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Spin qubit relaxation in a moving quantum dot
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Long-range quantum communication for spin qubits is an important open problem. Here we study decoherence
of an electron spin qubit that is being transported in a moving quantum dot. We focus on spin decoherence due
to spin-orbit interaction and a random electric potential. We find that at the lowest order, the motion induces
longitudinal spin relaxation, with a rate linear in the dot velocity. Our calculated spin relaxation time ranges from
sub μs in GaAs to above ms in Si, making this relaxation a significant decoherence channel. Our results also give
clear indications on how to reduce the decoherence effect of electron motion.
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I. INTRODUCTION

Over the past decade, there has been tremendous progress
in the experimental study and theoretical investigation of
spin qubit manipulation and decoherence.1,2 An important
advantage of electron spin qubits is that they can be coupled
strongly via the exchange interaction,3 which allows fast
two-spin gates. However, exchange interaction is short-ranged,
and long-range quantum communication remains a significant
open problem in the scale-up of spin qubit architectures.

Various ideas have been proposed to move spin information
on chip, such as via spin-photon coupling,4,5 spin bus,6 and
directly moving the electrons themselves.7–10 Spin-photon
conversion is difficult because the strongest estimated coupling
strength is still only in the order of MHz,5,11 which is slower
than or comparable to the spin dephasing rate in most materials.
Spin buses, on the other hand, are limited by the energy gap be-
tween the bus ground state(s) and the excited states,6,12 and are
most useful for short-distance (up to a few microns) quantum
information transfer. Comparatively, direct spin transport is
attractive because of its conceptual simplicity and its similarity
to the conventional charge-coupled devices. Indeed, several ex-
perimental groups have recently shown how a surface acoustic
wave (SAW) can controllably transport an electron over several
microns.13–17 Clearly, transferring spin information by directly
moving its carrier is an intriguing and promising approach, and
deserves further in-depth analysis. Here we focus on the aspect
of spin decoherence due to electron motion.

The main decoherence channel for a confined electron spin
in a finite field is the hyperfine (HF) interaction induced
pure dephasing.18,19 Spin relaxation due to spin-orbit (SO)
interaction is much slower.20 On the other hand, spin relaxation
of free electrons and holes in semiconductors is dominated by
SO interaction,21,22 while the effect of hyperfine interaction is
strongly suppressed by motional narrowing.22 For a moving
electron spin qubit with controlled motion, an intriguing
question is thus when decoherence due to SO interaction
becomes dominant.

In this paper we study spin decoherence of a moving
but confined electron due to static disorders in a semicon-
ductor heterostructure. For example, in a modulation-doped
GaAs/AlxGa1−xAs structure, the ionized dopants produce a
random electric potential at the GaAs interface where the
quantum dot (QD) is located. If the QD is moved along the
interface, the electron spin can sense this random potential

through the SO interaction, and undergo decoherence. The
static disorder has been considered in the problem of spin
relaxation of 2D electrons,23,24 while we focus on its effect
on confined (albeit moving) electrons. Here we construct a
theoretical description of this decoherence mechanism. We
find that this is a longitudinal relaxation channel at the lowest
order. Its rate can be as fast as sub-μs in GaAs or above ms in
Si, making it a significant decoherence channel.

II. ELECTRON HAMILTONIAN

The model system we consider is a single electron in a
gate-defined QD from a two-dimensional electron gas (2DEG).
In general the growth-direction confinement is much stronger,
so that the QD can only be moved in the in-plane direction
by programming the top gate potentials. The electron remains
confined while the QD is moved. Indeed, we assume the QD
motion is adiabatic so that the electron remains in the ground
orbital state.

As shown in Fig. 1, we consider a uniform linear motion of
the QD with a constant velocity v0 (the QD potential minimum
is at r0(t) = v0t = [x0(t),y0(t)]). Such a linear motion is
possible in principle by programming the surface gate potential
along the path of QD motion.8,10 Alternatively, SAW has been
shown to be effective in moving a single electron from one
QD to another at the speed of sound.7,13–17 In both these cases,
the QD motion is facilitated by an external agent (external
electrical control in the former, and the piezoelectric generator
of the SAW in the latter). As such, the complete problem of the
electron dynamics in a moving quantum dot is that for an open
system, where the reservoir (or the external driving agent)
is complex and difficult to define completely and quantum
mechanically. In the present study, in order to simplify the
problem, we assume that the reservoir, or the external driving
agent, is classical and Markovian. In other words, the driving
agent is so large that it does not remember any energy exchange
with the electron. The consequences of this assumption will
be discussed later in the manuscript. The Hamiltonian for the
QD-confined electron is

H = Hd + HZ + HSO + δV (r), (1)

Hd = π2

2m∗ + U (r − r0(t)), (2)

075301-11098-0121/2013/88(7)/075301(9) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.88.075301


PEIHAO HUANG AND XUEDONG HU PHYSICAL REVIEW B 88, 075301 (2013)

e-
[1,0,0]

[0,1,0]

π/4

y

x

B
0 ΔB

δ B B

v
0

δ B

(a)

(b)

FIG. 1. (Color online) A schematic of a spin qubit in a moving
QD. Panel (a) gives the top view of the structure and the coordinate
system (xyz) defined in the laboratory frame, with x and y along the
[110] and [1̄10] directions. Panel (b) gives the side view and the total
effective magnetic field.

HZ = 1

2
gμB B0 · σ , (3)

HSO = β−πyσx + β+πxσy, (4)

where δV (r) represents a random electric potential, which is
always present, whether due to modulation doping or barrier
disorder. The subscripts d, Z, and SO refer to “dot,” “Zeeman,”
and “spin-orbit.” In Hd , π is the electron 2D momentum
(e > 0) given by π = −ih̄∇ + (e/c)A(r), and U (r − r0(t))
is the dot confinement potential with a moving minimum
r0(t) = [x0(t),y0(t)]. In this study, we consider a uniform
linear motion of the QD, where v0 = p0/m∗ = d r0(t)/dt

is a constant vector. In HZ , B0 is the applied magnetic field
(with n̂0 its unit vector). In HSO , β± ≡ (β ± α), where α and
β are the Rashba and Dresselhaus SO coupling constants.
The x and y axes are along the [110] and [1̄10] directions.
If x and y had been defined along the [100] and [010]
directions, the SO term would have taken the usual form
HSO = β(−πxσx + πyσy) + α(πxσy − πyσx). The current
choice of x and y helps simplify the presentation below.

To simplify the following treatment, we transform into
the moving reference frame, so that the QD confinement
potential becomes time independent. It is done by a trans-
lational transformation |ψ ′(t)〉 = exp[ST (t)]|ψ(t)〉, where the
generator is ST (t) ≡ iπ · r0(t)/h̄. The Schrödinger equation
after the transformation is

ih̄
∂

∂t
|ψ ′(t)〉 = H ′|ψ ′(t)〉, (5)

in which the new Hamiltonian is H ′ = eST He−ST + ih̄∂tST .

After the transformation, the total Hamiltonian in the moving
frame is

H ′ = H ′
d + H ′

Z + H ′
SO + δV (r0(t) + r ′), (6)

H ′
d = π ′2

2m∗ + U (r ′), (7)

H ′
Z = 1

2
gμB B · σ , (8)

H ′
SO = β−π ′

y ′σx ′ + β+π ′
x ′σy ′ . (9)

Here r ′ = [x ′,y ′] and π ′ are the electron two-dimensional
position and momentum operators in the moving reference
frame. Operators in different frames are related: r = r ′ + r0(t)
with r0(t) = v0t and π ′ ≡ −ih̄∇′ + (e/c)A(r ′) − pL − p0,
in which pL(t) ≡ −eB0z/c[−y0(t),x0(t),0] captures the effect
of the Lorentz force (note that the classical motion of electron
satisfies d p

dt
= −e/cv0 × B0 = d pL

dt
). In the moving frame, the

random potential is time dependent due to the QD motion,
δV = δV (r0(t) + r ′), so that the static disorder is now a
charge noise. In Hd , U (r ′) is the time-independent confinement
potential in the moving frame. In HZ , B = B0 + 	B is the
total magnetic field, in which 	B is an effective magnetic field
due to SO interaction in the moving reference frame

	B = 2m∗v0

gμB

(β− sin φv,β+ cos φv,0), (10)

where φv is the angle between the dot velocity and the [110]
crystal axis. The Zeeman frequency is ωZ = gμBB/h̄ and the
spin quantization direction is n̂ = B/B, which is generally
different from the direction of the applied magnetic field B0.

III. CONSTRUCTING THE EFFECTIVE SPIN
HAMILTONIAN FOR A MOVING ELECTRON

As the quantum dot is moved in a semiconductor het-
erostructure, the spatially random electrical potential δV (r0 +
r ′) causes the momentum of the QD-confined electron to
fluctuate. The electron spin can sense these momentum fluctu-
ations via the spin-orbit Hamiltonian (9), and spin decoherence
ensues. The QD motion we consider here is sufficiently slow
so that it does not lead to any orbital excitation. We can focus
on the electron spin dynamics by decoupling the spin space
(with the ground orbital state) from the rest of the Hilbert
space.20,25–28 Specifically, we perform a Schrieffer-Wolff
transformation H̃ = eSHe−S to remove the SO coupling in the
leading order by requiring that [H ′

d + H ′
Z,S] = H ′

SO .20,25,26

For the harmonic confinement U (r ′) = 1
2m∗ω2

dr
′2, the SO

term can be expressed as H ′
SO = iLd (σ · ξ ), where LdA ≡

[H ′
d ,A], ∀A and ξ ≡ (y ′/λ−,x ′/λ+,0) is a vector in the 2DEG

plane; λ± ≡ h̄/(m∗β±) are the spin-orbit lengths. The su-
peroperator Ld satisfies L−1

d π ′ = im∗r ′/h̄, and L−1
d [x ′,y ′] =

−i(h̄m∗ω2
d )−1[(π ′

x ′ + m∗ωcy
′),(π ′

y ′ − m∗ωcx
′)], where EZ =

gμBB is the electron Zeeman splitting (with ωZ ≡ EZ/h̄ being
the Zeeman frequency) and ωc ≡ eB0z/(m∗c) is the cyclotron
frequency. Assuming that the Zeeman energy is much larger
than the SO energy, but much smaller than the orbital excitation
energy (m∗(β2 + α2) � h̄ωZ � h̄ωd ), we get20,25,26

S = iσ · ξ + EZ(n̂ × L−1
d ξ ) · σ . (11)

The transformed Hamiltonian is thus

H ′′ = ih̄∂tS + H ′
d + H ′

Z + [S,δV (r)] + . . . , (12)

in which ih̄∂tS = 1
2gμB	BL · σ with 	BL = ωZωc

ω2
d

n̂ ×
2h̄

gμB
[v0x/λ−, − v0y/λ+,0] being the high order correction of

	B which will be dropped in the following discussion.
The first order term due to the random electric potential is

[S,δV (r)] = 1
2gμB2B × �(r) · σ , in which

�(r) = −e

m∗ω2
d

[εy ′ (r)/λ−,εx ′ (r)/λ+,0], (13)
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where the electric field corresponding to the random potential
is ε(r) = 1

e
∇δV (r) (e > 0). Therefore, the effective spin

Hamiltonian takes the form

Heff = 1
2gμB(B + δB(t)) · σ , (14)

δB(t) = 2B × �(t), (15)

�(t) = 〈ψ |�(r0(t) + r ′)|ψ〉, (16)

where |ψ〉 is the orbital wave function. To further simplify
Eq. (16), we expand the random electric field εi(r) (i = x ′, y ′)
around the average QD position r0,

εi(r) ≈ εi(r0) + ∇εi(r0) · r ′ + 1

2!
∇∇εi(r0) · r ′ · r ′ + . . . .

Due to the adiabatic condition, the electron always re-
mains in the instantaneous ground orbital state ψ(r ′) =
exp(−r ′2/2λ2)/λ

√
π , up to a magnetic phase that

does not affect the calculation of �. Here λ−2 =
h̄−1

√
(m∗ωd )2 + (eBz/2c)2. For small variation of the gradient

of the electric field λ2∇∇εi(r0) � εi(r0) (and keep in mind
that the average of the linear term with a symmetric ground
state wave function vanishes), we retain only the zeroth order
of εi(r), so that

�(t) = −e

m∗ω2
d

[εy ′ (r0(t))/λ−,εx ′ (r0(t))/λ+,0]. (17)

The effective Hamiltonian holds in the lowest order of
spin-orbit interaction and the lowest order of Zeeman splitting
(	BL goes to zero in this limit), and it has two important
features. First, the spatially random electric field ε(r) is now
a temporally random magnetic field for the electron spin
δB(t). This transformation is through the dot motion r0(t)
[ε(r) → ε(t)] and the SO interaction [ε(t) → δB(t)]. Second,
Eqs. (15) shows that there can be only transverse fluctuations in
the effective magnetic field since δB(t) · B = 0 [see Fig. 1(b)].
Due to this transverse nature, there is no pure dephasing at the
lowest order approximation.

IV. NOISE CORRELATION

To calculate the spin relaxation rate of the moving electron,
we need to first obtain the temporal correlation functions
Jij (t) = 〈δBiδBj (t)〉 of the random magnetic field that leads to
the spin decoherence. Recall that the random magnetic field,
given by Eqs. (15) and (17), originates from the spin-orbit
interaction and a random electric field, the latter from disorder
in the substrate material. Thus the temporal correlation of the
magnetic fluctuations comes from the spatial correlation of the
random electric field. Here we choose an isotropic model for
the random electrical field

〈εi(r1)εj (r2)〉 = δij σ
2
ε fc(	r/lε), (18)

where δij is the Kronecker delta function (i,j = x ′ or y ′), σε

is the standard deviation of the electric field, fc(	r/lε) is the
cutoff function as listed in Table I, in which 	r = |r1 − r2|
is the distance between r1 and r2, and lε is the correlation
length of the random field. Here, the average 〈· · · 〉 could be
the average among different segments of the path when the
experiment is done in a straight line, or the average in different

TABLE I. Fourier transformation of different correlations.

fc(r/ lε) fc(|t |/τc) Fc(ω)

1 exp(−r/ lε) exp(−|t |/τc) 2τc/
[
1 + ω2τ 2

c

]
2 1/

[
1 + r2/l2

ε

]
1/

[
1 + t2/τ 2

c

]
πτc exp(−|ω|τc)

3 exp
( − r2/l2

ε

)
exp

( − t2/τ 2
c

) √
πτc exp

( − ω2τ 2
c /4

)

directions when the electron is moved that way. It could also
be the result of uncertainty in the driving agent, so that the
time and the position of the electron do not have a one-to-one
correspondence, and this variation in the electron position at a
particular time gives us a degree of freedom for the averaging
among different paths. Thus in the moving frame

〈εi(r0(t1))εj (r0(t2))〉 = δijσ
2
ε fc(|t |/τc), (19)

where t = t2 − t1 and τc = lε/v0 is the correlation time. The
spatially random electric field in the laboratory frame is now
a temporally random electric field in the moving frame, which
through Eqs. (15) and (17) becomes a temporally random
magnetic field.

It is important to emphasize here that we assume the QD
trajectories cannot be reproduced identically over different
runs, since in realistic situations one cannot drag the electron
exactly along the same path. Most importantly, the moving
electron is an open system, constantly exchanging energy with
the external driving agent that allows the linear motion of
the QD. Since the external driver is assumed to be classical
and Markovian, the electron dynamics is dissipative instead of
unitary. Therefore, the resulting spin flip is not a predictable
unitary spin rotation, and information is lost due to the
exchange with the external reservoir.

The cross product in Eq. (15) and the arbitrary direction for
the applied magnetic field mean that the magnetic correlation
is in general quite complex in the (x ′y ′z) coordinate system we
have used so far. To simplify the relaxation rate calculations,
we first transform to a new XYZ coordinate system, in which
we require that (a) Z is along the direction of the total magnetic
field B and (b) Jij (t) is diagonal in this coordinate system.
The first requirement dictates that δB is always in the XY

plane since δB ⊥ B. This means that δBZ = 0 and JZZ = 0.
The second requirement further dictates that the correlation
functions are diagonal, so that there are only two independent
correlation functions JXX and JYY .

The XYZ coordinate system can be obtained from the
(x ′y ′z) coordinates by a rotation with Euler angles ϕ, θ , and χ .
Specifically, first rotate (x ′y ′z) along the z axis by angle ϕ to
(x ′′y ′′z), so that the y ′′ axis is perpendicular to the direction of
magnetic field n̂. Then rotate along y ′′ by angle θ to (x ′′′y ′′′Z),
so that the Z axis is in the direction n̂. Lastly, rotate along
the Z axis by angle χ . Here angles ϕ and θ give the direction
of the total magnetic field B in the (x ′y ′z) frame, and χ is
determined from the requirement 〈δBX(0)δBY (t)〉 = 0.

After the Euler rotations RZ(χ )Ry ′′ (θ )Rz(ϕ), the field in
the XYZ coordinates is given by δB(t) = −2eB

m∗ω2
d

ζ (t),

ζX = cos χ (Ax+Ay) + sin χ (Bx+By),

ζY = − sin χ (Ax+Ay) + cos χ (Bx+By),
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where Ax = −εx ′ cos φ/λ+, Ay = εy ′ sin φ/λ−, Bx = εx ′ cos
θ sin φ/λ+, By = εy ′ cos θ cos φ/λ−. The condition
〈δBXδBY (t)〉 = 0 simply means that 〈ζXζ Y (t)〉 = 0.
Substituting each component of ζ into the equation and
considering that 〈εiεj (t)〉 = δij σ

2
ε fc(|t |/τc), the Euler angle

χ can be determined as

tan 2χ = 2(λ2
+ − λ2

−)nx ′ny ′nz

λ2+
(
n2

y ′ − n2
zn

2
x ′
) + λ2−

(
n2

x ′ − n2
zn

2
y ′
) , (20)

where n̂ is the direction of the magnetic field.
With the knowledge of all the Euler angles, we can now

calculate 〈ζXζX(t)〉 and 〈ζY ζY (t)〉,

〈ζXζX(t)〉 = 1

�2+
σ 2

ε fc(|t |/τc),

〈ζY ζY (t)〉 = 1

�2−
σ 2

ε fc(|t |/τc),

where the effective SO length is given by

2

�2±
= 1 − n2

x ′

λ2−
+ 1 − n2

y ′

λ2+

±
√(

1 − n2
x ′

λ2−
+ 1 − n2

y ′

λ2+

)2

− 4n2
z′

λ2+λ2−
.

The magnetic correlators are thus

JXX(t) =
[

2eBσε

�+m∗ω2
d

]2

fc(|t |/τc), (21)

JYY (t) =
[

2eBσε

�−m∗ω2
d

]2

fc(|t |/τc), (22)

and JZZ(t) = 0, as mentioned earlier. In the following discus-
sion, we choose the cutoff function fc(|t |/τc) to be exponential
for simplicity (see Appendix A for other types of cutoff
functions).

V. SPIN RELAXATION

Now we study decoherence of the electron spin qubit
due to Hamiltonian (14). The noise correlation time τc is
generally much shorter than the qubit decay time (the inset
of Fig. 2 shows values of τc). In this regime, the dynamics of
the spin qubit are governed by the Bloch equations.29 With
purely transverse fluctuations, the longitudinal and transverse
relaxation rates, 1/T1 and 1/T2, are20,25,29

1

T1
= 2

T2
= J+

XX(ωZ) + J+
YY (ωZ),

(23)

J+
ij (ω) = g2μ2

B

2h̄2

∫ +∞

−∞
〈δBi(0)δBj (t)〉 cos(ωt)dt.

FIG. 2. (Color online) 	B as a function of moving velocity for
GaAs (solid line) QD with β = 300 m/s and Si (dashed line) QD
with α = 5 m/s. The inset gives the bath correlation time τc.

Using Eq. (A2) and its JYY correspondent, we obtain

1

T1
=

[
2eσε

h̄ω2
d

]2
ω2

Zτc

1 + ω2
Zτ 2

c

FSO(θ,φ), (24)

FSO = [(β2 + α2)(1 + cos2 θ ) + 2αβ sin2 θ cos 2φ]. (25)

Here θ and φ are the polar and azimuthal angles of B in the
x ′y ′z′ coordinates.

Before delving into the numerics we first discuss some
qualitative features of the spin relaxation rate here. Firstly,
1/T1 ∝ 1/ω4

d . This strong dependence on the QD confinement
means that this spin relaxation channel can be suppressed by
having strong confinement for the QD. Secondly, 1/T1 ∝ σ 2

ε .
The origin of the static disorder would determine the magni-
tude here. For example, in a modulation doped GaAs structure,
δV ∼ 20 mV30 and lε ∼ 0.1μm,30 so that σε = δV/lε ∼
200 kV/m. On the other hand, for an undoped top-gate struc-
ture in Si,31 there could be disorder from defects in the barrier,
though its characteristic length and strength are unknown
(most probably much smaller than in the modulation doped
structures). Our numerical estimates below use parameters
from the modulation doped structures.

The SO coupling dependence of 1/T1 is contained in FSO

in terms of α and β, the Rashba and Dresselhaus SO coupling
strength. These parameters are materials- and device-specific.
In Si β = 0, while in GaAs βGaAs = 300 m/s is fixed (see
Appendix B). In both materials α is dependent on the particular
quantum well structure and doping.

The dependence on the direction of magnetic field B by
1/T1 is also contained in FSO , in terms of the polar and
azimuthal angles θ and φ. For example, for a perpendicular
field (B ‖ [001]), FSO = 2(β2 + α2). For an in-plane field,
FSO = β2 + α2 + 2αβ cos 2φ. Thus, the decay rate in a
perpendicular field is always larger than if the field is in-plane
(1/T1)perp � (1/T1)in-plane.

In the case of an in-plane magnetic field, the spin relaxation
rate 1/T1 has a sinusoidal dependence on the azimuthal angle
φ of the B field. The minimum rate is 1/T1 = [2eσε(β −
α)/(h̄ω2

d )]2ω2
Zτc/(1 + ω2

Zτ 2
c ) (assuming αβ > 0), when the B

field is along the y axis (φ = π/2). Thus, in the special case
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when α = β and φ = π/2 (or α = −β and φ = 0), 1/T1 = 0.
In other words, since 	B is along the y (x) axis when α = β

(α = −β) [c.f. Eq. (10)], spin relaxation due to QD motion
vanishes if the applied magnetic field B0 is along y for α = β

(or along the x axis for α = −β ). Such special cases (α =
±β) have been discussed previously in the context of spin
relaxation due to phonon emission.20,32 Note that Hamiltonian
H in Eq. (1) conserves the spin component σy(x) for α = β

(α = −β) and B0 ‖ y (x). This spin conservation results in T1

being infinite to all orders in the SO interaction Hamiltonian
(9). Meanwhile, decoherence rate 1/T2 reduces to the next
order contribution of Eq. (4), in the form of pure dephasing.

The dependence on the magnitude of B and velocity v0 by
1/T1 is contained in ω2

Zτc/(1 + ω2
Zτ 2

c ) of Eq. (24). Here we
first estimate the magnitude of 	B [c.f. Eq. (10)]. In Fig. 2, we
plot 	B as a function of velocity |v0| for GaAs and Si QDs.
	B is two orders of magnitude larger in GaAs than in Si, but
still negligible if a strong magnetic field (order of Tesla) is
applied. We discuss the high and low field cases separately as
follows.

A. High field and slow moving limit

For a strong applied magnetic field (B � 1 T) and a
slow moving QD (1 nm/ns < v0 < 100 nm/ns), 	B can be
neglected, and the condition ωZτc � 1 is satisfied. In this
limit, the ωZ (or B) dependence cancels out in Eq. (24). 1/T1

depends linearly on the speed v0 of the QD, and is independent
of the direction of the motion (since 	B is neglected).

We carry out numerical calculations on two representative
QD structures, one in GaAs/Al1−xGaxAs, the other in Si/SiGe.
In both cases, the dot confinement energies are set at h̄ωd =
1 meV and 3 meV, and the applied magnetic field is B0 = 1 T.
For the GaAs QD, we use the bulk g factor g = −0.44, and
the electron effective mass m∗ = 0.067m0, where m0 is the
free electron rest mass. For the Si QD, g = 2, m∗ = 0.19 m0,
and the Rashba SO coupling strength is chosen to be αSi =
5 m/s.33–35 Figure 3 shows the spin relaxation rate 1/T1 as a

FIG. 3. (Color online) Spin relaxation rate 1/T1 as a function of
the QD velocity for GaAs QDs with β = 300 m/s and Si QDs with
α = 5 m/s (with an in-plane magnetic field). Here ωd and δV are in
units of meV and mV.

function of the QD speed in an in-plane B field, when

1

T1

∣∣∣∣
in-plane

= v0

lε

[
2eσε

h̄ω2
d

]2

(β2 + α2 + 2αβ cos 2φ). (26)

For a moving GaAs QD, we find that T1 ranges from μs to
10 ms. For a Si QD, T1 > 1 ms because of the weaker SO
coupling. In terms of the moving distance (v0T1)in-plane, spin
coherence is lost in as short as μm in GaAs and mm in Si for a
dot speed of 10 nm/ns. Clearly, while the spin relaxation times
here are still much longer than those in a 2DEG, the QD motion
does present a serious threat to the coherence of the spin qubit,
especially in modulation doped GaAs heterostructures.

B. Low field and fast moving limit

If the magnetic field is low, and/or the QD motion is fast
(but still adiabatic), so that ωZτc � 1, the spin relaxation
rate is

1

T1
=

[
2eσε

h̄ω2
d

]2

FSO(θ,φ)ω2
Zτc. (27)

If the applied field B0 is much larger than 	B, so that
gμB	B/h̄ � ωZ � τ−1

c , we obtain 1/T1 ∝ 1/v0, indicating
motional narrowing. Whereas, if B0 = 0, only 	B con-
tributes to the spin splitting, with θ = π/2 and β− tan φ =
β+ cot φv . Now ω2

Zτc = (2m∗/h̄)2v0lεFv(φv), where Fv(φv) =
(β2 + α2 + 2αβ cos 2φv). Interestingly, this φv dependence is
completely canceled by that in FSO , so that

1

T1
= v0lε[4eσεm

∗(β2 − α2)/(h̄ωd )2]2. (28)

In other words, when no magnetic field is applied, 1/T1

depends linearly on the speed v0 of the QD motion and is
independent of the direction φv of the motion.

As an example we consider an SAW-confined electron
in GaAs. Here the QD moves fast, at the speed of sound
v0 = vSAW = 3000 m/s, so that the low-field limit ωZτc � 1 is
satisfied even for B0 � 1 T. The electron should still remain in
the ground orbital state, however, while the motion-induced
magnetic field is now 	B ∼ 0.02 T. The spin relaxation
rate should have a weak dependence on the direction of the
motion when B0 and 	B are comparable. The confinement
potential for an electron in an SAW is dependent on the driving
intensity PSAW, with ωd ∼ 1 meV (see Appendix B). Using
parameters for modulation doped samples, lε ∼ 0.1μm and
σε ∼ 200 kV/m, we estimate that 1/T1 ∼ 108 Hz in a strong
in-plane magnetic field (B0 � 	B, β = 300 m/s and α = 0)
and 1/T1 ∼ 105 Hz when B0 = 0. These rates can be reduced
by having a larger ωd (with higher SAW driving intensity
and/or higher frequency), and most importantly, using a less
disordered sample with smaller σε.

VI. DISCUSSION AND CONCLUSION

It is important to emphasize here that the static disorder
potential is not the reservoir by itself. It is the external driver
that energizes the reservoir. The disorder is what allows the
spin to exchange energy with the reservoir: It modifies the
mode functions of the electromagnetic environment. As we
mentioned at the beginning of the paper, we assume that the
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driving agent is classical and Markovian, so that whatever
information goes into the driving agent is lost. In other words,
we have performed a phenomenological study of an open
system where energy is not conserved. This calculation does
not treat the external driving agent in a quantum mechanical
fashion: It only energizes the disorder through motion, but
does not have any internal structure. A definitive and complete
study of the spin-reservoir exchange requires quantization of
the nonequilibrium external driving agent, which is beyond
the scope of the current study. However, we hope this work
could act as a catalyst for further theoretical and experimental
studies on this interesting problem.

As we mentioned before, for confined electron spins
HF-induced dephasing is the most important decoherence
mechanism. For a moving but confined electron spin, however,
this dephasing is suppressed due to motional narrowing:
1/T ∗

2 ∝ 1/v (see Appendix C). For example, in a QD with a 1
meV confinement energy in GaAs, the HF-induced dephasing
time goes up from 30 ns in a stationary QD to > 1 μs when the
dot speed is 20 m/s, while at this speed the spin relaxation due
to SO coupling is already faster: T1 ∼ 1 μs. Thus even with
only a moderate speed of motion, the HF-induced dephasing is
already superseded by the SO-induced relaxation as the main
source of decoherence for the electron spin.

The model calculation presented in this manuscript focuses
on the effect of the momentum scattering of the electron
due to the random electrical potential in the plane of the
quantum dot motion. In our calculation we did not include the
possible effect of a random component of the Rashba spin-orbit
coupling due to the random electric field along the growth
direction.23,24 This choice is a reflection of our assumption
that the growth direction confinement is much stronger than
the in-plane confinement, so that the relative fluctuation of the
spin-orbit coupling should be weak compared to the existing
coupling itself. If this assumption does not hold, the random
field along the growth direction would have to be properly
taken into account as well.

In conclusion, we have studied electron spin relaxation in a
moving QD. The relaxation mechanism we studied originates
from momentum scattering and SO interaction. At the lowest
order, it is a longitudinal relaxation channel, so that T2 = 2T1.
The relaxation rate is inversely proportional to the fourth power
of the confinement energy, so that spin decoherence is faster
for larger quantum dots. For high-field slow motion or very-
low-field fast motion, the decoherence rate increases linearly
with the QD speed. Quantitatively, in modulation-doped GaAs
heterostructures this can be an important spin decoherence
channel, where spin relaxation time can be as short as sub-μs
and as long as ms, depending on the QD confinement strength
and the magnitude of the random potential. For modulation
doped Si/SiGe QDs the spin relaxation rate is generally several
orders of magnitude slower. However, compared to known spin
decoherence channels in Si, this relaxation can still be quite
significant.
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TABLE II. Approximations of Fc(ω) in different limits.

Fc(ω) ωτc � 1 ωτc � 1

1 2/(ω2τc) 2τc

2 πτc exp(−|ω|τc) πτc

3
√

πτc exp
( − ω2τ 2

c /4
) √

πτc

APPENDIX A: EFFECTS OF THE DIFFERENT CUTOFF
FUNCTIONS

The decoherence of the moving electron spin S = σ/2
is governed by the Hamiltonian (14). In general, the noise
correlation time τc is much shorter than the spin decay time. In
this regime, the dynamics and relaxation of the spin is governed
by the Bloch equation.29 With purely transverse fluctuations,
the longitudinal and transverse relaxation rates, 1/T1 and 1/T2,
are25,29

1

T1
= 2

T2
= J+

XX(ωZ) + J+
YY (ωZ), (A1)

where the magnetic correlation function in the frequency

domain is J+
ij (ω) = g2μ2

B

2h̄2

∫ +∞
−∞ 〈δBi(0)δBj (t)〉 cos(ωt)dt . Thus

J+
XX(ω) = 2(ωZeσε)2(

�+m∗ω2
d

)2

∫ +∞

−∞
fc(|t |/τc) cos(ωt)dt, (A2)

and J+
YY (ω) is obtained from Eq. (A2) by substituting �+ →

�−. The relaxation rate is then

1

T1
= 2

[
ωZeσε

h̄ω2
d

]2

FSO(θ,φ)Fc(ωZ), (A3)

where Fc(ω) is the Fourier transform of fc(|t |/τc), as shown
in Table I.

As shown in Table II, different types of cutoff functions
are very similar at the low-field-fast-motion limit, but behave
dramatically differently in the high-field-slow-motion regime.
We thus focus on the latter regime, and plot the relaxation rate
as a function of the QD velocity for different types of corre-
lations in Fig. 4. Overall, 1/T1 is a monotonically increasing
function of the speed of the QD motion, no matter which type
of correlation function is used (in particular, 1/T1 is a linear
function of v0 for the type-1 correlation function). However,
quantitatively the relaxation is completely suppressed for the
type-2 and -3 cutoff functions because of the exponential
suppression from exp(−|ωZ|τc) and exp(−ω2

Zτ 2
c /4) (with a

1 T external field in GaAs and a τc between 1 and 100 ns, we
are in the limit of ωZτc � 1). In these cases, spin decoherence
is probably dominated by higher-order dephasing processes
due to the SO coupling.36

APPENDIX B: MEASURING SPIN-ORBIT COUPLING
STRENGTH USING CARRIERS TRAPPED BY A SAW

A surface acoustic wave (SAW) in GaAs induces a piezo-
electric field in the form of ESAW cos(kSAWx − ωSAWt), where
kSAW = 2π/λSAW is the wave vector, and ωSAW is the SAW
frequency. The troughs of this propagating electric potential
can act as a moving QD for electrons, with a velocity at the
speed of sound. In the moving frame the confinement potential
is approximated as ESAW cos(kSAWx) ≈ ESAW(1 − k2

SAWx2/2)
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FIG. 4. (Color online) Spin relaxation rate 1/T1 as a function of
the velocity in GaAs QDs for different types of correlation functions
(in-plane field B = 1 T, α = 0, and β = 300 m/s).

assuming kSAWx � 1. Therefore, the confinement energy can
be estimated as ωd = 2π

√
ESAW/m∗

e/λSAW ∝
√

PSAW/λSAW,
where m∗

e = 0.067me is the electron effective mass, and PSAW

is the RF power that generates the SAW. According to Ref. 14,
ESAW[eV ] = 2/25 × 10(P [dBm]−23)/20. We can thus estimate
ESAW and ωd , as shown in Table III.

SAW-trapped electrons can help determine the spin-orbit
coupling strength in the underlying material. For example,
in GaAs the electrons and holes that are photoexcited
can be picked up by a SAW. The spatial distribution of
electron spins can then be measured by photolumines-
cence (specifically polarization of the emitted photons) or
magneto-optic Kerr rotation.13,16 In terms of Kerr rotation,
for instance, the spin distribution is expressed as θK (d) =
θ0e

−d/v0T2 cos(ωZd/v0) = θ0e
−d/Ls cos(2πκd), where d is the

distance from the origin where the excitons are generated,
Ls = v0T2 is the spin decay length, and κ = ωZ/(2πv0) is
the spatial precession frequency. In the absence of an applied
magnetic field, the spin precession frequency ωZ = gμB	B/h̄

is completely determined by the motion-induced magnetic
field 	B,

	B = 2m∗

gμB

(β−v0y,β+v0x,0). (B1)

This field has been measured to be sizable (25 mT in Ref. 13
for GaAs), because of the high speed of the QD motion.
Based on Eq. (B1) and κ = ωZ/(2πv0) = gμB	B/(hv0),
one can determine the SO coupling constants by measuring
the spatial precession frequency κ experimentally.16 This

TABLE III. Estimation of the confinement energies for different
driving power.

P (dBm) ESAW (meV) ωd (meV)

3 8 0.5
13 25.3 0.9
23 80 1.6

leads to an upper limit of the Dresselhaus SO coupling
constant at β = 300 m/s, which is consistent with other recent
experiments.16,37,38 However, this β value is smaller than
what was used in earlier theoretical calculations.1,28,39 More
experimental studies would be needed to clarify this issue.

APPENDIX C: MOTIONAL NARROWING OF NUCLEAR
SPIN INDUCED DEPHASING

As we have discussed in the main text, the main decoher-
ence channel for a confined electron spin in a finite field is
the hyperfine interaction induced pure dephasing,18,19 while
spin relaxation of free electrons and holes in semiconductors
is dominated by spin-orbit interaction.22,23 Here we show how
the effect of hyperfine interaction is strongly suppressed by
motional narrowing for a moving electron spin qubit with
controlled motion.

The contact hyperfine interaction for the electron in a
quantum dot can be written as

HHF =
∑

Ai S · I i , (C1)

where Ai = A|ψ(r i)|2 is the hyperfine coupling constant at
lattice site i [with A being the total hyperfine coupling strength
and ψ(r) the electron envelope function in the quantum dot].
In GaAs, for example, A = 92 μeV, S is the electron spin,
and I i is the nuclear spin at lattice site i. Since nuclear spin
evolves much more slowly compared to the electron spin, we
can treat it semiclassically as an Overhauser field:

BN =
∑

Ai I i . (C2)

In the presence of an external magnetic field along the z

direction, we can focus on the z component of the Overhauser
field BNz (let gμB = 1):

H = (B0 + BNz)Sz. (C3)

Since nuclear spins are randomly oriented in a sample at
any reasonable experimental temperature, the electron spin
would experience a fluctuating magnetic field as it moves, and
undergo dephasing accordingly in the off-diagonal element of
the electron spin density matrix: ρ↑↓(t) = ρ↑↓(0)e−δφ(t). Here
the phase diffusion is given by

δφ(t) = 1

2h̄2

∫ ∞

0
dω SBN

(ω)

(
sin ωt/2

ω/2

)2

. (C4)

Here the nuclear field spectral density SBN
(ω) is

SBN
(ω) = 1

2π

∫ ∞

−∞
dteiωt 〈BNz(t)BNz(0)〉.

For a moving quantum dot in GaAs with a trajectory r(t) =
r(0) + vt , and assuming that any two different nuclear spins
are completely uncorrelated, we find

〈BNz(t)BNz〉 = 5

4
A2�

∫
d R |ψ(R − r(t))|2|ψ(R − r(0))|2,

where we have used 〈I 2
z 〉 = 5/4 for GaAs, and � is the volume

of a lattice unit cell. For simplicity, we calculate the integral
using a Gaussian envelope wave function for the electron with
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FIG. 5. (Color online) Spin dephasing time T ∗
2 as a function of

the speed v of a moving GaAs QD. The horizontal line indicates a
dephasing time of 1 μs.

radius a, and obtain the spectral density as

SBN
(ω) = 5A2

16π2

�

a3

a

v
e−( ωa

v
)2/2, (C5)

where a is the radius of the quantum dot, and v is the speed
of QD motion. Now the electron spin phase diffusion can be
calculated:

δφ(t) = 5A2

16π2h̄2

�

a3

at

v

∫ ∞

0
dθe−2(a/vt)2θ2

(
sin θ

θ

)2

. (C6)

The integral here can be evaluated numerically given dot radius
a and dot speed v. In Fig. 5 we plot the spin dephasing time

T ∗
2 as a function of the speed v of a moving GaAs QD. Here

T ∗
2 is defined according to the equality δφ(T ∗

2 ) = 1. When
the motion speed goes to zero, we obtain the inhomogeneous
broadening for a fixed QD, with dephasing time between 10
and 100 ns. When the speed v is large (>10 m/s), the dephasing
becomes suppressed. The electron samples a larger number of
nuclear spins as it moves faster, and the effect of the random
nuclear field averages out, which is a typical manifestation
of the motional narrowing effect. A close inspection of the
high-speed results in Fig. 5 and Eq. (C6) shows that for
large v, the dephasing time T ∗

2 due to hyperfine interaction
is proportional to v, so the dephasing rate is proportional
to 1/v, while Eq. (24) shows that the spin relaxation rate
due to spin-orbit interaction is proportional to v. Comparing
numerical results given in Figs. 3 and 5, we can see that in
GaAs, when the dot speed exceeds 10 m/s to 100 m/s, the
nuclear spin induced dephasing becomes less important than
the spin-orbit and random potential induced relaxation.

In the discussion here about nuclear spin induced de-
phasing, we have considered only the lowest order effect
of the nuclear spins, i.e., the inhomogeneous broadening
induced by random but static nuclear polarization. We have
not considered pure dephasing due to nuclear spin dynamics.
How the nuclear spin dynamics is affected by the dot
motion, and how the dynamics would feed back into the
electron spin coherence/decoherence, remain open theoreti-
cal questions. Qualitatively, nuclear spin dynamics induced
electron spin decoherence is generally slower than dephasing
due to inhomogeneous broadening. Thus the crossover we
study here should be a reliable indication of the overall
competition between hyperfine interaction and spin-orbit
interaction.

*peihaohu@buffalo.edu
1R. Hanson, L. P. Kouwenhoven, J. R. Petta, S. Tarucha, and L. M.
K. Vandersypen, Rev. Mod. Phys. 79, 1217 (2007).

2J. J. L. Morton, D. R. McCamey, M. A. Eriksson, and S. A. Lyon,
Nature (London) 479, 345 (2011).

3D. Loss and D. P. DiVincenzo, Phys. Rev. A 57, 120 (1998).
4A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D.
Loss, M. Sherwin, and A. Small, Phys. Rev. Lett. 83, 4204 (1999).

5X. Hu, Y.-x. Liu, and F. Nori, Phys. Rev. B 86, 035314 (2012).
6M. Friesen, A. Biswas, X. Hu, and D. Lidar, Phys. Rev. Lett. 98,
230503 (2007).

7C. H. W. Barnes, J. M. Shilton, and A. M. Robinson, Phys. Rev. B
62, 8410 (2000).

8A. J. Skinner, M. E. Davenport, and B. E. Kane, Phys. Rev. Lett.
90, 087901 (2003).

9A. D. Greentree, J. H. Cole, A. R. Hamilton, and L. C. L. Hollenberg,
Phys. Rev. B 70, 235317 (2004).

10J. M. Taylor, H. A. Engel, W. Dur, A. Yacoby, C. M. Marcus,
P. Zoller, and M. D. Lukin, Nat. Phys. 1, 177 (2005).

11K. D. Petersson, L. W. McFaul, M. D. Schroer, M. Jung, J. M.
Taylor, A. A. Houck, and J. R. Petta, Nature (London) 490, 380
(2012).

12S. Oh, L.-A. Wu, Y.-P. Shim, J. Fei, M. Friesen, and X. Hu, Phys.
Rev. A 84, 022330 (2011).

13J. A. H. Stotz, R. Hey, P. V. Santos, and K. H. Ploog, Nat. Mater. 4,
585 (2005).

14S. Hermelin, S. Takada, M. Yamamoto, S. Tarucha, A. D. Wieck,
L. Saminadayar, C. Bauerle, and T. Meunier, Nature (London) 477,
435 (2011).

15R. P. G. McNeil, M. Kataoka, C. J. B. Ford, C. H. W. Barnes,
D. Anderson, G. A. C. Jones, I. Farrer, and D. A. Ritchie, Nature
(London) 477, 439 (2011).

16H. Sanada, T. Sogawa, H. Gotoh, K. Onomitsu, M. Kohda, J. Nitta,
and P. V. Santos, Phys. Rev. Lett. 106, 216602 (2011).

17M. Yamamoto, S. Takada, C. Bauerle, K. Watanabe, A. D. Wieck,
and S. Tarucha, Nat. Nanotech. 7, 247 (2012).

18L. Cywinski, W. M. Witzel, and S. Das Sarma, Phys. Rev. Lett. 102,
057601 (2009).

19H. Bluhm, S. Foletti, I. Neder, M. Rudner, D. Mahalu, V. Umansky,
and A. Yacoby, Nat. Phys. 7, 109 (2011).

20V. N. Golovach, A. Khaetskii, and D. Loss, Phys. Rev. Lett. 93,
016601 (2004).

21F. Meier and B. P. Zakharchenia, Optical Orientation (North-
Holland, Amsterdam, 1984).

22I. Zutic, J. Fabian, and S. Das Sarma, Rev. Mod. Phys. 76, 323
(2004).

23V. K. Dugaev, E. Y. Sherman, V. I. Ivanov, and J. Barnas, Phys.
Rev. B 80, 081301 (2009).

075301-8

http://dx.doi.org/10.1103/RevModPhys.79.1217
http://dx.doi.org/10.1038/nature10681
http://dx.doi.org/10.1103/PhysRevA.57.120
http://dx.doi.org/10.1103/PhysRevLett.83.4204
http://dx.doi.org/10.1103/PhysRevB.86.035314
http://dx.doi.org/10.1103/PhysRevLett.98.230503
http://dx.doi.org/10.1103/PhysRevLett.98.230503
http://dx.doi.org/10.1103/PhysRevB.62.8410
http://dx.doi.org/10.1103/PhysRevB.62.8410
http://dx.doi.org/10.1103/PhysRevLett.90.087901
http://dx.doi.org/10.1103/PhysRevLett.90.087901
http://dx.doi.org/10.1103/PhysRevB.70.235317
http://dx.doi.org/10.1038/nphys174
http://dx.doi.org/10.1038/nature11559
http://dx.doi.org/10.1038/nature11559
http://dx.doi.org/10.1103/PhysRevA.84.022330
http://dx.doi.org/10.1103/PhysRevA.84.022330
http://dx.doi.org/10.1038/nmat1430
http://dx.doi.org/10.1038/nmat1430
http://dx.doi.org/10.1038/nature10416
http://dx.doi.org/10.1038/nature10416
http://dx.doi.org/10.1038/nature10444
http://dx.doi.org/10.1038/nature10444
http://dx.doi.org/10.1103/PhysRevLett.106.216602
http://dx.doi.org/10.1038/nnano.2012.28
http://dx.doi.org/10.1103/PhysRevLett.102.057601
http://dx.doi.org/10.1103/PhysRevLett.102.057601
http://dx.doi.org/10.1038/nphys1856
http://dx.doi.org/10.1103/PhysRevLett.93.016601
http://dx.doi.org/10.1103/PhysRevLett.93.016601
http://dx.doi.org/10.1103/RevModPhys.76.323
http://dx.doi.org/10.1103/RevModPhys.76.323
http://dx.doi.org/10.1103/PhysRevB.80.081301
http://dx.doi.org/10.1103/PhysRevB.80.081301


SPIN QUBIT RELAXATION IN A MOVING QUANTUM DOT PHYSICAL REVIEW B 88, 075301 (2013)

24M. M. Glazov, E. Y. Sherman, and V. K. Dugaev, Physica E 42,
2157 (2010).

25M. Borhani, V. N. Golovach, and D. Loss, Phys. Rev. B 73, 155311
(2006).

26V. N. Golovach, M. Borhani, and D. Loss, Phys. Rev. B 74, 165319
(2006).

27I. L. Aleiner and V. I. Fal’ko, Phys. Rev. Lett. 87, 256801 (2001).
28P. Stano and J. Fabian, Phys. Rev. Lett. 96, 186602 (2006).
29C. P. Slichter, Principles of Magnetic Resonance (Springer-Verlag,

Berlin, 1980).
30J. A. Nixon and J. H. Davies, Phys. Rev. B 41, 7929 (1990).
31B. M. Maune, M. G. Borselli, B. Huang, T. D. Ladd, P. W. Deelman,

K. S. Holabird, A. A. Kiselev, I. Alvarado-Rodriguez, R. S. Ross,
A. E. Schmitz et al., Nature (London) 481, 344 (2012).

32J. Schliemann, J. C. Egues, and D. Loss, Phys. Rev. Lett. 90, 146801
(2003).

33Z. Wilamowski, W. Jantsch, H. Malissa, and U. Rössler, Phys. Rev.
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