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Cavitating Richtmyer-Meshkov problem
Gas volume fraction Mixture pressure

t=0ms

t=2ms

t=3.1ms

t=6.4ms

t=8.6ms



High-speed underwater projectile
With thermo-chemical relaxation No thermo-chemical relaxation



High-pressure fuel injector
With thermo-chemical relaxation No thermo-chemical relaxation



Phasic-total-energy-based HRM

Consider 1-velocity phasic-total-energy based homogeneous
relaxation model

∂t (α1ρ1) +∇ · (α1ρ1~u) = ν (g2 − g1)

∂t (α2ρ2) +∇ · (α2ρ2~u) = ν (g1 − g2)

∂t(ρ~u) +∇ · (ρ~u⊗ ~u) +∇ (α1p1 + α2p2) = 0

∂t (α1ρ1E1) +∇ · (α1ρ1E1~u+ α1p1~u) + Σ (w,∇w) =

µpI (p2 − p1) + θTI (T2 − T1) + νgI (g2 − g1)

∂t (α2ρ2E2) +∇ · (α2ρ2E2~u+ α2p2~u)− Σ (w,∇w) =

µpI (p1 − p2) + θTI (T1 − T2) + νgI (g1 − g2)

∂tα1 + ~u · ∇α1 = µ (p1 − p2) + νvI (g1 − g2)

Σ = ~u · [Y1∇ (α2p2)− Y2∇ (α1p1)] , Yk =
αkρk
ρ

Closure model: Stiffened gas EOS (linear EOS)



HRM model in compact form

∂tw +∇ · f(w) + B (w,∇w) = ψµ(w) + ψθ(w) + ψν(w)

where

w = [α1, α1ρ1, α2ρ2, ρ~u, α1ρ1E1, α2ρ1E2, α1]
T

f =
[
α1ρ1~u, α2ρ2~u, ρ~u⊗ ~u+ (α1p1 + α2p2)I,

α1 (ρ1E1 + p1) ~u, α2 (ρ2E2 + p2) ~u, 0]
T

B = [0, 0, 0, Σ (w,∇w) , −Σ (w,∇w) , ~u · ∇α1]
T

ψµ = [0, 0, 0, µpI (p2 − p1) , µpI (p1 − p2) , µ (p1 − p2)]
T

ψθ = [0, 0, 0, θTI (T2 − T1) , θTI (T1 − T2) , 0]
T

ψν = [ν (g2 − g1) , ν (g1 − g2) , 0, νgI (g2 − g1) ,

νgI (g1 − g2) , νvI (g1 − g2)]
T



Relaxation scheme

To find approximate solution of HRM, in each time step,
fractional-step method is employed:

1. Non-stiff hyperbolic step
Solve hyperbolic system without relaxation sources

∂tw +∇ · f(w) + w (w,∇w) = 0

using state-of-the-art solver over time interval ∆t

2. Stiff relaxation step
Solve system of ordinary differential equations

∂tw = ψµ(w) + ψθ(w) + ψν(w)

in various flow regimes under relaxation limits



Definition (mixture-energy consistent)

(i) Mixture total energy conservation consistency

(ρE)0 = (ρE)0,C

where (ρE)0 = (α1ρ1E1)
0 + (α2ρ2E2)

0

(ii) Relaxed pressure consistency

(ρe)0,C = α∗

1ρ1e1

(
p∗,

(α1ρ1)
0

α∗
1

)
+α∗

2ρ2e2

(
p∗,

(α2ρ2)
0

α∗
2

)
,

where (ρe)0,C = (ρE)0,C − (ρ~u)0·(ρ~u)0

2ρ0

Method proposed here with phasic-total-energy formulation is
mixture-energy consistent



Relaxation scheme: Stiff solvers

1. Algebraic-based approach

Saurel et al. (JFM 2008), Zein et al. (JCP 2010),
LeMartelot et al. (JFM 2013), Pelanti-Shyue (JCP 2014)
Impose equilibrium conditions directly, without making
explicit of interface states pI , gI ,. . .

2. Differential-based approach

Saurel et al. (JFM 2008), Zein et al. (JCP 2010)
Impose differential of equilibrium conditions, require
explicit of interface states pI , gI ,. . .

3. Optimization-based approach (for mass transfer only)

Helluy & Seguin (ESAIM: M2AN 2006), Faccanoni et
al. (ESAIM: M2AN 2012)



p relaxation

Assume frozen thermal & thermo-chemical relaxation, i.e.,
θ = 0 & ν = 0, look for solution of ODEs in limit µ→∞

∂t (α1ρ1) = 0

∂t (α2ρ2) = 0

∂t (ρ~u) = 0

∂t (α1ρ1E1) = µpI (p2 − p1)

∂t (α2ρ2E2) = µpI (p1 − p2)

∂tα1 = µ (p1 − p2)

Under mechanical equilibrium with equal pressure

p1 = p2 = p



p relaxation: Algebraic approach

We find easily

αkρk = αk0ρk0, ρ = ρ0, ~u = ~u0, ρE = (ρE)0, e = e0

∂t (αρE)k = ∂t (αρe)k = −pI∂tαk, k = 1, 2



p relaxation: Algebraic approach

We find easily

αkρk = αk0ρk0, ρ = ρ0, ~u = ~u0, ρE = (ρE)0, e = e0

∂t (αρE)k = ∂t (αρe)k = −pI∂tαk, k = 1, 2

Integrating latter equation & using αkρk = αk0ρk0 leads to

ek (pk, ρk)− ek0 + p̄I

(
1

ρk
−

1

ρk0

)
= 0

This gives condition for ρk in p, k = 1, 2, if assume e.g.,
p̄I = (p0I + p)/2, & impose mechanical equilibrium in EOS



Combining that with saturation condition for volume fraction

α1ρ1
ρ1(p)

+
α2ρ2
ρ2(p)

= 1

leads to algebraic equation (quadratic one with SG EOS) for
relaxed pressure p

With that, ρk, αk can be determined & state vector w is
updated from current time to next



Combining that with saturation condition for volume fraction

α1ρ1
ρ1(p)

+
α2ρ2
ρ2(p)

= 1

leads to algebraic equation (quadratic one with SG EOS) for
relaxed pressure p

With that, ρk, αk can be determined & state vector w is
updated from current time to next

Relaxed solution depends strongly on initial condition from
non-stiff hyperbolic step



Dodecane 2-phase Riemann problem: p relaxation

Mechanical-equilibrium solution at t = 473µs
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Dodecane 2-phase problem: Phase diagram

Thermodynamic path after p-relaxation in p-v phase diagram
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Dodecane 2-phase problem: Phase diagram

Thermodynamic path comparison between solutions after p- &
pTg-relaxation in p-v phase diagram
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Expansion wave problem: p relaxation

Mechanical-equilibrium solution at t = 3.2ms
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Expansion wave problem: Phase diagram

Thermodynamic path comparison between solutions after p- &
pTg-relaxation in p-v phase diagram
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pT relaxation

Now assume frozen thermo-chemical relaxation ν = 0, look for
solution of ODEs in limits µ & θ →∞

∂t (α1ρ1) = 0

∂t (α2ρ2) = 0

∂t (ρ~u) = 0

∂t (α1ρ1E1) = µpI (p2 − p1) + θTI (T2 − T1)

∂t (α2ρ2E2) = µpI (p1 − p2) + θTI (T1 − T2)

∂tα1 = µ (p1 − p2)

Under mechanical-thermal equilibrium conditons

p1 = p2 = p

T1 = T2 = T



We find easily

∂t (α1ρ1) = 0 =⇒ α1ρ1 = α0
1ρ

0
1

∂t (α2ρ2) = 0 =⇒ α2ρ2 = α0
2ρ

0
2

∂t (ρ~u) = 0 =⇒ ρ~u = ρ0~u0

∂t (αkρkEk) =
θ

qI
(T2 − T1) =⇒ ∂t (αρe)k = qI∂tαk

Integrating latter two equations with respect to time
∫
∂t (αρe)k dt =

∫
qI∂tαk dt

=⇒ αkρkek − α
0
kρ

0
ke

0
k = −q̄I

(
αk − α

0
k

)

Take q̄I = (q0I + qI)/2 or qI , for example, & find algebraic
equation for α1, by imposing

T2
(
e2, α

0
2ρ

0
2/(1− α1)

)
− T1

(
e1, α

0
1ρ

0
1/α1

)
= 0



pT relaxation: Algebraic approach

As before, for k = 1, 2, states remain in equilibrium are

αkρk = αk0ρk0, ρ = ρ0, ~u = ~u0, ρE = (ρE)0, e = e0

Lead to equilibrium in mass fraction Yk = αkρk/ρ = Yk0



pT relaxation: Algebraic approach

As before, for k = 1, 2, states remain in equilibrium are

αkρk = αk0ρk0, ρ = ρ0, ~u = ~u0, ρE = (ρE)0, e = e0

Lead to equilibrium in mass fraction Yk = αkρk/ρ = Yk0

Impose mechanical-thermal equilibrium to

1. Saturation condition

α1ρ1
ρ1(p, T )

+
α2ρ2

ρ2(p, T )
= 1

or
Y1

ρ1(p, T )
+

Y2
ρ2(p, T )

=
1

ρ



Impose mechanical-thermal equilibrium to

1. Saturation condition

Y 1

ρ1(p, T )
+

Y2
ρ2(p, T )

=
1

ρ

2. Equilibrium of internal energy

Y1 e1(p, T ) + Y2 e2(p, T ) = e

Give 2 algebraic equations for 2 unknowns p & T



Impose mechanical-thermal equilibrium to

1. Saturation condition

Y 1

ρ1(p, T )
+

Y2
ρ2(p, T )

=
1

ρ

2. Equilibrium of internal energy

Y1 e1(p, T ) + Y2 e2(p, T ) = e

Give 2 algebraic equations for 2 unknowns p & T

For SG EOS, it reduces to single quadratic equation for p &
explicit computation of T :

1

ρT
= Y1

(γ1 − 1)Cv1

p+ p∞1
+ Y2

(γ2 − 1)Cv2

p+ p∞2



pTg relaxation

Look for solution of ODEs in limits µ, θ, & ν →∞

∂t (α1ρ1) = ν (g2 − g1)

∂t (α2ρ2) = ν (g1 − g2)

∂t (ρ~u) = 0

∂t (α1ρ1E1) = µpI (p2 − p1) + θTI (T2 − T1) + ν (g2 − g1)

∂t (α2ρ2E2) = µpI (p1 − p2) + θTI (T1 − T2) + ν (g1 − g2)

∂tα1 = µ (p1 − p2) + νvI (g2 − g1)

under mechanical-thermal-chemical equilibrium conditons

p1 = p2 = p

T1 = T2 = T

g1 = g2



pTg relaxation: Algebraic apporach

In this case, states remain in equilibrium are

ρ = ρ0, ρ~u = ρ0~u0, ρE = (ρE)0, e = e0

but αkρk 6= αk0ρk0 & Yk 6= Yk0, k = 1, 2

Impose mechanical-thermal-chemical equilibrium to

1. Saturation condition for temperature

G(p, T ) = 0

2. Saturation condition for volume fraction

Y1
ρ1(p, T )

+
Y2

ρ2(p, T )
=

1

ρ

3. Equilibrium of internal energy

Y1 e1(p, T ) + Y2 e2(p, T ) = e



From saturation condition for temperature

G(p, T ) = 0

we get T in terms of p, while from

Y1
ρ1(p, T )

+
Y2

ρ2(p, T )
=

1

ρ

&
Y1 e1(p, T ) + Y2 e2(p, T ) = e

we obtain algebraic equation for p

Y1 =
1/ρ2(p)− 1/ρ

1/ρ2(p)− 1/ρ1(p)
=

e− e2(p)

e1(p)− e2(p)

which is solved by iterative method



pTg relaxation: Remarks

Having known Yk & p, T can be solved from, e.g.,

Y1 e1(p, T ) + Y2 e2(p, T ) = e0

yielding update ρk & αk

Feasibility of solutions, i.e., positivity of physical
quantities ρk, αk, p, & T , for example

Employ hybrid method i.e., combination of above
method with differential-based approach (not discuss
here), when it becomes necessary



Dodecane 2-phase Riemann problem

Comparison p-,pT -& p-pTg-relaxation solution at t = 473µs
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Expansion wave problem: ~u = 500m/s
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Non-stiff hyperbolic step: Mapped grid method

Consider solution of model system

∂tw +∇ · f(w) + B (w,∇w) = 0

in 2D general non-rectangular geometry
Model in integral form over any control volume C is

d

dt

∫

C

w dΩ = −

∫

∂C

f(w) · ~n ds−

∫

C

B (w,∇w) dΩ

where ~n is outward-pointing normal vector at boundary ∂C

C

∂C →



Hyperbolic step

Then finite volume method on control volume C reads

W n+1 =W n −
∆t

M(C)

Ns∑

j=1

hjF̆j −∆tB∗M(C)

M(C) measure (area in 2D or volume in 3D) of C

Ns number of sides

hj length of j-th side (in 2D) or area of cell edge (in 3D)
measured in physical space

F̆j numerical approximation to normal flux in average
across j-th side of grid cell

B∗ :=
∫
C
B(z, tn) dz/M(C) (cell average of B in cell C)



Assume mapped (i.e., logically rectangular) grid in 2D, we get

W n+1
ij =W n

ij −
∆t

κij∆ξ1

(
F 1
i+ 1

2
,j
− F 1

i− 1

2
,j

)
−

∆t

κij∆ξ2

(
F 2
i,j+ 1

2

− F 2
i,j− 1

2

)
−∆tB∗

ij∆ξ1∆ξ2

i− 1

i− 1

i

i j
j

j + 1j + 1

Ĉij

Cij

ξ1

ξ2

mapping

∆ξ1
∆ξ2

logical grid
physical grid

←−

x1 = x1(ξ1, ξ2)
x2 = x2(ξ1, ξ2)

x1

x2

κij =M(Cij)/∆ξ1∆ξ2



Mapped grid method: Wave propagation

Godunov-type in wave propagation form for hyperbolic
conservation law is

W n+1
ij = W n

ij−
∆t

κij∆ξ1

(
A+

1 ∆Wi− 1

2
,j +A

−

1 ∆Wi+ 1

2
,j

)
−

∆t

κij∆ξ2

(
A+

2 ∆Wi,j− 1

2

+A−

2 ∆Wi,j+ 1

2

)

A+
1 ∆W

A−

1 ∆W

fluctuations A
+

1
∆W

i− 1

2
,j
,

A
−

1
∆W

i+ 1

2
,j
, A+

2
∆W

i,j− 1

2

, &

A
−

2
∆W

i,j+ 1

2

: Solve
one-dimensional Riemann
problems in direction normal
to cell edges

B∗
ij may be included in

fluctuations



Speeds & limited of waves are used to calculate second order
correction:

W n+1
ij := W n+1

ij −
∆t

κij∆ξ1

(
F̃1

i+ 1

2
,j
− F̃1

i− 1

2
,j

)
−

∆t

κij∆ξ2

(
F̃2

i,j+ 1

2

− F̃2
i,j− 1

2

)

For example, at cell edge (i− 1
2
, j) correction flux takes

F̃1
i− 1

2
,j
=

1

2

Nw∑

k=1

∣∣∣λ1,k
i− 1

2
,j

∣∣∣
(
1−

∆t

κi− 1

2
,j∆ξ1

∣∣∣λ1,k
i− 1

2
,j

∣∣∣
)
W̃

1,k

i− 1

2
,j

κi− 1

2
,j = (κi−1,j + κij)/2, W̃

1,k

i− 1

2
,j
is limited waves to avoid

oscillations near discontinuities



Transverse wave propagation is included to ensure second
order accuracy & also improve stability

A−

2A
+
1 ∆W

A+
2A

−

1 ∆W

A+
2A

+
1 ∆W

A−

2A
−

1 ∆W



Method can be shown to be quasi conservative & stable under
a variant of CFL (Courant-Friedrichs-Lewy) condition

∆tmax
i,j,k




∣∣∣λ1,k
i− 1

2
,j

∣∣∣
κip,j∆ξ1

,

∣∣∣λ2,k
i,j− 1

2

∣∣∣
κi,jp∆ξ2


 ≤ 1,

ip = i if λ1,k
i− 1

2
,j
> 0 & i− 1 if λ1,k

i− 1

2
,j
< 0



Hyperbolic step: Semi-discretization scheme

Semi-discrete wave propagation method takes form

∂tW (t) = L(W (t))

where in 2D

L(Wij(t) = −
1

κij∆ξ1

(
A+

1 ∆Wi− 1

2
,j +A

−

1 ∆Wi+ 1

2
,j +A1∆Wij

)
−

1

κij∆ξ2

(
A+

2 ∆Wi,j− 1

2

+A−

2 ∆Wi,j+ 1

2

+A2∆Wij

)

ODEs are integrated in time using strong stability-preserving
(SSP) multistage Runge-Kutta, e.g., 3-stage 3rd-order

W ∗ = W n +∆tL (W n)

W ∗∗ =
3

4
W n +

1

4
W ∗ +

1

4
∆tL (W ∗)

W n+1 =
1

3
W n +

2

3
W ∗ +

2

3
∆tL (W ∗∗)


