, P (W ), of a projected state in the topological sector W = (wx, wy). This is done by
calculating the winding number of each projected VBs Pk|Vr〉, with Pk a operator string with
length m generated in the MC processes.

In the case that the trial state is a VBs in the winding number sector W = (0, 0), the
ground columnar VBS state will be projected out quickly, i.e., within a small m/N , which can
be defined as a projecting ”time” (closely related to imaginary time [13]). This is indicated by
the convergence of the ground state energy density e0(L) for a system with linear size L.

Now turn to the cases that the trial state is in the nontrivial winding number sector
W "= (0, 0). For small systems, the columnar VBS state is again projected out after some
projection time m/N . This is indicated by the convergence of the energy density e(L) to the
ground state value e0(L). Meanwhile, the probability P (W ) decreases (to 0 for L → ∞).
However, as the system size increases, the projection time m/N needs to grow as well in order
for the ground state to be obtained. In the thermodynamic limit, we expect that the system
will stay in the sector with the initial winding number W , and then it is also plausible that the
energy of the system will converges to a value eW > e0 corresponding to the lowest excited state
within the sector W .

To demonstrate such behavior, we introduce the energy density eW (L) of states in the winding
number sector W , which is obtained by only sampling those states in the sector W . Figure 2
shows the ”time evolution” of the probability P (W ) for the system staying in the original winding
number sector W = (0, 0), W = (1, 0), and W = (2, 0) as a function of m/L2, respectively, for a
system with linear size L = 96 (lower panel). The corresponding energy density eW (L) converges
to the values which are higher than e0(L), if W "= 0 (upper panel).
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Figure 2. The probability P (W ) and
the energy density eW (L) as functions of
time m/N (projector power rescaled by
the system volume).

Figure 3. Snapshots of 〈Bα(r)〉 for a periodic
system with winding number W = (1, 0), in which
a 2π domain wall (four separate π/2 domain walls)
is formed (upper panel) and for an open system
with appropriate boundary conditions in which a π
domain wall is forced (lower panel).

We now study the reason of the energy gap between a system in a nontrivial topological
sector and in the W = 0 ground state. It is well known that the ground state of the J-Q3 is the
columnar VBS. The VBS state can be detected by the columnar VBS order parameter, which
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VBS domain-wall scaling in the critical J-Q model

two kinds of VBS domain walls are
imposed in open-boundary
systems
π wall splits into two π/2 walls

δF = Fwall − Funiform

κ = δF/Ld+z−1

φ = π/2 φ = π
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At deconfined critical point qc, κ ∝ L−b, b ≈ 1.80(1)
Shao, Guo and Sandvik, PRB 2015



At deconfined critical point

• domain-wall energy can be expressed as κ = ρs/Λ
ρs is a stiffness: energy cost of a twist of the VB order
Λ is the width of the region over which the twist distributes.

• According to DQC theory,
ρs ∝ 1/ξ, Λ ∝ ξDW

κ ∝ 1
ξξDW

∝ (q− qc)
ν+ν′

• translate to finite size at qc:
ξDW = L, ξ = ξ

ν/ν′

DW

κ(qc) ∝ L−(1+ν/ν′)

we have b = 1 + ν/ν ′, and ν/ν ′ = 0.80(1)

• The only other estimate from analysis of the emergent U(1)
symmetry: ν/ν ′ = 0.83((4), J. Lou et al PRB 80, 180414(R)(2009)



Domain wall scaling in classical model
3D q-state clock model(q > 3): basic example of dangerously
irrelevant perturbation

H = −J
∑
〈ij〉

cos(θi − θj)

I θ restriction:
The prediction for the domain wall
energy in L→∞

κ ∼ 1
ξξDW

But, finite-size scaling at Tc shows

κ ∼ L−2 6= L−(1+ν/ν′)

ξ ∼ ξν/ν
′

DW , ν/ν ′ ≈ 0.47, ν ′ is
universal Léonard and Delamotte, PRL 2015

The dangerously irrelevant perturbation in the J-Q model is
more serious



Quantum criticality with two lengths
Two divergent lengths tuned by one parameter:

ξ ∝ δ−ν , ξ′ ∝ δ−ν′

A quantity A ∝ δκ, finte-size scaling of A

• Conventional scenario

A(δ, L) = L−κ/ν f (δL1/ν , δL1/ν′), A(δ = 0,L) ∝ L−κ/ν

When L→∞, f (δL1/ν , δL1/ν′)→ (δL1/ν)κ

• We propose

A(δ, L) = L−κ/ν
′
f (δL1/ν , δL1/ν′), A(δ = 0,L) ∝ L−κ/ν

′

When L→∞, f (δL1/ν , δL1/ν′)→ (δL1/ν′)κ

Example: spin stiffness ρs ∝ δν(d+z−2), κ = ν(d + z− 2). At qc

ρs ∝ L−(d+z−2) or ρs ∝ L−(d+z−2)ν/ν′



General scaling theory for ρs and χ, single length scale
Fisher et al PRB,40,546(1989)

Free energy density scales

fs(δ, L, β) ∼ ξ−(d+z)Y(
ξ

L
,
ξz

β
), ξ ∼ δ−ν

• ρs
∆2φ
L2 is the excess energy due to a twist along apace:

∆f (δ, L, β) ∼ ξ−(d+z)Ỹ(
ξ

L
,
ξz

β
) ∼ ρs

π2

L2

Ỹ has to behave like (ξ/L)2, thus

ρs ∼ ξ2−(d+z)

replacing ξ to L, we have ρs ∼ L−(d+z−2)

• Simmilarly, χ∆2φ
β2 is the excess energy density needed to

enforce the twist, which means Ỹ ∼ ξ2z/β2

χ ∼ ξ2z−(d+z), χ ∼ L−(d−z)



Two correlation lengths scenario
Free energy density scales

fs(δ, L, β) ∼ ξ−(d+z)Y(
ξ

L
,
ξz

β
,
ξ′

L
,
ξ′z

β
)

the excess energy due to a twist along apace:

ρs(
∆φ

L
)2 ∼ ∆f (δ, L, β) ∼ ξ−(d+z)Ỹs(

ξ

L
,
ξz

β
,
ξ′

L
,
ξ′z

β
)

which means

Ỹs ∼ (
ξ

L
)a(
ξ′

L
)2−a

The larger correlation length ξ′ reaches L first, so L ∼ ξ′ ∼ δ−ν′ ,
we have a = 2, and

ρs ∼ ξ−(d+z−2)

but, since L = ξ′, ξ = Lν/ν
′
,

ρs ∼ L−(d+z−2)ν/ν′

Similarly, we have
χ ∼ L−(d−z)ν/ν′



Evidence for unconventional scaling in J-Q model
We have

ρs ∼ L−(z+d−2)ν/ν′ ∼ L−ν/ν
′
, instead of ρs ∼ L−(z+d−2) ∼ L−1

χ ∼ L−(d−z)ν/ν′ ∼ L−ν/ν
′
, instead of χ ∼ L−(d−z) ∼ L−1
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• this unexplains drifts in Lρs and χL in J-Q and other models
(z = 1, d = 2)
• Behavior was interpreted as flow to first-order

transition is due to unconventional scaling!



Anomalous critical scaling at finite Temperature

Quantum critical point at T = 0 governs the behavior in a T > 0
region which expands out from (gc,T = 0): experimentally
important



Anomalous critical scaling at finite Temperature

• β = 1/T is also a ’finite-size’: L→ β1/z

• convetional scaling (z = 1 for J-Q)
I ξ ∼ L leads to ξT ∝ β1/z = T−1,
I χ ∼ L−(d−z) leads to χT ∝ β−(d−z)/z = T

• new scaling with ν/ν ′:

ξT ∝ T−ν
′/ν ; χ ∼ L−ν/ν

′
leads to χT ∝ Tν/ν

′
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Conclusions

• Two length scales observed explicitly in the J-Q model
• No sign of first-order transition in the J-Q model
• Simple two-length scaling hypothesis explains scaling

violation of spin stiffness and susceptibility

• For T > 0 we find scaling laws from finite-size scaling forms
experimentally important

Thank you !
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