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We show that the counterrotating, neglected in the previous studies of the quantum Zeno effect (QZE)

in atomic decay, can have a large impact on the short-time evolution. We calculate the electron self-

energy, the Lamb shift, and the QZE without making the rotating-wave approximation (RWA) and show

that, for hydrogen in free space, the Zeno time is longer by 2 orders of magnitude than that obtained from

the RWA. We also show that there is no anti-Zeno effect as the counterrotating terms and rotating terms

represent the opposite processes in the higher frequency region. Consequently, the experimental mea-

surement of the QZE may be much easier than what was determined with the RWA results.
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It is well known that the counterrotating terms are
important in obtaining the correct Lamb shift. However,
their contribution is insignificant in the calculation of the
decay rate for the excited state of an atom in the long time
limit. In this Letter, we address the following question:
What is the effect of the counterrotating terms on the
dynamical evolution of the atom at short times, particularly
on the quantum Zeno and anti-Zeno effects? We find the
surprising result that the effect of the counterrotating terms
can lead to a longer Zeno time by 2 orders of magnitude
and that there is no anti-Zeno effect.

The quantum Zeno effect (QZE) and anti-Zeno effects
(AQZE) have been widely discussed theoretically [1–6]
and experimentally [7]. In the experiment of Itano et al.
[7], the QZE was observed on the coherent population
transition from lower to the upper levels via frequent
measurements, and the time interval is of the order of
ms. In the experiment of Fischer et al. [7], the QZE and
AQZE of frequent measurements on the escaped numbers
of atoms tunnelling away from a trap were presented, and
the reported time interval was about 1 �s. For the decay
from an excited level of an atom interacting with an
environment, frequent measurements at an extremely
short-time interval slow down the decay process (the
QZE) because the decay of the excited state is almost
zero at the beginning of the decay process [1,2]. It is also
found that if the measurement time interval is short, but not
extremely short, the decay of the excited state could be
accelerated [2] (the AQZE). Let Pð�Þ denote the survi-
val probability (after a short-time interval �) at the initial
state, which can be written as Pð�Þ ¼ exp½��ð�Þ��. After
N time measurements at equal � (N� ¼ t), the survival
probability of the excited level reads PðtÞ ¼ PNð�Þ ¼
exp½��ð�ÞN�� ¼ exp½��ð�Þt� with �ð�Þ the effective de-
cay rate. If N ¼ 1, PðtÞ ¼ exp½��ðtÞt�, which goes to
PðtÞ ! expð��0tÞ for large enough t, where �0 is the
decay rate under the Weisskopf-Wigner approximation.
We will have the QZE if �ð�Þ< �0, and the AQZE if

�ð�Þ>�0. However, the experimental investigation of
QZE and AQZE on the decay of a real atom has not been
reported so far due to the extremely short measurement
time interval predicted from previous theoretical studies
(<10�15 s).
It is well known that the whole spectrum of the environ-

ment (not only the part around the atomic transition fre-
quency) is important for the QZE and AQZE. In the
previous studies on QZE and AQZE [1–6], usually the
two-level model with the rotating-wave approximation
(RWA) is used. An interesting problem relates to a real
multilevel atom with the counterrotating terms that are
neglected in RWA.
In this Letter, we study the effect of the counterrotating

terms on QZE and AQZE in the decay of a real multilevel
atom without the RWA (the decay from 2P to 1S of the
hydrogen atom as a concrete example). We show that the
neglected terms in RWA can have the same order contri-
bution as the spectral components off-resonant with the
atomic transition frequency. This is particularly important
for the QZE where the measurement time interval is ex-
tremely short [1,2,4].
Usually, the environment is described by some quantum

field, which may be in an infinite space [4] or in a confined
box [2,5]. The high frequency region of the spectrum of
these two cases is different. In infinite space, we may have
the ultraviolet (UV) divergence, so we need a renormaliz-
able theory. The interaction for a real multilevel atom
interacting with the electromagnetic (EM) field in free
space can be described by the Hamiltonian H ¼
H0 þH1 [8,9] (setting @ ¼ 1),

H0 ¼
X
i

Eijiihij þ
X
k

!kb
y
k bk; (1)

H1 ¼
X
i

X
j�i

X
k

gk;ijðbyk þ bkÞjiihjj; (2)

where summation
P

i is for all levels i ¼ 0; 1; 2; ::: andP
j�i for all levels j except j ¼ i. byk (bk) is the creation
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(annihilation) operator of EM mode with frequency !k (k

including the polarization), and gk;ij ¼ �e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=2�0!kV

p
ek �

pij=m is the coupling between the atom and the EM field,

with ek the polarization vector and pij the transition matrix

element of momentum operator between the levels i and j.
Usually, the coupling can be characterized by the interact-
ing spectrum [2,4,9]: Gijð!Þ ¼ P

kg
2
k;ij�ð!�!kÞ.

The Hamiltonian H cannot be solved exactly, and usu-
ally the RWA is used [2,4,8], which leads to the following
results. Starting from the initial state jc ð0Þi ¼ jIijf0kgi
(the atom in level I, jIi, and the EM field in the vacuum,
jf0kgi), the survival amplitude of finding the system still in
jc ð0Þi at � > 0 is [2,4]

xRWAð�Þ ¼ 1

2�i

Z
B

ep�dp

pþ iEI þ
P

k

P
j<I

g2
k;Ij

pþi!kþiEj

; (3)

where B is the so-called Bromwich path and the summa-
tion

P
j<I is for all levels j with Ej < EI. Here, RWA is to

drop all counterrotating terms with factor exp½�ið!k þ
jEi � EjjÞ�. The survival probability in the initial state is

PRWAð�Þ ¼ jxRWAð�Þj2 ¼ exp½��RWAð�Þ�� and the effec-
tive decay rate �RWAð�Þ for a short time � is given by [2],

�RWAð�Þ ¼ 2�
Z 1

0
d!

X
j<I

GIjð!ÞFð!�!Ij; �Þ; (4)

Fð!�!Ij; �Þ ¼ 2sin2
�
!�!Ij

2
�

�
=��ð!�!IjÞ2; (5)

where !Ij ¼ EI � Ej. Since Fð!�!Ij; �Þ ! �ð!�
!IjÞ for large enough �, we have the decay rate �0 ¼
2�

P
j<IGIjð!IjÞ in the Weisskopf-Wigner approximation.

When the counterrotating terms are included, the above
method is no longer valid. Here, we present an analytical
approach, based on unitary transformation and perturba-
tion theory to calculate the survival amplitude and the
effective decay rate for Hamiltonian (1) in order to clarify
the impact of the counterrotating terms on the short-time
evolution and on the QZE and AQZE.

First, we take a unitary transform [10] on H, H0 ¼
expðiSÞH expð�iSÞ, with

S ¼ X
i

X
j�i

X
k

gk;ij�k;ij

i!k

ðbyk � bkÞjiihjj; (6)

where �k;ij is a k-dependent function. The transform can be

done order by order, H0 ¼ H0 þH0
1 þH0

2 þOðg3kÞ, where
Oðg3kÞ contains terms of order g3k and higher, and will be

neglected. By choosing the following functional form for
�k;ij,

�k;ij ¼ !k

!k þ jEj � Eij ; (7)

the first order terms (of order gk), H
0
1 ¼ H1 þ ½iS;H0�,

become

H0
1 ¼

X
k

X
j>i

2gk;ij�k;ij

!k

jEj � Eijðjiihjjbyk þ jjihijbkÞ: (8)

Note that H0
1 is of the same form as in the RWA coupling.

The second order terms are H0
2 ¼ ½iS;H1� þ 1

2 �fiS; ½iS;H0�g,

H0
2 ¼ �X

i

X
j�i

X
k

g2k;ij
!k

�
2�k;ij � �2

k;ij � �2
k;ij

Ej � Ei

!k

�
jiihij

þ Vnd; (9)

where Vnd contains the nondiagonal terms, jiihjj (i � j) for

the atom and byk b
y
k0 , bkbk0 , b

y
k bk0 , and bkb

y
k0 (k � k0) for the

EM field. Since the contribution of these nondiagonal
terms to the physical quantities is of the fourth order in
gk and can be neglected, we will drop Vnd in the following
calculation.
The summation

P
k can be replaced by the integral [9]

X
k

g2k;ij
!k

hð!kÞ ¼ 2�

3�ðmcÞ2 p
2
ij

Z 1

0
d!khð!kÞ; (10)

where hð!kÞ is any function of !k and � is the fine struc-
ture constant. Then, it can be easily seen that the first term
in H0

2 is linear divergent in the UV limit. The divergence
comes from the self-energy of the free electron due to the
vacuum fluctuations, Ese ¼ �P

k

P
j�i½g2k;ij=!k�jiihij ¼

�P
j�i

2�!c

3�ðmcÞ2 p
2
ijjiihij (!c � mc2 is the UV cutoff), which

does not depend on the atomic level structure. The diver-
gence can be removed by the mass renormalization with a
subtraction of the self-energy Ese [9],

H0
2 � Ese ¼ �X

i

X
j�i

X
k

g2k;ij
!k

�
�
2�k;ij � �2

k;ij � 1� �2
k;ij

Ej � Ei

!k

�
jiihij

¼ 2�

3�ðmcÞ2
X
i

�X
j<i

p2
ij!ij

þX
j�i

p2
ijðEj � EiÞ ln

!c þ j!ijj
j!ijj

�
jiihij: (11)

The transformed Hamiltonian can be divided into unper-
turbed part and a perturbed part as H0 � H0

0 þH0
1. Here,

H0
0 ¼ H0 þH0

2 � Ese is the unperturbed part,

H0
0 ¼

X
i

E0
ijiihij þ

X
k

!kb
y
k bk; (12)

E0
i ¼ Ei þ 2�

3�ðmcÞ2
X
j<i

p2
ij!ij

þ 2�

3�ðmcÞ2
X
j�i

p2
ijðEj � EiÞ ln

!c þ j!ijj
j!ijj ; (13)

and H0
1 in Eq. (8) represents the perturbation.

The ground state of H0 � H0
0 þH0

1 is j0ijf0gki, where
j0i is the lowest state of the atom. The initial state for the
QZE is the excited state jIijf0gki. Then, the survival am-
plitude of finding the system in the initial state is xð�Þ ¼
hf0kgjhIj expð�iH0�ÞjIijf0kgi. Since H0 � H0

0 þH0
1 is of
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the form of the RWA Hamiltonian, xð�Þ can be calculated
in the same way as above for xRWAð�Þ in Eq. (3),

xð�Þ ¼ 1

2�i

Z
B

ep�dp

pþ iE0
I þ

P
k

P
j<I

V2
k;Ij

pþi!kþiE0
j

; (14)

where Vk;Ij ¼ 2!Ijgk;Ij�k;Ij=!k. The Lamb shift of the

level I can be obtained from the imaginary part of the
pole of integrand in (14),

EO
I ¼ E0

I þ
X
k

X
j<I

V2
k;Ij

E0
I �!k � E0

j

¼ EI þ 2�

3�ðmcÞ2
X
j�I

p2
IjðEj � EIÞ ln

!c þ j!Ijj
j!Ijj : (15)

The second term is the Lamb shift of level I, which is ex-
actly the same as obtained by the previous authors [9]. The
superscript O for EO

I means the observed energy of level I.
The survival probability in the initial state is Pð�Þ ¼

jxð�Þj2 ¼ exp½��ð�Þ��, and the effective decay rate �ð�Þ
for a short time � is

�ð�Þ ¼ 2�
Z 1

0
d!

X
j<I

G0
Ijð!ÞFð!�!Ij; �Þ; (16)

where G0
Ijð!Þ ¼ 4GIjð!Þð!IjÞ2=ð!þ!IjÞ2 ¼ GIjð!Þ �

fIjð!Þ and GIjð!Þ ¼ 2�!
3�ðmcÞ2 p

2
Ij.

The spectrum is modulated by the function fIjð!Þ ¼
½1� ð!�!IjÞ=ð!þ!IjÞ�2, where the second term is due

to the counterrotating terms which is proportional to
1=ð!þ!IjÞ and is zero at ! ¼ !Ij because the decay

rate at large enough time does not depend on the counter-
rotating terms. In Fig. 1, we plot GIjð!Þ=GIjð!IjÞ and

G0
Ijð!Þ=GIjð!IjÞ versus !=!Ij. It is interesting to note

that both curves are independent of the prefactor
2�

3�ðmcÞ2 p
2
Ij of GIjð!Þ. For the modification function

fIjð!Þ, we have fIjð!Þ< 1 for !>!Ij, and fIjð!Þ � 1

for ! � !Ij. This means that the counterrotating terms

greatly suppress the higher frequency part of the interact-
ing spectrum. This results in an important effect on the
short-time behavior of the system.

The above discussion is suitable for any multilevel
unstable quantum system. For numerical calculation, we
consider the 2P� 1S transition of the hydrogen atom [4].
Let I ¼ 2P and j ¼ 1S in Eqs. (3), (4), (14), and (16), and
the interacting spectrum is [4] Gð!Þ ¼ 	!=½1þ
ð!=!cÞ2�4, where 	 is a constant. The transition frequency
is !0 ¼ E2P � E1S. In Fig. 2, �ð�Þ=�0 is plotted for !0 ¼
E2P � E1S ¼ 1:55� 1016 rad=s and !c ¼ 0:85�
1019 rad=s [4]. The dashed line is the result of RWA, and
we see that, for an extremely short time (�!0 < 1:5�
10�4), RWA predicts the QZE and for a short time (�!0 >
1:5� 10�4) as well as the AQZE (the largest value of
�RWAð�Þ=�0 � 38). However, by taking into account the

counterrotating terms, we only have the QZE and no AQZE
, in contradiction to the universality claim in [2].
The different behavior of �ð�Þ and �RWAð�Þ can be

understood by checking Gð!Þ and G0ð!Þ in Eqs. (4) and
(16). The modification function fð!Þ due to the counter-
rotating terms on the spectrum Gð!Þ is fð!Þ< 1 for !>
!0. When!0 is much smaller than the spectrum maximum
frequency !max, the spectrum G0ð!Þ is greatly suppressed
compared with Gð!Þ, see Fig. 1. The dephasing function
[2] Fð!�!0; �Þ is mainly a single-peak function with
peak at !0 and width 	1=�. Since the integrand in
Eq. (4) is Gð!ÞFð!�!0; �Þ, when !0 is far below the
maximum of Gð!Þ, we find that �RWAð�Þ grows with
decreasing � (AQZE) because Fð!�!0; �Þ is then prob-
ing more of the rising part of Gð!Þ. Our result is different
from Ref. [2] because the integrand in Eq. (16) is
G0ð!ÞFð!�!0; �Þ and �ð�Þ decreases with decreasing �
(QZE) since Fð!�!0; �Þ already covers the main part of
G0ð!Þ. The physics will be discussed below.
For the short-time limit, the survival probability is qua-

dratic in �: Pð�Þ ¼ 1� �2=�2Z for � ! 0, which is explic-
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G Ij
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(ω Ij
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Ij
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Ij
)

ω/ω
Ij

FIG. 1. GIjð!Þ (dotted line) and G0
Ijð!Þ (solid line) versus !.
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FIG. 2. Decay rate �ð�Þ for !0=!c ¼ 0:001824. The dashed
line is the result of RWA.
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itly different from the exponential decay [2–5]. The ‘‘Zeno
time’’[3–5], �Z, defines the time for the Zeno effect and can
be calculated by using Eq. (16),

�Z ¼
�
d

d�
�ð�Þ

��1=2
���������!0

¼
�Z 1

0
d!

X
j<I

G0
Ijð!Þ

��1=2
;

(17)

while the Zeno time in the RWA is �RWA
Z ¼

½R1
0 d!

P
j<IGIjð!Þ��1=2. By using the spectrum for hy-

drogen atom [4], we obtain �RWA
Z ¼ ffiffiffiffiffiffiffiffiffi

6=	
p

!�1
c and (for

!c=!0 � 1)

�Z ¼ 1

2!0
ffiffiffiffi
	

p
�
ln
!c

!0

� 23

12

��1=2
: (18)

In Fig. 3, we plot �Z versus !0. Note that �Z is dependent
on the transition frequency !0 due to the counterrotating
terms, while �RWA

Z is independent of !0 as the integrand
Gð!Þ does not depend on!0. The dependence of �Z on!0

is physically correct, since the short-time evolution Pð�Þ ¼
1� �2=�2Z should depend on where the transition fre-
quency !0 is located in the interacting spectrum.
Compared with �RWA

Z , the counterrotating terms lead to a
longer Zeno time, especially when the atomic transition
frequency is very small. For hydrogen atom, 	 ¼ 6:4�
10�9, and we have �RWA

Z ¼ 3:6� 10�15 s [4] but �Z ¼
1:9� 10�13 s. The latter is nearly 2 orders of magnitude
larger than the former. Therefore, the real experimental
measurement of QZE is much easier than what was deter-
mined with the RWA results. Under current technology, a
measurement time interval of 10�13 s is achievable.

The physics can be easily understood. Consider the two
terms (one from the counterrotating and one from rotating
terms) in the original Hamiltonian in the interaction pic-

ture, byk e
i!ktðj1Sih2Pje�i!0tþj2Pih1Sjei!0tÞ. For !k�

!0, the two terms are almost the same, but represent
opposite atomic processes, decay from the excited to
ground levels, and jumping from ground to the excited
levels. They cancel each other, which is consistent with
f2P;1Sð!Þ¼ ½1�ð!�!0Þ=ð!þ!0Þ�2!0 for !=!0 � 1.
Therefore, the counterrotating terms make the decay much
slower comparing with the decay with only the rotating-
wave terms in this case (in the higher frequency region).

In summary:We have shown that, besides the Lamb shift
and electron self-energy, the counterrotating terms have
great impact on the short-time evolution of the population
of the excited level, and thus on the quantum Zeno and
anti-Zeno effects (Our calculation is limited to those QZE
and AQZE where the rotating-wave approximation is
used). For the short-time evolution, the counterrotating
terms can be included, simply by multiplying the RWA
spectrum Gð!Þ with the factor ½1� ð!�!0Þ=ð!þ
!0Þ�2. We present the analytical study for the multilevel
atom coupled to the EM field, based on the unitary trans-
formation and perturbation method. With this method, we

can simultaneously obtain the electron self-energy, Lamb
shift, and the short-time evolution (the QZE and AQZE).
The Zeno time depends on the atomic transition frequency
sensitively due to the counterrotating terms. For the hydro-
gen atom, we calculate the effective decay rate and find
that, because of the counterrotating terms, the Zeno time is
much longer than the Zeno time obtained with RWA, and
there is no anti-Zeno effect.
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