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Doppler effect induced spin 
relaxation boom
Xinyu Zhao1, Peihao Huang1,2,3 & Xuedong Hu1

We study an electron spin qubit confined in a moving quantum dot (QD), with our attention on both 
spin relaxation, and the product of spin relaxation, the emitted phonons. We find that Doppler effect 
leads to several interesting phenomena. In particular, spin relaxation rate peaks when the QD motion 
is in the transonic regime, which we term a spin relaxation boom in analogy to the classical sonic boom. 
This peak indicates that a moving spin qubit may have even lower relaxation rate than a static qubit, 
pointing at the possibility of coherence-preserving transport for a spin qubit. We also find that the 
emitted phonons become strongly directional and narrow in their frequency range as the qubit reaches 
the supersonic regime, similar to Cherenkov radiation. In other words, fast moving excited spin qubits 
can act as a source of non-classical phonons. Compared to classical Cherenkov radiation, we show 
that quantum dot confinement produces a small but important correction on the Cherenkov angle. 
Taking together, these results have important implications to both spin-based quantum information 
processing and coherent phonon dynamics in semiconductor nanostructures.

The allure of ultra-powerful quantum computers has pushed for ever more precise knowledge of quantum coher-
ent dynamics in semiconductor and superconductor nanostructures. The acquired understanding may also lead 
to technological applications now, as best illustrated by extremely sensitive magnetic field sensors made from 
Nitrogen-Vacancy centers in diamond. Electron spin qubit is a promising candidate for realizing quantum com-
puting because of its long coherence time1–4. It has attracted extensive research interests over the past decade, 
with studies mostly focusing on the fabrication and manipulation of spin qubits confined in a fixed quantum dot 
or dopant ion5–7.

In a large-scale quantum computer, quantum information needs to be transferred over finite distances fre-
quently. For electron-spin-based qubits, one straightforward way to achieve such communication is to move the 
confined electrons themselves directly. There are several proposed schemes on how to move the spin qubits effi-
ciently8–17, where a controlled motion of the confined electron can be induced by either varying gate voltages or a 
surface acoustic wave (SAW). However, introducing this orbital (albeit controlled) dynamics inevitably weakens 
the orbital quantization that gives rise to the long electron spin coherence times1–4. Considering that spin-orbit 
interaction (SOI) together with electron-phonon interaction is the dominant spin relaxation channel in a fixed 
quantum dot1, and SOI is the main reason for spin mixing and relaxation in bulk semiconductors18, study spin 
relaxation for a moving electron spin qubit is crucial in establishing the viability of this spin communication 
approach.

A moving spin qubit in the excited spin state can be thought of as a phonon source. An examination of its 
relaxation should also include analysis of the features of the emitted phonon. Classically, such a moving source of 
a wave experiences the Doppler effect, which refers to a frequency shift of the emitted wave due to relative motion 
between the source and an observer. Doppler effect leads to a range of interesting physical phenomena. A com-
monly observed example is when an observer hears different pitches from the horn of an approaching or a depart-
ing vehicle. When the speed of the source is larger than the speed of the waves it produces, a directional shock 
wave (Cherenkov effect) can be observed, as in the wake of a speeding boat, the sonic boom from a supersonic 
airplane, and the Cherenkov radiation from a fast-moving charge in a material with high refraction index19–22 (as 
depicted in Fig. 1). An intriguing question here is whether these classical features would translate into a quantum 
system of a moving but confined electron, and how they may be modified by quantum mechanics. If the emitted 
phonons indeed have strongly peaked directional and spectral properties, the moving electron spins could poten-
tially be candidates as a source of non-classical phonons.
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Here we study how the motion of a spin qubit modifies its relaxation due to SOI and electron-phonon inter-
action23–26. We identify different regimes of quantum dot moving velocity where we find analogues of Doppler 
effect, sonic boom in the spin relaxation, Cherenkov radiation, and the associated phonon emission. Specifically, 
we find that when the quantum dot (QD) moves with a speed lower than the speed of sound, the energy of the 
emitted phonon during spin relaxation is dependent on the direction of emission, similar to the Doppler effect. 
When the QD moves faster than the speed of sound, the dominant contributions to spin relaxation come from 
phonons emitted along certain directions, similar to the classical Cherenkov effect, but with quantum dot con-
finement for the electron making a correction to the Cherenkov angle. In the transonic regime, we observe a peak 
in spin relaxation rate, which we term as a spin relaxation boom in analogy to the classical sonic boom. In addi-
tion, our study indicates that the emitted phonon by the moving spin qubit is highly directional and narrow in 
its frequency distribution. Thus a stream of such excited spin qubits could act as a source for highly non-classical 
phonons in a semiconductor nanostructure.

Results
Model and solution. The system we consider is a single electron confined in a moving QD formed from a 
two-dimensional electron gas (2DEG), as is shown in Fig. 1. The qubit (electron) is moved at a constant speed v0, 
presumably achieved by programming the gates or using the surface acoustic waves. Conceptually, to ensure such 
a uniform linear motion for the electron, there has to be an external driving force, which we treat as classical. The 
total Hamiltonian17,23,25 is given by

= + + + .H H H H U r( ) (1)d Z SO ph

Here = + −π
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is the 2D momentum operator of the electron, and m* is the effective mass of the electron. The motion we consid-
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spin-orbit (SO) interaction, where β± =  β ±  α give the SO coupling strength, with α and β being the strengths of 
Rashba27 and Dresselhaous28 SO interaction, respectively. Lastly, the electron-phonon interaction is given by23,25,29
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where †bq j and bq j are the creation and annihilation operators for an acoustic phonon with wave vector =q q q( , )z  
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ment along the z direction, with d the characteristic width of the quantum well. We take into account both piezo-
electric coupling (βq j) and deformation potential (Ξ q j) coupling in the electron-phonon interaction29,30. By 

Figure 1. A schematic diagram of a moving spin qubit interacting with phonon reservoir and the resultant 
Doppler effect in the three cases. 
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performing a Schrieffer-Wolff transformation to remove the SO coupling term to the first order17,23–25,31, the 
effective spin Hamiltonian can be obtained as

µ δ σ= + ∆ + ⋅H g B B B t1
2

[ ( )] , (3)eff B 0

where β β∆ =
µ − +
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 is a motion induced constant magnetic field for the spin, and 
δ = × ΩB t B t( ) 2 ( )0  is the motion-induced magnetic noise from the phonons, where Ω(t) originates from the 
electric noise due to the phonons
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Here ψ  is the instantaneous orbital ground state of the QD, so that ψ ψ⋅ = ⋅ λ−iq r iq r t eexp( ) exp[ ( )] q
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where λ ω= +− − ⁎m eB c( ) ( /2 )d z
2 1 2 2 2  is the total confinement length of the QD.

With the effective Hamiltonian (3), and assuming the phonons are in thermal equilibrium, the spin relaxation 
rate can be obtained as
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are the cutoff functions in the z direction and the xy plane, respectively, due to the quantum dot confinement 
potential. The constant β=
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 gives the total strength of the two types of electron-phonon inter-

action, namely the deformation potential coupling and the piezoelectric coupling. vj are the speed of sound with 
branch index j. = − −N e( 1)w

w T/ 1
z

z  is the number of phonons with frequency wz at thermal equilibrium. The 
factor FSO in equation (6) describes the angular dependence of the magnetic noise on the direction of the applied 
field due to SOI. Its explicit expression is FSO =  (β2 +  α2)(1 +  cos2 θB) +  2αβ sin2 θBcos(2ϕB). Lastly, the kernel 
function f, and therefore the spin relaxation rate 1/T1, depends on a direction-dependent “shifted frequency” for 
the phonons,

ω ξ= −w /(1 ) (8)z Z j

where ξ θ φ φ= −sin cos( )j
v
v v

j

0 . Clearly, this frequency is different from the spin Zeeman splitting 

ω µ= g B /Z B 0 , because of the Doppler shift for the phonon field experienced by the moving spin qubit. It is 
worth noting that equation (8) is always combined with a condition ξ− >1 0j  to avoid negative “shifted fre-
quency” which is unphysical. Actually, a detailed mathematical derivation in section Methods also proves that 
those negative frequencies are indeed excluded from the integration in equation (5).

In this calculation, spin relaxation is caused by the interaction between the electron and the lattice phonons 
from all directions. The double integration over θ and φ in equation (5) is from the summation ∑q j over all the 
phonon wave vectors q in equation (2). The kernel function θ φf w( , , )z  thus describes contributions by phonons 
emitted or absorbed in the infinitesimal solid angle dθdφ around (θ, φ).

In our numerical calculations, we use typical parameters in a GaAs QD. There is one branch of longitudinal 
acoustic (LA) phonons, and two branches of transverse acoustic (TA) phonons. v1 =  4730 m/s is the sound speed 
of the LA phonons, while v2 =  v3 =  3350 m/s are the sound speed of the TA phonons. The strength of the deforma-
tion potential is Ξ 1 =  6.7 eV. The strengths of the piezoelectric interaction are β θ π κ θ θ= −h( ) 3 2 sin cos1 14

1 2 , 
β θ π κ θ= −h( ) 2 sin 22 14

1 , and β θ π κ θ= −−h( ) 2 (3 cos 1)3 14
1 2 , where = − .h 0 1614  C/m2 and κ =  13.123.

With the help of the analytical expression of the relaxation rate, we could examine the angular characteristics 
of the emitted phonons in term of the kernel function f and the total relaxation rate 1/T1 for the moving spin 
qubit.

Directional Phonon Emission: Doppler effect and Cherenkov Radiation. In this subsection we 
analyze the angular dependence of the phonon emission (in terms of the kernel function f  ) from the relaxing spin 
qubit in different regimes of QD moving speed. In particular, in the subsonic regime, we find the Doppler effect, 
in which phonons emitted in different directions have different frequencies. In the transonic regime we find the 
formation of a shock wave front and its bifurcation into two directions as the QD speed passes the speed of sound. 
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Lastly in the supersonic regime we find a phonon analog of Cherenkov radiation, and identify a quantum dot 
confinement induced correction in the Cherenkov angle.

Doppler effect. When a QD with one confined spin qubit moves relative to the lattice with a speed smaller 
than the speed of sound, the frequency of the phonon emitted or absorbed is shifted with a Doppler factor 

ξ−
1

1 j

, 

as indicated in equation (8). In particular, in the forward direction (φ φ− = 0v  and θ =  π/2), an emitted phonon 
has an increased frequency ωZ/(1 −  v0/vj), while in the backward direction the phonon frequency is reduced to ωZ/
(1 +  v0/vj). These shifts are exactly as one would find in the classical Doppler effect.

It may seem puzzling that the energy quantum carried by the emitted phonon is not the same as the Zeeman 
splitting of the spin qubit. The discrepancy here is because of the fact that the moving quantum dot is an open 
system. It is driven by a classical force that comes from either programmed gate potential or the large number of 
phonons in an SAW. The excess or shortage of energy in the spin relaxation is absorbed/added by this classical 
“reservoir”.

Breaking the sound barrier. If the moving spin qubit can be regarded as a classical phonon emitter (or 
sound emitter), the transition from subsonic regime to supersonic regime (the transonic regime) for the moving 
spin qubit would be well represented by Fig. 1(b–d). At low speeds, presented in panel (b), there is no strongly 
directional emission. When the QD moving velocity becomes equal to the sound velocity, as indicated in panel 
(c), a single forward-propagating shock wave front is formed. When the moving velocity is larger than the crit-
ical velocity (d), the single shock wave front splits into two (We only plot the cross section in the xy plane. In 
three-dimension the wave front is conical).

The moving spin qubit is a highly quantum mechanical object, emitting or absorbing only a single phonon at a 
time. Nevertheless, we find that it displays a behavior qualitatively similar to a classical phonon source. For exam-
ple, Fig. 2(a) shows the QD speed v0 and angle φ dependence of the kernel function f qualitatively (we have chosen 
θ =  π/2 to maximize f). When v0 <  v1, the angular distribution is well described by SOI, with a pretty strong but 
smooth sin3θcos2φ angular dependence for f, so that emission along directions perpendicular to the direction of 
motion is suppressed, while emissions along all other directions are allowed. When v0 ≈  v1, the angular distri-
bution in the xy plane rapidly becomes concentrated around φ =  0°, as φ =  0° is a singularity of wz when v0 =  v1. 
Finally, when v0 >  v1, the angular distribution in the xy plane is split into two branches. Each branch corresponds 
to an angle φ that gives the peak value of the kernel function f. As the moving velocity increases from the subsonic 
regime to the supersonic regime, the kernel function rapidly concentrates into the two bifurcating angles.

The transitions through the transonic regime can be more quantitatively seen from the cross sections given in 
Fig. 2(b). For v0 =  2000 m/s, which is subsonic, the kernel function is smooth and has a small magnitude (notice 
the vertical scale is logarithmic). At v0 =  4560 m/s, the speed of sound for the LA phonons, a large peak appears 
at φ =  0. The logarithmic scale has made this peak appears to be broader than it really is (the scale is necessary 
for us to see the subsonic value of f  ). The two side peaks are the shock waves produced by the TA phonons, for 
whom the moving dot is already supersonic. Lastly, at v0 =  6000 m/s, the moving qubit is supersonic with respect 
to both LA and TA phonons. Thus two sets of shock wave peaks appear for the kernel function in this case. For 
the parameters used in this paper, deformation potential coupling to LA phonons provides the dominant spin 
relaxation channel. Therefore the critical velocity for obvious Cherenkov effect is approximately v1. For a case 
when piezoelectric potential is dominant or when both interactions are important, there would be two critical 
velocities, determined by the two types of phonons.

Figure 2. (a) Angular distribution (azimuthal angle φ) of the kernel function θ φ= πf ( , )
2

 for different moving 
velocity v0. Here the polar angle θ is fixed at θ = π

2
. The parameters are B0 =  1 T, ωd =  10.1 meV, d =  20 nm, 

φv =  0. (b) Three cross-sections of (a) at different velocities. The red solid line has a velocity below the speed of 
the transverse acoustic phonons; the green dashed line has a velocity at the speed of longitudinal acoustic 
phonons, and the blue dotted line has a velocity above the speed of longitudinal phonons.
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The Cherenkov effect and its quantum correction. As we have discussed in the Introduction, 
Cherenkov radiation is a well known effect in classical physics. It refers to the formation of shock wave fronts 
when a wave-emitting source moves faster than the speed of the emitted wave in a media. Examples include the 
wake of a fast-moving boat, and directional photons emitted by a moving charge in a media of high refraction 
index when the charge moves faster than the phase speed of light in the media. Since a moving spin qubit in the 
excited state acts as a source of sound waves, we are inspired to examine whether Cherenkov effect also exists in a 
QD that moves faster than the speed of sound.

Our analysis of phonon angular distribution starts from the kernel function f for the spin relaxation rate in 
equation (6). For a gated QD in a semiconductor nanostructure (such as a gated depletion quantum dot from 
a two-dimensional electron gas), the confinement along the z direction (growth direction) is generally much 
stronger than those in the xy directions (in-plane directions). Consequently, in a spin relaxation process induced 
by spin-orbit interaction and electron-phonon coupling, phonons are mostly emitted in the xy plane. In the 
following qualitative discussion we will thus focus on the phonon emission in the xy plane with θ =  π/2 (in our 
numerical calculation we do include phonons in all directions), when the kernel function f from equation (6) is 
reduced to

∑
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+

⁎f F
m

N

v
w F C

( )

(2 1)

8
cos ,

(9)j

Z SO

d

w

c j
z xy ep2 2 2 5
4 2z

where ω ξ= −w /(1 )z Z j  and ξ φ= cosj
v
v j

0  (the azimuthal direction of the quantum dot motion has been chosen 

to be φv =  0). Now f depends on the phonon frequency wz as λ∝ −f w w vexp( /2 )z z
6 2 2

1
2  when we limit our consid-

eration to the deformation potential interaction with LA phonons. The discussion is similar when piezoelectric 
interaction dominates. Clearly, the kernel function f is strongly peaked, with the peak phonon emission probabil-
ity at frequency

λ
= .w v6
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Recall that the phonon frequency and phonon direction are related because of Doppler shift, 
ω φ= −w v v/(1 cos / )z Z 0 1 , it is straightforward to obtain the peak phonon radiation angle at
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In other words, the angular distribution of the emitted phonon from a moving excited spin qubit is not uni-
form, but has peaks at the angles φ± ′C. Such a strong angular concentration is a typical characteristic of the 
Cherenkov effect.

In Fig. 3, we plot the kernel function f as a function of polar angle θ (with growth direction defined as θ =  0) 
and azimuthal angle φ when the QD speed is v0 =  6000 m/s, larger than the speed of sound for both LA (v1) and 
TA (v2) phonons. Clearly, the phonons making dominant contribution to spin relaxation are concentrated in two 
particular directions in the xy plane (at φ ≈  ± 40° and θ ≈  90°. These peaks come from the emission of LA phon-
ons. Two much smaller peaks appear near φ ≈  ± 60° and θ ≈  90°), which originates from piezoelectric interaction 
with TA phonons. The strongly peaked angular distribution features bear a strong resemblance to the classical 
Cherenkov radiation.

With the parameters used in Fig. 3, equation (11) predicts a theoretical Cherenkov angle of φ ′ ≈ 40C . This is 
consistent with the numerical results [obtained from equation (6)] shown in Fig. 3, where the peak in the kernel 

Figure 3. (a) Angular distribution of the kernel function f(θ, φ). (b) Contour plot of f(θ, φ) in a small region. 
The parameters are chosen as v0 =  6000 m/s, B0 =  1 T, ωd =  0.01 eV, d =  20 nm, φv =  0.
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function f for LA phonons appears at φ ≈  40° for θ =  90°. The peak value of f occurs at = . ×w 8 9 10z
11 s−1 when 

the Zeeman angular frequency ωZ is 3.87 ×  1010 s−1 (at B =  1 T). With ωw /z Z ≈  23, the phonon energy has been 
Doppler-shifted greatly, from about 25 μeV for ħωZ to nearly 600 μeV for ħwz.

The Cherenkov angle predicted by equation (11) is different from the prediction by classical theory. In a clas-
sical theory, based on the mechanism shown in Fig. 1, the Cherenkov angle in the xy-plane (θ =  90°) should be

φ =








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v
v

arccos ,
(12)

C
j

0

which comes out to be about 38° for LA phonons, slightly smaller than our analytical and numerical results. 
Equation (11) shows that a complete quantum calculation adds a correction term − ω λ

v6
Z

0
 to the classical 

Cherenkov angle. This correction is caused by the quantum dot confinement in the form of the cutoff functions 
Fz and Fxy in equation (7). Without the cutoff functions, namely if we set Fxy =  Fz =  1, the kernel function f would 
become monotonic ∝f wz

6. In the meantime, the classical Cherenkov radiation at φ = ( )arccosC
v

v
j

0
 would make 

ξj =  1, so that the corresponding frequency of the emitted phonons is at the unphysical limit of wz →  ∞ . The 
presence of the quantum dot confinement, in the form of the cutoff functions, removes this unphysical divergence 
of phonon frequency, while still preserving a highly directional/anisotropic phonon emission probability distri-
bution. Therefore, even though the modification to the Cherenkov angle is quite small (from 38° classically to 40° 
quantum mechanically), the inclusion of quantum dot confinement in the calculation is crucial for a physically 
sound description.

In short, the results presented in Fig. 3 demonstrate a quantum-corrected Cherenkov radiation of phonons 
from a moving spin qubit. The quantum dot confinement for the QD suppresses the electron interaction with 
higher-energy phonons, leading to a small but important correction to the Cherenkov radiation angle and a sig-
nificant modification to the energy of the radiated phonons.

Overall, our detailed analysis of the angular distribution of the emitted phonons by the moving spin qubit 
shows that Doppler effect plays a significant role in shaping the characteristics of these phonons. In the subsonic 
regime, they are modified from when the qubit is fixed in the lattice, but the changes are quantitative instead of 
qualitative. As the moving speed of the qubit exceeds the speed of sound, these phonons become highly direc-
tional and narrow in their frequency distribution.

Spin Relaxation in a Moving Quantum Dot. In the last subsection we have examined the angular behav-
ior of phonon emission in the relaxation of a moving spin qubit. In this subsection we focus on the integrated 
effect of QD motion on spin relaxation. We are particularly interested in how spin relaxation varies with the speed 
of the QD motion and the applied magnetic field.

Classically, the drag force on an aircraft increases sharply when the aircraft velocity approaches the sound 
barrier. This is the so-called sonic boom. We find a similar behavior in the relaxation rate for a moving spin qubit. 
In Fig. 4, we plot the spin relaxation rate 1/T1 as a function of the QD speed v0. The curve of the total relaxation 
rate (black, dot-dashed) peaks at the two sound barriers due to TA (at v2 =  v3) and LA phonons (at v1). Each 
peak for a single type of phonons (for example, the blue curve in Fig. 4(a) for the TA phonons) is similar to the 
Prandtl-Glauert singularity for the classical “sonic boom”. Quantum dot confinement modifies these peaks by 
eliminating the singularities and broadening them. The peak positions are also shifted downward from v1 and v2. 

Figure 4. Spin relaxation rate 1/T1 as a function of moving velocity v0. The red (solid), green (dashed), blue 
(dotted), and black (dot-dashed) lines represent the deformation, the longitudinal piezoelectric, the transverse 
piezoelectric and the total spin relaxation rate respectively. The magnetic fields are B0 =  1.5 T for (a) and 
B0 =  3.5 T for (b). The other parameters are chosen as ωd =  1.1 meV, d =  20 nm, φv =  0.
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Accordingly, we name these peaks “spin-relaxation boom”. The total relaxation is a simple sum of contributions 
from LA and TA phonons.

In most cases, “spin relaxation boom” caused by LA phonons is the stronger peak, as shown in Figs 2 and 4(a). 
However, in other regimes (such as in a high magnetic field when phonon bottleneck effect32,33 starts to affect 
electron-phonon coupling strength), “spin relaxation boom” caused by TA phonons can be dominant, as shown in 
Fig. 4(b). Experimentally, “spin relaxation boom” caused by TA phonons may be easier to observe since it happens 
at a lower moving speed. By using the interference of two orthogonal SAW beams in GaAs15, for example, the 
moving speed of the electrons can reach 4.14 ×  103 m/s, faster than the speed of bulk TA phonons in GaAs. This 
would allow direct observation of “spin relaxation boom” within current experimental technology.

One implication of the spin relaxation booms presented above is that a spin qubit can relax slower when the 
QD moves faster, as evidenced by the curves in Fig. 4. In Fig. 5(a) we give a more comprehensive view of this 
velocity dependence, plotting the spin relaxation rate as a function of the moving velocity v0 and the magnetic 
field B0. When the external magnetic field is relatively weak (e.g., B0 ≈  2 T), the relaxation rate increases with the 
moving velocity. But when the external magnetic field is strong (e.g., B0 >  5 T), the relaxation rate becomes a 
decreasing function of the moving velocity. This somewhat counterintuitive feature is another consequence of the 
Doppler effect, where the Doppler-shifted frequency wz for the emitted phonon depends on both the magnetic 
field B0 and the moving velocity v0. When the moving is fast, the Doppler effect is strong, shifting the phonon 
frequency into the range where phonon bottleneck effect suppresses electron-phonon interaction. The “shifted 
frequency” wz also depends on the magnetic field B0. In a strong field, the Zeeman frequency ωZ is already close 
to the bottleneck regime. It is thus much easier for Doppler effect to shift the frequency higher and suppress the 
phonon coupling.

Our observation here indicates that a moving spin qubit could have a lower relaxation rate than a static spin 
qubit. While “motional narrowing” is a common occurrence in spin resonance experiments34, suppressing deco-
herence by moving a spin qubit faster in a nanostructure setting is still an intriguing proposition. In Fig. 5(b), we 
plot the partial derivative of 1/T1 with respect to v0. Here the white region has ∂ ∂ <T v(1/ )/ 01 0 , indicating where 
spin relaxation can be suppressed by increasing the moving velocity. On the other hand, in the yellow region 
∂ ∂ >T v(1/ )/ 01 0 , and relaxation becomes faster when the spin qubit moves faster. In short, the motional narrow-
ing effect here shows the possibility of coherence-preserving transportation of a spin qubit. This motional nar-
rowing would be effective for coherence if the regime of relaxation limited coherence is reached.

Equations (5–8) show that spin relaxation boom is affected by three major factors, the quantum dot confine-
ment effect described by cutoff functions (7), the magnetic field B0, and the moving velocity v0. More specifically, 
the confinement parameters d and λ set an upper limit on the phonon frequency. The interaction between the 
electron and phonon of higher frequencies is suppressed by the phonon bottleneck effect32,33. In a static QD, the 
phonon frequency is completely determined by the Zeeman frequency ωZ, thus only a strong B0 can cause phonon 
bottleneck effect. In a moving QD, the Doppler-shifted phonon frequency wz is also affected by v0. These influ-
ences can all be observed in Fig. 6. In region 1 of Fig. 6(a), B0 is low, and the Zeeman frequency ωZ is smaller than 
a critical frequency ω λ∼ v6 /c 1 . In this region a strong Doppler effect is needed to shift the phonon frequency 
higher into the boom region for spin relaxation rate to peak. When B0 is larger, ωZ itself is already close to the 
boom region, so a relatively weak Doppler effect at low moving speed can already lead to spin relaxation boom. In 
the cases when the Zeeman frequency itself is already inside the boom region [region 2 in Fig. 6(a)], peak rate of 
spin relaxation can be observed even at v0 =  0. When we continue to increase B0, the Zeeman frequency already 
exceeds the boom region [region 3 in Fig. 6(a)], so that spin relaxation is suppressed. In this case, the Doppler 
effect may shift the phonon frequency downward to reveal the peak in relaxation rate.

Figure 5. (a) Spin relaxation rate 1/T1 as a function of magnetic field B and moving speed of the quantum 
dot v0. (b) Partial derivative of 1/T1 with respect to v0. The white and the yellow regions indicate the partial 
derivative is below and above zero respectively. The parameters are chosen as ωd =  1.1 meV, d =  20 nm, φv =  0.
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In short, the spin relaxation boom appears when ω∼wz c. If the Zeeman frequency ωZ itself is already close to 
ωc, the spin relaxation boom can be observed without Doppler shift. Otherwise a Doppler shift (either blue shift 
or red shift) can help reveal the spin relaxation boom, as is shown in Fig. 6(b).

Discussion
Our study shows that in the supersonic regime for a moving spin qubit, only phonons emitted or absorbed in 
certain directions make notable contributions to qubit relaxation. As is shown in Fig. 3, the kernel function f for 
the spin relaxation rate 1T1 is non-zero only in certain directions in the xy plane. With this strong angular ani-
sotropy, it is natural to consider whether we could eliminate spin relaxation by suppressing the electron-phonon 
interaction in certain directions. For example, if a phonon cavity is set up in a certain direction, the frequencies 
of phonon modes in that direction become discrete, making it possible to filter out important frequencies and to 
suppress electron-phonon interaction at those frequencies.

The narrowly directional phonon emission from the moving spin qubit may also point at a new source of 
non-classical phonons. Imagine a stream of excited spins moving supersonically in one direction. They would 
emit phonons in roughly two directions. If a phonon cavity is set up along one of those directions and is on reso-
nance with the emitted phonons, it may be possible to create stimulated emission, even lasing, of phonons in that 
mode35. Furthermore, Fig. 6(b) shows that the spectral distribution of the phonons is concentrated around 
ω λ= v6 /c 1 . Consequently, no matter what the Zeeman frequency (red or blue) is (determined by the external 
B0 field), the actual emitted phonon tend to have a frequency around the boom region indicated by green line at 
the “spin relaxation boom”. Thus even before cavity selection the emitted phonons already have a narrow band-
width because of the nature of the spin relaxation boom. We also note that in the electron-phonon interaction 
Hamiltonian, the coupling of the electron to the two phonon modes of the shock wave have equal strength. Our 
current approach treats these phonon modes separately within the limit of Fermi golden rule, thus we cannot tell 
whether there is quantum coherence between these modes, or whether the phonons may even be in a coherent 
superposition of these two modes. Investigating such coherent dynamics of the phonons would clearly be of inter-
est to the realization of coherent phonon optics in semiconductor nanostructures.

The interesting features in phonon emission and spin relaxation we have explored here could be useful in 
monitoring and detecting the spin decoherence process. Conversely, knowing the phonon emission angle pre-
cisely may allow continuous monitoring of the environment, which could in turn provide more accurate informa-
tion to possible feedback operations in a quantum feedback control36,37 or quantum state restoration38,39 scheme 
for the spin qubit. In an open quantum system, the information stored in the system constantly leaks into its 
environment. By measuring the environment in particular ways, however, the lost information could be partially 
or even fully regained. It is thus possible to restore a system to its initial state by monitoring the environment39. 
Our results about the angular distribution of phonon emission may provide a guidance on measuring the phonon 
environment: we can place the phonon detectors in selected directions [precisely predicted by equation (11)] 
since only phonons in those directions make significant contributions to spin relaxation.

In conclusion, we have studied decoherence of a moving spin qubit caused by phonon noise through SOI. The 
QD motion leads to Doppler shifts in the emitted/absorbed phonons by the moving spin qubit, which modify 
the spin relaxation rate. In particular, we find a “spin-relaxation boom” when the moving QD break the sound 
barriers, in analogy to the classical sonic boom. The occurrence of spin relaxation boom is determined by both 
magnetic field and moving velocity, and it implies the possibility of coherence-preserving transport of spin qubit 
by varying the moving velocity. The properties of the emitted phonons also undergo drastic changes as we vary 
the QD velocity. Specifically, when the moving velocity is larger than the speed of sound in the material, spin 
relaxation is dominated by phonon emission/absorption in certain directions. The physics here is similar to the 
phenomenon of classical Cherenkov radiation, with the emitted phonons highly directional and spectrally nar-
row. As such, moving excited spin qubits can also be thought of as a source of non-classical phonons.

Figure 6. The left panel (a) is a contour plot for spin relaxation rate for deformation potential as a function of 
B0 and v0. The black points show the spin relaxation boom points (peaks of 1/T1). The right panel (b) shows the 
Doppler-shift influence on spin relaxation boom.
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Methods
Derivation of the effective Hamiltonian. An effective spin Hamiltonian, in which spin dynamics and 
orbital dynamics are decoupled, can be obtained by performing a Schrieffer-Wolff transformation to remove the 
SO coupling term in the full Hamiltonian17,23–25,31. Through a unitary transformation =∼ −H e HeS S, with S given 
by + =H H S H[ , ]d Z SO, the SO coupling is removed to the first order. The spin Hamiltonian is then 

ψ ψ=
∼H Heff , where ψ  is the ground state of the orbital wave function. Following the approach used in refs 

17,23, we obtain the effective Hamiltonian in equation (3), where Ω(r, t) originates from the electron-phonon 
interaction, and is given explicitly as
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The expressions here are similar to the results in ref. 23, with an additional term ⋅eiq r t( )0  due to the motion of 
the quantum dot. This factor is also how Doppler effect is introduced into the dynamics of the moving spin qubit.

Derivation of the spin relaxation rate. Given the effective Hamiltonian (3), the relaxation rate can be 
obtained within the Bloch-Redfield theory as ω ω= ++ +J J( ) ( )

T XX Z YY Z
1

1

25, where ωZ =  gμB/ħ is the Zeeman fre-
quency. The tensors +JXX and +JYY  are correlations of the effective magnetic noise (from the phonons through the SO 
interaction),
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and Ω(t) is given in equation (13) and (14). These correlation functions are expressed in a rotated XYZ coordinate 
system, where the Z axis is along the direction of the applied field B0. Due to this rotation, a magnetic-angular 
dependence term FSO appears in the expression of the relaxation rate23,25. With the magnetic noise from phonons, 
the relaxation rate takes the form
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The time integral in equation (17) generates delta functions. But the integration over dωj is in the first Brillouin 
zone, only the positive frequencies are taken into account, namely the integration only includes the case 1 −  ξj >  0. 
Therefore, the condition 1 −  ξj >  0 is combined with equation (8). Finally, we obtain the relaxation rate (5) and the 
kernel function (6). Compared with ref. 23, the phonon frequency here is shifted by the factor (1 −  ξj), which is a 
result of the Doppler effect. When the moving velocity approaches zero, the relaxation rate here reduces exactly 
to the result shown in ref. 23.
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