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Compressible flow model: Single-phase case

Assume continuum mechanics modelling of fluid motion, basic
physical principles for pure phase are

1. Mass balance:

dp L
E—FV-(/)U)—O

2. Momentum balance:

Jd(pu =
M+v.(pg®g):v.T
ot
3. Energy balance:
O(pE =
o >+V-(pEﬁ)—V-<Tﬁ)—V-§

ot
4. Entropy balance:

3(;:) + V- (psi) = =V - @ + A



Assume Newtonian fluid & Fourier's, we have

P
E:

sl

=y

density, i : flow velocity

specific total energy
E=e+ 517 i, e :specific internal energy
stress tensor

T = —pl +71, p: pressure, 7 dissipative stress tensor

2 =
T=U (Vﬁ+ vl — 3 (V1) I), Ji: Vviscosity

heat flux
¢ = —rVT, k: thermal conductivity, T": temperature
specific entropy
. q
entropy flux, ¢, = T

VT -VT | Vi:Vi
2 AT

entropy source, A, =~k



Thermodynamic laws

Second law of thermodynamics:

ds = ?, (): heat transfer, T': temperature
First law of thermodynamics:
dQ) = de+pdV, V =1/p: specific volume
This leads to
Tds =de+pdV = de=1Tds—pdV

yielding definiton of p & T, i.e.,

Oe Oe
P=- (W); r= (%)v

when expression for ¢(V, s) is known a priori



Equation of state

In compressible fluid flow theory, equation of state such as

p=plp.e), p=pp.T), or p=p(p,s)
is commonly used to characterize thermodynamic behavior of
underlying medium

If equation of state depends on density only, p = p(p), it is
callled isentropic (or barotropic) equation

Here with fixed entropy s, equation of state is assumed to be
monotonically nondecreasing & convex, i.e.,

Op *p
o> bl DS
<3P>3_0’ <aﬂ2)s_0

Define speed of sound, denoted by ¢ € R, as

0
2= <0_p) >0; =0 onlyif p=0 (vacuum)
)p

S



Equation of state: ldeal gas

Gas medium is assumed to be ideal gas, if it satisfies laws of
Boyle & Gay-Lussac as expressed by equation of state

pV = RT
R =nRy (n: number of gas moles & Ry: univ. gas constant)

In ideal gas, internal energy e is function of temperature T
only, see Courant-Friedrichs p.8-9

If gas is polytropic, we have
e(T) = CyT, Cy: specific heat at constant volume
p(p,e) = (v — 1)pe, ~: ratio of specific heats

p(p,s) = (v — 1) exp ( ;VSO) o

e(p, s) = exp (S — 80) poY

Cv



Balance equations: Remark

When balance equations are closed, entropy balance equation
& energy balance equation are equivalent

In this case, entropy balance equation can be written as

DT Dp

where C}, & rp denotes specific heat at constant pressure &
coefficient of thermal expansion defined by

oL () L (2
P (01/0s), " P\ap), e \ar),
Recall double dot product of two tensors U & V is defined by

ﬁ:?zZZUUVﬂ
i

D/ Dt denotes material derivative

pC, +7:Vu



Compressible flow: Model summary

System of balance equations for compressible flow is

1. Mass balance:
dp

bt (i) =0
5 TV (pt)
2. Momentum balance:
O(pti) L =\ _
5 +V-(pu®u)+v<pl) =V-7
3. Energy balance™:
d(pE =
%-FV- <pEﬁ—|—pIﬁ) =V . (rd)+ V- (kVT)
4. Entropy balance*:
ar d L,
pCp% =V . (kVT)+ /iTTd—f +7:Viu

Take only one equation from * & model closes with EOS



Inviscid compressible flow: Riemann problem

For compressible Euler equations in 1D, Riemann problem is
Cauchy problem that consists of

ow  Of(w)
— =0, z€R, t>0
ot or o TE
with
p pU
w=|pu|l,  flw)=| pu*+p
pE pEu+ pu

as for model equations, & piece-wise constant data

wyr if <0
r,0) =
w(@,0) {wR if >0

as for initial condition



Riemann problem: Hyperbolicity

To close model & Riemann problem, assume ideal gas law

p=(v—1)pe
Jacobian matrix of f(w), denoted by A, is
0 1 0
R TG T
v (y=Du?/2—Hu H-—(y—1u* ~u

Its eigen-decomposition AR = RA, is with
A = diag(u — ¢, u, u+c)
1 1 1

R=| u—c U u+c

H —ue %uQ H +uc

c=/7p/p > 0is speed of sound & H = (e +p)/p is
specific enthalpy



Riemann problem: Basic solution structure

Elementary waves of Riemann problem in z-t plane

rarefaction contact

shock

wry, WR




Riemann problem: Remarks

Basic properties of elementary waves are

1. Shock wave

o Genuinely nonlinear wave
o Solution is discontinuous across wave that follows
Rankine-Hugoniot jump condition

olw] = [f(w)], o: shock speed & [w] = wr — wr,

2. Contact discontinuity

o Linearly degenerate wave
o Solution is in mechanical equilibrium across wave, i.e.,

[u] =0, [p] =0, while typically [p] # 0, [T] # 0, [s] #0
3. Rarefaction wave

o Genuinely nonlinear wave
o Riemann invariant is constant across wave



Sod Riemann problem: Exact solution

density pressure (velocity)
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Fluid-mixture type methods

Basic elements:

1. Use diffuse interface model of fluid-mixture type

2. Employ state-of-the-art finite-volume method to capture
discontinuities (shocks & contacts) implicitly

3. Underlying grid may be either static & uniform or
time-dependent & nonuniform

Focus on fluid-mixture model first, numerical discretization of
model will be discussed later (when time permits)



Sod Riemann problem: High-resolution result

density

pressure (velocity)
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Sod Riemann problem: THINC result

density pressure (velocity)
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0.1 rarefaction— 1 0.1r
0.05 4 o0.05sf
° 0.2 0.4 0.6 0.8 o . .. . 0.8
1
® THINC ® THINC
0.9 — Exact 0.9 —Exact
0.8 0.8 E
0.7 0.7 E
[
206 506 1
@ 2
S 3
Los £os E
0.4 0.4 B
0.3 0.3 E
0.2 0.2 I 4 1
|2
0.1 0.1
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8




Sod Riemann problem: Anti-diffusion result

density

(velocity)

pressure
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Extension to two-fluid flow: Model problem

Consider shock-tube problem with immiscible membrane
separating two different ideal gases, say, air & He

Assume mechanical equilibrium condition for states across
interface, i.e.,

kinematic: [u] =0 & dynamic: [p] =0

Breaking of membrane would result in shock/rarafaction waves
separated by moving interface

ideal gas 1 (1) ideal gas 2 (72)




Fluid-mixture methods: Numerical issues

1. On continuous level:
o Equations of motions & equation of state for fluid
mixtures 7

2. On discrete level:
o Consistent approximation of model system 7

ideal gas 1 (1) ideal gas 2 (72)
Mixing region (v =7




Benchmark test: 2-fluid interface only

@ Initial Condition

p 1 p 0.125
U 1 U 1
D o 1 & P o 1
Y/ 1.4 Y/ & 1.2
@ Exact solution

P po(z —t)

U 1

Y 70@ - t)



Model equations ?

1. Basic conservation laws for p, pu, & pE (fluid mixtures)

2. Pressure computed from

(a) Equation of state p = (v — 1)[pE — (pu)?/(2p)] with

N Oy oy

. 0 1 0 1
('LZ) E (ﬁ) +u % (m) =0 (Or OtherS)

(b) Pressure evolution equation directly (Karni 1996)



Interface only problem: fluid-mixture results

with py with p/(y — 1) with ~ with 1/(y —1)
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Fluid-mixture model: Ideal gas

Abgrall (1996): Single-density version in multi-D

1. Model (quasi-conservative) system

ap L
E—FV-(pu)—O

+
0 1 1
— | — u-V{—— ) =0
ot <7—1)+U (v—l)
2. Equation of state

p(p>€a7) = (’7 - 1)p€

Transport equation for 1/(y — 1) plays role near interfaces only



Fluid-mixture model: Mapped grid version

1. Model system

Lo o)
%(pﬁ) + %vg (pﬁ®(7+plz) =0
%(pE) n %vg : (pEﬁ +p:ﬁ) ~0

HESERYER

2. Equation of state

p(pveuy) = (7 - 1) pe

U; = ZZN:1 u;0,,&;: contravariant velocity in &;-direction



Mapped grid model: Grid metrics

Basic coordinate mapping relations in N = 3 are

1 0 0 0 J 0 0 0

0 0,8 0,6 Op&a | _ 110 Ju Jar Ja
0 05,8 006 O0nloa|  J|0 Jiz Jan Jay
0 0,88 01,83 02,83 0 Jis Jog Js3

where J = [0(z1, x2, 23)/0(&1, &2, &3)| =
det (8(9&1, Ta, $3)/a(£17 627 53))'

g a(arg,xg) I 6(.731,.173) Ju = (1, x2)
o) T aGs) | T oG ) |
Ty — O(x2, x3) Ty — (1, x3) iy = (1, x2)
0(&s,81) |’ (&1,63) | (&3,61) |
T — a(arg,xg) Ty — 6(.731,.173) iy — (1, x2)
A&,&) | 9(&,&) | (&1,82) |



Moving cylindrical vessel

Impose uniform flow velocity (uq,us) = (—1,0) (i.e., in the
frame of vessel moving with speed one in z;-direction)

air helium




Moving cylindrical vessel

@ Solution at time ¢t = 0.25

Density Pressure
t=0.25
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Moving cylindrical vessel

@ Solution at time t = 0.5




Moving cylindrical vessel

o Solution at time ¢t = 0.75




Moving cylindrical vessel

o Solution at timet =1

t=1




Extension to stiffened gas

One simple equation of state that models materials not only
gases, but also compressible liquids & solids is stiffened gas

p(p.e) =(y—1)pe+(p—po) B

In this case, with basic conservation laws, diffuse interface
model includes additional transport equations as

o ( 1 B I
g (771) 09 (551) -0




Transport equations for interfaces

Assume equilibrium pressure p & velocity u, motion of
interface (contact discontinuity) is governed by
dp

o T Vp=0

dp
(at—I— Vp) 0
w-u (Op 0 B
T(at'f‘ Vp)+{at( )+U V( )}—O
This is,

dp
ot

a e —
5 (Pe) TV (pe) =0

+u-Vp=0



Effective transport equations: Stiffened gas

With stiffened gas EQOS, tranport equation for pe of interface

a — —
5 (Pe) TV (pe) =0

takes form
o( p P — Po p P = Po
— — B TRAY — Bl =0
815(7—1 v—1 o y—1 ~v-1
To ensure pressure in equilibrium, split equation into two parts
o( p p
-V =
7 (55) v (5)

9 (p—po - P — Po o
8t(7—18>+u V(7—1B =0




That is, to retain pressure equilibrium across interface, we

must have

o/ 1 ) 1
a(v—l)Jru'v(v—l)_O

9 (p—po - P — Po o
8t(7—18>+u V<7—1B =0

However, to ensure conservation of mass in region away from
interface, latter equation needs to split further & rewrite as

0 poB - poB B
(o) o (22)-
0 pB pB _\
i (55) v+ (55m) -




Note that from

0 pB pB \
i (357) o (55 =

& by employing chain rule with respect to p, we have

8(p8)+ V(,VPB)_ B 0p+ B iV

ot -1 — 10t -1
B ap
v — <0t+ Vp)
B ap
2 (re)
:_ﬁvﬁ
v—1

yielding




Fluid-mixture model: Stiffened gas

Saurel, Abgrall (SISC 1999), Shyue (JCP 1998, 1999)

%ﬂLV-(pﬁ) 0

%(MHV (b @i+ pI) =0
%(pE) +V- <pEa+p:a) —0

7 (7=1) + v (7)) =0
o (757) voew (555) =
%(%)+v <vp£glﬁ)zo
p(p,e, v, B) = (v —1)pe+(p—po) B



Fluid-mixture model: Volume-fraction version |

Suppose there exists M/, > 1 different immiscible phases
initially where each of them occupies distinct portion with
volume fraction oy, € [0, 1], k =1,2,..., My, ZZ,:Q] ap =1

Define mixture states for p & pe as

My My

p= Zakpk,, pe = Z Qg PrCk
k=1 k=1

Suppose pressure p is in equilibrium & constitutive law for
each fluid phase is characterized by stiffened gas, we then have

Pk — Pok p P~ Po
e = a =B | = - B
P Z k(k—l 1 ’“) v—1 -1




It follows

1 1
v—1 kz:; <’7k - 1)
M
poBB . Xf:a (Po,kBk)
= k
y—-1 = e — 1
My
pB prBr
B S (25
g 1 V&

Note that rather than using 1/(v — 1) & poBB/(y — 1) as state
variables in our model system, instead we may use oy, as
(90%

W_i_ﬁ.vO{k:O’ k=1,2,..., My



This leads to volume-fraction based model of form

ap L
E—FV-(pu)—O

%(pﬁ) LV <pﬁ® ﬁ+p?) ~0

) _
2 (pE)+ V- <pEﬁ+p[ﬁ —0

ot

o [ pB pB _\
ﬁ(v—l)w'(v—lu)_o
%Jrﬁ-vak:o, k=1,2..., M

If partial density aypy is used as state variables, rather than
mixture density p, this leads to so called 5-equation transport
model (Allaire et al. , JCP 2002), if M; = 2, that is,



Fluid-mixture model: Volume-fraction version I

0 .
a(akpk)—i-V(ozkpku):O, k:1,2,...,Mf

%(pﬁ)—i-v-(pﬁ@ﬁ—i-p?) =0

%(pE) +V- <pEa+p?a) )

0
%—i—ﬁ-V&k:O, kI:l,Q,...,Mf

This gives 2M ¢ + 2 equations in total for M-fluid problem

Pressure is computed directly by solving
My
pe = Z ayprex(pr, )
k=1
which is easy to do if EOS can be written in Mie-Griineisen
form (see next lecture)



Liquid-falling problem

1=0s




Liquid-falling problem

t=0.24s




Liquid-falling problem

1=0.3s




Liquid-falling problem

t=0.36s




Liquid-falling problem

t=0.42s




Liquid-falling problem

t=0.48s




Liquid-falling problem

t=0.54s




Liquid-falling problem

1=0.6s




Underwater explosion with two circular obstacles

Density Pressure

t=0.2dms
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05 ra
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Underwater explosion with two circular obstacles

t=0.8ms
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Underwater explosion with two circular obstacles
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t=3ms
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Shock in water over dispersed gas/solid in

cylindrical nozzle

Density
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Shock in water over dispersed gas/solid in

cylindrical nozzle
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Shock in water over dispersed gas/solid in
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Shock in water over dispersed gas/solid in

cylindrical nozzle
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Shock in water over dispersed gas/solid in

cylindrical nozzle
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