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1. Introduction

Many important physical, chemical and biological processes
take place in condensed phases and they are strongly affected by
the inevitable couplings with the media. Even these processes
are well understood when they are isolated from surroundings
say in gas phase, their mechanism usually cannot be used to model
the condensed-phase processes. In the extreme case, the gas phase
process may not exist at all in condensed media or visa versa. Be-
cause the whole system consists of gigantic number of degrees of
freedom and only few are ruling the process we are interested in,
there is no way and also no need to describe the full dynamics.
For simplicity, we call the few variables the system whereas the
rest the heat bath or environment. It was Einstein who first gave
a theoretical explanation of the most popular condensed-phase
dynamics–Brownian motion and thus laid the foundation for clas-
sical dynamics of dissipative systems and fascinated mathemati-
cians to discover a new field, that is, stochastic processes. Since
Einstein, many scientists made several breakthroughs in the field,
the generalized fluctuation-dissipation theorem, Kramers theory,
stochastic resonance, the fluctuation theorem to name but a few.
Nowadays there are many excellent monographs and review arti-
cles on the dynamics of dissipative systems, focusing on different
respects and methodologies [1–13]. As research on quantum infor-
mation attracts more and more efforts in recent years, quantum
dissipation, the curse of quantum effect, becomes a very hot re-
search topic.

In classical cases, there are well established methods such as
the Langevin equation and Fokker–Planck equation techniques.
These approaches have been successfully used to study the
ll rights reserved.
Brownian motion and thus many intriguing phenomena including
turnover effect in the over barrier process [14] and stochastic res-
onance [10] have been explained. By contrast, quantum dissipa-
tion is still a hard problem even today although several useful
schemes have been proposed. For instance, the projection opera-
tor method was frequently used in the community of spectros-
copy and quantum optics where dissipation is weak and
perturbation approximation is applicable [1,12]. In this frame-
work a generalized Langevin equation can be derived, in which
the variables of the system are projected out while the environ-
ment affects the motion of the system formally by inducing ran-
dom force and self-interaction on the system. Unfortunately, the
environmental degrees of freedom still appear in operator form
in the generalized Langevin equation. Another scheme is the
influence functional method, which is founded by Feynman and
Vernon [15] and extensively exploited by Caldeira and Leggett
and many others [16,5,9]. Based on path integral, the influence
functional approach has proven to be a very powerful tool for
theoretical analysis of quantum dissipation. The main idea of this
scheme is to derive a path-integral expression of the reduced
density matrix in which environmental degrees are totally traced
over, resulting in an influence functional. For harmonic-oscillator
heat bath with linear couplings, Feynman and Vernon found that
the influence functional is Gaussian [15]. Caldeira and Leggett
[16] discussed why this environment can be used as a generic
one. In the light of influence functional methodology the dynam-
ics as well as thermodynamics of the dissipative two-state system
or the spin-boson model has been extensively explored [5,9]
although a full answer to the case of strong dissipation and low
temperatures is still elusive. Note that the influence functional
approach only allows one to write down a formal expression of
the reduced density matrix in path integral. A real solution for
general systems except the linear ones is not possible. The
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situation is not alleviated in numerics, thus one is only able to
simulate the short-time dynamics or the system with short-ran-
ged self-interaction induced by bath [17,18].

In Langevin equation the random force is the indispensable role
that the implicit heat bath plays. For the harmonic oscillator bath
Feynman and Vernon [15] recognized that one part of the influence
functional is equivalent to the stochastic correlation of certain ran-
dom fields, which means that the environment imposes noises on
the system as it does in classical mechanics. This fact offers the ba-
sis of a stochastic formulation for quantum dissipative dynamics
[19]. Recently we have proven that the heat bath with general
interaction can be rigorously represented by random fields, which
naturally leads to quantum stochastic Liouville equation. Unlike
the classical counterpart in the Langevin equation these bath-in-
duced fields are complex noises [20]. Therefore, the dissipative
dynamics is now described by the corresponding stochastic Liou-
ville equation whose statistical expectation gives the exact reduced
density matrix. Such a stochastic theory provides not only analytic
machinery but also a simulation approach. We observed that a di-
rect numeric implementation of this scheme in general works for
short times because the statistical errors grow very fast. For Orn-
stein–Uhlenbeck noises, however, a deterministic, hierarchical
algorithm based on the stochastic scheme was proposed to solve
quantum dissipative dynamics effectively [21]. Motivated by the
success, we recently started from the stochastic description and
took advantages of both the random and deterministic treatments
to develop a mixed strategy. The obtained mixed deterministic-
stochastic technique was used to solve the dynamics of the spin-
boson model with strong dissipation at zero temperature, which
could not be solved by any other known methods [22].

In this paper, we will first show how to use Itô calculus instead
of Hubbard–Stratonovich transformation to decouple the interac-
tion between the system and the heat bath in Section 2. This can
be regarded as an alternative derivation of the stochastic scheme.
The Girsanov theorem is then used to obtain the required stochas-
tic equation of motion for the reduced density matrix or stochastic
Liouville equation. In Section 3 we will review the formal solution
of the stochastic Liouville equation, which was discussed in the
second paper of Ref. [20], and outline how to acquire the exact
master equation for linear systems. Different semiclassical approx-
imations will be addressed in Section 4. We will summarize the re-
sults and make some conclusions in Section 5.

2. Stochastic description of dissipative dynamics

Hubbard–Stratonovich transformation has been a powerful
technique to get ride of two-body interactions in the calculation
of partition functions and real-time dynamics for many-body
systems [23,24]. When the stochastic description of quantum
dissipative dynamics was first proposed, we used the Hubbard–
Stratonovich transformation in the representation of path integral
to decouple interactions between the system and the heat bath
during the time evolution [20]. This manipulation is not a neces-
sary step in the scheme. In fact, decoupling can also be realized
by virtue of Itô calculus and stochastic averaging. To this end we
consider the whole system defined by the Hamiltonian
H ¼ Hs þ Hb þ f ðŝÞgðb̂Þ where Hs and Hb are the Hamiltonians of
renormalized system of interest and the heat bath, respectively,
and the last term indicates the interaction. Note that the whole
system obeys the quantum Liouville equation,

i�h
@q
@t
¼ ½H;q�; ð1Þ

where qðtÞ is the density matrix. For simplicity, we assume an fac-
torized initial condition qð0Þ ¼ qsð0Þqbð0Þ, namely, the system and
the environment are initially unentangled. Suppose that one can
establish two separate equations of motion for a random system
and a random bath with initial conditions qsð0Þ and qbð0Þ, respec-
tively. Then, no matter how the equations for the random system
and bath look like, the decoupling is valid when the stochastic
expectation of qsðtÞqbðtÞ satisfies the Liouville equation (1). Now
consider the following two stochastic differential equations

i�hdqs ¼ ½Hs;qs�dt þ
ffiffiffi
�h
p

2
f ðŝÞ;qs½ �dW1 þ i

ffiffiffi
�h
p

2
f ðŝÞ;qsf gdW�

2; ð2Þ

and

i�hdqb ¼ ½Hb;qb�dt þ
ffiffiffi
�h
p

2
½gðb̂Þ;qb�dW2 þ i

ffiffiffi
�h
p

2
fgðb̂Þ;qbgdW�

1; ð3Þ

where W1ðtÞ ¼
R t

0 ½l1ðt0Þ þ il4ðt0Þ�dt0 and W2ðtÞ ¼
R t

0 ½l2ðt0Þ þ il3

ðt0Þ�dt0 are two complex-valued Wiener processes with
ljðtÞðj ¼ 1� 4Þ being the uncorrelated white noises. Let M denote
the statistical average. Then there are [25] MfljðtÞg ¼ 0 and
MfljðtÞlkðt0Þg ¼ djkdðt � t0Þ. Note that in the conventional Wiener
process there is only one white noise WðtÞ ¼

R t
0 l1ðt0Þdt0 and dW is

roughly in the order of
ffiffiffiffiffi
dt
p

. As a result, Itô calculus says that
ðdWÞ2 ¼ dt and dWdW 0 ¼ 0 if W 0ðtÞ ¼

R t
0 l2ðt0Þdt0 is another Wiener

process. These rules can be straightforwardly extended to the com-
plex process and there are dWjdWk ¼ dW�

j dW�
k ¼ 0 and

dWjdW�
k ¼ 2djkdt. With these properties one readily shows that

the stochastic averaging MfqsðtÞqbðtÞg of the product of the solu-
tions of Eqs. (2) and (3) indeed satisfies the Liouville equation (1).
That is, one has proven qðtÞ ¼ MfqsðtÞqbðtÞg. One wonders if there
is a simpler decoupling scheme by using the conventional, real Wie-
ner processes. The answer is affirmative. For instance, the following
pair of stochastic differential equations is an example,

i�hdqs ¼ ½Hs;qs�dt þ
ffiffiffiffiffiffiffiffi
�h=2

q
f ðŝÞ;qs½ �dW þ i

ffiffiffi
�h
p

=2 f ðŝÞ;qsf gdW 0
;

and

i�hdqb ¼ ½Hb;qb�dt þ
ffiffiffiffiffiffiffiffi
�h=2

q
½gðb̂Þ;qb�dW 0 þ i

ffiffiffi
�h
p

=2fgðb̂Þ;qbgdW :

But the simplicity is only superficial because solving these equa-
tions will be more difficult. In the following, therefore, only Eqs.
(2) and (3) will be used. It is clear that the system and the environ-
ment are no longer coupled with each other through ‘‘quantum”
interaction and the dynamics can be explored in smaller spaces of
the system and the bath separately. Does it mean that the couplings
between the system and the heat bath are absolutely removed? No,
it does not. In the stochastic description the interactions between
the system and the environment are converted into the correlation
during their evolution because both the system and bath are subject
to the common random noises. When one wants to simulate the
dynamics of the whole systems, in principle, one can solve these
stochastic differential equations and calculate the statistical expec-
tation of the product of two solutions to obtain the density matrix
of the totally system, qðtÞ ¼ MfqsðtÞqbðtÞg. This procedure is of
course exact when these two steps can be done exactly. But our
aim is to study the dynamics of the system, thus it is sufficient to
calculate the reduced density matrix ~qsðtÞ ¼ TrbfqðtÞg ¼
MfqsðtÞTrb½qbðtÞ�g instead of qðtÞ itself. We thus need to calculate
the trace TrbqbðtÞ of the random reduced density matrix. Unlike
physical systems defined by Hermitian Hamiltonians, the random
heat bath is characterized by non-Hermitian Hamiltonian, and the
trace of the density matrix is in general time dependent and not
unity. Formally its formal expression can be written down, namely,

TrbqbðtÞ ¼ exp
Z t

0
�gðt0ÞdW�

1=
ffiffiffi
�h
p� �

;

where �gðtÞ ¼ TrbfqbðtÞgðb̂Þg=TrbqbðtÞ. To go further a crucial step is
to apply the Girsanov transformation [26], that is, replacing W1ðtÞ
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by W1ðtÞ þ
R t

0 dt0�gðt0Þ=
ffiffiffi
�h
p

. As a result, the trace of qbðtÞ is absorbed
into the probability density of the white noises and the exact re-
duced density matrix is thus the statistical expectation of a new
random qsðtÞ obeying

i�hdqs ¼ ½Hs þ �gðtÞf ðŝÞ;qs�dt þ
ffiffiffi
�h
p

=2 f ðŝÞ;qs½ �dW1

þ i
ffiffiffi
�h
p

=2 f ðŝÞ;qsf gdW�
2: ð4Þ

Similar to the influence functional in the path integral treatment
[16], �gðtÞ is the bath-induced field and it exactly determines the ac-
tion of the environment on the system. The equation may be called
a stochastic Liouville equation and can be regarded as the quantum
analog of the Langevin equation in the sense that the heat bath in
both of them is implicit and its couplings to the system result in sto-
chastic fields. One should note that Kubo [27] was the first to intro-
duce the stochastic Liouville equation by mere considering a
random interaction term in dealing with the Liouville equation.
He based his discussion on physical intuition and his stochastic
Liouville equation is different from the rigorously derived Eq. (4)
from a microscopic model. It will become clear that it is two Ham-
iltonians instead of one that dictate the underlying dynamics in Eq.
(4). As one can think out, when the two Hamiltonians are taken to
be the same approximately Kubo’s result is recovered. Calculating
the statistical expectation is normally not a light task. Then, we
wonder whether there is a master equation for the reduced density
matrix. If there were, things would be perfect. Let us look at Eq. (4).
Taking the statistical expectation on both sides gives ~qsðtÞ,

i�h
@~qs

@t
¼ ½Hs; ~qs� þ ½f ðŝÞ;Mf�gðtÞqsg�: ð5Þ

It is an exact equation for the reduced density matrix, though, it is
not in closed form because the relation between ~qsðtÞ and
Mf�gðtÞqsðtÞg is in general unknown. Therefore, one cannot expect
a general master equation. We would like to point out that the dis-
cussion above is still applicable when the system is driven by exter-
nal fields.

The decoupling procedure can be directly applied to the study
of classical dissipation as well. Now the probability density in
phase space ð~q;~pÞ of the whole system satisfies classical Liouville
equation @qcl=@t ¼ fH;qclgPB where the Poisson bracket is defined
as fu;vgPB ¼ r~qu � r~pv �r~pu � r~qv . The classical analogues of
Eqs. (2) and (3) become

dqs;cl ¼ Hs;qs;cl

n o
PB

dt þ 1
2

f ðsÞ;qs;cl

n o
PB

dW1 þ
1
2

f ðsÞqs;cldW�
2; ð6Þ

and

dqb;cl¼ Hb;qb;cl

n o
PB

dtþ1
2

gðbÞ;qb;cl

n o
PB

dW2þ
1
2

gðbÞqb;cldW�
1: ð7Þ

As the reduced probability density ~qs;clðtÞ is the integral of qclðtÞ
over the phase space of the heat bath, one first obtains the integral
of the random probability density qb;cl determined by Eq. (7) and
then resorts to the Girsanov transformation to obtain the classical
counterpart of Eq. (4)

dqs;cl ¼ Hs þ �gclðtÞf ðsÞ;qs;cl

n o
PB

dt þ 1
2

f ðsÞ;qs;cl

n o
PB

dW1

þ 1
2

f ðsÞqs;cldW�
2; ð8Þ

where the bath-induced random field reads

�gclðtÞ ¼
R

d~qbd~pbqb;clðtÞgðbÞR
d~qbd~pbqb;clðtÞ

:

Given qs;clðtÞ, one takes the statistical expectation to have
~qs;clðtÞ ¼ Mfqs;clðtÞg, which is parallel to the quantum case.
3. Caldeira–Leggett model and solution for pure dephasing

Caldeira–Leggett model is a generic microscopic model
describing quantum dissipation. In this model the heat bath
consists of independent harmonic oscillators and the interactions
with the system are linear, Hb ¼

P
jðp̂2

j =2mj þmjx2
j x̂2

j =2Þ and
gðb̂Þ ¼

P
jcjx̂j. The renormalized term of the system due to dissi-

pation is implicitly taken in Hs in the following treatment.
Suppose the environment starts from the equilibrium state. One
can use either the influence functional or solve the equation of
motion for the random environment to obtain the environment-
induced field [20],

�gðtÞ ¼
ffiffiffi
�h
p Z t

0
aRðt � t0ÞdW�

1 þ aIðt � t0ÞdW2
� �

; ð9Þ

where aRðtÞ and aIðtÞ are the real and imaginary parts of the mem-
ory function,

aðtÞ ¼
X

j

c2
j

2mjxj
coth

�hbxj

2

� �
cosðxjtÞ � i sinðxjtÞ

� �
; ð10Þ

which is the autocorrelation function of the ‘‘force” gðb̂Þ. For the
environment consisting of a continuum of harmonic oscillators
the spectral density function

JðxÞ ¼ p
2

X
j

c2
j

mjxj
dðx�xjÞ

fully defines the bath-induced stochastic field, namely,

aðtÞ ¼ 1
p

Z 1

0
dxJðxÞ coth

�hbx
2

� �
cosðxtÞ � i sinðxtÞ

� �
: ð11Þ

Upon inserting into Eq. (5), the equation of motion for the reduced
density matrix reads

i�h
@~qs

@t
¼ ½Hs; ~qs� þ ½f ðŝÞ; bOðtÞ�; ð12Þ

where the new operator bOðtÞ results from the correlation of the
noise and the random density matrix itself, modified by the re-
sponse function aðtÞ,

bOðtÞ ¼ ffiffiffi
�h
p Z t

0
dt0 aRðt � t0ÞM qs;1ðt; t0Þ

n oh
þaIðt � t0ÞM qs;2ðt; t0Þ

n oi
: ð13Þ

One immediately reads off the random quantities in the expression,
qs;1ðt; t0Þ ¼ ½l1ðt0Þ � il4ðt0Þ�qsðtÞ and qs;2ðt; t0Þ ¼ ½l2ðt0Þ þ il3ðt0Þ�qsðtÞ.
Here in the derivation the nonanticipating property of qsðtÞ,

MfqsðtÞdW1ð2Þ;tg ¼ 0;

namely, that qsðtÞ is independent of the increment dW1;2 of W1;2 at
time t is used. Now we divide the operator bOðtÞ into two parts cor-
responding to the contribution of the real and imaginary parts of
the response function aðtÞ, respectively, bOðtÞ ¼ bORðtÞ þ bOIðtÞ. Then,
applying the Novikov theorem [28], that is, Mflðt0ÞF½l�g ¼
MfdF=dlðt0Þg for a white noise l and its functional F½l�, one obtains

Mfqs;1ðt; t0Þg ¼ M
dqsðtÞ
dl1ðt0Þ

� i
dqsðtÞ
dl4ðt0Þ

	 

� M bOs;1ðt; t0Þ

n o
; ð14Þ

Mfqs;2ðt; t0Þg ¼ M
dqsðtÞ
dl2ðt0Þ

þ i
dqsðtÞ
dl3ðt0Þ

	 

� M bOs;2ðt; t0Þ

n o
: ð15Þ

Substituting into Eq. (12) yields

i�h
@~qs

@t
¼ ½Hs; ~qs� þ ½f ðŝÞ;MfbORðtÞg þMfbOIðtÞg�; ð16Þ
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where

bORðIÞðtÞ ¼
ffiffiffi
�h
p Z t

0
dt0aRðIÞðt � t0ÞbOs;1ð2Þðt; t0Þ:

Similar to the ordinary Liouville equation, the stochastic Liouville
equation Eq. (4) is linear and assumes a formal solution,
qsðtÞ ¼ U1ðt; t0Þqsðt0ÞU2ðt0; tÞ where the two time-evolution
propagators U1;2ðt; t0Þ correspond to two different stochastic
Hamiltonians

H1ðtÞ ¼Hsþ �gðtÞþ
ffiffiffiffi
�h
p

2
l1ðtÞþ il2ðtÞþl3ðtÞþ il4ðtÞ
� �( )

f ðŝÞ; ð17Þ

H2ðtÞ ¼Hsþ �gðtÞþ
ffiffiffiffi
�h
p

2
l1ðtÞ� il2ðtÞ�l3ðtÞþ il4ðtÞ
� �( )

f ðŝÞ: ð18Þ

This is the essential difference between Eq. (4) and the stochastic
Liouville equation proposed phenomenologically by Kubo, which is
ruled by ‘‘one” random Hamiltonian. One may work in Hilbert space
instead of the larger Liouville space either for convenience of numer-
ical simulation or a physical interpretation of quantum measurement
[29]. To this end the density matrix should be unraveled. This can be
readily done for a pure initial state, i.e., qsð0Þ ¼ jwsð0Þihwsð0Þj. Using
the two propagators, one naturally obtains ~qsðtÞ ¼ Mfjws;1ðtÞi
hws;2ðtÞjg, where jws;1ð2ÞðtÞi ¼ U1ð2Þðt;0Þjwsð0Þi.

By virtue of the formal solution of the two propagators, the
functional derivatives in Eqs. (14) and (15) can be expressed,
respectively, as

bOs;1ðt; t0Þ ¼ �
iffiffiffi
�h
p U1ðt; t0Þf ðŝÞU1ðt0; tÞqsðtÞ½

� qsðtÞU2ðt; t0Þf ðŝÞU2ðt0; tÞ� ð19Þ

and

bOs;2ðt; t0Þ ¼
1ffiffiffi
�h
p U1ðt; t0Þf ðŝÞU1ðt0; tÞqsðtÞ½

þ qsðtÞU2ðt; t0Þf ðŝÞU2ðt0; tÞ�: ð20Þ

One can also show that the other pair of functional derivatives is re-
lated to these expression via

dqsðtÞ
dl1ðt0Þ

þ i
dqsðtÞ
dl4ðt0Þ

¼ 2
Z t

t0
dt1aRðt1 � t0ÞbOs;1ðt; t1Þ ð21Þ

and

dqsðtÞ
dl2ðt0Þ

� i
dqsðtÞ
dl3ðt0Þ

¼ 2
Z t

t0
dt1aIðt1 � t0ÞbOs;2ðt; t1Þ: ð22Þ

When dissipation causes pure dephasing [30], there is no energy
exchange between the system and the bath, which means
½Hs; f ðŝÞ� ¼ 0. In this case there are ½U1;2ðt; t0Þ; f ðŝÞ� ¼ 0, which
directly lead to bOs;1ðt; t0Þ ¼ �i=

ffiffiffi
�h
p
½f ðŝÞ;qsðtÞ� and bOs;2ðt; t0Þ ¼

1=
ffiffiffi
�h
p
ff ðŝÞ;qsðtÞg. Inserting into Eq. (16), we obtain the master equa-

tion for pure dephasing,

i�h
@~qs

@t
¼ ½Hs; ~qs� � iCRðtÞ f ðŝÞ; ½f ðŝÞ; ~qs�½ � þ CIðtÞ½f 2ðŝÞ; ~qs�; ð23Þ

where CR;IðtÞ ¼
R t

0 dt0aR;Iðt0Þ. This equation is of the same form as that
from Markovian approximation for arbitrary f ðŝÞ, which also reflects
the short-time universality of decoherence [31]. Now let jmi be the
common eigenvectors of Hs and f ðŝÞ, that is, Hsjni ¼ Enjni and
f ðŝÞjni ¼ fnjni. Represented in term of eigenvectors, Eq. (23) be-
comes very simpler,

i�h
@~qs;n0n

@t
¼ En0 � En � iCRðtÞðfn0 � fnÞ2 þ CIðtÞðf 2

n0 � f 2
n Þ

h i
~qs;n0n; ð24Þ

where ~qs;n0n ¼ hn0j~qsjni. The solution reads
~qs;n0nðtÞ ¼ ~qs;n0nð0Þ exp
i
�h

En � En0ð Þt þ CIðtÞðf 2
n � f 2

n0 Þ
�	

þ iCRðtÞðfn0 � fnÞ2
io
;

where CIðtÞ ¼
R t

0 dt0CIðt0Þ and CRðtÞ ¼
R t

0 dt0CRðt0Þ. One immediately
observes that the diagonal elements ~qs;nn do not change with time
and the non-diagonal terms do. It is also clear that only CRðtÞ from
the real part of response function of the heat bath effects the decay
of ~qs;n0nðtÞ.

Because the dissipative harmonic oscillator acts as an important
model system for understanding specific features of quantum dis-
sipation, the master equation has been derived over and over again
by using different methods [32]. The same master equation can
also be obtained by virtue of the stochastic description. To this
end one first solves the stochastic propagators and then calculates
the statistical expectations of the functional derivatives given by
Eqs. (19)–(22). For linear systems the involved operators in these
equations assume fixed forms and their coefficient functions are
determined by a set of integral equations. We will detail the deri-
vation of the master equation for a driven dissipative harmonic
oscillator elsewhere [33].

We would like to point out that starting from the Liouville
equation of the whole system, one can develop different schemes
and perspectives for understanding quantum dissipation. An inter-
esting treatment was proposed by Cao open systems. one can de-
velop diversified schemes for treating quantum dissipation
4. High-temperature approximations

Given the initial state of the system and the bath-induced sto-
chastic field �gðtÞ, one can solve Eq. (4) and then obtain the reduced
density matrix with sufficient number of random realizations. Be-
cause the system of interest is in general a small one, it is not hard
to solve its exact quantum dynamics. Note, however, that in our
case the system is subject to the stochastic field the environment
effects and one has to calculate many ‘‘quantum” samplings to
reach the convergent statistical expectation of the reduced density
matrix. Roughly speaking, it is the statistics instead of quantum
dynamics that makes the problem difficult. At high temperatures
or in classical regime, the bath-induced stochastic field is more lo-
cal in a sense that the self-interaction of the system due to the bath
is short-ranged, one may resort to the Markovian approximation.
We again consider the Caldeira–Leggett model, see Eq. (9). Note
that in the bath-induced field the imaginary part of the memory
function is independent of temperature, which is of a genuine
quantum effect. At high temperature (small b) we use Taylor
expansion for cothð�hbxÞ in the real part of the memory function
to obtain the dominant term

aRðtÞ ¼
2
p

Z 1

0
dx

JðxÞ
�hbx

cosðxtÞ:

In Ohmic dissipation JðxÞ ¼ gx one finds that aR;IðtÞ behave as dis-
tribution functions

aRðtÞ ¼
2g
�hb

dðtÞ

and

aIðtÞ ¼ gd0ðtÞ:

It is a bit subtle to use these distribution functions because they
come out in the integral from 0 to t. In other words, only half of
the distribution contributes to the integration. Without a rigorous
proof we simply put down as
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Z t

0
dt0dðt0Þf ðt0Þ ¼ 1

2
f ð0Þ;Z t

0
dt0d0ðt0Þf ðt0Þ ¼ �1

2
f 0ð0Þ:

These expressions can be substituted into Eq. (16) to obtain

bORðtÞ ¼
gffiffiffi
�h
p

b
bOs;1ðt; tÞ; ð25Þ

bOIðtÞ ¼
g
2

ffiffiffi
�h
p @

@t0
bOs;2ðt; t0Þjt0¼t; ð26Þ

with the help of Eqs. (19) and (20) we readily acquire

M bORðtÞ
n o

¼ � ig
�hb
½f ðŝÞ; ~qsðtÞ�; ð27Þ

M bOIðtÞ
n o

¼ ig
2�h

Hs; f ðŝÞ½ �; ~qsðtÞf g: ð28Þ

Inserting into Eq. (16), we obtain the semiclassical master equation

i�h
@~qs

@t
¼ ½Hs; ~qs� �

ig
�hb

f ðŝÞ; f ðŝÞ; ~qs½ �½ � þ ig
2�h

f ðŝÞ; Hs; f ðŝÞ½ �; ~qsf g½ �: ð29Þ

For conventional systems Hs ¼ p̂2=2M þ VRðx̂Þ where the potential
operator is the renormalized one and f ðŝÞ ¼ x̂ there is
½Hs; f ðŝÞ� ¼ �i�hp̂=M. Inserting into Eq. (29) leads to the well-known
Caldeira–Leggett master equation

i�h
@~qs

@t
¼ ½Hs; ~qs� �

ig
�hb

x̂; x̂; ~qs½ �½ � þ g
2M

x̂; p̂; ~qsf g½ �: ð30Þ

This equation has been frequently discussed from different perspec-
tives in the literature, for instance, in Ref. [34]. Note that in this
approximation the system follows the exact quantum dynamics
while the environment is rather ‘‘classical” as it should be at high
temperatures. In this case the dissipative dynamics is Markovian.
To study low-temperature behavior it is required to develop an effi-
cient method to reveal the non-Markovian effect [35].

5. Summary

The paper provides a different way to understand the stochastic
formulation of dissipative systems. It conveys the idea that decou-
pling the interactions between the subsystems is possible by virtue
of Itô calculus, which leads to a stochastic formulation of the in-
volved dynamics and might be a convenient way to study complex
systems. When one investigates the dynamics of the dissipative
system, making such a change from the deterministic to stochastic
perspective is especially helpful. By doing so the environment is to-
tally reflected in the noise it induces in the evolution of the system.
Then the exact dynamics is the statistical expectation of the ran-
dom motion of the system. This observation holds for both quan-
tum and classical systems. We reviewed the formal solution for
the Caldeira–Leggett model and presented the solution for pure
dephasing. Besides, the procedure to acquire the exact master
equation for linear systems was briefly outlined and the semiclas-
sical Caldeira–Leggett master equation was derived. It should be
stressed that nonlocal or memory effects due to the heat bath
which are important at low temperatures are lost in this approxi-
mation. To obtain more accurate dynamics it is necessary to find a
good means of dealing with the memory effect.
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