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Compressible flow model: Single-phase case

Assume continuum mechanics modelling of fluid motion, basic
physical principles for pure phase are

1. Mass balance:
∂ρ

∂t
+∇ · (ρ~u) = 0

2. Momentum balance:

∂(ρ~u)

∂t
+∇ · (ρ~u⊗ ~u) = ∇ · T

3. Energy balance:

∂(ρE)

∂t
+∇ · (ρE~u) = ∇ ·

(

T~u
)

−∇ · ~q

4. Entropy balance:

∂(ρs)

∂t
+∇ · (ρs~u) = −∇ · ~qs +∆s



Assume Newtonian fluid & Fourier’s, we have

ρ : density, ~u : flow velocity

E : specific total energy

E = e +
1

2
~u · ~u, e : specific internal energy

T : stress tensor

T = −pI + τ , p: pressure, τ : dissipative stress tensor

τ = µ

(

∇~u+∇T~u−
2

3
(∇ · ~u) I

)

, µ: viscosity

~q : heat flux

~q = −κ∇T , κ: thermal conductivity, T : temperature

s : specific entropy

~qs : entropy flux, ~qs =
~q

T

∆s : entropy source, ∆s = κ
∇T · ∇T

T 2
+ µ

∇~u : ∇~u

T



Thermodynamic laws

Second law of thermodynamics:

ds =
dQ

T
, Q: heat transfer, T : temperature

First law of thermodynamics:

dQ = de+ pdV , V = 1/ρ: specific volume

This leads to

Tds = de+ pdV =⇒ de = Tds− pdV

yielding definiton of p & T , i.e.,

p = −

(

∂e

∂V

)

s

, T =

(

∂e

∂s

)

V

when expression for e(V, s) is known a priori



Equation of state

In compressible fluid flow theory, equation of state such as

p = p(ρ, e), p = p(ρ, T ), or p = p(ρ, s)

is commonly used to characterize thermodynamic behavior of
underlying medium

If equation of state depends on density only, p = p(ρ), it is
callled isentropic (or barotropic) equation

Here with fixed entropy s, equation of state is assumed to be
monotonically nondecreasing & convex, i.e.,

(

∂p

∂ρ

)

s

≥ 0,

(

∂2p

∂ρ2

)

s

≥ 0

Define speed of sound, denoted by c ∈ R, as

c2 =

(

∂p

∂ρ

)

s

≥ 0; c2 = 0 only if ρ = 0 (vacuum)



Equation of state: Ideal gas

Gas medium is assumed to be ideal gas, if it satisfies laws of
Boyle & Gay-Lussac as expressed by equation of state

pV = RT

R = nR0 (n: number of gas moles & R0: univ. gas constant)

In ideal gas, internal energy e is function of temperature T
only, see Courant-Friedrichs p.8-9

If gas is polytropic, we have

e(T ) = CV T, CV : specific heat at constant volume

p(ρ, e) = (γ − 1)ρe, γ: ratio of specific heats

p(ρ, s) = (γ − 1) exp

(

s− s0
CV

)

ργ

e(ρ, s) = exp

(

s− s0
CV

)

ρ(γ−1)



Balance equations: Remark

When balance equations are closed, entropy balance equation
& energy balance equation are equivalent

In this case, entropy balance equation can be written as

ρCp

DT

Dt
= ∇ · (κ∇T ) + κTT

Dp

Dt
+ τ : ∇~u

where Cp & κT denotes specific heat at constant pressure &
coefficient of thermal expansion defined by

Cp =
T

(∂T/∂s)p
& κT = −ρ

(

∂s

∂p

)

T

= −
1

ρ

(

∂ρ

∂T

)

p

Recall double dot product of two tensors U & V is defined by

U : V =
∑

i

∑

j

UijVji

D/Dt denotes material derivative



Compressible flow: Model summary

System of balance equations for compressible flow is

1. Mass balance:
∂ρ

∂t
+∇ · (ρ~u) = 0

2. Momentum balance:

∂(ρ~u)

∂t
+∇ · (ρ~u⊗ ~u) +∇

(

pI
)

= ∇ · τ

3. Energy balance∗:

∂(ρE)

∂t
+∇ ·

(

ρE~u+ pI~u
)

= ∇ · (τ~u) +∇ · (κ∇T )

4. Entropy balance∗:

ρCp

dT

dt
= ∇ · (κ∇T ) + κTT

dp

dt
+ τ : ∇~u

Take only one equation from ∗ & model closes with EOS



Inviscid compressible flow: Riemann problem

For compressible Euler equations in 1D, Riemann problem is
Cauchy problem that consists of

∂w

∂t
+

∂f(w)

∂x
= 0, x ∈ R, t > 0

with

w =





ρ
ρu
ρE



 , f(w) =





ρu
ρu2 + p
ρEu+ pu





as for model equations, & piece-wise constant data

w(x, 0) =

{

wL if x < 0

wR if x > 0

as for initial condition



Riemann problem: Hyperbolicity

To close model & Riemann problem, assume ideal gas law

p = (γ − 1)ρe

Jacobian matrix of f(w), denoted by A, is

A =
∂f(w)

∂w
=





0 1 0
(γ − 3)u2/2 −(γ − 1)u γ − 1

(γ − 1)u3/2−Hu H − (γ − 1)u2 γu





Its eigen-decomposition AR = RΛ, is with

Λ = diag(u− c, u, u+ c)

R =





1 1 1
u− c u u+ c
H − uc 1

2
u2 H + uc





c =
√

γp/ρ > 0 is speed of sound & H = (e + p)/ρ is
specific enthalpy



Riemann problem: Basic solution structure

Elementary waves of Riemann problem in x-t plane

x

t

wL wR

rarefaction contact

shock



Riemann problem: Remarks

Basic properties of elementary waves are

1. Shock wave

Genuinely nonlinear wave
Solution is discontinuous across wave that follows
Rankine-Hugoniot jump condition

σ[w] = [f(w)], σ: shock speed & [w] = wR − wL

2. Contact discontinuity

Linearly degenerate wave
Solution is in mechanical equilibrium across wave, i.e.,
[u] = 0, [p] = 0, while typically [ρ] 6= 0, [T ] 6= 0, [s] 6= 0

3. Rarefaction wave

Genuinely nonlinear wave
Riemann invariant is constant across wave



Sod Riemann problem: Exact solution
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Fluid-mixture type methods

Basic elements:

1. Use diffuse interface model of fluid-mixture type

2. Employ state-of-the-art finite-volume method to capture
discontinuities (shocks & contacts) implicitly

3. Underlying grid may be either static & uniform or
time-dependent & nonuniform

Focus on fluid-mixture model first, numerical discretization of
model will be discussed later (when time permits)



Sod Riemann problem: High-resolution result
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Sod Riemann problem: THINC result
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Sod Riemann problem: Anti-diffusion result
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Extension to two-fluid flow: Model problem

Consider shock-tube problem with immiscible membrane
separating two different ideal gases, say, air & He

Assume mechanical equilibrium condition for states across
interface, i.e.,

kinematic: [u] = 0 & dynamic: [p] = 0

Breaking of membrane would result in shock/rarafaction waves
separated by moving interface

ideal gas 1 (γ1) ideal gas 2 (γ2)



Fluid-mixture methods: Numerical issues

1. On continuous level:
Equations of motions & equation of state for fluid
mixtures ?

2. On discrete level:
Consistent approximation of model system ?

ideal gas 1 (γ1) ideal gas 2 (γ2)

Mixing region (γ =?)



Benchmark test: 2-fluid interface only

Initial Condition









ρ
u
p
γ









L

=









1
1
1
1.4









&









ρ
u
p
γ









R

=









0.125
1
1
1.2









Exact solution









ρ
u
p
γ









(x, t) =









ρ0(x− t)
1
1

γ0(x− t)











Model equations ?

1. Basic conservation laws for ρ, ρu, & ρE (fluid mixtures)

2. Pressure computed from

(a) Equation of state p = (γ − 1)[ρE − (ρu)2/(2ρ)] with

(i)
∂γ

∂t
+ u

∂γ

∂x
= 0

(ii)
∂

∂t

(

1

γ − 1

)

+ u
∂

∂x

(

1

γ − 1

)

= 0 (or others)

(b) Pressure evolution equation directly (Karni 1996)

∂p

∂t
+ u

∂p

∂x
+ γp

∂u

∂x
= 0



Interface only problem: fluid-mixture results
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Fluid-mixture model: Ideal gas

Abgrall (1996): Single-density version in multi-D

1. Model (quasi-conservative) system

∂ρ

∂t
+∇ · (ρ~u) = 0

∂

∂t
(ρ~u) +∇ ·

(

ρ~u⊗ ~u+ pI
)

= 0

∂

∂t
(ρE) +∇ ·

(

ρE~u + pI~u
)

= 0

∂

∂t

(

1

γ − 1

)

+ ~u · ∇

(

1

γ − 1

)

= 0

2. Equation of state

p(ρ, e, γ) = (γ − 1)ρe

Transport equation for 1/(γ− 1) plays role near interfaces only



Fluid-mixture model: Mapped grid version

1. Model system

∂ρ

∂t
+

1

J
∇ξ ·

(

ρ~U
)

= 0

∂

∂t
(ρ~u) +

1

J
∇ξ ·

(

ρ~u⊗ ~U + pIJ
)

= 0

∂

∂t
(ρE) +

1

J
∇ξ ·

(

ρE~U + pI ~U
)

= 0

∂

∂t

(

1

γ − 1

)

+
1

J
~U · ∇ξ

(

1

γ − 1

)

= 0

2. Equation of state

p(ρ, e, γ) = (γ − 1) ρe

Uj =
∑N

i=1 ui∂xi
ξj: contravariant velocity in ξj-direction



Mapped grid model: Grid metrics

Basic coordinate mapping relations in N = 3 are








1 0 0 0
0 ∂x1

ξ1 ∂x2
ξ1 ∂x3

ξ1
0 ∂x1

ξ2 ∂x2
ξ2 ∂x3

ξ2
0 ∂x1

ξ3 ∂x2
ξ3 ∂x3

ξ3









=
1

J









J 0 0 0
0 J11 J21 J31

0 J12 J22 J32

0 J13 J23 J33









where J = |∂(x1, x2, x3)/∂(ξ1, ξ2, ξ3)| =
det (∂(x1, x2, x3)/∂(ξ1, ξ2, ξ3)),

J11 =

∣

∣

∣

∣

∂(x2, x3)

∂(ξ2, ξ3)

∣

∣

∣

∣

, J21 =

∣

∣

∣

∣

∂(x1, x3)

∂(ξ3, ξ2)

∣

∣

∣

∣

, J31 =

∣

∣

∣

∣

∂(x1, x2)

∂(ξ2, ξ3)

∣

∣

∣

∣

,

J12 =

∣

∣

∣

∣

∂(x2, x3)

∂(ξ3, ξ1)

∣

∣

∣

∣

, J22 =

∣

∣

∣

∣

∂(x1, x3)

∂(ξ1, ξ3)

∣

∣

∣

∣

, J32 =

∣

∣

∣

∣

∂(x1, x2)

∂(ξ3, ξ1)

∣

∣

∣

∣

,

J13 =

∣

∣

∣

∣

∂(x2, x3)

∂(ξ1, ξ2)

∣

∣

∣

∣

, J23 =

∣

∣

∣

∣

∂(x1, x3)

∂(ξ2, ξ1)

∣

∣

∣

∣

, J33 =

∣

∣

∣

∣

∂(x1, x2)

∂(ξ1, ξ2)

∣

∣

∣

∣

.



Moving cylindrical vessel

Impose uniform flow velocity (u1, u2) = (−1, 0) (i.e., in the
frame of vessel moving with speed one in x1-direction)

air helium

interface



Moving cylindrical vessel

Solution at time t = 0.25



Moving cylindrical vessel

Solution at time t = 0.5



Moving cylindrical vessel

Solution at time t = 0.75



Moving cylindrical vessel

Solution at time t = 1



Extension to stiffened gas

One simple equation of state that models materials not only
gases, but also compressible liquids & solids is stiffened gas

p(ρ, e) = (γ − 1) ρe+ (ρ− ρ0)B

In this case, with basic conservation laws, diffuse interface
model includes additional transport equations as

∂

∂t

(

1

γ − 1

)

+ ~u · ∇

(

1

γ − 1

)

= 0

∂

∂t

(

ρ0B

γ − 1

)

+ ~u · ∇

(

ρ0B

γ − 1

)

= 0

∂

∂t

(

ρB

γ − 1

)

+∇ ·

(

ρB

γ − 1
~u

)

= 0



Transport equations for interfaces

Assume equilibrium pressure p & velocity ~u, motion of
interface (contact discontinuity) is governed by

∂ρ

∂t
+ ~u · ∇ρ = 0

~u

(

∂ρ

∂t
+ ~u · ∇ρ

)

= 0

~u · ~u

2

(

∂ρ

∂t
+ ~u · ∇ρ

)

+

[

∂

∂t
(ρe) + ~u · ∇ (ρe)

]

= 0

This is,
∂ρ

∂t
+ ~u · ∇ρ = 0

∂

∂t
(ρe) + ~u · ∇ (ρe) = 0



Effective transport equations: Stiffened gas

With stiffened gas EOS, tranport equation for ρe of interface

∂

∂t
(ρe) + ~u · ∇ (ρe) = 0

takes form

∂

∂t

(

p

γ − 1
−

ρ− ρ0
γ − 1

B

)

+ ~u · ∇

(

p

γ − 1
−

ρ− ρ0
γ − 1

B

)

= 0

To ensure pressure in equilibrium, split equation into two parts

∂

∂t

(

p

γ − 1

)

+ ~u · ∇

(

p

γ − 1

)

= 0

∂

∂t

(

ρ− ρ0
γ − 1

B

)

+ ~u · ∇

(

ρ− ρ0
γ − 1

B

)

= 0



That is, to retain pressure equilibrium across interface, we
must have

∂

∂t

(

1

γ − 1

)

+ ~u · ∇

(

1

γ − 1

)

= 0

∂

∂t

(

ρ− ρ0
γ − 1

B

)

+ ~u · ∇

(

ρ− ρ0
γ − 1

B

)

= 0

However, to ensure conservation of mass in region away from
interface, latter equation needs to split further & rewrite as

∂

∂t

(

ρ0B

γ − 1

)

+ ~u · ∇

(

ρ0B

γ − 1

)

= 0

∂

∂t

(

ρB

γ − 1

)

+∇ ·

(

ρB

γ − 1
~u

)

= 0



Note that from

∂

∂t

(

ρB

γ − 1

)

+ ~u · ∇

(

ρB

γ − 1

)

= 0

& by employing chain rule with respect to ρ, we have

∂

∂t

(

ρB

γ − 1

)

+ ~u · ∇

(

ρB

γ − 1

)

=
B

γ − 1

∂ρ

∂t
+

B

γ − 1
~u · ∇ρ

=
B

γ − 1

(

∂ρ

∂t
+ ~u · ∇ρ

)

=
B

γ − 1

(

∂ρ

∂t
+ ~u · ∇ρ

)

= −
ρB

γ − 1
∇~u

yielding
∂

∂t

(

ρB

γ − 1

)

+∇ ·

(

ρB

γ − 1
~u

)

= 0



Fluid-mixture model: Stiffened gas

Saurel, Abgrall (SISC 1999), Shyue (JCP 1998, 1999)

∂ρ

∂t
+∇ · (ρ~u) = 0

∂

∂t
(ρ~u) +∇ ·

(

ρ~u⊗ ~u+ pI
)

= 0

∂

∂t
(ρE) +∇ ·

(

ρE~u+ pI~u
)

= 0

∂

∂t

(

1

γ − 1

)

+ ~u · ∇

(

1

γ − 1

)

= 0

∂

∂t

(

ρ0B

γ − 1

)

+ ~u · ∇

(

ρ0B

γ − 1

)

= 0

∂

∂t

(

ρB

γ − 1

)

+∇ ·

(

ρB

γ − 1
~u

)

= 0

p(ρ, e, γ,B) = (γ − 1) ρe + (ρ− ρ0)B



Fluid-mixture model: Volume-fraction version I

Suppose there exists Mf ≥ 1 different immiscible phases
initially where each of them occupies distinct portion with

volume fraction αk ∈ [0, 1], k = 1, 2, . . . ,Mf ,
∑Mf

k=1 αk = 1

Define mixture states for ρ & ρe as

ρ =

Mf
∑

k=1

αkρk, ρe =

Mf
∑

k=1

αkρkek

Suppose pressure p is in equilibrium & constitutive law for
each fluid phase is characterized by stiffened gas, we then have

ρe =

Mf
∑

k=1

αk

(

p

γk − 1
−

ρk − ρ0,k
γk − 1

Bk

)

=
p

γ − 1
−

ρ− ρ0
γ − 1

B



It follows

1

γ − 1
=

Mf
∑

k=1

αk

(

1

γk − 1

)

ρ0B

γ − 1
=

Mf
∑

k=1

αk

(

ρ0,kBk

γk − 1

)

ρB

γ − 1
=

Mf
∑

k=1

αk

(

ρkBk

γk − 1

)

Note that rather than using 1/(γ − 1) & ρ0B/(γ − 1) as state
variables in our model system, instead we may use αk as

∂αk

∂t
+ ~u · ∇αk = 0, k = 1, 2, . . . ,Mf



This leads to volume-fraction based model of form

∂ρ

∂t
+∇ · (ρ~u) = 0

∂

∂t
(ρ~u) +∇ ·

(

ρ~u⊗ ~u+ pI
)

= 0

∂

∂t
(ρE) +∇ ·

(

ρE~u+ pI~u
)

= 0

∂

∂t

(

ρB

γ − 1

)

+∇ ·

(

ρB

γ − 1
~u

)

= 0

∂αk

∂t
+ ~u · ∇αk = 0, k = 1, 2, . . . ,Mf

If partial density αkρk is used as state variables, rather than
mixture density ρ, this leads to so called 5-equation transport
model (Allaire et al. , JCP 2002), if Mf = 2, that is,



Fluid-mixture model: Volume-fraction version II

∂

∂t
(αkρk) +∇ · (αkρk~u) = 0, k = 1, 2, . . . ,Mf

∂

∂t
(ρ~u) +∇ ·

(

ρ~u⊗ ~u+ pI
)

= 0

∂

∂t
(ρE) +∇ ·

(

ρE~u+ pI~u
)

= 0

∂αk

∂t
+ ~u · ∇αk = 0, k = 1, 2, . . . ,Mf

This gives 2Mf + 2 equations in total for Mf -fluid problem

Pressure is computed directly by solving

ρe =

Mf
∑

k=1

αkρkek(ρk, p)

which is easy to do if EOS can be written in Mie-Grüneisen
form (see next lecture)



Liquid-falling problem
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Underwater explosion with two circular obstacles
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