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Phasic-total-energy-based HRM

Consider 1-velocity phasic-total-energy based homogeneous
relaxation model

O (a1p1) + V- (a1p1i) = v (g2 — g1)

O (azp2) + V- (azpati) = v (g1 — g2)

O(ptd) + V - (pu @ 1) + V (cup1 + azpz) =0

O (g1 Er) + V- (a1p1 Bl + o) + X (w, Vw) =
ppr (p2 — p1) + 0T (1o — T1) + vgr (92 — 91)

O (agpaFs) + V - (aepa Boti + anpotl) — X (w, Vw) =
ppr (pr — p2) + 617 (T — To) + vgr (g1 — g2)

Oy + 1 - Vou = pu(p1 — p2) +vor (91 — g2)
. «a
Y =1 Y1V (aps) — YoV (aip)], Yi= kT'Ok

Closure model: Stiffened gas EOS (linear EOS)



HRM model in compact form

Ow + V- f(w) + B (w, Vw) = ¢ (w) + vo(w) + ¢ (w)

where

— T
w = lay, ai1pr, aope, pi, arp By, agpiBs, o)

f= [0410117, Qopotl, Pl @ U+ (aipr + 042172)?,
ay (p1Ey 4 p1) U, as (peEy + pa) 4, O]T
0,0, 0, ¥ (w, Vw), =% (w, Vw), @-Vay]"

B =10,
=10, 0, 0, pupr (p2 —p1), ppr(p1 —p2), u(p —pz)]T
= [0,
=[v

0,0, 0, 0Ty (T, = Tv), 0T, (Ty — T3), 0]"
(g2— 1), V(g1 —92), 0, vgr (92 — g1),
vgr (91 - 92)7 4% (91 - 92)]T



Relaxation scheme

To find approximate solution of HRM, in each time step,
fractional-step method is employed:

1. Non-stiff hyperbolic step
Solve hyperbolic system without relaxation sources

Ow+ V- f(w) +w(w,Vw) =0
using state-of-the-art solver over time interval At

2. Stiff relaxation step
Solve system of ordinary differential equations

Orw = P (w) + to(w) + by (w)

in various flow regimes under relaxation limits



Definition (mixture-energy consistent)

(1) Mixture total energy conservation consistency
(pE)" = (pE)™

where (pE)° = (a1p1E1)° + (aapa )"

(11) Relaxed pressure consistency

(pe)*C = afprey (p , ( lp*l) ) + aspaes (p : ( 2[12) ) :
O 0%

where (pe)*¢ = (pE)*° — 7(’”7);,%’)&)0

Method proposed here with phasic-total-energy formulation is
mixture-energy consistent



Relaxation scheme: Stiff solvers

1. Algebraic-based approach

o Saurel et al. (JFM 2008), Zein et al. (JCP 2010),
LeMartelot et al. (JFM 2013), Pelanti-Shyue (JCP 2014)

o Impose equilibrium conditions directly, without making
explicit of interface states py, g7, ..

2. Differential-based approach

o Saurel et al. (JFM 2008), Zein et al. (JCP 2010)
o Impose differential of equilibrium conditions, require
explicit of interface states py, g7, ..

3. Optimization-based approach (for mass transfer only)

o Helluy & Seguin (ESAIM: M2AN 2006), Faccanoni et
al. (ESAIM: M2AN 2012)



p relaxation

Assume frozen thermal & thermo-chemical relaxation, i.e.,
0 =0& v =0, look for solution of ODEs in limit ;x — oo

O (041,01) =0
O (042,02) =0
0y (pui) =0
O (up1En) = ppr (p2 — p1)

O; (qapaEy) = ppr (p1 — p2)
Oy = 11 (p1 - p2)

Under mechanical equilibrium with equal pressure

P1=p2=Pp



p relaxation: Algebraic approach

We find easily

Pk = QopPros P = po, U=1Uy, pE=(pE), e=eg
O (apE), = 0, (ape), = —proay, k=12



p relaxation: Algebraic approach

We find easily

QkPE = QroPro, P = po, U=1o, pE=(pE)y, e=c¢eg
O (apE), = 0, (ape), = —proay, k=1,2

Integrating latter equation & using axpr = aropro leads to

1 1
ex (Pk, k) — exo + Dr <— — —) =0
Pk Pk0

This gives condition for p; in p, k = 1,2, if assume e.g.,
pr = (P +p)/2, & impose mechanical equilibrium in EOS



Combining that with saturation condition for volume fraction

Q101 1 Q202

@ )

leads to algebraic equation (quadratic one with SG EOS) for
relaxed pressure p

With that, py, ax can be determined & state vector w is
updated from current time to next



Combining that with saturation condition for volume fraction

Q101 1 Q202

o) T ;) T

leads to algebraic equation (quadratic one with SG EOS) for
relaxed pressure p

With that, py, ax can be determined & state vector w is
updated from current time to next

Relaxed solution depends strongly on initial condition from
non-stiff hyperbolic step



Dodecane 2-phase Riemann problem: p relaxation
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Dodecane 2-phase problem: Phase diagram

Thermodynamic path after p-relaxation in p-v phase diagram
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Dodecane 2-phase problem: Phase diagram

Thermodynamic path comparison between solutions after p- &
pT g-relaxation in p-v phase diagram
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Expansion wave problem: p relaxation

Mechanical-equilibrium solution at ¢ = 3.2ms
density (kg/m?) velocity (m/s)
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Expansion wave problem: Phase diagram

Thermodynamic path comparison between solutions after p- &
pT g-relaxation in p-v phase diagram
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p1’ relaxation

Now assume frozen thermo-chemical relaxation v = 0, look for
solution of ODEs in limits p & 6 — oo

O (agpr) =0
Oy (agpa) =0
O (pti) =0

O (c1prEBr) = ppr (p2 — p1) + 017 (1o — Th)

O; (qapally) = ppr (p1 — p2) + 017 (11 — 1)

Oy = [ (pl - pz)

Under mechanical-thermal equilibrium conditons

P1=DpP2=0DpP
T =T,=T



We find easily

O (1p1) =0 == a1p1 = o p)
O (ap2) =0 = py = app
O (p)) =0 = pii = pu’
0
O (arprEy) = o (I, -T1) = 0O (ape), = qri
I

Integrating latter two equations with respect to time

/at (ape), dt = /qlatak dt
== QppPrer — ozgpgeg = —qr (ozk — ag)

Take ;1 = (¢ + q1)/2 or qr, for example, & find algebraic
equation for ay, by imposing

Ty (e2, 0505/ (1 — 1)) —Th (1, aipy fen) = 0



p1’ relaxation: Algebraic approach

As before, for k = 1, 2, states remain in equilibrium are

QpPE = QroPros P = po, U=1dy, pE=(pE)y, e=¢g

Lead to equilibrium in mass fraction Y, = axpr/p = Yio



p1’ relaxation: Algebraic approach

As before, for k = 1, 2, states remain in equilibrium are

QpPE = QroPros P = po, U=1dy, pE=(pE)y, e=¢g

Lead to equilibrium in mass fraction Y, = axpr/p = Yio

Impose mechanical-thermal equilibrium to
1. Saturation condition

101 QP2

(1) pa(p, T) !

or
Yi Y.

_|_ _
o, T)  pa(p,T)  p




Impose mechanical-thermal equilibrium to
1. Saturation condition
Y1 Y,
(1) o0, T)  p

2. Equilibrium of internal energy
Yie(p,T)+Yaea(p,T) =e

Give 2 algebraic equations for 2 unknowns p & T’



Impose mechanical-thermal equilibrium to
1. Saturation condition
Y1 Y,
(1) o0, T)  p

2. Equilibrium of internal energy
Yie(p,T)+Yaea(p,T) =e

Give 2 algebraic equations for 2 unknowns p & T’

For SG EOS, it reduces to single quadratic equation for p &
explicit computation of 7"
1 (11 = 1)Cun Y2 — 1)Cie

(
— =Y + Y5
pT ' p+pool ? p+poo2



p1'g relaxation

Look for solution of ODEs in limits u, 0, & v — oo

O (a1p1) = v (g2 — g1)
O (azpz) =V (91 - 92)
O (pi) =0
O (arp1Ev) = ppr (p2 — p1) + 011 (T — Th) + v (92 — g1)

Oy (agpala) = ppr (p1 — p2) + 017 (11 — 1) + v (g1 — g2)
Oray = p(p1 — pa2) + vur (g2 — g1)

under mechanical-thermal-chemical equilibrium conditons

Pr=p2=0p
T1:T2:T

g1 = g2



p1'g relaxation: Algebraic apporach

In this case, states remain in equilibrium are

P = Po, IOIJ = p0ﬁ07 PE = (IOE)07 € = ¢€o
but arpr # aropro & Yi # Yro, k=1,2

Impose mechanical-thermal-chemical equilibrium to
1. Saturation condition for temperature

g(pa T) =0
2. Saturation condition for volume fraction
i Y _
o0, T)  p2(p,T)  p

3. Equilibrium of internal energy

Yi el(pa T) +Y§ 62(p7T) =e




From saturation condition for temperature
g(pv T) =0

we get 71" in terms of p, while from

Y, n Y,
pip, T)  po(p,T)  p

&
)/1 el(pu T) + )/2 62(p7 T) =e€

we obtain algebraic equation for p

_ Ymp)—1/p _  e—esp)
YT 1 pa(p) — Upi(p)  ei(p) — ea(p)

which is solved by iterative method




p1'g relaxation: Remarks

@ Having known Y}, & p, T can be solved from, e.g.,
Yl el(pa T) + }/2 62(pa T) = 60
yielding update pi &

@ Feasibility of solutions, i.e., positivity of physical
quantities pg, o, p, & T, for example
o Employ hybrid method i.e., combination of above

method with differential-based approach (not discuss
here), when it becomes necessary



Dodecane 2-phase Riemann problem

Comparison p-,pT-& p-pT g-relaxation solution at ¢t = 473us
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Expansion wave problem: « = 500m/s
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Non-stiff hyperbolic step: Mapped grid method

Consider solution of model system
ow+ V- f(w)+ B(w, Vw) =0

in 2D general non-rectangular geometry
Model in integral form over any control volume C'is

K w dS) = — f(w)-ﬁds—/B(w,Vw) dQ
dt Jo ac c

where 77 is outward-pointing normal vector at boundary 0C'

oC =

0//



Hyperbolic step

Then finite volume method on control volume C reads

At

Wt = — M@ Zh F; — AtB*M(C)

M(C') measure (area in 2D or volume in 3D) of C
N number of sides

h; length of j-th side (in 2D) or area of cell edge (in 3D)
measured in physical space

F; numerical approximation to normal flux in average
acrossj -th side of grid cell

= [, B(z,t,) dz/M(C) (cell average of B in cell C)



Assume mapped (i.e., logically rectangular) grid in 2D, we get

At
n+1 __ n 1 1
W =W - <Fi+%J B Fi—%@) B

ki A&
At , )
Kij Ay <FZ ity Fij %) — AtBj;AG AL

physical grid logical grid

; mappin 1

I PPne ag

il (Gl nened
2 - z 2 2(€1, &2 j 2 C’ij
. &
1—1 7

Kij = M(Cij) [ AGAE,



Mapped grid method: Wave propagation

Godunov-type in wave propagation form for hyperbolic
conservation law is

I/VZ;H wn— At (A+AW L ATAW, ]>

" '%szgl =3
At
AFAW, ;. + AFAW, . )
HUAgg ( @, 2 z]-i—
@ fluctuations ATAWF%J,
+
AFAW ALAWig g0 Az AWy &
Ay AW, 1 : Solve

one—dlmen5|ona| Riemann
problems in direction normal

AT AW to cell edges
@ 3/, may be included in
fluctuations




Speeds & limited of waves are used to calculate second order
correction:

Wt ::Wigﬂ—i(ﬁ L F ) -

fiz'jA& vhav T

For example, at cell edge (i — %,j) correction flux takes

N
1 — At —~
7y (1 2 b ) s,
2—%7J 2 ; Z—%,j K Aél ,J z—%,]
Kil = (Ki—15 + Kij)/2, W L is limited waves to avoid

OSC|IIat|ons near dlscontmumes



Transverse wave propagation is included to ensure second
order accuracy & also improve stability

A; AT AW




Method can be shown to be quasi conservative & stable under
a variant of CFL (Courant-Friedrichs-Lewy) condition

1k 2,k

A iy AZJ__

At max ~ <1,
1,5,k Hlpv] Agl Hz,ij§2

i =i |fA““, 0 & i—1 |f)\”“ <0
V4 _1 _1

2'] 2.]



Hyperbolic step: Semi-discretization scheme

Semi-discrete wave propagation method takes form

where in 2D
1
L(W;:(t) = —
(Wi;(t) - a
1 + _
—v3 (AFAW, ;g + AFAW, )+ AAW)

ODEs are integrated in time using strong stability-preserving
(SSP) multistage Runge-Kutta, e.g., 3-stage 3rd-order
W =W"+4+ AtL(W")
3 1 1
w 4W + 4W + 1 L(W™)
n+1 1 n 2 * 2 Hk

(Araw,_y, ;

ATAW, o+ AlAmj) _




