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We investigate the preparation of a target initial state for a two-level (qubit) system from a system-environment
equilibrium or correlated state by an external field. The system-environment equilibrium or correlated state
results from the inevitable interaction of the system with its environment. An efficient method in an extended
auxiliary Liouville space is introduced to describe the dynamics of the non-Markovian open quantum system in
the presence of a strong field and an initial system-environment correlation. By using the time evolutions of the
population difference, the state trajectory in the Bloch sphere representation, and the trace distance between two
reduced system states of the open quantum system, the effect of initial system-environment correlations on the
preparation of a system state is studied. We introduce an upper bound and a lower bound for the trace distance
within our perturbation formalism to describe the diverse behaviors of the dynamics of the trace distance between
various correlated states after the system state preparation. These bounds, that are much more computable than
similar bounds in the literature, give a sufficient condition and a necessary condition for the increase of the trace

distance and are related to the witnesses of non-Markovianity and initial system-bath correlation.
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I. INTRODUCTION

Besides precise coherent control, the ability to prepare
initial states of quantum systems accurately is also one of the
essential requirements for quantum information processing.
Most of the state preparations implemented in quantum
experiments assume having ideal (closed) quantum coherent
systems. However, almost every quantum system interacts
inevitably with its surrounding environment (bath), resulting in
an equilibrium or correlated system-environment state before
any operation or measurement of the system is performed
[1-6]. Thus how to prepare a desired initial system state
from an equilibrium or correlated system-environment state
becomes an important and practical issue [7-10].

In addition to its effect on the system dynamics, system-
environment correlation also plays a vital role in quantum
dynamical maps and open-system state distinguishability
[6,11-35]. The reduced dynamics of an open quantum system
with a tensor product (factorized) initial system-environment
state is a completely positive map. Completely positive maps
are appealing because they form a time-dependent semigroup
and have a simple mathematical structure: the composition
of two completely positive maps is also a completely positive
map [2,3,36,37]. This makes the initial factorization of the joint
system-environment state an attractive and commonly adopted
initial condition when studying the dynamics of an open
quantum system. However, when the system-environment
interaction is not very weak, the initial system-environment
correlation may have an appreciable effect on the open-system
dynamics.

References [9,10] have investigated the role of initial
system-environment correlations on the reduced system dy-
namics with a system state initially prepared by a pro-
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jective (selective) measurement on the system alone. The
system-environment state before the projective measurement
is a total thermal equilibrium state py! = e P jtrpe PHr,
where Hrp is the total Hamiltonian, including the system-
environment interaction Hamiltonian. The projective measure-
ment is assumed to be instantaneous such that the (unnormal-
ized) environment state after the measurement collapses to
(¥|p7'|¥), conditioned on the projected system state |v).
The measurement has the effect of removing the system-
environment correlation, and this measurement-induced fac-
torized initial system-environment state has been considered
in the literature [9,10,27,38-40]. However, in practice, if the
post-measurement system state evolution is of interest or
concern, the measurement made upon the system is usually
nondestructive and indirect, and thus takes some finite time
to project the system state to the desired state |y). In other
words, unless the measurement is very strong, the system
and environment will evolve away from the total equilibrium
state when the measurement is completed. In this case, the
post-measurement density matrix of the environment is no
longer (| p;qh//). As a result, the system state preparation
by projective measurement with the above instantaneously
measurement-induced factorized system-environment state is
an idealization. We note again that the subsequent system
evolution is dependent on the initial system-environment
correlations, but the initial system-environment state used for
the investigations [9,10,27,38—40] is, however, a factorized
state.

In this paper, we investigate an alternative method for state
preparation by applying an external field. We use the time
evolution of the trace distance [4-6,15,28,31,32] between two
reduced system states of an open quantum system as a measure
of the effect of initial correlations. The time evolution of the
trace distance between the quantum states evolving from two
kinds of initial states—a correlated total equilibrium state (or
Gibbs state) and its uncorrelated marginal state—for an open
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qubit system with a week external driving field was calculated
by the rotating-wave approximation (RWA) in Ref. [28]. The
open-quantum-system model considered in Ref. [28] before
the application of an external driving field is a pure-dephasing
spin-boson model in which the system operator coupling
to the environment commutes with the system Hamiltonian.
However, for the purpose of accurate state preparations in open
quantum systems, fast control and thus stronger fields beyond
the RWA may be necessary.

The main purposes of this paper is to investigate under
what conditions the initial factorization approximation of the
system-environment state is valid and how different the system
dynamics is when the initial system-environment correlation is
taken into account, especially for state preparation via applying
an external field. We will also investigate the conditions
for the breakdown of the RWA and the onset of non-RWA
corrections for state preparation. We go beyond the limitations
or approximations imposed in Ref. [28] by considering a
noncommuting spin-boson model in an external driving field
without making the RWA. The method presented here to
derive the time-nonlocal master equation to second order in the
system-bath interaction and to take the initial correlation into
account is based on the Nakajima-Zwanzig projection operator
technique [2,41]. To deal with the application of a strong
external field, an efficient formulation of introducing auxiliary
density matrices in an extended Liouville space to transform
the time-nonlocal time-ordered integro-differential master
equation into a set of time-local coupled differential equations
is employed. We find that when the driving field strength is
above a certain value the RWA becomes invalid, and when
the system-environment interaction is above a certain value
the initial system-environment correlation become important
to the open-system dynamics. The detailed values in relation
to the fidelity or error of the state preparation will be discussed
and presented.

We will also investigate the effects of the system-
environment correlation established after the state preparation
on the subsequent field-free system evolution. The dynamics
of the trace distance has been used to study noncontractivity
and non-Markovianity [15,26,32,42,43], both of which could
be induced by initial correlations. We find that the dynamics of
the trace distances between these correlated states and between
these correlated states and their corresponding factorized
states in the subsequent field-free evolutions exhibit diverse
behaviors. So another purpose of the paper is to introduce an
upper bound and a lower bound for the trace distance within
our perturbation formalism to describe the various behaviors
of the dynamics of the trace distance. These bounds that we
introduce are much more computable than similar bounds in
the literature [31-34]. These bounds in turn give a sufficient
condition and a necessary condition for the increase of the trace
distance and are related to the witnesses of non-Markovianity
and initial system-bath correlations.

The paper is organized as follows. In Sec. II we describe
briefly the Hamiltonian of the spin-boson model we study and
the decomposition of the initially correlated state using the pro-
jection operator technique. An efficient method is introduced
in Sec. III to transform the time-nonlocal master equation,
with an external driving field and initial system-environment
correlations accounted for, to a set of coupled linear time-local
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equations of motion in an extended auxiliary Liouville space.
Numerical results and discussions are presented in Sec. IV.
In Sec. IV A, we describe how to achieve and express the
total thermal equilibrium state as an initially correlated state
in the extended Liouville space formulation. The results of
comparing the initially correlated state with the factorized
states in terms of time evolutions of the trace distance between
them for state preparation with an external driving field are
presented in Sec. IV B. After the state preparation by applying
an external field, the resultant correlated system-environment
states are considered as the initial states for subsequent
field-free evolutions. The diverse behaviors of the dynamics
of the trace distance between these correlated initial states in
the subsequent field-free evolutions are shown in Sec. IV C.
The upper and lower bounds of the trace distance similar to
those in Refs. [31-34] are introduced in Sec. V to analyze
these behaviors. Finally, a conclusion is presented in Sec. VI.

II. INITIAL SYSTEM-ENVIRONMENT CORRELATION

The total Hamiltonian of the dissipative spin-boson model
considered here to study the initial correlations is

Hr(1) = Hy(t) + Hp + Hg, (D

with the two-level (qubit) system Hamiltonian H,(t), the
bath (environment) Hamiltonian Hp, and the system-bath
interaction Hamiltonian Hjy;, given respectively by (b = 1)

Hy(1) = Qo + Hy(1), 2)
Hy, =" wbb;, 3)
Hy, = o, B. (4)

Here o; with i = x,y,z are the Pauli matrices, w; and bl'-r (b))
are, respectively, the frequency and the creation (annihilation)
operator of the bath mode i. The bath operator B in the
the system-bath interaction is B =), g,~(biT + b;) with the
coupling constant g; for the respective bath mode i. The
Hamiltonian H,;(#) accounts for the Hamiltonian of the applied
time-dependent external driving field,

Hy(1) = Qg cos(wp1)oy, (&)

where Qp is the field strength, also called the Rabi frequency,
and oy is the field frequency.

Due to unavoidable interaction between a quantum system
and its surrounding bath, the initial state considered at time
t = 0 before performing any operation is the correlated total
thermal equilibrium state,

o = e PHT jtrp e PHT (6)

where Hp is the total Hamiltonian without the driving
Hamiltonian Hy(t).

The projection operator technique of Nakajima-Zwanzig
[2] will be used to derive the equation of motion of the
reduced system dynamics with the initial system-environment
correlation accounted for. In this formalism, the projection
superoperator P acting on the total system-environment state
separates the bath from the system via Por(t) = tr,[or(1)] ®
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o» = ps(t) ® pp, where p,, is some fixed state of the environ-
ment which we take as the bath thermal equilibrium state,
ie., pp =e P /trye P and we have used the fact that
ps(t) = trp[ pr (¢)] is the density matrix operator of the reduced
system obtained by tracing the total density matrix operator
over the bath degrees of freedom. The projection superoperator
P and a complementary superoperator Q satisfy the following
properties: P + Q =7, P> = P,Q* = Q,and PQ = QP =
0, where 7 is an identity operator in the joint total system-
environment state space. Any total system-environment state
or(t) can be expressed as

Lpr(t) = Ppr(t) + Qpr(1) = ps(1) ® pp + Qpr(r). (7)

The bath (environment) thermal equilibrium state p;, serves as
the bath reference state and is the bath state of the factorized
system-bath states used throughout this paper. Thus the total
initial state can also be expressed as

pr(0) = ps(0) ® pp + Qpr(0) ®)

that contains a factorized part p;(0) ® p, and a nonfactorized
part Qpr(0).

III. TIME-NONLOCAL MASTER EQUATION

Next we present the time-nonlocal master equation that
incorporates the initial system-environment correlation. The
equation of motion for the total density matrix is given
by

pr(t) = —i[Hr (1), pr(0)]. )
Defining the density matrix of the reduced system as
ps(t) = [ pr(1)] = trp[Gr (2,0)p7(0)], (10)

one can formally write

ps(t) = (=)t [Hr (1), pr(1)] (1)

= trp[Lr () pr(1)]. (12)

Here the propagator superoperator has a general form of

Gj(t,t') =Ty exp [ / fj(t”)dt”} (13)

with T denoting the time-ordering operator necessary to
allow an explicit time-dependent Hamiltonian [2,41], and the
Liouville superoperator

LA = —i[H,(1),A] (14)

defined as commutator between any operator A and H;(t)
with j = T for the present case. Later we will introduce .Z;
and corresponding G,(z,t’) for the system alone defined as in
Egs. (14) and (13) but with the replacement of Hamiltonian
Hj(t) — H,(¢t). Itis then straightforward to verify that

a
agj(t,t') = Zi(0G;(.1). 5)

After applying the projector operators P, Q to Eq. (9) and
taking terms up to second order in system-bath interaction
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strength, one obtains the time-convolution (time-nonlocal)
master equation in the interaction picture [2]:

ps(t) = —itry[ Hyp(t), Qo7 (0)]
—j\miwuim%mw®mmﬂ<m
0

where 5,(1) = G,(0,0)p,(t), Hyp(t) = &:(0,0)B(1), 6:(0,1) =
Gs(0,t)0y, and B(t) = Y, g,-(b;rei“’f’ + bje"'®"). So the non-
factorized part Qpr(0) in Eq. (8) now plays a role of an
inhomogeneous term in the master equation. Since there is
already an interaction Hamiltonian Hj,(¢) in the first term
on the right-hand side of Eq. (16), we only need to keep
Qpr(0) to first order in Hy,. The initial correlated thermal
equilibrium state, Eq. (8), to first order in the system-bath
interaction Hamiltonian before turning on the external field is
[41]

pr(0) = pf’ a7
B
~ (p® pb)(l —/ Hsb(_iﬁ/)dﬁ/)v (18)
0
where pst = e P jtremPH: and Hy,(—ip) =

P HAH) o e=F(HitHy)  The first term of Eq. (18) is
the commonly used initial product system-environment state
and the second term is the first-order nonfactorized part
Qpr(0) of the total thermal equilibrium state. Tracing over
the bath degrees of freedom in Eq. (16), and going back to
Schrodinger picture, we arrive at [41,44]

ps(1) = Zi(0)ps (1) + L K@) + K@), 19)

t

K@) = —i / C(t — "Gt t o ps(tHdt',  (20)
—00

where p,(t' < 0) = p;", Z.K(t) = —i[o,,K(t)], and the bath

correlation function is given by [1,2,41]

C(t —1") = tr,[B()B(t') pp]

= /00 dw J(w) cos[w(t — t')] coth <,37w>
0

—i / dw J(w)sin[o(t — t')], 21
0

with spectral density J(w) =), gi28(w — ;). The integral
from t = —o0 to t =0, i.e., K(0) in Eq. (20), comes from
the first term on the right-hand side of Eq. (16) due to the
nonfactorized contribution Qo7 (0) of the initial system-bath
state at # = 0 and indicates that the inhomogeneous term is the
past memory of the homogeneous term in the memory kernel
of the master equation.

To deal with the time-nonlocal time-ordered integro-
differential master equation with a time-dependent driving
Hamiltonian without making the RWA, we express the bath
correlation function as a sum of exponentials [41,44-47]

Ct—1)=) axe™™ (22)
k

with complex numbers oy
numerical methods. By

and 1y, obtained from
inserting Eq. (22) into

032113-3



CHIEN-CHANG CHEN AND HSI-SHENG GOAN

Eq. (20), one then obtains K(r) =), KCk(r), where
Ki(t) = —i fioo axe™ =G (1,1 )0, ps(t)dt’. By  taking
the time derivative of K(¢) with the help of the property
%Qs(t,t’) = Z,(t)Gy(t,t"), Egs. (19) and (20) now become a
set of coupled linear time-local equations:

pu(t) = Lo ) + 2. Y 1K) + K], (23)
k

Ki(t) = [Z(t) + yilKi(t) — i, ps(0). 24)

Equations similar to Ki(¢) hold for the Hermitian conjugate
Kl @). Compared to solving the reduced density matrix of
the system p(f) directly through Egs. (19) and (20), the
resultant coupled differential equations for { 05, K Ki T k =
1,2,3,...} are easy to solve as they are time-local and
free from the time-ordering and memory kernel integration
problems. The factorized part of the initial condition at t = 0
is ps(0), and the nonfactorized part of the initial condition is
K« (0) and IC,JE(O). If Qpr(0) =0, i.e., the initial system-bath
state is in fact a factorized state, /C;(0) = ICZ(O) =0.

IV. NUMERICAL RESULTS

We use the trace distance, a measure of distance between
two quantum states, to quantify and discuss our results.
Formally, the trace distance is defined as distinguishability
between two states p®, p? by the expression [26,42]

. lp* —pfl 1
D(p*,pP) = — = Etw(pw — pP)2. (25)

It can be shown that the trace distance between two reduced
system states oZ(¢) and ,of (t) of a qubit system at time ¢ in
two-dimensional Hilbert space has the following form [15]:

1 1
D(ps.pL 1) = |20 = Jury/[ A0 )]

= (@i ) + |8 o

(26)

where ApS (1) = p%(t) — pf (t) with subscript j = s for the
reduced system density matrix and j = 11,12 for the matrix

elements of
p11(1) p12(2)
o= < - pum)'

pikz(t )
The fidelity between two states pd and ,of is normally

defined by F(p%,p?) = (tr,/ﬁpﬁJp_“)z. If p# is denoted
as our prepared state, and p® = |1)(1]| as our target excited
state, then the fidelity can be written as the diagonal component
of ,of as F(p%,p?) = (1|pP|1) = ,ofﬁ. The error may be
defined to be 1 — F(p® pP)=1— p; but this definition
discards the difference in off-diagonal terms between the
prepared state and the target state. If one instead uses the
trace distance as the definition for error between the two states
oy =[1)(1] and ,of (degrees of deviation of the prepared state
from the target excited state), then one obtains from Eq. (26)

D" =\ (1=pf) + bl @D
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One can see that the error definition by the trace distance,
Eq. (27), takes the differences in both the diagonal and off-
diagonal components into account. If the off-diagonal term pf )
isignored, then the trace distance reduces to the error definition
of 1 — F(p*,p?). Thus, in the following, we use Eq. (27) as
the definition of error for the state preparation.

In principle, we could deal with any given form of the
spectral density. But as a particular example, we consider an
Ohmic spectral density

J(w) = gwe*w/wv, (28)

where £ is a dimensionless system-bath coupling constant and
w, 1s the bath cutoff frequency. The bath correlation function,
Eq. (21), is numerically fitted in a multiexponential form as
Eq. (22). The minimal number of fitting exponential terms k
is chosen to let the value of the squared 2-norm of the residual
between Eq. (21) and Eq. (22) be less than or equal to 1077,
Only three to six terms in the expansion are required to fit
with CPU time from seconds to minutes regardless of the bath
temperature. This is in contrast to the method of the spectral
density parametrization [41,44—46] which requires more than
48 exponential terms to express the same bath correlation
function at a low temperature of kz7 =1/ = 0.2 [41].
Through out this paper, the cutoff frequency of w, = 7.5<2 for
the bath spectral density is used, and a lower temperature
of kT =1/ =0.1Q2 is chosen such that a higher state
preparation fidelity or smaller error can be achieved.

A. Initial state preparations to system-bath thermal
equilibrium state

The correlated thermal equilibrium state ,o;q of Eq. (6) that
will be used as a correlated initial state for Eqgs. (23) and
(24) up to second order can be obtained by different methods.
One method is to calculate p,(0) by directly performing the
second-order expansion of Eq. (6) and to calculate /C;(0) by
evaluating the integral of Eq. (20). An alternative method
that is simpler is to numerically propagate Eqs. (23) and
(24) without the application of any external field from any
(factorized) state, say, the first term of Eq. (18), for sufficiently
long time to reach equilibrium. Then the reduced system
state of the total equilibrium state is try(o;)) = py(f — 00)
and the corresponding auxiliary equilibrium density matrices
are K;! = Ky (t — 00). Here t — oo just means a sufficiently
long time at which the system state no longer changes. Then the
obtained tr,(p;') and KC;* will be taken as the initial conditions
for the dynamics of the qubit system under the applications
of an external driving field. The difference between the
results obtained by these two methods for the correlated total
thermal equilibrium state of try(p;") and k! comes from the
fourth-order system-environment coupling which is negligible
here [48]. Thus we will adopt the latter numerical method for
the preparation of the correlated total equilibrium state.

To demonstrate that this numerical method indeed leads
to an equilibrium state, we take p;(0) = ps(t — 00) and the
nonfactorized part of KC;(0) = IC,fq as the initial conditions for
a field-free evolution to compare with the field-free evolutions
of other factorized initial states in which /C,(0) = 0. We denote
p;q as Initial-A, which is the nonfactorized total thermal
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FIG. 1. (a) Field-free time evolutions of (o.(¢)) = trs[o, ps(1)]
for different initial states Initial-A: ,o;q; Initial-B: trb(p;q) ® pp; and
Initial-C: 09 ® p,, the first term of Eq. (18). (b) Trace distance
between the reduced system states evolving from the different initial
states in (a). The line “A & B” denotes the evolution of the trace
distance D(p2(¢), p2(#)) between the two reduced system states p2(7)
and pZ (1) evolving, respectively, from the two initial states Initial-A
and Initial-B as shown in (a); similarly for lines “A & C” and “B & C”.
Other parameters are £ = 0.1, o, = 7.5Q, and k3T = 1/8 = 0.1Q.

equilibrium state and is obtained by propagating Eqs. (23)
and (24) to equilibrium as mentioned above; try(p;) ® pp
as Initial-B, which is the factorized part of Initial-A in the
decomposition of the projection operator P and has the
second-order corrections to the reduced system state included;
and p;? ® pp as Initial-C, which is a factorized state with the
system and the bath being in their respective individual equi-
librium states and is just the first term of Eq. (18). Figure 1(a)
shows the time evolution of (o, (#)) = try[o, ps(¢)] starting from
these initial states. One can see that, for the Initial-A state,
(o,(1)), as expected, stays the same and does not change at all
times, while for the Initial-B and Initial-C states it undergoes
an appreciable evolution to different values and eventually
reaches the same equilibrium value as that for Initial-A state.
The trace distances between the time-dependent states of
the reduced system with these initial states are presented in
Fig. 1(b). Note that the Initial-A and Initial-B states have the
same reduced system density matrix, thus the same initial value
of (0,(0)) = trg[o,0,(0)], and a zero initial trace distance. The
corresponding time evolution of the trace distance between
the reduced system states in the decomposition of the same
initial bath reference state does increase from its initial value,
revealing the evidence of the initial correlation [31,34]. The
time-dependent trace distance for the two different initial states
then diminishes and finally returns, in the long-time limit, to
zero, indicating that the reduced system states are the same due
to the fact that the corresponding total system-environment
states reach equilibrium and become the same. The nearly
zero trace distance at all times for the case of “B & C” in
Fig. 1(b), in addition to the almost identical time evolution
(o,(1)) for the Initial-B and Initial-C states in Fig. 1(a), shows
that try(p;') = ps(t — oo) is almost equal to p;?. This is
because the first-order contribution to the system reduced
density matrix is zero as tr,[ H,,, pp»] = 0 and the second-order
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corrections to the system reduced density matrix vanish in the
symmetrical spin-boson model [48] which is just the field-free
model we consider. Thus, in the following discussion, Initial-B
and Initial-C are regarded as the same and only one of them,
the Initial-C state, is employed.

B. State preparations to the excited state

In this section, we will investigate the preparation of the
system state to its excited state with an external field using
Initial-A and Initial-C states as initial states. This allows us
to see the effects of initial correlations on the open-quantum-
system dynamics during the state preparation process. Let us
first look at the case of the excited state preparation in the
closed quantum system (isolated from the environment). The
driving Hamiltonian for the state preparation pulse is given in
Eq. (5), and a commonly used form with the RWA is

Q . .
H0) = = ope™ ™ + o_etio), (29)

where 04 = (0, £ioy)/2. The RWA works well when the
system is driven at resonance or near resonance and the driving
strength is weak, that is, when w; = 2Q and Qp K Q. We
will determine the condition for the onset of the non-RWA
correction for the excited state preparation later.

For the purpose of the excited state preparation by a single
sinusoidal field with frequency w; and amplitude Q5 as in
Eq. (5), not all strengths of the field amplitude Q2 can prepare
the qubit system from the ground state to the excited state
efficiently and effectively even in the ideal unitary case. When
the relevant energy scales of the seemingly simple driven qubit
system are in the same order of magnitude, i.e., Qg ~ wp ~
2€2, the dynamics becomes complex. Figures 2(a) and 2(b)
show the time evolutions of (o,(¢)) of the qubit system driven
at the resonance frequency w; = 22 with amplitudes Qp =
2.4Q and Qp = 5.0Q2, respectively. The complex dynamics
in these cases are in contrast with the simple ideal unitary
dynamics in the weak-amplitude rotating-wave cases as shown
in the inset of Fig. 3(a) for the Initial-D ground state. The first
maximum in Fig. 2(a) is not the global maximum and thus
requires more time to complete the excited state preparation.
This is not efficient and is also more vulnerable when the
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FIG. 2. Unitary time evolutions of {(o.(t)) of a two-level system
initially in the ground state |0)(0| driven by an external field with
the Hamiltonian of Eq. (5) at resonance (i.e., w;, = 292) for pulse
strengths of (a) Qx = 2.4Q2 and (b) Qz = 52.

032113-5



CHIEN-CHANG CHEN AND HSI-SHENG GOAN

PHYSICAL REVIEW A 93, 032113 (2016)

(b) initial AR

— initial A

initial AR | == initial CR
—initial A | ooopmesoe®™® +=u+ initial C
0.8 | 0.5} |==initial CR 40.5f * initial DR
A0 ++ initial C o initial D
A init x initial DR E b
= _:::::::R Of| o D | e or
\? -0.9 == initial CR
) === x jnitial C
-0.5¢ +0.5
*initial DR e
: ‘ 5 10 15| o initalD ; call
0 5 ¢ 10 15 T 1 2 3 0 0.02
Qt
1 d 1 1
(d) .@,_2%% o ()
0.5 03332 ‘ﬁ-m\‘ 0.5 0.5
A *ﬂ;’-,.. = :ib‘ AN AN
N TXXRR990. 2000 0 ’ 0
¢ BT ¢ ) -
-0.5
-1
1 1
0 0 0 0
1 - 11
<o <o,> <o > <c,>

FIG. 3. Time evolutions of (o,(¢)) for the excited-state preparations of a two-level system from initial states of Initial-A (thin purple solid
line), Initial-C (blue dotted line), and Initial-D (black circle). The Initial-A and Initial-C states are defined in Fig. 1. The time evolution of
Initial-D denotes the ideal evolutions from the ground state |0)(0| in the absence of the bath. The evolutions using the pulse of the RWA
Hamiltonian Eq. (29) from the same initial states are labeled as Initial-AR (green dot-dashed line), Initial-CR (blue dashed line), and Initial-DR
(red cross), respectively. The pulse durations are ¢ = 7/ Qp for different pulse strengths of (a) Qx = 0.29, (b) Qr = 2, and (c) Qx = 409.
The corresponding evolutions of the trajectories in the Bloch sphere representation for (a), (b), and (c) evolving from the south pole to the north
pole are shown in (d), (e), and (f), respectively. The evolutions of the states without the RWA in (f) have about a full-round trajectory while the
states with the RWA have about a half-round trajectory. Other parameters are w;, = 22, & = 0.1, o, = 7.5Q,and kT =1/ = 0.1Q.

environment decoherence effect is taken into account. The
first maximum in Fig. 2(b) is the global maximum but does
not get close to the desired accuracy of the ideal excited state of
(0;) = 1. Similar complex dynamics are also observed for Q2 <
Qg < 102 at resonance, w; = 2£2. Thus in the following, we
confine the amplitude Q% of the field for the excited state
preparation to be in 0 < Qp < Q or Qx > 10Q.

To demonstrate the conditions for the breakdown of the
RWA, we again consider the unitary case first. The RWA
predicts that a resonant and weak driving field can transfer the
system from the ground state to the excited state in the unitary
case with time duration Qgt = m, the so-called 7 pulse. In the
Bloch sphere representation the system state travels from the
south pole |0)(0] ground state to the north pole |1) (1| excited
state with a time t = 7/ Qg [1]. In Fig. 3 we show the unitary
time evolutions of (o,(¢)) and the corresponding Bloch sphere
representation of the qubit system for the state preparation
from the ground state to the excited state of the system driven
at resonance frequency w; = 22 with and without the RWA,
denoted as Initial-DR (red cross) and Initial-D (black circle),
respectively, for different driving amplitudes. The deviation in
the operation time between the cases with and without the RWA
increases as Qg increases. As shown in Figs. 3(a) and 3(b),
the RWA operation time ¢ = w/ Qg to transfer the two-level
system from the ground state to the excited state is good for
Qr < Q, but the state evolutions with and without the RWA
for Qg = Q already show considerable difference. For larger
value of Qp, the precise operation time, that may be hard to

calculate analytically, can be deduced numerically when the
system state arrives at a place nearest to the north pole. We note
that a significant deviation of the operation time from the RWA
operation time of t = 7/ Qy can be observed for Qz > 10£2.
One can see from Fig. 3(c) that the actual operation time
is about half of 7w/ Qg for Qz = 40L2. This deviation clearly
reflects the failure of the RWA. Of course, this unitary evolution
is an ideal case. In reality, it is impossible to completely isolate
the system from the environment, so the travel time of the
7 pulse should be short enough to reduce the effect from
the environment such that the arrival position is close to the
north pole [49]. Increasing the driving field amplitude Q2 to
shorten the flight time is easier for experiments to perform
than changing the system-environment coupling to reduce the
environment-induced decoherence and/or decay. But the larger
Qp 1s, the less accurate the RWA is.

To see the effect and the overall trend of the RWA and the
initial system-environment correlation on the general problem
of state preparation, we give in Fig. 4 the errors of the prepared
excited states as functions of driving strength Qz and the
system-bath coupling constant & for pulses without and with
the RWA and for correlated and factorized initial states. The
error of the prepared excited state is defined in Eq. (27).
Figure 4(a) shows the error of the prepared states through
the non-RWA pulse of the Hamiltonian of Eq. (5) with an
initial state Initial-A. The pulse duration is determined for the
system state to reach the minimal error at a time around the
RWA m-pulse time of t = 7/ Qp in the unitary evolution case.
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FIG. 4. Error of the excited state preparation as functions of driving strength Q2 (in unit of ) and coupling constant &. (a) Error of
the prepared excited states by the non-RWA pulse using the Hamiltonian of Eq. (5) from the Initial-A state. Pulse duration is determined by
minimizing the error around the time ¢ = 7/ Qy in the ideal unitary evolution. (b) Error difference between the error in (a) and the one by the
7 pulse of the RWA Hamiltonian of Eq. (29), both starting from the Initial-A state. (c) Error of the prepared excited states by the non-RWA
pulse with the same setup as in (a) but with the pulse duration determined by minimizing the error in the open-system case. (d) Error difference
between the error in (c) and the error with the same setup and pulse duration as in (c) but with different initial state, Initial-C. Other parameters

are w;, =22, w, = 7.5Q,and kT =1/ = 0.122.

One can see from Fig. 4(a) that a higher prepared state fidelity
or equivalently a smaller error is achieved as £ becomes smaller
and/or Qg becomes larger. However, for & < 1073, the trend
of the error increases as Qg approaches 2. This shows that
as Qg — Q the somehow complicated non-RWA dynamics
raises the error. To compare with the state preparation by the
RWA pulse, we give in Fig. 4(b) the error difference between
the error in Fig. 4(a) and the one by the RWA & pulse of
Eq. (29), both starting from the Initial-A state. If we require
the error difference to be smaller than 1072 as a criterion for
good agreement between the RWA and non-RWA, then the
onset of the non-RWA corrections as seen from Fig. 4(b) takes
place at about Q2 ~ 0.1€2.

We can calculate the pulse duration that gives the minimum
error between the prepared and target excited states in the
open-system case. This fine-tuned pulse duration mimics
the pulse length an experimentalist wishes to achieve in a
realistic situation. The resultant errors plotted in Fig. 4(c)
with slightly smaller error values are quite similar to those of
Fig. 4(a), whose pulse durations are calculated in the unitary
closed-system case. Figure 4(d) gives the error difference
between the errors in Fig. 4(c) and the corresponding errors
with the same setup and pulse duration as in Fig. 4(c) but with
a different initial state, the factorized Initial-C state. Since the
pulse duration is adopted for Initial-A to reach the minimum

error, the error difference in Fig. 4(d) is mostly negative. One
can also observe that the error difference between the cases
of Initial-A and Initial-C start to emerge at about & > 1072,
This is due to the fact that the initial system-bath correlation is
proportional to £, so when & reaches a value of about 1072, the
error difference between correlated and factorized initial states
becomes visible. Furthermore, the error difference increases
as Qp increases. This is because small Q¢ requires longer
preparation time so that the Initial-C state has enough time
to establish system-bath correlations, and then both of the
initial states approach the same prepared states. However,
as Qp increases, the shorter preparation time with smaller
pulse duration makes the difference between the corresponding
prepared states of the two initial states more appreciable.

We choose a larger coupling constant of £ = 0.1 for the
time evolution and the corresponding Bloch sphere plots in
Fig. 3 in order to show the breakdowns of the factorization
approximation for the initial system-environment state in the
open quantum system. The operation times to prepare the
excited state are chosen to be the same as the ideal unitary
cases to facilitate comparison. One can see from Fig. 3(b) that,
after applying the state preparation pulses, the system states,
except those in the unitary case, are all far off the target excited
state |1) (1], not to mention those of a smaller pulse amplitude
in Fig. 3(a). Furthermore, the difference in (o,(f)) between
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evolutions with and without the RWA for every initial state in
Fig. 3(c) is clearly visible. Observing from Figs. 3(a) and 3(d)
as well as from Figs. 3(b) and 3(e), one can conclude that the
pulse amplitudes of Q = 0.2Q2 and Qg = Q are too small
to transfer those initial states to the excited state for the open
quantum system with coupling constant £ = 0.1. Thus larger
pulse amplitudes are required as in Fig. 3(c) with a large value
of Qr = 40%. Figure 3(f) is the evolution trajectory in the
Bloch sphere representation for the state preparation process
at Qg = 409 of Fig. 3(c). The resultant prepared states with
the operation time about 0.57/Qp are much closer to the
excited state at the north pole of the Bloch sphere than those
of the open system cases in Figs. 3(d) and 3(e).

Recognizing already the failure of the RWA Hamiltonian
at large pulse amplitudes, we consider only the driving field
Hamiltonian without the RWA and plot in Fig. 5 the dynamics
of the trace distance between the states evolving from the
Initial-A and Initial-C states (abbreviated as “A & C”) for
the state preparation process with the pulse duration time
determined by minimizing the error between the target excited
state and the prepared excited state evolving from the Initial-A
state, for each value of Qg. It is clear that, as the pulse
amplitudes Q2 increases, the operation times for the excited
state preparation in the open system become shorter and
the resultant prepared states are closer to the excited state
(0;) = 1. The differences between (o,(¢)) evolving from the
correlated Initial-A state and from the factorized Initial-C state
in Figs. 3(a), 3(b), and 3(c) are hard to recognize, but the
corresponding difference in terms of the trace distance can
be easily observed in Figs. 5(a), 5(b) and 5(c), respectively,
indicating that the trace distance is indeed a sensitive and
appropriate measure. We note here that the trace distances
under a driving field in Figs. 5(a) and 5(b) increase above their
initial values, but the trace distance for “A & C” in Fig. 5(c)
(red solid line) decreases initially below its initial value.

The trace distances shown in Fig. 5 also illustrate the
difference between the system states evolving from either the

(b) 45x10'3 ©
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FIG. 5. Time evolutions of the trace distances between the
reduced system states evolving from the Initial-A, Initial-C, and
Initial-D states, abbreviated as “A & C” (red solid line), “A & D”
(black dashed line), and “C & D” (green dotted line), respectively,
for different pulse strengths of (a) Qg = 0.2€2, (b) 2z = 2, and (c)
Qr = 409. The duration of the preparation pulses is obtained by
minimizing the error for the open system starting from the Initial-A
state for each pulse strength. Other parameters are w; = 2Q,& = 0.1,
w.=75Q,and kgT =1/8 =0.1%Q.
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Initial-A state (black dashed line) or the Initial-C state (blue
dotted line) and from the ideal unitary evolution of the Initial-D
state. One can clearly see that, for Qg = 402, the values of
the trace distance between states evolving from the Initial-A
state and from the Initial-D state (black dashed line) in the
whole operation time in Fig. 5(c) are around a small value of
order of 1073, and they are slightly higher for the cases with
the Initial-C state at the final time (green dotted line). These
small values of the trace distances in Fig. 5(c) as compared to
those in the inset of Fig. 5(a) and in Fig. 5(b) demonstrate
that large pulse amplitudes are necessary to perform the
excited state preparation with the correlated initial state for
the system-environment coupling parameter & = 0.1.

C. Nonfactorized prepared states after the system
state preparation

We next consider the dynamics of the trace distance
between these correlated states and their corresponding fac-
torized states in a subsequent field-free evolution. In other
words, we take the resultant correlated system-environment
states after the state preparation as the initial states for the
subsequent field-free evolution. To this end, the values p,(¢)
and /Ci(¢) evolving from the Initial-A and Initial-C states
through Eqgs. (23) and (24) at the final time of Figs. 5(a), 5(b),
and 5(c) (i.e., at the times when the external pulses are turned
off) are obtained and denoted as corresponding Prepared-A and
Prepared-C states, respectively. Unless there exists possible
confusion, we will, for convenience, simply use letters A and
C in the following state superscripts and figure legends to
represent the Prepared-A and Prepared-C states, respectively.
For example, the Prepared-A state is represented by p2 =
tr;,(,o?) and K2, and similar notations are applied to the
Prepared-C state and other states introduced later. Specifically,
the initial input states we will consider in the decomposition
by P and Q projection operators for the subsequent field-free
evolution are as follows. (i) Prepared-A state: ,074, correlated
state with the reduced system state in the factorized part of the
state decomposition being p* = tr,(p4) and the nonfactorized
part being IC,‘?. (i) Prepared-Al state: the factorized part
of the Prepared-A state, pit! = p2* ® p;, implying K = 0.
(iii) Prepared-C state: p? , a correlated state with the reduced
system state in the factorized part being p¢ = trb(pf ) and
the nonfactorized part being KF. (iv) Prepared-C1 state:
the factorized part of the Prepared-C state, ,of '=pC ® pp,
implying KS! = 0. (v) Prepared-D state, the ideal prepared
factorized state |1) (1| ® pp, implying KP = 0.

The results of the trace distance between the reduced
system states evolving from these correlated states and their
corresponding factorized states in the field-free evolution are
presented in Fig. 6. The Prepared-A, -C, and -D states in Fig. 6
are abbreviated simply as A, C, and D states, respectively.
The other factorized states of the prepared states are similarly
abbreviated. One can find that the values of the trace distance,
e.g., “A & C” at the initial time in Figs. 6(a)-6(c), have the same
values as those at the final time in Figs. 5(a)-5(c), respectively.
The trace distance for “A & C” (red solid line) shown in
the inset of Fig. 6(a) is small, less than 5 x 1073, indicating
that, under the external field with a small pulse amplitude
of Qp = 0.22, the long pulse duration allows the factorized
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FIG. 6. Field-free evolutions of the trace distances between the reduced system states evolving from several kinds of prepared states for
different strengths of (a) Qx = 0.2, (b) Qr = 2, (c) Qg = 4022. The zoom-in plots of the initial evolutions of (b) and (c) are shown in their
respective insets. The time evolution of the trace distance between the reduced system states evolving from the Prepared-A and Prepared-Al
states without the external field is abbreviated as “A & A1” (blue dotted line). Similar abbreviations for other time evolutions of the trace distance
evolving from their respective prepared states are applied accordingly. Other parameters are £ = 0.1, . = 7.5Q, and k3T = 1/8 = 0.1Q.

Initial-C state to establish system-bath correlations such that
Prepared-A state and Prepared-C state are almost the same.
The decrease of the trace distance from the tiny initial value of
the field-free evolution to zero shows that the Prepared-A and
Prepared-C states are approaching the same equilibrium state.
The trace distance for “A & C” (red solid line) during the course
of the excited state preparation with Qz = 402 is also small as
shown in Fig. 5(c), but this trace distance grows above its initial
value in Fig. 6(c) to larger values in the field-free evolution,
in contrast to the decrease in the inset of Fig. 6(a). This is
because the short duration of the strong preparation pulse of
Qg = 402 makes the factorized Initial-C state evolve only a
little bit away from its original state, i.e., just in the beginning
stage to establish some system-environment correlation. As a
result, one can observe in Fig. 6(c) that the trace distance for
“A & C” (red solid line) increases initially and then to a peak
value. After that, it decreases and finally approaches zero at
long times when the system-bath correlations of “A & C” both
reach equilibrium.

The trace distance between the reduced system states evolv-
ing from the Prepared-A state and its corresponding factorized
part of the Prepared-A1 state (blue dotted line) increases above
its initial value for any and all parameter settings in Fig. 6.
Because the Prepared-A and Prepared-Al states are in the
decomposition of the same initial bath reference state p;, the
increase of the trace distance between them indicates clearly
the existence of the initial system-environment correlation.
However, the time evolutions of the trace distances other than
those of “A & A1” do not always increase above their initial
values. See, for example, the zoom-in plots of the initial time
evolutions the trace distance “A & C1” as the green dot-dashed
line in the insets of Figs. 6(b) and 6(c). We will discuss in some
more detail the various dynamical behaviors after we introduce

bounds for the trace distance in Sec. V. In Fig. 7 we show the
evolution trajectories from the north to the south direction in
the Bloch sphere representation with different prepared states
as initial states for pulse strengths of Qx = Q and Qx = 4042,
corresponding to those in Figs. 6(b) and 6(c), respectively.

V. BOUNDS FOR THE TRACE DISTANCE: ROLE OF THE
SYSTEM-ENVIRONMENT CORRELATIONS

To gain a quantitative understanding of the diverse behavior
of the trace distance in general, we present an analysis that
bounds the finite-time difference in trace distance by sharply
defined quantities that link to the existence of the system-
environment correlation in Sec. VA. We will then take the
field-free case in Fig. 6 as an example to find and analyze the
upper and lower bounds in Sec. V B. Similar bounds using
another form of the initial bath reference state are discussed in
Ref. [34].

A. Upper and lower bounds

The trace distance between two different reduced system
states p¢(t',t) and ,of(t/,t) of a given open quantum system
evolving from time ¢’ to ¢ can be written as

D(t',t,0*") = D(p2(t',1).pf (t'.1))

1 I o !

sl {granapi’ @], Goy
where Ap;’ﬂ(t’) = p(t') — p?(z"). Any joint system-
environment state pr(¢f) can be decomposed by the P and
Q projection operators as the expression of Eq. (7). Thus
one has A,o;f’ﬁ(t/) = AP Py @ py + QA,o;f’ﬁ(t/), where
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FIG. 7. Field-free evolutions of the trajectories evolving from the north to the south direction in the Bloch sphere representation with
different prepared states as initial states for different pulse strengths of (a) 2z = Q2 and (b) Qr = 40%2, corresponding to the time evolutions

of the system in Figs. 6(b) and 6(c), respectively.

ApS Pty = p(t') — pE (") = try[p(t') — p(t')]. Substitut-
ing the above expression into Eq. (30) and using the triangular
inequality for the trace norm,

ITH+ 0T > 10+ > el =1, @h

where ' and T'” are linear trace class operators, we obtain
bounds to the trace distance D(¢',t,p%#):

I(tt,p%P) + F(t',1,p%P)
> D(t't,0°P) > |I(t ,t,0%P) — F(t',t,p"P)|, (32)

where

F('.1,p°%) = 3|t {Gr(t.0)[ApF P (1) @ p1 ]}

. (33)

1 1.0%P) = L, {Gr. N[ Q20T O]} (34

The quantity F(¢',t,p%#) in Eq. (33) is the trace distance
between two reduced system states at time ¢, which evolved
from their respective total system-bath product states at an
earlier time ¢'. One can describe the time evolution of the
reduced system in F(¢',t, p%#) through a family of completely
positive dynamical maps. Completely positive maps with
the same initial environment state are contractive and they
form a time-dependent semigroup, and so they are Markovian
quantum stochastic processes [36,37]. This is why the concepts
of no initial correlation, complete positive maps, contractivity,
and Markovianity are often linked or discussed all together in
the literature. Contractivity means that the distinguishability
of two input states cannot increase in time, i.e., the trace
distance of the system density matrices of the quantum
process decreases with time. Thus one has F(¢',¢, p%P) <
F(t',t',p%?) due to the contractive property of the completely
positive maps with the same initial environment states. The
quantity I(¢',¢,p%#) in Eq. (34) keeps track of the effect of
the system-bath correlation at a time ¢’ on the subsequent
dynamics of the reduced system at time ¢. Since the propagator
superoperator Gr(¢',t") = 1 and the property tr,[ Qo7 (¢')] = 0
(due to P Q = 0), one has at the initial propagating time ¢’ the
quantity I(¢',¢’, p%#) = 0. In general, I(¢',t,p**) depends on
the system-bath correlations established at time ¢’ for each of
Qpf(t")and Qp? (t'). If there are no system-bath correlations at

timet',i.e., Qo5 (') =0 = Q,o?(t’),orifthere are system-bath

correlations but their difference vanishes at time ¢/, i.e.,
QAL (1) =0, then I(7',t,p*P) = I(t',1',p*P) = 0. Thus
It ,t,p%P) > I(t',t',p*P) = 0 can serve as an indicator of
whether there is difference of the initial correlations at time ¢’
between the two total states, i.e., whether QAp?‘ﬂ @) #0.

Witnesses of non-Markovianity through detecting devi-
ations from contractive dynamics have been proposed and
investigated [15,26,32,42,43]. Based on these investigations,
if a process is not contractive (or the trace distance of a
process increases) at some instant time or in some time
intervals for some states, then the process is non-Markovian.
Thus it is instructive to find the necessary condition and the
sufficient condition for the increase of the trace distance in
the time interval [¢,¢]. Again, since I(t',t',p*#) = 0, one has
D(t',t',p%P) = F(¢',t',p*#). Thus by using these relations,
the necessary condition for the increase of the trace distance
D(t',t,p%P) > D(t',t',p%?) is then the increase of the upper
bound in Eq. (32),

It ,t,0%P) + F(t' ,t,0%P) > I1(t',t',p*F) + F(t',t',p*F),
(35)

and the sufficient condition is the increase of the lower bound
in Eq. (32),
11t 1,0%7) — F(1,p%P)]
> |11, p%P) = F(t' .1, p*P)). (36)

If the value of I(t,t,p%?) makes the sufficient condition,
Eq. (36), satisfied for some choice of t,t and p*(t'), p?(t'),
then the dynamics is non-Markovian. If, however, the value of
I(t',t,p%P) satisfies the condition [opposite to the necessary
condition of Eq. (35)]

It ,t,0%P) + F(t',t,0%F) < I(t',t',p*F) + F(t',t',p*F)
(37)

for all choices of ¢t and p%(t'),pP(t'), the dynamics is
Markovian.

Similar bounds of the finite-time difference in trace distance
and forms of the necessary condition and sufficient condition
for the increase of the trace distance can be found in
Ref. [34]. However, the decomposition of a general joint
system-environment state in Ref. [34] is through the reduced
states of the system and the reduced state of the environment
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[28,33,34]:
pr(1) = ps(t) @ pe(t) + Xse(t), (38)

where p.(t) = try[pr(¢)] is the reduced state of the environ-
ment at time ¢ and y,.(¢) accounts for the remaining corre-
lations between the open system and the environment. This
decomposition is different from the decomposition of Eq. (7)
using the projection operators P and Q. The reference bath
state is the fixed bath thermal equilibrium state p; for all total
system-environment states in our formulation, while the re-
duced environment states p,(¢) in Ref. [34] are time-dependent
and are different for different total system-environment states.
As a consequence, the remaining system-bath correlations in
these two decompositions are also different. The disadvantage
of the decomposition of Eq. (38) is that it is hard to calculate
the corresponding bounds presented in Ref. [34] unless an
exact dynamical solution of the total system-bath state is
available to evaluate the time-dependent reduced state of the
environment. In contrast, our decomposition of Eq. (7) can
be directly combined with the perturbative master equation
approach by the projection operator technique even with strong
external driving fields for the calculation of the dynamics of
the derived corresponding bounds of the trace distance.

B. Examples of the field-free evolutions for the upper
and lower bounds

Next we present the time evolutions of the 1(¢',¢,p%#) and
F(t',t,p*P) of Egs. (33) and (34) for the upper and lower
bounds in Eq. (32). We will take the diverse behaviors of
the dynamics of the trace distances presented in Fig. 6 as
examples to illustrate that they are indeed within the bounds.

PHYSICAL REVIEW A 93, 032113 (2016)

Compared to Egs. (10) and (30), Eqgs. (33) and (34) satisfy
the same equation of motion of Eq. (12) as Eq. (30) but with
different initial conditions. To second order in the system-
environment interaction Hamiltonian, this same equation of
motion can be cast into the master equation of Egs. (23)
and (24) in the extended auxiliary Liouville space. The initial
condition for F(t',t,p%#)is F(t',t’,p*f) = %HApg‘ﬁ(ﬂ)H, and
the initial inputs in terms of the extended Liouville space
formulation become p>?(#') and ICZ"S (") = 0. Similarly, the
initial condition for I(¢',¢,p*?) is I(t',’,p*#) =0, and in
the extended Liouville space formulation the initial inputs are
%Pty = 0 and ICZ'ﬂ(t/) that correspond to Q%" (1').
Figure 8 shows the dynamics of the trace distance D(¢' =
0,1,p4¢(€D) between the reduced system states evolving from
the Prepared-A and Prepared-C (Prepared-C1) states in the
field-free case after the application of the preparation pulse
with different pulse amplitudes. We have set the time when
the external preparation pulse is turned off as ¢ and relabeled
itas ¢’ = 0. We also plot in Fig. 8 the quantities 1(0,¢,p4¢(€1)
(green solid line), F(0,z,p*C€D) (black dotted line), and
the corresponding upper (blue dashed line) and lower (blue
dot-dashed line) bounds of the trace distance. The dynamical
behaviors of the trace distances shown in Fig. 6 and Fig. 8
are quite diverse. The time evolution of the trace distance of
“A & C”, the red solid line in Fig. 8(a), shows nonmonotonic
decrease from its initial value (indicating a witness of non-
Markovianity), while that in Fig. 6(c) increases above its initial
value (indicating a witness of an initial correlation), reaches
a peak and then decreases. The trace distances of “A & C1”
in red solid lines in Figs. 8(b) and 8(c) decrease at first below
their initial values (see the zoom-in plots of the initial time
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FIG. 8. Field-free evolutions of the trace distance (red solid line) and corresponding upper (blue dashed line) and lower (blue dot-dashed
line) bounds in Eq. (32). The trace distances D(¢' = 0,¢,p*€(€D) between the reduced system states evolving from the Prepared-A and
Prepared-C (Prepared-C1) states after the application of the preparation pulse are abbreviated as D(¢) for “A & C (C1)”, shown as red solid
lines. The different pulse amplitudes and trace distances shown are (a) “A & C” with Qr = 0.2, (b) “A & C1” with Qg = 2, and (¢) “A &
C1” with Qr = 40Q. The zoom-in plots of the initial evolutions of (a), (b), and (c) are shown in their respective insets. Here the time ¢’ when
the external preparation pulse is turned off is relabeled as ¢’ = 0. The time evolutions of the quantities 7(0,t,0* ) and F(0,t, 04 Y) for
“A & C (C1)” abbreviated as I(¢) (green solid line) and F'(z) (black dotted line), respectively, are also presented.
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evolutions in the insets), but then increase above their initial
values and later decrease again. One can observe that the time
evolutions of the trace distance, no matter how diverse their
behaviors, are all between the bounds satisfying Eq. (32). For
example, the trace distance D(0,t,p4¢") in Fig. 8(c) is close
to the upper bound for almost all the period of time shown
but is still within the bounds. The question about whether
or how the trace distances are close to the upper or lower
bounds depends on what the two reduced system states and
the nonfactorized parts are in Eq. (32). We find that the trace
distance D(0,t,p4¢") in Fig. 8(b) will change its behavior
from being around the middle of the bounds to oscillating
closely to the upper or the lower bound if one changes the
duration time of the preparation pulse prior to the field-free
evolution, with other conditions and parameters unchanged.

Even though the effect of the system-environment cor-
relation increases 7(0,t,p%?#) > 1(0,0,p%#) =0, the trace
distance between the reduced system states does not always
increase above its initial value. An increase of the trace
distance (distinguishability) between the reduced states, how-
ever, requires 7(0,¢, 0%8) to prevail over the difference of
[F(0,0,0%#) — F(0,t,p%#)], the amount of contraction due to
the completely positive maps. Indeed, whenever D(0,z,p%#)
increases above its initial values in Figs. 8(b) and 8(c), the
necessary condition, Eq. (35), is always satisfied. It is only
when the initial F(0,0,0%#) = 0 [implying F(0,t,p%#) = 0]
that the trace distance increases above its initial value once
1(0,t,0%#) > 0. This follows from the sufficient condition,
Eq. (36). If the two initial states p® and p? are chosen
to be, respectively, a correlated state and its corresponding
factorized state with the same reduced system state, such as
the Prepared-A and Prepared-Al states, then F 0,0, p%#) =
0= F(0,t,0%#) and 1(0,t,p*f)> 0 [note that [(0,r —
00, p®#) — 0]. This explains why, in Fig. 6, an increase of the
trace distance D(0,z,p”4") over its initial value always takes
place. There exist some certain times of about ¢ > 0.07/2 in
Fig. 8(c) that 1(0,¢,p*C1) is not only greater than zero but
also large enough to make the sufficient condition, Eq. (36),
satisfied. Thus in this case, D(0,t,p4C") is guaranteed to
increase over its initial value for times ¢ > 0.07/ €2 although
D(,t,p%C1) actually increases over its initial value at an
earlier time about ¢t = 0.02/ Q2.

VI. CONCLUSION

We have investigated the problem of system state prepara-
tion by an external field in the presence of an environment with
initial system-environment correlations. The open-quantum-
system model we consider is a spin-boson model and the
target system state we wish to prepare is the excited state
of the two-level system (or the spin). Starting with an initial
joint system-environment state in the correlated total thermal
equilibrium state, we use the projection operator technique
to obtain a perturbative time-nonlocal master equation for
the reduced system density matrix, which takes into account
the effect of the initial system-environment correlation. To
describe the dynamics of the system under the application
of a time-dependent external (strong) field, one would need to
solve the master equation that is a time-nonlocal, time-ordered
integro-differential equation. Instead of solving the quantum
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master equation directly, we express the bath correlation
function in a multiexponential form and transform the time-
nonlocal and time-ordered integro-differential equation into
a set of coupled linear time-local differential equations in
an extended auxiliary Liouville space. The resultant coupled
differential equations, that are time-local and have no time-
ordering and memory kernel integration problems, are much
easier to solve. Moreover, these coupled equations take into
account the initial system-environment correlation and can
deal with the case of strong driving fields with which the RWA
breaks down.

We have used the time evolutions of (o,(?)), the trace
distance, and the trajectory in the Bloch sphere representa-
tion to study the effects of the initial system-environment
correlations, the amplitudes of the preparation pulses, and
the strengths of system-environment couplings on the system
state preparation. We have found that, unless the system-bath
coupling is very weak as compared to the pulse amplitude g,
it is hard to perform the high-fidelity system state preparation
with a single resonant sinusoidal field. For the model and
parameters discussed in this paper, when the system-bath
coupling constant 1079 < & < 1073 and 0.01 < (Qr/Q) <
0.8, the error of the excited state preparation can be less than
1072, For a slightly larger value of the system-bath coupling
and considering the initial system-environment state to be
in the total thermal equilibrium state, a larger value of Qg
is required. When Qp is not very small comparing to the
frequency of the two-level system €2, the commonly adopted
RWA fails. We have found that the onset of the non-RWA
corrections takes place at about Qp ~ 0.122 where the error
difference of the excited state preparation between the RWA
and non-RWA cases is about 1072, We have also investigated
the case when Qp is much larger than 2. We have also
found that the state preparation error of the initial factorization
approximation for the total system-bath states starts to show
deviation from that of the correlated case when the system-bath
coupling constant £ > 1072,

We have introduced more computable upper and lower
bounds for the trace distance between two reduced system
states in a decomposition of the total system-environment
states with a fixed reference thermal environment state by
the projection operators P and Q. These bounds give a
sufficient condition and a necessary condition for the increase
of the trace distance and are related to the witnesses of
non-Markovianity and of the difference in initial system-
environment correlations. We have used these upper and lower
bounds to describe the diverse behaviors of the field-free
time evolutions of the trace distance between reduced system
states evolving from various correlated and uncorrelated states
right after the state preparation pulses are turned off. These
upper and lower bounds, that can be calculated through the
perturbative master equation approach, can be directly applied
to a wide range of open system models to study problems such
as the state distinguishability, the effects of initial system-bath
correlations, and their corresponding dynamics.

ACKNOWLEDGMENTS

We acknowledge support from the Ministry of Science
and Technology, Taiwan, under Grant No. 103-2112-M-002-

032113-12



EFFECTS OF INITIAL SYSTEM-ENVIRONMENT ...

003-MY3, from the National Taiwan University under Grant
No. NTU-ERP-104R891402, and from the thematic group

PHYSICAL REVIEW A 93, 032113 (2016)

program of the National Center for Theoretical Sciences,
Taiwan.

[1] H. J. Carmichael, Statistical Methods in Quantum Optics 1
(Springer, Berlin, 1999).

[2] H. P. Breuer and F. Petruccione, The Theory of Open Quantum
Systems (Oxford University Press, Oxford, 2002).

[3] A. Rivas and S. F. Huelga, Open Quantum Systems: An
Introduction (Springer, Heidelberg, 2012).

[4] C. F Li, J. S. Tang, Y. L. Li, and G. C. Guo, Phys. Rev. A 83,
064102 (2011).

[5] A. Smirne, D. Brivio, S. Cialdi, B. Vacchini, and M. G. A. Paris,
Phys. Rev. A 84, 032112 (2011).

[6] M. Ringbauer, C. J. Wood, K. Modi, A. Gilchrist, A. G. White,
and A. Fedrizzi, Phys. Rev. Lett. 114, 090402 (2015).

[7]1 A. M. Kuah, K. Modi, C. A. Rodriguez-Rosario, and E. C. G.
Sudarshan, Phys. Rev. A 76, 042113 (2007); K. Modi and E. C.
G. Sudarshan, ibid. 81, 052119 (2010).

[8] K. Modi, Open Syst. Inf. Dyn. 18, 253 (2011).

[9] A.Z.Chaudhry and J. B. Gong, Phys. Rev. A 87,012129 (2013).
[10] A.Z.Chaudhry and J. B. Gong, Phys. Rev. A 88, 052107 (2013).
[11] P. Pechukas, Phys. Rev. Lett. 73, 1060 (1994).

[12] A. Royer, Phys. Rev. Lett. 77, 3272 (1996).

[13] M. Campisi, P. Talkner, and P. Hianggi, Phys. Rev. Lett. 102,
210401 (2009).

[14] A. G. Dijkstra and Y. Tanimura, Phys. Rev. Lett. 104, 250401
(2010).

[15] A. G. Dijkstra and Y. Tanimura, Philos. Trans. R. Soc. A 370,
3658 (2012).

[16] C. K. Lee, J. S. Cao, and J. B. Gong, Phys. Rev. E 86, 021109
(2012).

[17] H. A. Carteret, D. R. Terno, and K. Zyczkowski, Phys. Rev. A
77, 042113 (2008).

[18] K. Modi, C. A. Rodriguez-Rosario, and A. Aspuru-Guzik, Phys.
Rev. A 86, 064102 (2012).

[19] F. Buscemi, Phys. Rev. Lett. 113, 140502 (2014).

[20] L. Liu and D. M. Tong, Phys. Rev. A 90, 012305 (2014).

[21] J. M. Dominy, A. Shabani, and D. A. Lidar, Quantum Inf.
Process. 15, 465 (2016).

[22] M. Ban, Phys. Rev. A 80, 064103 (2009).

[23] C. Uchiyama and M. Aihara, Phys. Rev. A 82, 044104 (2010).

[24] A. Smirne, H-P. Breuer, J. Piilo, and B. Vacchini, Phys. Rev. A
82, 062114 (2010).

[25] Y. J. Zhang, X.-B. Zou, Y.-J. Xia, and G.-C. Guo, Phys. Rev. A
82, 022108 (2010).

[26] J. Dajka and J. Luczka, Phys. Rev. A 82, 012341 (2010); J.
Dajka, J. Luczka, and P. Hanggi, ibid. 84, 032120 (2011).

[27] V. G. Morozov, S. Mathey, and G. Ropke, Phys. Rev. A 85,
022101 (2012).

[28] C. Uchiyama, Phys. Rev. A 85, 052104 (2012).

[29] Y. Gao, Eur. Phys. J. D 67, 183 (2013).

[30] V. Semin, I. Sinayskiy, and F. Petruccione, Phys. Rev. A 86,
062114 (2012).

[31] E. M. Laine, J. Piilo, and H.-P. Breuer, Europhys. Lett. 92, 60010
(2010).

[32] C. A. Rodriguez-Rosario, K. Modi, L. Mazzola, and A. Aspuru-
Guzik, Europhys. Lett. 99, 20010 (2012).

[33] L. Mazzola, C. A. Rodriguez-Rosario, K. Modi, and M.
Paternostro, Phys. Rev. A 86, 010102(R) (2012).

[34] A. Smirne, L. Mazzola, M. Paternostro, and B. Vacchini, Phys.
Rev. A 87, 052129 (2013).

[35] A. Rivas, S. F. Huelga, and M. B. Plenio, Rep. Prog. Phys. 77,
094001 (2014), and references therein.

[36] V. Gorini, A. Kossakowski, and E. C. G. Sudarshan, J. Math.
Phys. 17, 821 (1976).

[37] G. Lindblad, Commun. Math. Phys. 48, 119 (1976).

[38] N. Erez, G. Gordon, M. Nest, and G. Kurizki, Nature (London)
452, 724 (2008).

[39] G. Gordon, G. Bensky, D. Gelbwaser-Klimovsky, D. D. Rao,
N. Erez, and G. Kurizki, New J. Phys. 11, 123025 (2009).

[40] G. Gordon, D. D. Rao, and G. Kurizki, New J. Phys. 12, 053033
(2010).

[41] C. Meier and D. J. Tannor, J. Chem. Phys. 111, 3365 (1999).

[42] X. Wang and S. G. Schirmer, Phys. Rev. A 79, 052326
(2009).

[43] H.-P. Breuer, E.-M. Laine, and J. Piilo, Phys. Rev. Lett. 103,
210401 (2009).

[44] R. X. Xu and Y. J. Yan, J. Chem. Phys. 116, 9196 (2002).

[45] U. Kleinekathofer, J. Chem. Phys. 121, 2505 (2004).

[46] A.Pomyalov, C. Meier, and D. J. Tannor, Chem. Phys. 370, 98
(2010).

[47] B. Hwang and H. S. Goan, Phys. Rev. A 85, 032321 (2012);
J.-S. Tai, K.-T. Lin, and H.-S. Goan, ibid. 89, 062310 (2014).

[48] E. Geva, E. Rosenman, and D. Tannor, J. Chem. Phys. 113, 1380
(2000).

[49] C. H. Fleming, A. Roura, and B. L. Hu, Phys. Rev. E 84, 021106
(2011).

032113-13


http://dx.doi.org/10.1103/PhysRevA.83.064102
http://dx.doi.org/10.1103/PhysRevA.83.064102
http://dx.doi.org/10.1103/PhysRevA.83.064102
http://dx.doi.org/10.1103/PhysRevA.83.064102
http://dx.doi.org/10.1103/PhysRevA.84.032112
http://dx.doi.org/10.1103/PhysRevA.84.032112
http://dx.doi.org/10.1103/PhysRevA.84.032112
http://dx.doi.org/10.1103/PhysRevA.84.032112
http://dx.doi.org/10.1103/PhysRevLett.114.090402
http://dx.doi.org/10.1103/PhysRevLett.114.090402
http://dx.doi.org/10.1103/PhysRevLett.114.090402
http://dx.doi.org/10.1103/PhysRevLett.114.090402
http://dx.doi.org/10.1103/PhysRevA.76.042113
http://dx.doi.org/10.1103/PhysRevA.76.042113
http://dx.doi.org/10.1103/PhysRevA.76.042113
http://dx.doi.org/10.1103/PhysRevA.76.042113
http://dx.doi.org/10.1103/PhysRevA.81.052119
http://dx.doi.org/10.1103/PhysRevA.81.052119
http://dx.doi.org/10.1103/PhysRevA.81.052119
http://dx.doi.org/10.1103/PhysRevA.81.052119
http://dx.doi.org/10.1142/S1230161211000170
http://dx.doi.org/10.1142/S1230161211000170
http://dx.doi.org/10.1142/S1230161211000170
http://dx.doi.org/10.1142/S1230161211000170
http://dx.doi.org/10.1103/PhysRevA.87.012129
http://dx.doi.org/10.1103/PhysRevA.87.012129
http://dx.doi.org/10.1103/PhysRevA.87.012129
http://dx.doi.org/10.1103/PhysRevA.87.012129
http://dx.doi.org/10.1103/PhysRevA.88.052107
http://dx.doi.org/10.1103/PhysRevA.88.052107
http://dx.doi.org/10.1103/PhysRevA.88.052107
http://dx.doi.org/10.1103/PhysRevA.88.052107
http://dx.doi.org/10.1103/PhysRevLett.73.1060
http://dx.doi.org/10.1103/PhysRevLett.73.1060
http://dx.doi.org/10.1103/PhysRevLett.73.1060
http://dx.doi.org/10.1103/PhysRevLett.73.1060
http://dx.doi.org/10.1103/PhysRevLett.77.3272
http://dx.doi.org/10.1103/PhysRevLett.77.3272
http://dx.doi.org/10.1103/PhysRevLett.77.3272
http://dx.doi.org/10.1103/PhysRevLett.77.3272
http://dx.doi.org/10.1103/PhysRevLett.102.210401
http://dx.doi.org/10.1103/PhysRevLett.102.210401
http://dx.doi.org/10.1103/PhysRevLett.102.210401
http://dx.doi.org/10.1103/PhysRevLett.102.210401
http://dx.doi.org/10.1103/PhysRevLett.104.250401
http://dx.doi.org/10.1103/PhysRevLett.104.250401
http://dx.doi.org/10.1103/PhysRevLett.104.250401
http://dx.doi.org/10.1103/PhysRevLett.104.250401
http://dx.doi.org/10.1098/rsta.2011.0203
http://dx.doi.org/10.1098/rsta.2011.0203
http://dx.doi.org/10.1098/rsta.2011.0203
http://dx.doi.org/10.1098/rsta.2011.0203
http://dx.doi.org/10.1103/PhysRevE.86.021109
http://dx.doi.org/10.1103/PhysRevE.86.021109
http://dx.doi.org/10.1103/PhysRevE.86.021109
http://dx.doi.org/10.1103/PhysRevE.86.021109
http://dx.doi.org/10.1103/PhysRevA.77.042113
http://dx.doi.org/10.1103/PhysRevA.77.042113
http://dx.doi.org/10.1103/PhysRevA.77.042113
http://dx.doi.org/10.1103/PhysRevA.77.042113
http://dx.doi.org/10.1103/PhysRevA.86.064102
http://dx.doi.org/10.1103/PhysRevA.86.064102
http://dx.doi.org/10.1103/PhysRevA.86.064102
http://dx.doi.org/10.1103/PhysRevA.86.064102
http://dx.doi.org/10.1103/PhysRevLett.113.140502
http://dx.doi.org/10.1103/PhysRevLett.113.140502
http://dx.doi.org/10.1103/PhysRevLett.113.140502
http://dx.doi.org/10.1103/PhysRevLett.113.140502
http://dx.doi.org/10.1103/PhysRevA.90.012305
http://dx.doi.org/10.1103/PhysRevA.90.012305
http://dx.doi.org/10.1103/PhysRevA.90.012305
http://dx.doi.org/10.1103/PhysRevA.90.012305
http://dx.doi.org/10.1007/s11128-015-1148-0
http://dx.doi.org/10.1007/s11128-015-1148-0
http://dx.doi.org/10.1007/s11128-015-1148-0
http://dx.doi.org/10.1007/s11128-015-1148-0
http://dx.doi.org/10.1103/PhysRevA.80.064103
http://dx.doi.org/10.1103/PhysRevA.80.064103
http://dx.doi.org/10.1103/PhysRevA.80.064103
http://dx.doi.org/10.1103/PhysRevA.80.064103
http://dx.doi.org/10.1103/PhysRevA.82.044104
http://dx.doi.org/10.1103/PhysRevA.82.044104
http://dx.doi.org/10.1103/PhysRevA.82.044104
http://dx.doi.org/10.1103/PhysRevA.82.044104
http://dx.doi.org/10.1103/PhysRevA.82.062114
http://dx.doi.org/10.1103/PhysRevA.82.062114
http://dx.doi.org/10.1103/PhysRevA.82.062114
http://dx.doi.org/10.1103/PhysRevA.82.062114
http://dx.doi.org/10.1103/PhysRevA.82.022108
http://dx.doi.org/10.1103/PhysRevA.82.022108
http://dx.doi.org/10.1103/PhysRevA.82.022108
http://dx.doi.org/10.1103/PhysRevA.82.022108
http://dx.doi.org/10.1103/PhysRevA.82.012341
http://dx.doi.org/10.1103/PhysRevA.82.012341
http://dx.doi.org/10.1103/PhysRevA.82.012341
http://dx.doi.org/10.1103/PhysRevA.82.012341
http://dx.doi.org/10.1103/PhysRevA.84.032120
http://dx.doi.org/10.1103/PhysRevA.84.032120
http://dx.doi.org/10.1103/PhysRevA.84.032120
http://dx.doi.org/10.1103/PhysRevA.84.032120
http://dx.doi.org/10.1103/PhysRevA.85.022101
http://dx.doi.org/10.1103/PhysRevA.85.022101
http://dx.doi.org/10.1103/PhysRevA.85.022101
http://dx.doi.org/10.1103/PhysRevA.85.022101
http://dx.doi.org/10.1103/PhysRevA.85.052104
http://dx.doi.org/10.1103/PhysRevA.85.052104
http://dx.doi.org/10.1103/PhysRevA.85.052104
http://dx.doi.org/10.1103/PhysRevA.85.052104
http://dx.doi.org/10.1140/epjd/e2013-40158-6
http://dx.doi.org/10.1140/epjd/e2013-40158-6
http://dx.doi.org/10.1140/epjd/e2013-40158-6
http://dx.doi.org/10.1140/epjd/e2013-40158-6
http://dx.doi.org/10.1103/PhysRevA.86.062114
http://dx.doi.org/10.1103/PhysRevA.86.062114
http://dx.doi.org/10.1103/PhysRevA.86.062114
http://dx.doi.org/10.1103/PhysRevA.86.062114
http://dx.doi.org/10.1209/0295-5075/92/60010
http://dx.doi.org/10.1209/0295-5075/92/60010
http://dx.doi.org/10.1209/0295-5075/92/60010
http://dx.doi.org/10.1209/0295-5075/92/60010
http://dx.doi.org/10.1209/0295-5075/99/20010
http://dx.doi.org/10.1209/0295-5075/99/20010
http://dx.doi.org/10.1209/0295-5075/99/20010
http://dx.doi.org/10.1209/0295-5075/99/20010
http://dx.doi.org/10.1103/PhysRevA.86.010102
http://dx.doi.org/10.1103/PhysRevA.86.010102
http://dx.doi.org/10.1103/PhysRevA.86.010102
http://dx.doi.org/10.1103/PhysRevA.86.010102
http://dx.doi.org/10.1103/PhysRevA.87.052129
http://dx.doi.org/10.1103/PhysRevA.87.052129
http://dx.doi.org/10.1103/PhysRevA.87.052129
http://dx.doi.org/10.1103/PhysRevA.87.052129
http://dx.doi.org/10.1088/0034-4885/77/9/094001
http://dx.doi.org/10.1088/0034-4885/77/9/094001
http://dx.doi.org/10.1088/0034-4885/77/9/094001
http://dx.doi.org/10.1088/0034-4885/77/9/094001
http://dx.doi.org/10.1063/1.522979
http://dx.doi.org/10.1063/1.522979
http://dx.doi.org/10.1063/1.522979
http://dx.doi.org/10.1063/1.522979
http://dx.doi.org/10.1007/BF01608499
http://dx.doi.org/10.1007/BF01608499
http://dx.doi.org/10.1007/BF01608499
http://dx.doi.org/10.1007/BF01608499
http://dx.doi.org/10.1038/nature06873
http://dx.doi.org/10.1038/nature06873
http://dx.doi.org/10.1038/nature06873
http://dx.doi.org/10.1038/nature06873
http://dx.doi.org/10.1088/1367-2630/11/12/123025
http://dx.doi.org/10.1088/1367-2630/11/12/123025
http://dx.doi.org/10.1088/1367-2630/11/12/123025
http://dx.doi.org/10.1088/1367-2630/11/12/123025
http://dx.doi.org/10.1088/1367-2630/12/5/053033
http://dx.doi.org/10.1088/1367-2630/12/5/053033
http://dx.doi.org/10.1088/1367-2630/12/5/053033
http://dx.doi.org/10.1088/1367-2630/12/5/053033
http://dx.doi.org/10.1063/1.479669
http://dx.doi.org/10.1063/1.479669
http://dx.doi.org/10.1063/1.479669
http://dx.doi.org/10.1063/1.479669
http://dx.doi.org/10.1103/PhysRevA.79.052326
http://dx.doi.org/10.1103/PhysRevA.79.052326
http://dx.doi.org/10.1103/PhysRevA.79.052326
http://dx.doi.org/10.1103/PhysRevA.79.052326
http://dx.doi.org/10.1103/PhysRevLett.103.210401
http://dx.doi.org/10.1103/PhysRevLett.103.210401
http://dx.doi.org/10.1103/PhysRevLett.103.210401
http://dx.doi.org/10.1103/PhysRevLett.103.210401
http://dx.doi.org/10.1063/1.1474579
http://dx.doi.org/10.1063/1.1474579
http://dx.doi.org/10.1063/1.1474579
http://dx.doi.org/10.1063/1.1474579
http://dx.doi.org/10.1063/1.1770619
http://dx.doi.org/10.1063/1.1770619
http://dx.doi.org/10.1063/1.1770619
http://dx.doi.org/10.1063/1.1770619
http://dx.doi.org/10.1016/j.chemphys.2010.02.017
http://dx.doi.org/10.1016/j.chemphys.2010.02.017
http://dx.doi.org/10.1016/j.chemphys.2010.02.017
http://dx.doi.org/10.1016/j.chemphys.2010.02.017
http://dx.doi.org/10.1103/PhysRevA.85.032321
http://dx.doi.org/10.1103/PhysRevA.85.032321
http://dx.doi.org/10.1103/PhysRevA.85.032321
http://dx.doi.org/10.1103/PhysRevA.85.032321
http://dx.doi.org/10.1103/PhysRevA.89.062310
http://dx.doi.org/10.1103/PhysRevA.89.062310
http://dx.doi.org/10.1103/PhysRevA.89.062310
http://dx.doi.org/10.1103/PhysRevA.89.062310
http://dx.doi.org/10.1063/1.481928
http://dx.doi.org/10.1063/1.481928
http://dx.doi.org/10.1063/1.481928
http://dx.doi.org/10.1063/1.481928
http://dx.doi.org/10.1103/PhysRevE.84.021106
http://dx.doi.org/10.1103/PhysRevE.84.021106
http://dx.doi.org/10.1103/PhysRevE.84.021106
http://dx.doi.org/10.1103/PhysRevE.84.021106



