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In this review article, we present a non-equilibrium quantum transport theory for transient electron
dynamics in nanodevices based on exact Master equation derived with the path integral method in the
fermion coherent-state representation. Applying the exact Master equation to nanodevices, we also
establish the connection of the reduced density matrix and the transient quantum transport current
with the Keldysh nonequilibrium Green functions. The theory enables us to study transient quantum
transport in nanostructures with back-reaction effects from the contacts, with non-Markovian dissipa-
tion and decoherence being fully taken into account. In applications, we utilize the theory to specific
quantum transport systems, a variety of quantum decoherence and quantum transport phenomena
involving the non-Markovian memory effect are investigated in both transient and stationary scenarios

at arbitrary initial temperatures of the contacts.
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1 Introduction

Generally speaking, a nanostructure refers to any struc-
ture with one or more dimensions measuring in the
nanometer (107% m) scale, which puts the scale of a
nanostructure intermediate in size between a molecule
and a bacterium. More specifically, the characteristic
dimension of a nanodevice is smaller than one or more
of the following length scales, the de Broglie wavelength
of the electrons (given by their kinetic energy), mean
free path of electrons (distance between collisions), and
phase coherence length of electrons (distance over which
an electron can interfere with itself). Such devices usu-
ally do not follow the Ohmic law because of the quantum
mechanical wave nature of electrons. Studying nanos-
tructures makes up one of the frontiers of semiconductor
industry due to Moore’s Law, which is the observation
that the number of transistors in a dense integrated cir-
cuit doubles approximately every two years. Although
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the pace of advancement has slowed down, the current
transistor fabrication already runs at 14 nm, and Intel
claim that they will have 10 nm technology in commer-
cial devices in late 2017. Understanding how electrons
behave over such tiny distant scales is therefore of very
obvious importance to the electronics, communication
and computation industries.

Experimentalists now have access to a huge array of
nanostructures such as quantum heterostructures, quan-
tum wells, superlattices, nanowires, etc. Nanostructures
are typically probed either optically (spectroscopy, pho-
toluminescence, ...) or in electronic transport experi-
ments. In this review article, we mainly concentrate on
the latter. Common nanodevices for quantum trans-
port include quantum dots [1], resonant tunneling diodes
(RTDs) [2], and two-dimensional electron gases (2DEGs)
[3]. Quantum dots are the laboratory produced solid-
state structures with nanometer scales, in which the mo-
tion of charge carriers (electrons and holes) is limited in
all three spatial dimensions. The electrons (holes) con-
fined in discrete quantum states with the properties of
quantum dots being similar to natural atoms. As a re-
sult, quantum dots are also called artificial atoms, and
their electronic properties can be modified and controlled
by external fields. Resonant-tunneling diodes (RTDs)
basically consist of two potential barriers and one quan-
tum well with electrons confined in the small central re-
gion. The major attraction of RTDs is their ultrasen-
sitive response to voltage bias in going from the high-
transmission state to the low-transmission state. If these
devices are able to operate under high bias (far from
equilibrium condition), very high transistor transconduc-
tance and ultra-fast switching are obtainable. In fact, mi-
crowave experimental results indicate the intrinsic speed
limit of RTD to be in the tera-Hz range [4]. Two-
dimensional electron gases (2DEGs) means electrons free
to move in two dimensions, but tightly confined in the
third, which can then be ignored. Most 2DEGs are found
in transistor-like structures made from semiconductors.
2DEGs offer a mature system of extremely high mo-
bility electrons, especially at low temperatures. These
enormous mobilities enable one to explore fundamental
physics of quantum nature, because except for confine-
ment and effective mass, the electrons do not interact
with each other very often, so that they can travel sev-
eral micrometers before colliding. As a result, the quan-
tum coherence of electron wave may play an important
role. Indeed, the quantum Hall effect was first observed
in a 2DEG [5] which led to two Nobel Prizes, in 1985
and 1998, respectively.

Today, there are many practical applications of nanos-
tructures and nanomaterials. For example, the Quan-
tum Hall effect now serves as a standard measurement
for resistance. Quantum dots are using in many mod-

ern application areas including quantum dot lasers in
optics, fluorescent tracers in biological and medical set-
tings, and quantum information processing. The theory
of nanostructures involves a broad range of physical con-
cepts, from the simple confinement effects to the complex
many-body physics, such as the Kondo and fractional
quantum Hall effects. More traditional condensed mat-
ter and quantum many-body theory all have the role
to play in understanding and learning how to control
nanostructures as a practically useful device. From the
theoretical point of view, electrons transport in nanos-
tructures is described as physical systems consisting of
a nanoscale active region (the device system) attached
to two leads (source and drain), which is presented in
Fig. 1. The quantum transport theory for these physical
systems is mainly based on the following three theoreti-
cal approaches. The Landauer—Biittiker approach [6, 7],
because of its simplicity, has often been used to ana-
lyze RTDs [8] and quantum wires [9]. In this approach,
electrons transport is simply treated by ballistic trans-
port (pure elastic scattering) near thermal equilibrium.
However, in order for nanodevices to be functionally op-
erated, it may be subjected to high source-drain voltages
and high-frequency bandwidths, in far from equilibrium,
highly transient and highly nonlinear regimes. Thus, a
more microscopic theory has been developed for quan-
tum transport in terms of non-equilibrium Green func-
tions [10-14] for the device system. Moreover, the device
system exchanges the particles, energy and information
with the leads, and is thereby a typical open system.
The issues of open quantum systems, such as dissipa-
tion, fluctuation and decoherence inevitably arise. The
third approach, the Master equation approach, gets the
advantage by describing the device system in terms of
the reduced density matrix.

In this review article, we give first a brief descrip-
tion of the Landauer—Biittiker approach [6, 7], the non-
equilibrium Green function technique [15-17], and the
Master equation approach [18-25]. The theoretical
schemes of these approaches are schematically presented
in Figs. 2, 3, and 6. The main differences between these
three approaches are the ways of characterizing electron
transport flowing through the device system. In the
Landauer—Biittiker approach, the device system is de-
picted as a potential barrier, and all the information of
the device system are imbedded in the scattering matrix.
The actual structure of the device system is obscure.

Fig. 1 Theoretical scheme for a quantum transport system.
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Fig. 2 Theoretical scheme for scattering theory.
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Fig. 3 Theoretical scheme for Keldysh non-equilibrium
Green function technique.

Comparing to the Landauer—Biittiker approach, the non-
equilibrium Green function technique provides a more
microscopic way by describing electrons flowing through
the device system with single-particle non-equilibrium
Green functions. In the Master equation approach, the
device system is described by the reduced density ma-
trix, which is the essential quantity for studying quan-
tum coherent and decoherent phenomena. Better than
the non-equilibrium Green function in which the average
over the density matrix has been done, quantum coher-
ent dynamics is depicted explicitly by the off-diagonal
matrix elements of the reduced density matrix. Then, in
the subsequent sections, we will focus on applications
of the Master equation approach to various quantum
transport problems in nanostructures. In particular, us-
ing Master equation, we investigate transient current-
current correlations and transient noise spectra for a
quantum dot system which contain various time scales
associated with the energy structures of the nanosystem
(see Section 3.1). The transient quantum transport in
nanostructures is also investigated in the presence of ini-
tial correlations (see Section 3.2). The relation of the
phase dependence between the quantum states and the
associated transport current are analyzed in a nanoscale
Aharonov-Bohm (AB) interferometer, which provides an
alternate possibility of quantum tomography in nanosys-
tems (see Section 3.3). At last, a conclusion is given in
Section 4.

2 Approaches for studying quantum
transport in semiconductor nanostructures

2.1 Landauer—Biittiker approach

The Landauer—Bittiker formula has been widely uti-
lized to calculate various transport properties in semi-
conductor nanostructures in the steady-state quantum

transport regime [6, 26]. It establishes the fundamen-
tal relation between the electron wave functions (scat-
tering amplitudes) of a quantum system and its con-
ducting properties. In the Landauer—Biittiker formula,
the transport current is given in terms of transmission
coefficients, obtained from the single-particle scattering
matrix. This approach is first formulated by Landauer
for the single-channel transport [27, 28]. Later on, Biit-
tiker et al. extended the formula to multi-channel [29]
and multi-terminal cases [30]. The further development
of the Landauer—Biittiker approach is the calculation of
the current noise correlations in mesoscopic conductors
[7], the detailed discussion can be found from the review
article by Blanter et al. [31].

A typical system considered in the Landauer—Biittiker
approach consists of reservoirs (contacts), quantum
leads, and a mesoscopic sample (scatterer) (see Fig. 2).
The reservoirs connect to the mesoscopic sample by
quantum leads, and are always in an equilibrium state
in which electrons are always incoherent. However, elec-
tron transport passing through the mesoscopic sample
between the reservoirs is phase coherent. Such coherent
transport is described by the electron wave function scat-
tered in the mesoscopic sample, which can be character-
ized by a scattering matrix S. Therefore, the key to de-
scribe electron quantum transport in Landauer—Biittiker
approach is to determine the scattering matrix S which
relies crucially on the mesoscopic sample structure.

We start with the single-channel and two-terminal
case. Consider an electron plane wave impinging on a
finite potential barrier from left (z < 0), and is scattered
into the reflected and transmitted components. Assume
that the energy and momentum are conserved in the
scattering process, and the wave function of the electron
incident from the left and right are given respectively,

ikx —ikz
et +re z <0,
T) = . 1
vr(@) {te”“ x>0, ()
t'e~ik® x <0,
T) = . . 2
wR( ) {e—ﬂcx 4 ,r/elkm > O7 ( )

where 7 (r') and ¢ (¢') are respectively the complex re-
flected and transmitted amplitudes of the wave incoming
from the left (right), with |r|? (|7/|?) and |¢|? (|t'|?) being
the reflected and transmitted probabilities. These wave
functions are the so-called scattering states. For a gen-
eral incoming state, ape'*® + are™*®, with probability
amplitudes ar, g, the total wave function should be

ikx —ikzx
are’™ +bre
W(IE) = { —ikzx ikx
age + bre

x <0,
x>0,

3)

by introducing probability amplitudes by, g for the outgo-
ing state such that the incoming and outgoing probabil-
ity amplitudes are related to each other by the scattering
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matrix:

()= (0 o) () =s (i) @

The coefficients in the scattering matrix (r, ¢, v/, and t')
are obtained by solving the Schrédinger equation with
the potential that models the mesoscopic sample.

It is straightforward to generalize the formalism to
multi-channel case where there are Ny, modes on the left
and Ni modes on the right. The incoming and outgoing
amplitudes can be written in vectors such that

ari bri
arNy |,y brn,
;b= : (5)
aR1 br1
ARN brNR

and the scattering matrix, leading to b = Sa, is in di-
mension (N + Ng) X (N, + Ng) and has the following
form:

SLL SLR r t/

S_<3RL SRR>_(t 7”)’ (©)
where the matrices ¢ (Ng x Np) and r (N, x Np,) de-
scribe respectively the transmission and reflection of elec-
trons incoming from the left with the element t,,, and
Tmn characterizing respectively the electrons transmit-
ted from the left mode n into the right mode m and
the electrons reflected from the left mode n into the left
mode m. Similarly, the matrices ' (Ng x Ng) and ¢/
(N1 x Ng) represent the reflection and transmission pro-
cesses for states incoming from the right. The scattering
matrix S is unitary due to the flux conservation, i.e.,

STS§ =88t =1. (7)

Consider the Hamiltonian of lead o (a« = L, R),

2 2
Dz o
oy Pla 4 p(p) ), 8)

H =
o 2m* 2m*

where z, and 7, denote the local coordinates in the
longitudinal and transverse directions, respectively, and
m™ is the effective mass of the electron in the lead. The
motion of electrons in the longitudinal direction is free,
but it is quantized in the transverse direction due to the
confinement potential U(r ). Then, the eigenfunctions
of the Hamiltonian H, can be expressed as

¢§n(ma7 Tla) = X(xn(rLa)eiikanma, (9)

where the incoming wave e**e and outgoing wave e~ 1F%«

characterize the longitudinal motion of elections, and

Xan(T1a) satisfies

2
p
[2;;: + U(TLa):| Xan (Tla) = eanXom(rla)a (10)
with each transverse mode contributing a transport
channel. As a result, the dispersion relation of electron
is thus given by

h%k?

Ean(kom) = Zmom + €an- (11)

In this case, for an electron from mode m of lead « scat-
tering by the mesoscopic sample, the scattering state of
the electron for lead « is

Vam _
wam(a) = Z <5mn¢l_n + v Saanm¢an) ) (12)

an

n

where S, gnm represents the amplitude of a state scat-
tered from mode m in lead 8 to mode n in lead «, and
the factor \/Vam/Van is introduced to guarantee the flux
conservation, where v, = fikam/m* is the electron ve-
locity. The corresponding scattering state for lead 8 # «

is
Yam(B) =3 /%”Sganmqsﬁgn. (13)

In the second quantization scheme, a general state of the
lead-device system is given by an arbitrary superposition
of these scattering states,

N 1 _i N
W(’I",t) :\/T?Z/dkamwam(’r)e h'EQM(kQM)taam(kam)v
(14)

where dom(kam) is the annihilation operator satisfying
the canonical anti-commutation relation,

{aam (k) al, (K')} = 6apnmd(k — K'). (15)

Changing the k space into the energy space, and defining
the incoming operator in the energy space Gom(E) =
dem (k) /[Mvam(k)]*/?, one has

{aam(B),al,(E")} = 0apbpmd(E — E'), (16)

where §(E — E') = 1/v4md(k — k). The field operator
can be rewritten as
wocm ) Eam

U(r,t) aom (Bam).-

W by e e

(17)

With the above solution, the current flowing from con-
tact a to the mesoscopic sample can be deduced. The
current operator of lead « is given by

_ / dr 1 oj(ra,t), (18)
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where the current density operator is expressed as

wive — (vt (19)

“~ t:
J(r,t) i

Substituting the scattering states Eq. (12) and Eq. (13)
into the field operator of Eq. (17) gives the following
form:

rou _7Eamtaam(Eo¢m)

Z / \/ hvocm ocm
,UOé’ITL —
x{ Z {%nqﬁ;n /5 Smm%n]

an

+ Z Z Vam Sﬁomm(bgn}
pran VO

LEamt

Z/m

X [¢amaam (Eam) + QS;mbam(Eam)L (20)

where the contribution of the incoming (the first
term) and outgoing (the second term) states are
explicitly presented in the above form. Using the
orthogonal properties of different transverse modes,
Jdr LaXam(T1a)Xan(P1a) = Omn, the current can be
reduced to the following form:

Ia(t) = %Z / dEAE' [}, (E)iam(E')
~ bl (B)bam ()]l F=E0M, (21)

with the approximation vam(E) = vam(E’) which is al-
ways valid for a slowly-varying function v(E). From the
scattering relation b = Sa, one can express the current
as

Z / dEdE'a),, (E) AR (o; B, E')
Bynk

Xy (E)en Bt (22)

with the matrix A having the following form:
A (3 B, E') = SapborOkn— Y St gnm (B)Saymi(E').
(23)

Because contact « is in equilibrium, the average current
at lead « is then

Z/dE

where fo(E) = 1/[e(E—#a)/(ksTa) 1 1] is the Fermi-Dirac
distribution of contact « at the chemical potential i, and

(a, E, E) f3(E), (24)

temperature T,. Applying with the scattering matrix
(6), the average current of the left lead becomes

1) = [AB T EUBIE) - Fa(B).  (25)

This gives the famous Landauer—Biittiker formula [7].
Here, t(E) = t/(E) coming from the time-reversal sym-
metry.

In the steady-state quantum transport regime, the
Landauer—Biittiker approach is a powerful method to
calculate various transport properties in semiconductor
nanostructures [32-35]. However, the scattering theory
considers the reservoirs connecting to the scatterer (the
mesoscopic sample) to be always in equilibrium and elec-
trons in the reservoir are always incoherent. Thus, the
Landauer—Biittiker formula becomes invalid to transient
quantum transport. The scattering theory method could
be extended to deal with time-dependent transport phe-
nomena, through the so-called the Floquet scattering
theory [36-38], but it is only applicable to the case of the
time-dependent quantum transport for systems driven
by periodic time-dependent external fields.

2.2 Non-equilibrium Green function technique

Green function techniques are widely used in many-
body systems. For equilibrium systems, zero temper-
ature Green functions and Matsubara (finite tempera-
ture) Green functions are useful tools for calculating the
thermodynamical properties of many-body systems, as
well as the linear responses of systems under small time-
dependent (or not) perturbations [39]. However, when
systems are driven out of equilibrium, non-equilibrium
Green functions are utilized [15-17]. Non-equilibrium
Green function techniques are initiated by Scwinger
[10] and Kadanoff and Baym [11], and popularized by
Keldysh [40]. To deal with non-equilibrium phenom-
ena, the contour-ordered Green functions which are de-
fined on complex time contours are introduced such that
the equations of motion and perturbation expansions of
contour-ordered Green functions are formally identical
to that of usual equilibrium Green functions.

In this section, the contour-ordered Green functions
defined on Kadanoff-Baym contour which takes into
account the initial correlations and statistical bound-
ary conditions will be discussed. The real-time non-
equilibrium Green functions are deduced from the
contour-ordered Green function by analytic continua-
tion. In application, one gives a detailed derivation of
the transport current for a mesoscopic system by means
of the Keldysh technique. The resulting transport cur-
rent is formulating in terms of the non-equilibrium Green
functions of the device system, which provides a more
microscopic picture to the electron transport, in compar-
ison to the Landauer—Biittiker formula, see Fig. 3. For
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a more complete description of non-equilibrium Green
function techniques, we refers the readers to Refs. [11,
15, 41].

The contour-ordered Green function
equilibrium many-body theory is defined as

Ga,m;a',7') = —(Tolp(e, 7)1 (@', 7))
= —iTr [ pror(to) Te{ v (=, )T (=7},
(26)

of mnon-

where 1(z,7) and ¢f(x’,7") are the fermion field oper-
ators in the Heisenberg picture with time variables 7,
7' (denoted by Greek letters) defined on the complex
contour C, and T¢ is a contour-ordering operator which
orders the operators according to their time labels on the
contour:

Yz, 7)Yt (', 1) T>c T,
i@, 7 )(e,7) <7
(27)

TC['(/)(w’ T)¢T(wl7 7—,)] = {

From the above definition, it is straightforward to rewrite
the contour-ordered Green function as

Gz, 7;2',7") = Oc(r —7)G” (z, 732", 7)

+Oc(t" = 7)G<(z, 132, T7), (28)

where O¢(7 — 7') is the step function defined on the
contour in a clockwise direction, and G~ and G< are
the greater and lesser Green functions, respectively. The
configuration of complex contour C'is determined by the
initial density matrix of the total system pso:(to).

The non-equilibrium dynamics considered in the
Kadanoff-Baym formalism is formulated as follows. The
physical system is described by a time-independent
Hamiltonian,

h = Hy + H;, (29)

where Hy represents a free Hamiltonian, and H; is the
interaction between the particles. The system is initially
assumed at thermal equilibrium, which means the system
is in partition-free scheme [42],

prarlte) = ol T — Cexp(-0h), (30

where 8 = 1/(kpT), and the particle energies are mea-
sured from the chemical potential . After ¢ = ¢y, the
system is exposed to external disturbances, e.g. an elec-
tric field, a light excitation pulse, or a coupling to con-
tacts at differing (electro) chemical potentials that are

described by time-dependent Hamiltonian H’(t). Thus,
the total Hamiltonian is

H(t)=h+ H'(t), (31)

where H'(t < tp) = 0. By choosing the time arguments
in contour-ordered Green function (26) are real time vari-
ables t and t', the field operator ¥ (x,t) is then

P(z,t) = (1) = Ulto, )Pn (1)UL, to), (32)

where the shorthand notation (1) = («, t) has been used,
and U is the evolution operator for the time-dependent
Hamiltonian H'(¢),

Ut t)=T {exp {—i /t /t dtlfl,’l(tl)} } . (33)

In the above equations, ¥y (1) and H 1, (t) are operators
in the interaction picture with respect to Hamiltonian h,

Pi(1) = (e, o)),
E[}/‘L(t) _ eih(t*to)H’(t)e*ih(t*to).

(34a)
(34b)

The contour-ordered Green function in Kadanoff-Baym
formalism is now written as

iG(1,1)=Tr [ prodto) Te{U (to,t )b DU EE YU to))]
=T [proito) Too{Uci(to, to)bn (VW] (1)} ], (35)

where Uc, (to,t0) = To,{expl—i §, driH} ()]} is the
evolution operator defined on the close path contour Cy
as shown in Fig. 4.

In order to perform the Wick theorem, one needs to
further transform the operators ¢y, (1), 1/1,2(1’ ) in the in-
teraction picture with respect to the free Hamiltonian
Hol

Un(1) = Ulto, t)P(1)U (L, o). (36)

Here, U being the evolution operator for the interaction
Hamiltonian H;,

Ult,t')y=T {exp [i/t/t dtlﬁi(t)] } : (37)

and (1) and H;(t) in the interaction picture are given
by

fo

h(1) = U0y (@, gy o7 ot (382)
Ijlz(t) = eiHO(t_to)Hie_iHO(t_to). (38b)
C
T :0 max (t, t')
* %

min (¢, t')

Fig. 4 Closed time path contour Cp.
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Furthermore, one can rewrite the factor exp(—/#h) in the
initial density matrix,

exp(—pBh) = exp(—BHo)U (to — 1B, to). (39)

Finally, the contour-ordered Green function is reduced
to

iGa 1,):Tr{PoTcg[ch(tO*iﬂvto)uoo(to,toﬁ/}(l)w(l/)]}

’ Tr{poTc; [Uc; (to — i, to)Uc, (to, to)] }

(40)

where py = e PHo/Z; is the equilibrium density
matrix of Hamiltonian Hy, and Uc;(to — i8,ty) =
Tey {exp[—i fcg dTlfAIi(Tl)]} is the evolution operator de-
fined on contour C§ = Cy U [tg,tp — if] which is the
Kadanoff-Baym contour shown in Fig. 5.

Eq. (40) is the exact contour-ordered Green function
in Kadanoff-Baym formalism, which is defined in the
interaction picture with respect to the free Hamiltonian
Hy, so that Wick theorem is always applicable. Thus, the
perturbative evaluation of Eq. (40) could be put in a form
analogous to the usual Feynman diagrammatic technique
as in the equilibrium Green function techniques, which
leads to the Keldysh formalism.

On the other hand, the contour-ordered Green func-
tion obeys the following Dyson equation:

G(1,1') = Go(1,1) +/d2 /d3G0(1,2)2(2,3)G(3, 1),
(41a)

G, 1) = Go(1,1') +/d2 /d3G(1, 2)%(2,3)Go(3, 1),
(41b)

where Go(1,1') = —i(Te[((1)1T(1)]) is the unperturbed
Green function, 3(2, 3) is the one particle irreducible self-
energy, and the integral sign | d2(3) denotes a sum over
all integral variables. The equations can be simply writ-
ten as

G =Gy + GoxG,
G =Gy + GXGy.

(42a)
(42Db)

max (z, t')

—

min (2, t')

to=ip

Fig. 5 Kadanoff-Baym contour Cj.

The Dyson equation can be regarded as the Schrodinger
equation of a particle in the medium subject to the
self-energy as the potential. In the Dyson equation,
the single-particle Green function is entirely determined
by the self-energy which contains all the many-body
effects.

The steady-state transport current in a mesoscopic
system is presented by the Keldysh formalism. Consider
a nanostructure consisting of a quantum device coupled
with two leads (the source and drain), which can be de-
scribed by the Fano—-Anderson Hamiltonian [39, 43, 44],

_ T T
H= E €i;a;a; + E €akChkCak
ij ak

+> (Viaka] car + Hec.). (43)
ik

Here a! (a;) and ch (cak) are creation (annihilation)
operators of electrons in the quantum device and lead
o, respectively, €;; and €, are the corresponding energy
levels, V;i is the tunneling amplitude between the or-
bital state i of the device system and the orbital state k
of lead a. In the Keldysh approach, the quantum de-
vice and the leads are decoupled in the remote past,
and the tunneling between them is viewed as a perturba-
tion. Then, the time-independent Hamiltonian A, time-
dependent Hamiltonian H’(t), and the initial density ma-
trix pror(—00) of the total system are

h=Hy= Z 5ija;raj + Z eakcikcak, (44a)
©j ak
H'(t>to) =Y (Viaralcar + He), (44Db)
iak
Ptot(—0) = pr ® p(—00) ® pr, (44c)

where H, = >, eakclkcak and Ny = Y, clkcak are
the Hamiltonian and the total particle number of lead «,
respectively. Lead « is initially in thermal equilibrium
Po = % [e’ﬁ&(Hﬂ’“ﬂNa)] with inverse temperature [,
and chemical potential u,. The device system can be in
an arbitrary state p(—o0), i.e., the total system is in the
partitioned scheme [45, 46].

In non-equilibrium Green function techniques, the in-
formation of the dissipation and fluctuation dynamics of
the device system can be extracted from the contour-
ordered Green function of the device system G;;(7,7’),

Gij(r,7') = —i(Tclai(r)al (7))
= O¢(1—7")G7 (1,7 ) +Oc (7 —7)G5 (7, 7).
(45)

This Green function obeys the following equations of mo-
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tion:

zl: (1687_51‘1 — <€u> Glj(T, 7'/)

=dc(t—7)di; + Z ViakGak (1, 7), (46a)
ak
.0
; |: - lﬁélj — Elj:| Gil(T, T/)
=0c(T =)0+ > Giak(T, 7 )V, (46b)

ak

where the mixed contour-ordered Green functions,
Gakj(1,7) = —i(Telcar(T)al (7)) and Gian(r,7') =
—i{Tc[a; (T)C:ka(T/ )]), are given as follows:

Gran(r: ™)=Y [ AnGa(r,m)Viargan(m, 7). (47a)
[ C

Gak,j(TyT/):Z/ dTlgak(T,T1)‘/lszlj(T1,Tl). (47b)
1 JC

Inserting Egs. (47a) and (47b) into Eq. (46) gives the

Dyson equation in the differential form, i.e., Kadanoff—

Byam equation,

[i0:1p — €] G(r,7")

—Lpdclr =)+ [ dnZrn)G(n,T),  (45)
G(r,7')[=i0m1p — 5
=1pdc(t—1')+ /C dnG(r,7)X(m,7'), (48b)
with self energy
)= Laij(r7)
= Z Viakgak (7, 7") Vo (49)

ak

Here, 1p is an identity matrix in the dimension of the
device system. On the other hand, the equation of un-
perturbed contour-ordered Green function of the device
system is

[10:1p — €]Go(r, ) = 1pde(r — ),
C‘r"O(T7 T/)[_iaT/]lD — g] = ]lD(SC(T _ 7_/)'

(50a)
(50Db)

Consequently, the Dyson equation (48) can be rewritten
in the following form:

G,'G=1+XG,
GG,;'=1+Gx.

(51a)
(51b)
Here, the matrix product means a product of all the

internal variables (energy level and time). Eq. (51) re-
produces the integral form of Dyson equation (42).

Using the Dyson equation (42) and the Langreth the-
orem [47], one has
GRA GRA +GR AER AGRA (523,)
G2 = G% + GES"G= + GEs2G* + GEzGA.
(52b)

One can further iterates Eq. (52b) respect to G2 and
obtains

G2 = (1+ GEx™HGZ(1+ =4GH)
+(GE+GEsRelh A+ GExiGEntia:.
(53)

After iterates infinite orders, one can get
GZ = (1+GRSH)GF (1 + 246 + GRE2GA. (54)

In the Keldysh technique, the first term is neglected be-
cause it usually vanishes at steady-state limit. Then,

G2 = Gl's=GA. (55)

Eq. (52a) and Eq. (55) are the final results of real time
non-equilibrium Green functions in the Keldysh formal-
ism which all the transport properties are determined
by.

The transport current from lead « to the device system
is defined as

Ta(t) = —%wa(t» - —%{H, Na))
—Rez 1 P (; (56)

where the mixed lesser Green function, Gy, (t,t') =

i{c Lk(t )a;(t)), can be obtained by applying the Langreth
theorem to the mixed contour-ordered Green function
(47a),

1o¢k: t t Z/ dtl ZJ t tl)vvjakgock(tlv )

+Gij(t7t1)‘/jakgak(t17t )] (57)

In the steady-state limit, all the Green functions usu-
ally depend on the differences of time arguments, i.e.,
G(t,t") = G(t — t') because of time translation symme-
try. Thus Green function Gfak(t,t) in the frequency
domain can be expressed as

1aktt Z/dw

+G55 (@) Viargar (@) (58)
Combinding Eq. (56) and (5

port current reduces to

]Oékgak( )

8), the steady-state trans-

I,= TrI' w){fa(W)[G

. Rw)-GAW)+ G @)},

(59)
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where I'yij(w) = 2m) ), mGVj*ak(S(w — €qk) 18 a level-
width function, and we have used the results of the free-
particle Green functions given in Ref. [15]. Now, the
transport current is fully determined by Green functions
of the device system. Besides, for the non-interacting

device system, one has
Gw) - G (w) = G”(w) - G=(w)
= —iG"(w) Y Ta(w)G*(w).  (60)

Then, the steady-state transport current becomes

=53 [ S Tast)fal) - fal), (61)

where T3 = Tr [ (w)GF(w)I5(w)G# (w)] is the trans-
mission coefficient. This expression of the steady-state
transport current reproduces the Landauer—Bittiker for-
mula with the transmission probability being derived mi-
croscopically. The non-equilibrium Green function tech-
nique based on Keldysh formalism [10, 40] has been
used extensively to investigate the steady-state quantum
transport in mesoscopic systems [15-17].

Wingreen et al. extended Keldysh’s non-equilibrium
Green function technique to time-dependent quantum
transport under time-dependent external bias and gate
voltages [16, 17]. Explicitly, the parameters in Hamilto-
nian (44), controlled by the external bias and gate volt-
ages, become time dependent,

Eij —* Eij (t), (62&)
€ak —7 €ak (t) = €ak + Aok (t)a (62b)
Viak = Viak(t) (62c)

Then, the time-dependent transport current becomes

I,(t) = —2—; /_too dT/g—:ImTr{e_i”(T_t)Fa(w,T, t)
x[falw)GR(t,7) + G=(t,7)] }, (63)
where the level-width function is also time dependent,
Iyij(w, t1,t2)

=27 Z V;oék(tl)e_iftg1 dSAa’“(s)ijk(tg)(S(w—eak). (64)
k

In particular, the Green functions in time domain are
given by

GR(t,t) = GE(t,t)
+/dt1/dt2G§(t7tl)ER(tl,tg)GR(tg,t'),
(65a)

G<(t,t) :/dt1/dtQGR(t,t1)2<(t1,tg)GA(t27t’).
(65b)

with self-energy defined as

Nt ta) =—iO(t —tz)Z/%Faij (w, by, tg)e =),
i (66a)
Efj(tl,tQ):iZ/d—wfa(w)ra(w,tl,tQ)e*Wl*@).
- 27
(66D)

This gives a general formalism for time-dependent cur-
rent through the device system valid for non-linear re-
sponse, where electron energies can be varied time-
dependently by external gate voltages. However, in the
Keldysh formalism, non-equilibrium Green functions are
defined with the initial time ty — —oo, where the initial
correlations are hardly taken into account. This limits
the Keldysh technique to be useful mostly in the non-
equilibrium steady-state regime.

2.3 Master equation approach

The Master equation approach concerns the dynamic
properties of the device system in terms of the time evo-
lution of the reduced density matrix p(t) = Trg[ptot(t)],
where Trg, is the trace over all the environmental (leads)
degrees of freedom. The dissipation and fluctuation dy-
namics of the device system induced by the reservoirs
(leads) are fully manifested in the Master equation. The
transient transport properties can be naturally addressed
within the framework of the Master equation. Com-
pared to the non-equilibrium Green function technique,
the Master equation approach manifests the state infor-
mation of the device system, see Fig. 6, which is a key
element in studying quantum phenomena.

In principle, the Master equation for quantum trans-
port can be solved in terms of the real-time diagrammatic
expansion approach up to all orders [18]. However, most
of the Master equations used in nanostructures are ob-
tained by the perturbation theory up to the second order
of the system-lead couplings, which is mainly applicable
in the sequential tunneling regime [48]. A recent develop-
ment of Master equations in quantum transport systems
is the hierarchical expansion of the equations of motion
for the reduced density matrix [20, 25], which provides a
systematical and also very useful numerical calculation
scheme for quantum transport.

A few years ago, we derived an exact Master equa-

Left ; / Right

reservoir (lead) p(t) reservoir (lead)

(1) /— 4\ (. Dg

Fig. 6 Theoretical scheme for Master equation approach.
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tion for non-interacting nanodevices [21-23], using the
Feynman—Vernon influence functional approach [49] in
the fermion coherent-state representation [50]. The ob-
tained exact Master equation not only describes the
quantum state dynamics of the device system but also
takes into account all the transient electronic transport
properties. The transient transport current is obtained
directly from the exact Master equation [23], which turns
out to be expressed precisely with the non-equilibrium
Green functions of the device system [15-17]. This new
theory has also been used to study quantum transport
(including the transient transport) for various nanostruc-
tures recently [21-23, 51-60]. In the following, an intro-
duction of this exact Master equation approach [21-23] is
given, and the transient transport current derived using
the exact Master equation is explicitly presented.

We begin with a nanostructure consisting of a quan-
tum device coupled with two leads (the source and the
drain), described by a time-dependent Fano—Anderson
Hamiltonian [39, 43, 44],

H(t) = Hs(t) + Hg(t) + Hsg(t),
with

Hs(t) =Y ei;(t)alay,
B

Hp(t) =) earlt)clcar,
ak

Hsp(t) = 3 [Viak(B)alcar + Viax(elyai] . (67)
iak
where al (a;) and clk (car) are creation (annihilation)

operators of electrons in the device system and lead «,
respectively; €;;(t) and e, (t) are the corresponding en-
ergy levels, and Vj,i(t) is the tunneling amplitude be-
tween the orbital state ¢ in the device system and the
orbital state k in lead a. These time-dependent parame-
ters in Eq. (67) can be manipulated by external bias and
gate voltages in experiments (see Fig. 7).

The density matrix of the total system follows the uni-
tary evolution,

prot(t) = Ul(t, t0) prot(to) U (t, o), (68)

with  the  evolution  operator  U(t,tp) =
Texp{fif;H(T)dT}, where T is the time-ordering
operator. Here we assume, as usual, that the device
system is uncorrelated with the reservoirs (leads)
before the tunneling couplings are turned on [61]:
prot(to) = p(to) ® pr(to), in which the system can be in
an arbitrary state p(tg), and the reservoirs are initially

in equilibrium, pg(ty) = %efza Ba(Ha—paNa) = where
Ba = 1/(kpTs) is the inverse temperature of lead «
at initial time ¢p, and No = ), chcak is the total

particle number for lead «. In other words, the system
is in the so-called partitioned scheme [45, 46] as in
the Keldysh framework. After ¢y, the device system
and the leads evolve into dynamically non-equilibrium
states. These dynamically non-equilibrium processes
are fully taken into account when we completely and
exactly integrated over all the dynamical degrees of
freedom of leads through the Feynman—Vernon influence
functional. Here we do not need to specify or assume the
lead distribution function after the initial time, since
the quantum evolution operator of the total system
(the dot, the leads and the coupling between them) in
the Feynman—Vernon influence functional theory has
automatically taken into account all possible states of
the leads.

The non-equilibrium electron dynamics of an open
system are determined by the reduced density matrix:
p(t) = Trg[pior(t)]. In the fermion coherent-state repre-
sentation [50], the reduced density matrix at an arbitrary
later time t is expressed as

(&rlp(t)€r) = /du(io)dﬂ(ﬁé) (&olp(to)|60 T(E pEt1€0 €0 o),
(69)

with € = (£,&,...) and & = (&£§,&5,...) being the
Grassmann variables and their complex conjugate de-
fined through the fermion coherent states: a;|€) = &|€)
and (& |a;r = (&]&F. As these coherent states obey the
completeness relation, [ du(€)|€)(&€| = 1, where the inte-
gration measure is defined by du(§) =[], e~ Sisiderde;.
The propagating function in equation (69) is given in
terms of Grassmann variable path integrals,

T(E 1€t |€0.E) L) = /D[és;é’s’]e“sc[f’ﬂ*s? EEDF(gg €]
—[plgg gresriesse)

where S.[€, €] and SZ[¢', €] are respectively the forward

Gy () G, (1)

Ge (D)

Fig. 7 A schematic plot of a nanoscale quantum device in
which the bias voltage is applied to the source and the drain
electrode leads labeled L and R, and other gates labeled G,
G1, G2 control the energy levels of the central region as well
as the couplings between the central region and the leads.
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and backward actions of the device system in the fermion
coherent-state representation. The influence functional
FlEE; €'¢'] takes fully into account the back-action ef-
fects of the environments (leads) to the device system, it
modifies the original action of the device system into an
effective one, which dramatically changes the dynamics
of the device system. After integrating out all the en-
vironmental degrees of freedom, the influence functional
has the following form:

Fleg; €'e]

exp{ / dT/ Dol V() +E (7 gul T DED)]
—Z/ dT/ dr'{€'(1)ga (1, 7)E(T")
E(r) + € (Dlgalr, TER) + £'<T’>1}}. (71)

In the above equation, the time non-local integral ker-
nels, go(7,7’) and g, (7, 7") characterize all the memory
effects between the device system and lead «,

ZV’ak Vian(T
ZVW’“ Vian(T

gm] T, 7_ ) —if7 dTleak(Tl), (72a)

—if:, d7'160(k(7'1)7

)fa (Eak:)e

gaz; T, T

(72b)

where fo(€qr) = 1/[ePa(¢ar=ra) 4 1] is the Fermi-Dirac
distribution function of lead « at initial time tg.

After integrating over all the forward paths &(7), &(7)
and the backward paths €'(7), £ (7) in the Grassmann

space bounded by £(t) = &;, £(to) = €0, &' (to) = &), and
§'(t) = £}, and by introducing a transformation,
&(7) = u(r, t0)&(to) + v(7, 1) [€() + & (to)]; (73a)
&(r) +&'(r) = ul (¢, 7)[E(t) + €' (1), (73b)
the propagating function becomes
T (&5, &, t1€0, & to) = ﬁexp{éﬂh(ﬂﬁo
€ T2 (0 +E0Ts (€0 +E T (€] }, (74)

where the time-dependent coeflicients are given explicitly
as

Ji(t) = w(t)u(t, tg), J2(t) =w(t)—1,
J3(t) = uT (ta tO)w(t)u(tv tO) - ]la (75)
with w(t) = [1 — v(t,t)]7!. As one can see, the propa-

gating function is determined by the two Green functions
u(t,tp) and v(t,t), which are Ng x Ng matrix with Ng
being the total number of single-particle energy levels in

the device system. They satisfies the following integro-
differential equations,

u(7,to) + ie(T)u(r, to)

+ Z/ dr'ge (1, 7 )u(r’, o) = 0,
d o(r, t) +Z/ dr’ v(r',t)
o (T, 7'go(T, 7 )0(T

¢
:Z/ A7’ Go (7, 7 ul (t, 7'),
«@ to

subject to the boundary conditions u(tg,tp) = 1 and
v(tg, t) = 0 with tg < 7 < t. Actually, u(7,tg) and v(7,t)
are related to the non-equilibrium Green functions of the
device system as we will show later.

Taking the time derivative of the reduced density ma-
trix (69) with the solution of the propagating function
(74), together with the fermion creation and annihilation
operator properties in the fermion coherent-state repre-
sentation, one can obtain the final form of the exact Mas-
ter equation,

DO _
dt

4
dr
(76a)

t) +ie(r

(76b)

"'Z{%J 2%/’

—aTa]p( ) (t)a ]+ 75t )[QIP( )a;
—a;p(t)al — p(t)ajal + a %P(t)]}

= —i[Hs(t), p(t)] +Z (L) + L5 ()] p(t).

(77)

The first term describes the unitary evolution of electrons
in the device system, where the renormalization effect,
after integrating out all the lead degrees of freedom, has
been fully taken into account. The resultant renormal-
ized Hamiltonian is Hg(t) = > ., €i; (t)aTa], with &};(t)
being the corresponding renormalized energy matrlx of
the device system, including the energy shift of each level
and the lead-induced couplings between different levels.
The remaining terms give the non-unitary dissipation
and fluctuation processes induced by back-actions of elec-
trons from the leads, and are described by the dissipation
and fluctuation coefficients ~(¢) and ~(t), respectively.
On the other hand, the current superoperators of lead «,
LY (t) and L (t), determine the transport current flow-
ing from lead « into the device system:

<dN ot )>
dt
Tr[d (t)p(t)] = =2 Tr[£ (0p(0)],  (78)

where N, (t) =
ber of lead .

Io(t) =

Yok ch (t)car (t) is the total particle num-
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All the time-dependent coefficients in Eq. (77) are
found to be

el (t) = %[u(t, to)u " (t, to) — H.C.]ij

i

=ei(t) — 5 za:[ﬂa (t) — kL ()], (79a)
vij(t) = —% [a(t, to)u™"(t,to) + Hoc ] y

= 5 2lka0) + £ 0 (79b)
Fij (t) %v” (t,t) — [a(t, to)u™ (¢, to)v(t, t) + H.clij

(79¢)

The current superoperators of lead «, £} (¢) and L, (t),
are also explicitly given by

£300(t) = =3~ {Aaii(t)[ala;p(®) + alp()a;]

+ Kaij(t)alajp(t) + He.}, (80a)
L£30p(t) = {Xais () [asp(t)al + pl(t)ajal]
+ ﬁaij(t)ajp(t)aj +H.c.}. (80b)

The functions k. (t) and Ay (t) in Eq. (79) and Eq. (80)
are solved from Eq. (76),

Ko (t) = /t drga(t, )u(r to)[ut, to)] ", (81a)
Aa(t) = / A7{ga(t, T)0( ) — Gt 7t (1,7)]
~ ke (Du(t1). (81b)

The Master equation (77) takes a convolution-less
form, so the non-Markovian dynamics are fully encoded
in the time-dependent coefficients (79). These coeffi-
cients determined by the functions w(t,tg), and v(7,t)
are governed by integro-differential equations (76), where
the integral kernels (72) manifest the non-Markovian
memory effects. The Master equation is derived ex-
actly so that the positivity, hermiticity of the trace
of the reduced density matrix are guaranteed. It is
also worth mentioning that the Master equation (77)
is valid for various nano-devices coupled to various sur-
roundings through particle tunnelings, even when initial-
correlations are presented as long as the electron-electron
interaction can be ignored (including the initial correla-
tion effect is given in Section 3.2).

From Egs. (77) and (78), the transient transport cur-

rent is given explicitly as follows:

I(t) = —%Tr[)\a(t) + Ko (t)pM (1) + Heel

2 ! .
=—"Re| drTr[ga(tr)p)(r,t) = ga(t.r)u! (7))
to

(82)

In Eq. (82), the single-particle correlation function of the
device system p(!)(7,t) is determined by

P (m,1) = [u(r,t0)p™ (to)u' (t,t0) + v(r,0)] . (83)
where pl(;)(to) = Trg [a;aip(to)], is the initial single-
particle density matrix. The transient transport current
obtained from the Master equation actually has exactly
the same formula as the one used in the non-equilibrium
Green function technique [16], except for the first term of
the single-particle correlation function (83) that is orig-
inated from the initial occupation pz(-Jl-)(to) in the device
system, which was missing in Ref. [16].

To be explicitly, here we present the relation between
u(7,7’) and v(7,t) and the non-equilibrium Green func-
tions. As one see, both the Master equation (77) and
the transient current (82) are completely determined by
the Green functions u(7, 7") and v(r,¢), which are intro-
duced in Eq. (73). The equations (73) show that w(r,to)
describes the electron forward propagation from time
to to time 7, uf(t,7) describes the electron backward
propagation from time ¢ to time 7, and v(7,t) describes
the electron correlation between the forward and back-
ward paths. These Green functions satisfy the integro-
differential equations (76). Solving inhomogeneous equa-
tion (76b) with initial condition v(tg,t) = 0, we obtain

T t
o) =3 [ dn [ drsutr )Gt a6, )
P to to

(84)

where u(7,7’) is determined by Eq. (76a).
It is easy to infer that

wij(1,7') = ({ai(r),al(+)})
=i[GR(r,7") — GA(r, Vi, (85)

which is the spectral function in non-equilibrium Green
function techniques, with

Gaij (7—7 T/) = 1[25(7_’ TI) - Zg(Ta TI)]ij

d : !
= /—wFaij(w,T, e W=, (86)
27

As a result, matrix function v(7,t) (84) can be written
in terms of non-equilibrium Green functions,

T t
v(r,t) = —'/t dTl/t dTQGR(T, 7'1)§J<(7'1,7'2)GA(7'2,t)7
(87)
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where
go(r, 7)) = -5 (1, 7)
d . ,
= / —wfa(w)Pa(w,tl,tg)e_‘“’(T_T ). (88)

2m
Comparing Eq. (87) with Eq. (65b), one can see that
v(7,t) exactly has the same form as the lesser Green
function in the Keldysh formalism. However, when one
considers transient electron dynamics, the general solu-
tion of the lesser Green function is related to the single-

particle correlation function in the Master equation ap-
proach,

G<(t,t") =ipM(t, 1)
= i[u(r, to)pM (to)ul (¢, to) + v (7, t)]
= GE(t,t0)G<(to, t0)G"(to, 1)

—I—/ dr [ dr'GE(t,7)Z<(r,7)GA (7', 1).
to to

(89)

The first term depends on the initial occupation of the
device system. According to the above results, one can
express the transient transport current in terms of non-
equilibrium Green functions:

2 t _
Lo (t) =—Re | drTr[ga(t.7)p0(r,t) ~ga(t, 7)ul (7))
to

t
zf%Re / ArT R (DG~ (1) + =5 (4,0 GA(1.1)].
t

0

(90)

It is easy to check the consistency between Eq. (90)
and Eq. (63), Thus, we have proved that the transient
transport current obtained from the Master equation
has exactly the same formula as the one using the non-
equilibrium Green function technique [16], except for
the term that is originated from the initial occupation
pg;)(to) in the device system. This also indicates fur-
ther that the Keldysh’s non-equilibrium Green function
technique is mostly valid in the steady-state limit.

3 Application of Master equation approach

From the above discussion, the Master equation ap-
proach provides a more essential way to study the
quantum transport problem. In the Master equation
approach, the device system is described by the re-
duced density matrix which contains full information
of quantum coherence and decoherence, as well as the
non-Markovian memory effects induced by the environ-
ment. That makes the Master equation approach valid in
both the transient dynamics and steady-state limit phe-
nomena. In the following contents, we discuss different

quantum transport problems in nanostructures using the
Master equation approach.

3.1 Transient current-current correlations and noise
spectra

Noise spectra provide the information of temporal cor-
relations between individual electron transport events.
It has been shown that noise spectra can be a powerful
tool to reveal different possible mechanisms which are
not accessible to the mean current measurement. Exam-
ples include electron kinetics [62], quantum statistics of
charge carriers [63], correlations of electronic wave func-
tions [64], and effective quasiparticles charges [65, 66].
Noise spectra can also be used to reconstruct quantum
states via a series of measurements known as quantum
state tomography [34]. Conventionally, evaluations of
noise spectra are largely limited to the rather low fre-
quency (hw < kgT), where the noise spectrum is sym-
metric at zero bias [31]. However, experimental mea-
surements of high frequency noise spectra [67-70] in-
spired the exploration of the frequency-resolved noise
spectrum both in symmetric [71-73] and asymmetric
form [35, 74-76]. The asymmetric noise spectrum, which
is directly proportional to the emission-absorption spec-
trum of the system [77, 78], has been demonstrated ex-
perimentally [68-70, 79]. In recent years, the higher or-
der current-correlations in a non-equilibrium steady state
are also explored both in experimental and theoretical
studies [80, 81].

The above investigations were mainly focused on the
steady-state transport regime. Owing to the theoretic
development on quantum transient transport dynam-
ics [15], the transient current fluctuations (correlations
at equal time) and noises in the time domain are a sub-
ject of considerable interest. Recently, the transient
current fluctuations of a two-probe transport junction
in response to the sharply turning off the bias voltage
were analyzed by Feng et al. [82]. The transient evo-
lution of finite-frequency current noises after abruptly
switching on the tunneling coupling in the resonant level
model and the Majorana resonant level model were stud-
ied by Joho et al. [83]. In this section, we shall investi-
gate the transient current-current correlations of a biased
quantum dot system in the nonlinear transient transport
regime [57]. Using the exact Master equation [21, 23], a
general formalism for transient current-current correla-
tions and transient noise spectra are presented for non-
interacting nanostructures with arbitrary spectral den-
sity. This formalism unveils how the electron correla-
tions change in the system when the system evolves far
away from the equilibrium to the steady state. Besides,
various time-scales in the system when it reaches the
steady state can also be obtained. These time-scales are
important for understanding the role of quantum coher-
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ence and non-Markovian behaviors in quantum transport
dynamics. It is also essential for one to reconstruct quan-
tum states of electrons in nanostructures [34] for further
applications in nanotechnology, such as the controlling
of quantum information processing and quantum metrol-
ogy on quantum states, etc.

The current-current auto-correlation (o = «’) and
cross-correlation (o # ') functions are defined as fol-
lows:

Soar(t+7,8) = (81, (t + 7)51 (1)), (91)
where 61, (t) = I,(t) — (I4(t)) is the fluctuation of the

current in the lead « at time ¢. I,(t) is the current
operator of electrons flowing from the lead « into the

]

Saa’ (t + 7, t)
ijkk’

_VF

Current-current correlations are in general complex and
physical observables are related to its real or imaginary
parts,

Saar(t +7,t) = Sho(t +7,1) +1S5,, (t+7,),  (94)
where

St (t47,1) = S {5Talt 4 7), 6T (1) (95)

St (14 7,8) = (6Tt + 7,670 (1) (95b)

are directly proportional to the fluctuation function and
the response function, respectively, in the linear response
theory [84, 85]. On the other hand, we may introduce
the total current-current correlation defined by

S+ 7,t) = (01t + 7)01()), (96)
where the total current operator I(t) is given by
I(t) = al(t) — bIR(t), (97)

and the coefficients satisfying a + b = 1, which are as-
sociated with the symmetry of the transport setup (e.g.,
junction capacitances). Then Eq. (96) can be written as

S(t+7,t) =a*Spr(t +7,t) + b*Srr(t + 7,t)

—ab[SLR(t+T,t)+SRL(t+T,t)]. (98)

OV (Ol (6 + T)ag(t + 7)el . (Day (1) —
FViak () Vi (D)[{al (8 + 7)can(t + 7)eh 0 (a; (t)) — (a
Vi O Viarw () [(ch o (t + T)as(t + 7)al(t)

Carte (1) = (el + T)as(t + 7)) al (Dearns ()]}

central dot. It is determined by

I.(t) = —e%]\fa(t) - i%[Na(t),H(t)]

_I,Z ek ()] () (6) = Vin ()l (D) (1)),
(92)

where e is the electron charge, No(t) =), ch(t)cak(t)
is the particle number operator of the lead a. The an-
gle brackets in Eq. (91) take the mean value of the
operator over the whole system, which is defined as
(O(t)) = Tr[O(t) prot (to)]. Here piot(to) is the initial state
of the total system. Current-current correlations mea-
sure the correlations between currents flowing in differ-
ent time. Explicitly,

3 Vi OViarae Ol (¢ + ) (47)al (e (0) — (a} (£ -+ Teas(t + ) el (e ()]

i ()]
a;(1))]

(bt + Tai(t + 7)) (el (t)a
L+ T)ear(t + 1) elop (ta
(93)

T

Taking different values of a and b can also give other
current-current correlations, such as the auto-correlation
(a =1,b =0o0r a = 0,b = 1), etc. Taking Fourier
transform of the total current-current correlation with
T, an asymmetric noise spectrum of the electronic
transport at time ¢ is obtained, denoted as S(t,w) =
[ dre™ T (61(t+7)01(t)). The asymmetric noise spec-
tra is proportional to the emission-absorption spectrum
of the system, so S(t,w) can be viewed as the probabil-
ity of a quantum energy Aw being transferred from the
system to a measurement apparatus.

Now, we shall calculate these correlation functions in
terms of the exact Master equation represented in Sec-
tion 2.3 and the extended quantum Langevin equation
for the dot operators [57]. The later can be derived for-
mally from the Heisenberg equation of motion

7iZsij(t)aj(t) —Z/t AT gaij(t, T)a;(7)

1) Viar(t)ear(to)e o 7 (9g)
In the above quantum Langevin equation, the first term
is determined by the evolution of the dot system itself,
the second term is the dissipation risen from the coupling
to the leads, and the last term is the fluctuation induced
by the environment (the leads), and ¢y (o) is the elec-
tron annihilation operator of the lead « at initial time
to. The time non-local correlation function ga;;(t,7) in
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Eq. (99) is also given by Eq. (72a), which characterizes
back-actions between the dot system and the leads. Be-
cause the quantum Langevin equation (99) is linear in
a;, its general solution can be written as

a;(t) = Zuij(tvto)aj(to) + Fi(t),

J

(100)

where u;;(t, to) is the same non-equilibrium Green’s func-
tion of Eq. (76a) that determines the energy level renor-
malization and electron dissipations of the dot system,
as described by the Master equation. The noise operator
F;(t) obeys the following equation:

%Fi(t) + izj: €i; (1) F;(t) + %: /t 0 AT Ge; (t, 7) Fj(T)

=i Z Viak(t)cak(to)e_ifttO drear(m) (101)
ak

with the initial condition Fj;(t9) = 0. Since the system
and the leads are initially decoupled to each other, and
the leads are initially in equilibrium, it can be shown
that the solution of Eq. (101) gives

]

e

(Fl (&) Fi(r)) =vi; (7.1)

J
T t
=> / dt1[ dbs [u(r, t1)ga (tr t2)ul(tt2)]
a Yto to
(102)

which is indeed the solution of Eq. (76b). Thus the con-
nection of the solution of the quantum Langevin equa-
tion to the dissipation and fluctuation dynamics in the
Master equation is explicitly established.

Furthermore, the time-dependent operator c,i(t) of
the lead « can also be obtained from its equation of mo-
tion:

Cak(t) = Cak(to)eiiftto drear ()

t
=3 [ drVia(aitre Fanees . (103
i Yo

Using the solutions of Eq. (100) and (103), we can calcu-
late explicitly and exactly the current-current correlation
function (93). The explicit expression is still very com-
plicated so we consider the situation that the dot has
no initial occupation. Then, the four terms in Eq. (93),
denoted simply as S, S §G) and S™ | are given by

2 t+r ¢
S&B, (t+1,t)= —h2Tr{ [/ dsga(t + 7, 8)0(s,t) — / dsg,,(t + T, s)uT(t, s)}

to

t+71 t
| [T @t ns) - [ gt n|
to

to

e

(104a)

2 4T ¢
S((j,)/ (t47,t) = —Tr{ [/ dsv(t,s)ga(s,t +7) — / dsu(t, s)ga(s,t + 7’)]

h?

to

X [/HT ds'u(t +7,8)g. (s, t) — /t ds'v(t +7,5")gar (s/,t)} }, (104b)

to to
2

I

ttr t
SS;Z/ (t+7,t)= eQTr{ Fa (t+7,8)00ar + / ds/ ds'ga(t + 7,5)0(s, 8" )ga (5, 1)
to to

t+1 s t s
[ s [ agaltrrsuls g - [ ds [ ds’5a<t+ns’>u*<s,s’>gaf<s,t>}v<t,t+7>},
to to to to

62

(104c)

- ¢
Sl(;:), (t+7,t) = hQTr{v(t +7,t) [ga(t, t+T)00or + / ds/ ds'ga (t,s)v(s',8)ga(s, t +7)
to to

t+7 S t S
= [ s [ st st gals b+ - [ as [ ds'ga«t,s>u<s7s’>§a<sxtm}}.
to to to to

T

Here, v;;(7,t) = (ai(7)aj(t)) is related to the greater

Green’s function in non-equilibrium Green functions ap-
proach. Its general solution is given by

o(r,t) =0(r — t)u(r,t) + 0(t — T)uf(t, 7) —v(7,1).
(105)

(104d)

T

C;—“;Fa(w’,ﬂ )1 -
fa(w)]e ' (=) is a self-energy correlation of electron
holes. As one can see, the transient current-current cor-
relations have been expressed explicitly in terms of non-
equilibrium Green’s functions w(7,7’") and v(7,t) that
determine the dissipation and fluctuation coefficients in

The function g,(r,7") =
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the exact Master equation (77).

As an example, we consider the transient current-
current correlations of a single-level quantum dot cou-
pled to the source and the drain, where the noise spectra
have been recently investigated [35, 74] in the wide band
limit (WBL). The Hamiltonian is expressed as

H=cala+ Z eakclkcak
ak

+ Z(ViakaTcak + Vz‘kaclka)-

iak

(106)

For the sake of generality, we assume that the electronic
structure of the leads has a Lorentzian line shape [20, 21,
23, 86],

rw?
(W= pa)? + W2

where W, is the band width and I, is the coupling
strength to the lead a. The current-current correlations
describe how the correlations persist until they are av-
eraged out through the coupling with the surroundings.
Thus, by fixing the observing time ¢, one can see how
the correlations vary via the time difference 7 of mea-
surements. Hereafter, the initial time is set tg = 0.
Figure 8 plots the auto-correlation function of the right
lead for several different ¢. This allows one to monitor
the transient processes until the system reaches its steady
state, at which these correlations come to only depend on
the time difference 7 between the measurements. As one
can see, both the real and imaginary parts of correlation
functions approach the steady-state values at ¢ ~ 5/I".
The real part of the auto-correlation has a maximal value
at 7 = 0 (namely when it is measured in the same time),
this gives the current fluctuation, (I%(t)) — (I(t))2, and
this current fluctuation is independent of the observing
time t (less transient). In fact, the current fluctuation,
(I*(t))—(I(t))?, is mainly contributed from S and S
in Eq. (104). From the expression of Eq. (93), one can
see that S®) describes the current correlation between
an electron tunneling from the dot to the leads at time ¢
and another electron tunneling from the leads to the dot
at time t+7, and S is given by the opposite processes.
These processes have the maximum contribution to the
current correlation at 7 = 0. While, S and S® de-
scribe the correlations of electron tunnelings in the same
direction (namely both tunnelings from the leads to the
dot or from the dot to the leads), and has a minimum
contribution at 7 = 0, due to the Pauli exclusion prin-
ciple. When the time difference 7 gets larger, the auto-
correlation decays rather faster, and it reaches to zero
after 7 > 2/I', i.e., the correlation vanishes. With the
observing time goes on, the real part of auto-correlation
becomes more and more symmetric, and the imaginary
part gets more antisymmetric. Eventually they become

Fo(w) = (107)

0.8
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< e
£ o] i\
02 v
i
Y
-0.4 ]
-0.6 ‘ ‘ ‘
-4 -2 0 2 4
(78

Fig. 8 Auto-correlation function Sgr in terms of their real
and imaginary parts (in units of e>I'?/h?) in a single-level
nanostructure for different ¢ as a function of 7. Where e = I,
with I', = I'r = 0.5, Wi, = Wgr = 51", eV = 10", at
kT = 0.5I" for both two leads [57].

fully symmetric and antisymmetric functions of 7, re-
spectively, in the steady-state limit, as one expected. It
is also found that the cross-correlation is rather small
(about of one order of magnitude smaller in compari-
son with the auto-correlation) that it is not presented in
Fig. 8.

To have a more general picture how the system reaches
the steady state, here a contour plot of the real part of
the total-correlation in the 2-D time domain is presented
in Fig. 9. As one can see, it is symmetric in the diagonal
line (7 = 0), as a consequence of the identity: Sy (¢ +
T,t) =S¥, (t,t + 7). The contour-plot clearly shows an
oscillating profile of the correlation in the region ¢t < 3/I".
The oscillation quickly decays for the time period 3/I" <
t < 5/I'. The correlation reaches a steady-state value
after ¢ ~ 5/I'. The imaginary part has much the same
behavior, except that it has an antisymmetric profile in
terms of t and ¢t 4+ 7. This gives the whole picture of the
transient current-current correlations.

To see the energy structure in electron transports
through the transient current-current correlations, one
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Fig. 9 The contour plot of the real part of the total current-
current correlation, S’(t 4+ 7,t) (in units of e?I"?/A?), in the
single-level nanostructure in the two-time plane (scaled by
I'). Here the parameter ¢ = I', with I', = I'r = 0.5I,
Wi = Wgr = 5I", eV = 10I", at kgT = 0.5I" for both two
leads [57].

can use the fast Fourier transform (FFT) to convert the
correlation functions from the time domain (7) into the
frequency domain for different observing time ¢. The re-
sult gives the standard definition of the transient noise
spectra. Figure 10 plots the FFT amplitude of the
auto-correlation Srr(t + 7,t) and the total-correlation
S(t 4+ 7,t). From Fig. 10, one can analyze the electron
transport properties through the noise spectra not only
just in the steady state, but also in the entire tran-
sient regime. To make the energy structures mani-
fest in the transient noise spectra, one can let the ini-
tial temperature approach zero (kgT = 0.1I"). The
right-lead auto-correlation shows only one single peak at
w_ = —wpg = —|ur—¢| in the beginning. This is because
the dot is initially empty so that electron tunnelings from
the Fermi surface of the right lead to the dot have a max-
imum probability. This peak corresponds to the energy
absorption of the electron tunnelings. On the other hand,
we also observed that the tunneling process for w > eV
can happen in the transient regime, which is forbidden
in the steady state near zero temperature [35, 57]. As
the time ¢ varies, the second peak shows up. This comes
from backward electron tunnelings (i.e., emission pro-
cesses) from dot to the right lead, with the peak edge
locating at the resonance frequency wy = wgr = |ur —¢|.
Note that with a finite bandwidth spectral density, the
spectrum decays when the frequency passes over the reso-
nant frequencies, which is different from the WBL where
the spectrum is flat [35, 57]. The noise spectrum still has
a dip at zero frequency in both the transient and steady-
state regimes. Furthermore, as one see it needs more
time to reach steady state when electrons transit from
the leads to the dot, due to the difference of the degrees

Pei-Yun Yang and Wei-Min Zhang, Front. Phys. 12(4), 127204 (2017)

of freedom between the dot and the leads. Specifically,
since there are infinity energy levels in the lead but only
one level in the dot system, electrons transiting from the
dot to the lead has much smaller probability to return
back to the dot, in comparison of the electrons transit-
ing from lead into the dot, as a dissipation effect. Thus,
it takes longer time to reach steady state for electrons
tunneling from the leads to the central dot. This effect
will be reduced if we take a small band width.

The FFT amplitude of the total-correlation has the
same properties as the right auto-correlation, with two
more peaks coming from the left auto-correlation func-
tions as effects of the emission and absorption processes
between the left lead and the central dot. By calculating
the individual contribution of the four terms in the auto-
correlation expression [Eqgs. (104a)—(104d)], it shows that
S®) and S* dominate the noise of the current correla-
tions for an electron tunneling from the dot to the lead
and another electron tunneling from the lead to the dot.
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Fig. 10 The FFT amplitude of the auto-correlation Sgr
and the total correlation S in the single-level nanostructure
as a function of w (in units of I'). Where e =5I", ['L = I'r =
0.5I') Wi, = Wgr = 150", eV = 20I", kgT = 0.1I" for both
two leads [57].
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The contributions from S and S® are much smaller
because they describe the correlations of electron tunnel-
ings in the same direction (namely both tunnelings from
the leads to the dot or from the dot to the leads), and
mostly contribute to the noise around zero frequency,
due to the Pauli exclusion principle.

3.2 Master equation approach to transient quantum
transport in mnanostructures incorporating initial
correlations

Quantum transport incorporating initial correlations in
nanostructures is a long-standing problem in mesoscopic
physics [15]. In the past two decades, investigations of
quantum transport have been mainly focused on steady-
state phenomena [6, 26, 31], where initial correlations are
not essential due to memory loss. Recent experimental
developments allow one to measure transient quantum
transport in different nano and quantum devices [87—
89]. In the transient transport regime, initial correlations
could induce different transport effects. In this section,
using the exact Master equation approach [21, 23],one
can address the transient quantum transport incorpo-
rating initial correlations.

Transient quantum transport was first proposed by
Cini [42], under the so-called partition-free scheme. In
this scheme, the whole system (the device system plus
the leads together) is in thermal equilibrium up to time
t = 0, and then one applies an external bias to let elec-
trons flow. Thus, the device system and the leads are ini-
tially correlated. Stefanucci et al. [41, 90] adopted non-
equilibrium Green functions with the Kadanoff-Baym
formalism [11] to investigate transient quantum trans-
port with the partition-free scheme. They obtained an
analytic transient transport current in the wide-band
limit. In these works [41, 90], the transport solution
is given in terms of the non-equilibrium Green functions
of the total system, rather than the Green functions for
the device part in the nanostructures [16].

In fact, earlier investigations of the time-dependent
electron transport in solid-state physics had largely used
the Kubo formula in the linear response regime [39, 91]
and the semiclassical Boltzmann equation [92, 93]. For
nanostructural devices, which have an extremely short
length scale (~ nm) and an extremely fast time scale
(~ ps to fs), the semiclassical Boltzmann equation is
most likely inapplicable and the nonlinear response ef-
fect must be taken into account [15]. An alternative
approach to investigate transient quantum transport is
the Master equation approach developed particularly for
nanostructures [18-21, 23] which we have given a com-
plete description in Section 2.3. However, the exact Mas-
ter equation given in Section 2.3 is derived in the par-
titioned scheme in which the system and the leads is
initially uncorrelated, the same situation considered in

the non-equilibrium Green function technique in Keldysh
formalism in Section 2.2. Realistically, it is possible and
often unavoidable in experiments that the device sys-
tem and the leads are initially correlated. Therefore, the
transient transport theory based on the Master equation
that takes the effect of initial correlations into account
becomes necessary.

In this subsection, we present the exact Master equa-
tion including the effect of initial correlations for non-
interacting nanostructures through the extended quan-
tum Langevin equation [58]. It is found that the initial
correlations only affect the fluctuation dynamics of the
device system, while the dissipation dynamics remains
the same as in the case of initially uncorrelated sys-
tems. The transient transport current in the presence
of initial system-lead and lead-lead correlations is also
obtained directly from the exact Master equation. Both
the partitioned and the partition-free schemes studied in
previous works [16, 41, 90] are naturally reproduced in
this theory. Taking an experimentally realizable nano-
fabrication system, a single-level quantum dot coupled
to two one-dimensional tight-binding leads, as a specific
example, the initial correlation effects in the transient
transport current as well as in the density matrix of the
device system are discussed in details.

Consider a nanostructure consisting of a quantum de-
vice coupled with two leads (the source and the drain),
described by a Fano—Anderson Hamiltonian (67). Be-
cause the system and the leads are coupled through elec-
tron tunnelings, and the electron-electron interactions
in the device are ignored, the total Hamiltonian has a
bilinear form of the electron creation and annihilation
operators, the Master equation describing the time evo-
lution of the reduced density matrix of the device system,
p(t) = Tre[prot(t)], can have the following general bilin-
ear form [21, 23, 53, 57] as shown in Section 2.3:

S = 0.0+ 3 (00

dt
—ala;p(t) — p(t)al aj] + 35 (1) [al p(t)a,
—ajp<t>aT +af W(t) - p(t)ajaT] }
= —i[Hs(t), p(t)] + Z (el

2a,]p )

L, (0)]p(t).

(108)

Here the renormalized Hamiltonian Hg(t) =
> i sféj(t)a;raj, and the coefficient €j;(t) is the cor-
responding renormalized energy matrix of the device
system, including the energy shift of each level and the
lead-induced couplings between different levels. The
time-dependent dissipation coefficients ~;;(t) and the
fluctuation coefficients 7;;(t) take into account all the
back-action effects between the device system and the
reservoirs. The current superoperators of lead a, L7 (t)
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and £ (t), determining the transport current from lead
« to the device system is given by Eq. (78) [23].

When the device system and the leads are initially cor-
related, i.e., piot(to) # p(to) ® pr(te), it would be chal-
lenging to use the Feynman—Vernon influence functional
approach to derive the Master equation. Alternately, one
can use the extended quantum Langevin equation (99)
to determine the time-dependent coefficients in the Mas-
ter equation when the initial system-lead correlations are
presented [58]. Since the quantum Langevin equation is
derived exactly from the Heisenberg equation of motion,
it is valid for an arbitrary initial state of the device sys-
tem and the leads.

To determine the time-dependent coefficients in the
Master equation (108), one can compute the equation of
motion of the single-particle density matrix of the device
system, pl(-;-)(t) = (a;r- (t)a;(t)) = Tr[a;aip(t)] from the
Master equation (108). The result is given by

Lo = (et - 0]},

dt
—{[ie'®) + )] PV (D)}, + 7 (¢)- (109)

It is interesting to see that the homogenous Master equa-
tion of motion generates an inhomogeneous equation of
motion for the single particle density matrix. The inho-
mogeneous term in Eq. (109) is indeed induced by various

gaz] T, T = _212 [ zak

_ ]f;k(r’)e1 fto €ak(T1)drs <Clk(t0)ai(t0)>5(7' —to)|,

S S e o

o’ kk’

gazg 7, T

As one can see, g2°(, 7’) is proportional to all the initial
electron correlations between the system and the leads,
and g&°(r, 7') is associated with the initial electron corre-
lations in the leads. Physically, the electron correlation
Green function v(7,t) characterizes all possible electron
fluctuation processes due to the initial system-lead cor-
relations and initial lead-lead correlations, both are in-
duced by the inhomogeneity of the quantum Langevin
equation (99). Also, Eq. (110) indeed gives the exact
solution of the lesser Green function incorporating ini-
tial correlations. Thus, through the extended quantum
Langevin equation, we obtain the most general solution
for the single-particle correlation function p((7,t) (the
lesser Green function) and the electron correlation Green
function v(7,t) in the Keldysh nonequilibrium Green
function technique.

With the above general solution Eq. (110), it is found
that

initial system-lead and lead-lead correlations, which will
be shown next.

On the other hand, Eq. (109) can also be derived from
the exact solution of the quantum Langevin equation,
Eq. (100). Explicitly, the single-particle correlation func-
tion of the device system calculated from the solution of
Eq. (100) is given by

pi)(1,t) = (al(t)ai(r))
= [U(T, tO)p(l)(tO)uT(tvtO) + U(T? t)]ij’ (110)

which indeed has exactly the same form as Eq. (83) for
the initially partitioned state, and

wmw=z[&¢wmmmamWWmmm
(111)

which also has the same form as Eq. (84), but the time
non-local integral kernel, g.(7,7’) of Eq. (72b), is now
modified by the additional initial system-lead correla-
tions as

7)e 1o x4 0)ear(t0))5(r — to)

9oij (T, 7") = G35 (1, 7") + G55, (1, 7'), (112)
where
(113a)
e ()el o < AT ) e (to))- (113b)
T
d
3P (0=t toyu™" (¢, 10)p) (1) + Heely
. _ d
—u(t, to)u 1(t,to)v(t,t)+H.c.]ij+&vij(t,t).
(114)

The last two terms in the above equation are inho-
mogeneous and proportional to the electron correlation
Green function v(7,t) and, therefore, are purely induced
by various initial system-lead and lead-lead correlations
through the integral kernel g, (7,7’). Now, by compar-
ing Eq. (109) with Eq. (114), the time-dependent renor-
malized energy €;;(t), dissipation, and fluctuation coef-
ficients ~y;;(t) and 7;;(t) in the Master equation incor-
porating initial correlations are uniquely determined as
follows:

ei;(t) = %[ﬁ(ﬂ to)u™ (t,to) — Hee],,
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=ey(t) — %Z[Hoz(t) — KL (1)]ij,

[e3

vij(t) = —% [a(t, to)u™"(t,to) + H.c.]ij

_ % 3 lkalt) + KL (0],

qij(t) = dtv”(t t) — [a(t, to)u" (¢, to)v(t, t) + Heeli;

:—Z £+ AL )i

From the above results, one can see that the renormalized
energy €;;(t) and the dissipation coefficients ;;(t) are in-
dependent of the initial correlations and are identical to
the results given in Egs. (79a) and (79b) for the decou-
pled initial state. The fluctuation coefficients 7;;(t) also
have the same form of Eq. (79¢) as for the initially par-
titioned state, but the electron correlation Green func-
tion v (¢, t) takes into account both the initial system-lead

(115)

and the initial lead-lead correlations through Eqgs. (112)—

(113). In other words, initial correlations only contribute
to the fluctuation-related dynamics of the device system,
and the expressions of all the time-dependent coefficients
in the Master equation (108) remain the same. Cor-
respondingly, the current superoperators in the Master
equation (108) incorporating initial system-lead correla-
tions, £ (t) and L (t), are still given by the same form
of Eq. (80) as in the initially partitioned state. As a re-
sult, the transient transport current I, (¢) incorporating
with the initial system-lead correlations is still given by
the same equation (82)

t
I (t)=—2¢Re / A7 Tr[ga (&, 7)o (7, t)Ga(t, T)u

to

(116)

Thus, the transient quantum transport incorporating ini-
tial correlations is fully expressed in terms of the stan-
dard non-equilibrium Green functions of the device sys-
tem. The initially uncorrelated case (the partitioned
scheme) in Section 2.3 is a special case in which the ini-
tial system-lead correlations vanish so that g&¢(¢,7) = 0,
and then the time non-local integral kernel g,(t,7) is
simply reduced to Eq. (72b).

In conclusion, the exact Master equation (108) de-
scribes the non-Markovian dynamics and transient quan-
tum transport of nano-device systems coupled to leads
involving various initial system-lead and lead-lead cor-
relations. In fact, the exact Master equation with or
without the initial system-lead correlations is given by
the same formula, except for the time non-local integral
kernel g, (¢, 7), which is determined by Eq. (72b) for the
initially uncorrelated states between the system and the
leads, but it must be modified by Egs. (112)—(113) for
the initially correlated states.

f(t, 7).

In the literature [94], it is claimed that in the Mas-
ter equation formally derived through the Nakajima-
Zwanzig (NZ) operator projective technique [95, 96], the
initial system-lead correlations would induce an inhomo-
geneous term in the Master equation. However, the so-
called inhomogeneous term in the NZ Master equation is
a misunderstanding in [94]. In a recent work Ref. [97], we
show explicitly that the so-called initial system-lead cor-
relations induced inhomogeneous term in the NZ Master
equation is indeed a homogeneous term both in terms
of projected Hilbert subspaces in the original N7 Mas-
ter equation formalism and in the Master equation in
terms of the reduced density matrix after taking trace
over the environment states. The result must be similar
to Eq. (108) for Fano—Anderson model where the initial
system-lead correlations are embedded in the fluctuation
coefficients, as given explicitly in this section.

It should be pointed out that if the leads are made
by superconductors, there may be initial pairing cor-
relations. Then, the Master equation (108) may need
to be modified. Further investigation of this problem
is in progress [98]. Nevertheless, the Master equation
(108) is sufficient for the description of transient quan-
tum transport in nanostructures with the initial corre-
lations given in Eq. (113). In fact, because the total
Hamiltonian has a bilinear form of the electron creation
and annihilation operators [see Eq. (67)], all other corre-
lation functions can be fully determined by the two ba-
sic nonequilibrium Green’s functions, w(t,to) and v(7,t).
The non-Markovain memory effects, including the initial-
state dependence, which are fully embedded in the time-
dependent dissipation and fluctuation coefficients in the
exact Master equation (108), are consistently determined
by these two basic nonequilibrium Green functions.

To be specific, we consider an experimentally realiz-
able nano-fabrication system, a single-level quantum dot
coupled to the source and the drain, which are modeled
by two one-dimensional tight-binding leads (see Fig. 11).
The Hamiltonian of the whole system is given by

H(t)=¢e.ala— Z(x\ala%al + 2\5cla)

[e3%

N
+ Z Z[QX + Uq (t)]comcom
«@ X/:ll
— Z Z ancan+1 + )‘acom-i-lca") (117)
a n=1
L R

Fig. 11 A schematic plot of a single-level quantum dot
coupled to two one-dimensional tight-binding leads.
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where a (a') is the annihilation (creation) operator of
the single-level dot with the energy level €., and cqn
(ct.) the annihilation (creation) operator of lead « at
site n. All the sites in lead « have an equal on-site energy
€a- Un(t) is the time-dependent bias voltage applied on
lead « to shift the on-site energy. The second term in
Eq. (117) describes the coupling between the quantum
dot and the first site of the lead a with the coupling
strength A\,1. The last term characterizes the electron
tunneling between two consecutive sites in lead o with
tunneling amplitude \,, and N is the total number of
sites on each lead.
In the k-space, the Hamiltonian (117) becomes

H(t)=c.a'a+ Z €ak (t)chcak
ak

+ Z(VakaTcak + V;kc];ka),
ak

(118)

where €41 (t) = €ar + Ua(t), €ak = €a — 2|Aa| cosk, and
Var = —w%kale_w sin k. Hamiltonian (118) has the

same structure as Hamiltonian (67). The time non-local
integral kernel g, (¢, 7) is given by

Ga(r, 7)) = Z |Vak|2e_if:’ €ak(T1)dT1 (119)
k

Because both the left and the right leads are modeled
by the same tight-binding model, namely, €;, = eg = €
and \;, = Ag = \g. When the site number N/ — oo,
without applying bias [U,(t) = 0], the general solution
of the Green function u(t,tg) is [99]

ult, ty) = ;—;D(e)e’ie(t’to), (120)
with
D(e) =21y Z;6(c — ;)00 — 1)
j+
+ A0 (121)

e — e —n2(e — €0) /2" + T2(e) /4]

where n? = n? +n% and 7, is the coupling ratio [Aa1|/| o]
of lead av. The spectral density I'(e) =17, (¢)+'r(e) with

Nen/4Xol? — (e —€0)? if e — eo| < 2| Ao,
Fa(e) = .
0 otherwise.

(122)

In the solution (121), the first term characterizes the
localized state [39] with energy €; lying outside the en-
ergy band when the total coupling ratio n? > n3, where
ni =27F \/\ATI is the critical coupling ratio. Localized

states are also referred to as dressed bound states. Since
the energy bands of the two leads overlap, there are at
most two localized states. The amplitude and the fre-
quency of the localized state are given by [100]

2 _9) /A2 = Do + A2 + n2A
7, = L0 = 2DVAGP — DXl + AZE9’A (1230)
2 (P = )VAM? = Do + A2
2 2 4 2_1 2 AQ
B Vit VSOV VY

2(n* - 1) ’
(123b)

2(n* - 1)

where A = . — ¢g. When a finite bias is applied, the
above result should be modified accordingly, see Fig. 12,
and the discussion given over there.

As a result, the effect of initial correlations will be
maintained in the steady-state limit through the local-
ized states, the first term in the solution of Eq. (121).
This manifests a long-time non-Markovian memory ef-
fect. The second term in Eq. (121) is the contribution
from the continuous energy spectra, which causes elec-
tron dissipation (damping) in the dot system. Once the
solution of u(t, t) is given, the electron correlation Green
function v(r,t) can be easily calculated with the follow-
ing general relation:

v(r,t) = Z/OT dTl/O drou(T, 71)ga (11, T2)u™ (¢, 72).
(124)

Thus, by solving the Green function u(¢,ty) and the cor-
relation Green function v(7,t), the density matrix and
the transient transport current can be fully determined,

P (1) = [ult, to)?p ™ (to) + v(t,t) = n(t),

In(t) = ~2eRe [ drlaa(t, )07 0) = Bt )0 (1.7
i (125b)

(125a)

Consider two different initial states as examples. One
is the partition-free scheme, in which the whole system
is in equilibrium before the external bias is switched on.
The other is the partitioned scheme in which the initial
state of the dot system is uncorrelated with the leads be-
fore the tunneling couplings are turned on, the dot can
be in any arbitrary initial state p(typ) and the leads are
initially at separated equilibrium state. Both of these
schemes can be realized through different experimental
setups. By comparing the transient transport dynamics
for these two initial schemes, one will see in what circum-
stances the initial correlations will affect quantum trans-
port in the transient regime as well as in the steady-state
limit.

In the partition-free scheme, the whole system is in
equilibrium before the external bias voltage U,(t) is
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switched on. The applied bias voltage is set to be uni-
form on each lead such that U,(t) = U,O(t — to), so
H(t < tg) = H is time-independent. The initial den-
sity matrix of the whole system is given by pio(to) =
%e_B(H_“N), where H and N are respectively the to-
tal Hamiltonian and the total particle number operator
at initial time ¢y. The whole system is initially at the
temperature 8 = 1/(kgT) with the chemical potential
p. When t > ty, a uniform bias voltage is applied to
each lead, the whole system then suddenly change into
a non-equilibrium state. In this case, the calculations of
initial correlations, (a'(to)cak (t0)) and (¢!, (to)car (to)),
and the corresponding time non-local integral kernel,
Jo(T, ') = gic(1,7") + g5¢(7,7'), are very complicated,
see the detailed calculations given in Appendix B of
Ref. [58].

For the partitioned scheme, the dot and the leads are
initially uncorrelated, and the leads are initially in equi-
librium state pp(ty) = e~ 2afalHa—palNa) — After ¢,
one can turn on the tunneling couplings between the
dot and the leads to let the system evolve [101]. In
comparison with the partition-free scheme, each energy
level in lead « shifts by U, to preserve the charge neu-
trality, i.e., €qk — €aqr + Uy. Also, . = Br =
is taken [41]. The initial-state differences between the
partition-free and the partitioned schemes can be demon-
strated simply in an initial empty dot in the parti-
tioned scheme. In this case, the non-local time system-
lead correlation function vanishes, g3¢(7,7') = 0; the
only non-vanishing initial correlation for the partitioned
scheme is given by the initial Fermi distribution of
the leads: (cl,k,(to)cak(to)) = Oak,a'k fa(€ar), which
leads to the time non-local integral kernel g, (7,7") =
f deF fa €+ U ) 1(6+UQ)(T77").

The dissipation and localized state dynamics of the
electron in the dot system, given by the time evolution
of the Green function u(t,to) is shown in Fig. 12. The
dissipation dynamics is independent of the initial corre-
lations, so the results of |u(t)| = |u(t,tp = 0)| shown
in Fig. 12 are the same for both the partition-free and
the partitioned schemes. Without applying a bias
the weak coupling regime: n? = n? + nR < 2 - Mol’
no localized state occurs so the propagating Green func-
tion monotonically decays to zero. In the intermediate
coupling regime: 2 — ﬁ <n? <2+ ﬁ, one local-
ized state occurs [see the detailed discussion following
Eq. (121)]. Correspondingly, |u(t)| decays very fast in
the beginning and then gradually approaches to a non-
zero constant value in the steady-state limit, as shown in
Fig. 12(b). This non-zero steady-state value is the con-
tribution of the localized state. In the strong coupling
regime: n? > 2 + ﬁ, two localized states occur simul-

taneously. One can find that |u(¢)| will oscillate in time
forever. The oscillation frequency is the energy differ-

ence between the two localized states energies, as shown
in Fig. 12(c).

When a finite bias is applied, |u(t)| decays slowely in
comparison with the unbiased case in the weak coupling
regime, where no localized state occurs. In the interme-
diate coupling regime, it is different from the unbiased
case that |u(t)| continuously decays and eventually ap-
proaches to zero, see the dashed curve in Fig. 12(b). This
implies that the localized state is suppressed by the ap-
plied bias. This suppression comes from the fact that the
localized states always lie in the band gaps not far away
from the band edges [102]. The applied bias enlarges
the band energy regime, which could exclude the occur-
rence of the localized state when the dot-lead coupling
strength is not strong enough. The localized state will
reappear if one increases the coupling strength. There-
fore, in the strong coupling regime, the dissipation dy-
namics is changed accordingly, in comparison with the
unbiased case, where one of the two localized states is
suppressed by the applied bias, as shown in Fig. 12(c).
As a result, the long-time oscillation behavior seen in the
unbiased case does not occur. Only in the very strong
coupling regime, the long-time oscillation induced by two
localized states could happen, but this may go beyond
the physically feasible regime that we are interested in.
In summary, for the same dot-lead coupling strength, the
applied bias suppresses the effect of one localized state.
As a result, |u(t)] still decays to zero in the intermediate
coupling regime, and eventually approaches to a constant
value in the strong coupling regime.

The above different dissipation dynamics with or with-
out a finite bias will significantly affect the electron cor-
relation Green function v(t,t) which characterizes all
the system-lead and lead-lead initial correlation effects
through the time non-local integral kernel g, (7,7’), see
Egs. (112)—-(113). The numerical results are shown in
the second row (without bias) and the third row (with
a finite bias) in Fig. 12. In the weak-coupling regime
n? < 2— ﬁ, as we can see that in both the unbiased or
biased cases, electron correlation Green function wv(t,t)
are not significantly different for different initial states.
In particular, v (¢, t) becomes independent of initial states
in the steady state limit In the intermediate coupling
regime 2 — I/\ P < <n? <2+ ‘/\ L v(t, t) is quite different
for the partitioned and partition-free schemes in the tran-
sient regime, and also approach to different steady-state
values for the unbiased case. This shows that the initial
correlation effects can be manifested though the localized
state in the dot. However, when a finite bias is applied,
this significant initial correlation effect disappears. This
is because a finite bias suppresses the effect of the lo-
calized state, as discussed in the solution of wu(t,p). In
the strong coupling regime, 1% > 2 + ﬁ, the initial cor-
relations effects are more significant. For zero bias, the
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Fig. 12 The absolute value of time-dependent propagating Green function |u(t)| and the electron correlation Green
function v(t,t) at different coupling ratios (a) nr = nr = 0.5, (b) nr = nr = 1.0, (¢) nr = nr = 1.5 with zero bias
eVsp = pr — pr = U, — Ur = 0 and a finite bias eVsp = pr, — pur = Uz — Ur = 3|Ao|. The energy level of the quantum
dot . = 3|Ao|, the band center of the two leads eo = 2.5|\o|, and kg7 = kTr = 3|X\o| = ksT. For the unbiased case,
ur = pr = 2.5|Xo|, and U, = Ur = 1.5[Ao|. For the biased case, pur, = 4| Ao, pr = |Ao|, UL = 3|Xol, and Ur = 0. In the graph
of |u(t)|, solid curves denote the unbiased case, and dash curves denote the biased case. The value v(t,t) in partition-free
(blue dash line) and partitioned (red solid line) schemes for the unbiased (the second row) and biased (the third row) cases

is presented [58].

two localized states generate a strong oscillation in the
steady-state solution of v(¢,¢). The oscillating frequency
is just the energy difference of the two localized states.
When a bias is applied, one localized state is suppressed
so that the oscillation cannot occur in the steady state,
as shown in Fig. 12.

Figure 13 shows the electron occupation in the dot and
the transient transport current Iy, (¢) = Ir(t) in the unbi-
ased case for the partitioned and partition-free schemes.
The partition-free system is initially at equilibrium so
that the dot contains electrons, while the dot is initially
empty in the partitioned scheme. One can see that the
effect of the initial correlations vanish in the steady-state
limit when the coupling ratio n? < 2 — ﬁ, where the

Pei-Yun Yang and Wei-Min Zhang, Front. Phys. 12(4), 127204 (2017)

dot does not have localized state. This is because after
u(t, tp) decays to zero, the steady-state electron occupa-
tion is purely determined by v(¢,t), which is the same
for the partition-free and partitioned schemes, as shown
in Fig. 12. This is an evidence of the dot system reach-
ing equilibrium with the leads so that the steady-state
electron occupation inside the dot must be independent
of the initial states.

However, in the coupling regime 2 — ﬁ < n? <
2+ \%I’ the localized state play a significant role in
manifesting the initial correlation effects. The different
electron occupation in the dot for the partitioned and
partition-free schemes is very similar to the behavior of
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Fig. 13 The transient electron occupation of the dot and the transient transport current for the unbiased case at different
coupling ratios (a) n = nr = 0.5, (b) nr = nr = 1.0, (¢) nz = nr = 1.5 for the partition-free (blue-dash line) and
partitioned (red solid line) schemes. The energy level of the quantum dot e. = 3|\o|, the band center of the two leads
€0 = 2.5|Ao|. For the partitioned scheme the leads are prepared at ur = pr = 2.5|\o|, and kpTr = ksTr = 3|\o|. For
the partition-free scheme, the system is initially at equilibrium with g = |Ao| and kT = 3|Ao|. The applied bias voltage

UL = Ug = 1.5|\o| after to =0 [58].

v(t, t), see Fig. 12 and Fig. 13, except for a slightly dif-
ference due to the initial occupation, caused by the first
term in Eq. (125). Thus, the electron occupation in the
dot depends significantly on initial states. Physically,
this result implies the breakdown of the equilibrium hy-
pothesis of statistical mechanics, namely after reached
the steady state, the system does not approach equilib-
rium with its environment, and the particle distribution
depends on the initial states. This result with localized
states agrees indeed with the fact Anderson pointed out
in Anderson localization [44], namely, the system can-
not approach equilibrium when localization occurs. In
the strong coupling regime, n? > 2 + ﬁ‘o‘, two localized
states occur, which generates a strong oscillation in the
density matrix with the oscillating frequency being the
energy difference of the two localized states. This oscilla-
tion is maintained in the steady state, where the initial-
state dependence becomes more significant, as shown in
Fig. 13(c).

The corresponding transient transport current for the
partitioned and partition-free schemes approaches to the
same value in a every short time scale regardless whether
the localized states exist or not. This is because at zero
bias, the steady-state transport average current must
approach to zero. The transport current will oscillate

slightly around the zero value in Fig. 13(b) because one
localized state occurs which causes the oscillation of elec-
trons in the dot in the transient regime. When two local-
ized states occur, electrons in the dot oscillate between
the two localized states, so that the corresponding trans-
port current follows the same oscillation. In the mean-
time, the initial-correlation dependence in the transport
current is not as significant as in the electron occupation
in both the transient regime and the steady-state limit.
In fact, the initial correlation effects even can be ignored
for the transport current in the steady-state limit, as
shown in Fig. 13. The current only oscillates around
zero value because of the zero bias.

The time evolution of the electron occupation in the
dot and the transient transport current for both the par-
titioned and the partition-free schemes for the biased
case are shown in Fig. 14. Comparing Fig. 13 with
Fig. 14, one can find that the applied bias restrains most
of the oscillation behavior in the electron occupation as
well as in the transport current, except for the very be-
ginning of the transient regime. Also, regardless of the
existence of localized states, the electron occupation in
the dot and also the transport current all approach to
steady-state values other than zero due to the non-zero
bias. In other words, the localized state has a less ef-
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Fig. 14 The transient electron occupation of the dot and the transient transport current for the biased case at different
coupling ratios (a) n = ng = 0.5, (b) n = ng = 1.0, (¢) n = nr = 1.5 for the partition-free (blue-dash line) and
partitioned (red solid line) schemes. The energy level of the quantum dot . = 3|\o|, the band center of the two leads
€0 = 2.5|X\o|. For the partitioned scheme the leads are prepared at ur = 4|Xo|, ur = |Xo|, and kTr = kTr = 3|\o|. For
the partition-free scheme, the system is initially at equilibrium with g = |Ao| and kT = 3|Ao|. The applied bias voltage

Ur = 3|Xo| and Ur = 0 after to = 0 [58].

fect on the electron occupation and the transport cur-
rent when a bias is applied. This is because the applied
bias suppresses one of the localized states. However, the
remaining localized state will result in a slightly differ-
ent steady-state values for partition-free and partitioned
schemes for the electron occupation in the dot. The cor-
responding transient current flow through the left and
right leads are quite different for these two schemes when
a bias voltage is applied. In particular, the transient
transport current in the right lead is positive in the be-
ginning for the partitioned scheme because the dot is ini-
tially empty, and it approaches to a negative steady-state
value in both schemes. But the steady-state current is
almost independent of the initial correlations as shown in
the inset graphs in Fig. 14. These results show that the
initial correlation effects have a significant effects in the

transient regime for both the electron occupation in the
dot and the transport currents between the dot and the
leads when a finite bias is applied. In the steady-state
limit, it is expected that the initial correlation effects are
less important in electron transport currents in compar-
ison with the electron occupation in the dot.

In fact, the quantum transport in the presence of lo-
calized states was previously studied [90, 103-106]. In
particular, Dhar and Sen considered a wire connected to
reservoirs that is modeled by a tight-binding noninter-
acting Hamiltonian in the partitioned scheme [106], and
they gave the steady-state solution of the density matrix
and the current. Their results show that the memory ef-
fects induced by the localized states can be observed such
that the density matrix of the system is initial-state de-
pendent. Stefanucci used the Kadanoff-Baym formalism
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to formally study the localized state effects in the quan-
tum transport in the partition-free scheme [90]. He found
that the biased system with localized states does not
evolve toward a stationary state. The results here using
the Master equation approach agree with these results
obtained in Refs. [90] and [106]. The initial-state depen-
dance of the density matrix in the partitioned scheme
is indeed obvious in the Master equation formalism, as
given in Eq. (125). In fact, all these results with the
existence of the localized states are fully determined by
the solution of the nonequilibrium Green functions of the
device system.

3.3 Quantum coherence of the molecular states
and their corresponding currents in nanoscale
Aharonov—Bohm interferometers

Quantum coherence of electrons in nanostructures is ex-
pected to manage quantum computation and quantum
information. It is essential to prepare and read out
the state of the qubit in quantum information process-
ing. There have been many experiments and theoreti-
cal analyses on quantum coherence manipulation of elec-
tron states in DQDs which are thought to be a promis-
ing charge qubit [107-119]. The techniques to recon-
struct quantum states from series of measurements about
the system are known as quantum state tomography
[34, 120-123]. Quantum state tomography is resource
demanding and it aims at very detailed description of co-
herence of quantum states. On the other hand, transport
measurement utilizing quantum interference has revealed
the main coherent properties of traveling electrons. How
the latter can be associated with the coherence of local
quantum states in the DQDs is interesting to investigate.

Quantum coherence has been detected through the
Aharonov-Bohm (AB) interference [124]. Double quan-
tum dots embedded in AB geometry were achieved in
Refs. [125-127] The AB phase coherence of electrons
through each dot would induce oscillating current as a
function of the magnetic flux, which is simply called
the AB oscillation in the literature. The results show
that the AB phase coherence can be easily manipulated
in these devices. In Coulomb blockade and cotunnel-
ing regimes, it is predicted theoretically that currents
through spin-singlet and triplet states carry AB phases
with a half of period difference [128]. For one-electron
states, the half-period difference of AB oscillation is also
anticipated in transport currents through the bonding
and antibonding state channels [129, 130], demonstrated
in electron conductance. In particular, it has been re-
vealed [129] that there are two resonances, the Breit—
Wigner resonance and the Fano resonance, in the elec-
tron conductance that are associated to the bonding and
antibonding states and the interference between them.
it has also been found [130] that the Fano resonance can

be suppressed as the indirect coupling strength decreases,
and the remaining Breit—-Wigner resonance contains two
peaks associated with the bonding and the antibonding
states, respectively. Motivated with these theoretical in-
vestigations, the transport currents passing through the
bonding and antibonding state channels has been de-
tected experimentally [131]. The half-period difference
of AB oscillation in electron current through the bonding
and antibonding state channels, respectively, is thought
to be resulted from the parity of the wave functions of
the bonding and antibonding states, which is a property
of the device geometry. In Ref. [131], two different en-
ergy configurations are used, which are succeeded by two
different gate voltage settings. Under the assumption
that the transport currents flowing through the bonding
state channel in different energy configurations are al-
most the same, the transport currents under these two
configurations are measured. The measured currents are
used to determine the transport currents flowing through
the bonding and/or antibonding state channels in one of
the configurations. In this subsection, the validity of
this assumption is justified using the theoretical frame-
work of the quantum transport theory based on Master
equation approach [21, 23, 53, 57]. Then, the relations
between the probabilities of the bonding and antibond-
ing states and the transport currents flowing through the
corresponding channels is investigated [60]. The results
provide useful information for experimental reconstruc-
tion of quantum states of the promising charge qubit in
terms of two physical dot states through measurements
of transport current.

The nanoscale AB interferometer consists of two cou-
pled single-level QDs coupled to two leads, its Hamilto-
nian is given by

H:HDQD+HB+HT, (126)
where Hpgp is Hamiltonian of DQDs.
2
Hpop =Y eijdld;, (127)

i=1
and d; (d;r) is annihilation (creation) operator in ith QD,
€i; is the energy level of ith QD and ¢;; with ¢ # j is
the tunneling matrix element between the DQDs. The
Hamiltonian of the two leads is given by Hp:

Hp = Z ZeakCchak,

a=L,R k

(128)

where the label a denotes the left or right lead, and
Cak (clk) is the annihilation (creation) operator of the
kth level in lead a. The Hamiltonian Hr describes the
tunnelings between the QDs and the leads:

2
HT = Z ZZ(%akdICak—i_H'c)'

a=L,Ri=1 k

(129)
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By threading a magnetic flux @ to the above system,
the tunneling matrix elements would carry a AB phase,
Viek = Viaxe'®®, ¢ is the AB phase that electrons
carry during the tunneling from « lead to ith dot, and
Viak is the real tunneling amplitude. The AB phase will
also affect on Hpgp, i.e., for i # j, €;; = Eijei¢ij where
€j = —t. is a real amplitude and ¢;; is AB phase from
jth dot to ith dot. The relation of the AB phases with
the magnetic flux @ is given by ¢17, — ¢1r + Por — P21, =
2P /Py = , where Py is the flux quanta. We also set
¢12 = 0 according to Refs. [129-131].

The physics of a coupled double quantum dots system
is better to understand in the molecular basis than the
computational basis. By denoting the antibonding state
(AS) and the bonding state (BS) with the signs + and
— respectively, the Hamiltonian of the DQDs becomes

Hpgp = Y e, didy,
v==+

(130)

where €4 is the corresponding energy level, and d+ (dl)
is the corresponding annihilation (creation) operator,
which are given by

1
€+ =73 [ (€11 + €22) & \/(611 — )’ + 4t3}7
0

0 .
d, cosg —sing d dy
= = 131
(d_> | (@)=s(a) asw

sin—  cos
2 2

(131a)

and tan 6 = 2t./(e11 — €22). The reduced density matrix
of the DQDs can be solved from the exact Master equa-
tion. By denoting the empty state with |0), the states
AS and BS with |v) := |£), and doubly occupied state
by |d), the reduced density matrix elements in molecular
basis are expressed as follows:

pou(t) = o { o) + pustta) et (0]

= > pwlto) s (t)}, (132a)

v,V =:+
pit(t) = 1=poo(t)—p' (1), pp—(t)=p{ (t), (132D)

p——(t) = 1=poo ()= (), p-1(t)=p}_ (), (132)
pad(t) = 1=poo(t) — p++(t) — p——(t), (132d)

and the other off-diagonal density matrix elements be-
tween the different states are all zero. Here, w(t) and
J3(t) are defined in Eq. (75).

The experiment in Ref. [131] is given under the fol-
lowing conditions. The energy of each dot is the same,
€11 = €29 = €g, and the spectral density of lead « is
energy independent, I', () = I, (wide band limit) with

the level-width of the left lead I'1,11 = 199 = I}, and the
right lead I'g11 = ['roo = I'r. Also the indirect interdot
couplings of the left lead 112 = ap el and the right
lead I'gr12 = a RFRe_i%, where the indirect coupling pa-
rameter ar, g was originally introduced in Ref. [130] in
order to characterize the strength of the indirect coupling
between two quantum dots via leads. In the molecular
basis, the energies of the bonding and antibonding states
are €1 = €g £ |t;|. With the above conditions, the anni-
hilation operators of the bonding and antibonding states
become

(-5 ()

The tunneling Hamiltonian between the molecular states
and the leads is reduced to

(133)

Hp= > >3 (Viakdicar + He), (134)
a=L,Rv=%+ k
with the tunneling matrix elements,
Via 1 (1 -1 Via
tak) 1 lak | (135)
V—ak \/§ 1 1 ‘/2041@
The level-width matrix I',, is given by
r Iy
AR =TIy r(I—dpp- &), (136)
ey I L,R

)

where dr r=(a} g, a%)R, ai r)=ar,r(0,£sin §, cos 5)
and & are the Pauli matrices. Then the Green function
u(t,to) has a simple solution,

U4 (t,t0)

B u4—(t,to)
u(t, to) = <u+(t,to) U(t’t0)>

(e v e a. o

where € = <€+ 0 . The retarded Green function in

0 e_

energy domain has a simple form,

Gh(e) = fi/o el (t)dt,

. -1
1
=(el—e+-T
(6 e+2> s

with I' = I', + I'g. The Green function v in the steady-
state limit is

(138)

om [ EY LT Er.G e, (139)

and G°(¢) = [G7 ()]
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As one can see, in the steady-state limit, u(t — o) =
0 so that the single-particle reduced density matrix (83)
of the DQDs is reduced to

(€))

pm/(t - OO) = [’U]l/l/'- (140)

where v is given by Eq. (139). Following the experiment
[131], the initial DQDs is empty so that pgo(tg) = 1 and
other initial density matrix elements of the DQDs all
equal to zero. Then, Eq. (132) in the steady-state limit
can be simplified to

poo = det[I — v], (141a)
P+ =1—=poo—v——, pr_=v4_, (141b)
p——=1—poo — Vi, p_y =v}_, (141c)
pda = det[v], (141d)

Thus, the reduced density matrix elements of the DQDs
are fully determined by the Green function solution
Eq. (139) through the solution Eq. (138).

The steady-state electron current of Eq. (82) in the
wide band limit can be reduced to

1 L0 de -
Iy = —QeReTr{QI‘av = 1/_00 %fa(s)['aG (5)}
(142)

Carrying out explicitly the real part of Eq. (142), the

transport current in the steady-state limit obeys the gen-
eralized Landauer—Biittiker formula,

I= 5 [ 1o - fa@) T, (143)
where the electron transmission is
T(e) =Tr [G*(e)[RG"(e)TL] (144)

According to the analyses in Ref. [131], the total trans-
port current can be divided into components flowing
through the bonding and antibonding state channels,
plus the interference between them:

I=1I,+1_ +1I,_. (145)
These current components are explicitly given by
e [T 2
Iy=o—| de [fr(e) — fr(e)] IoasTres |GEL(e)|,
(146)
e [T R 2
Lo = o[ delfu(e) = fr(@N Tovs Tno— |G, |

2
I Troy |GR_|" + 2Re{G{ Try 4 GT_I'
+GY Tr G Toyy + G Tr G T
+Gf+f’R+7G}E,FL7+ + Gf,TRffGIE,FLer

+GA Tn 1 GRT ), (147)

where I'r+ 4+ rist ‘Gii(a)‘g are the effective transmis-
sion coefficients of the bonding (antibonding) state chan-
nels. The transport current component I _ is the second
order term of ar, g, and hence its contribution to the to-
tal transport current is ignorable in the weak indirect
coupling limit, I~ ~ 0.

In Ref. [130], it is found that the full destructive in-
terference of the Fano resonance only happens for the
strongest indirect coupling, |ar r| = 1. When |ar g|
decreases from 1 to 0, the Fano resonance is gradually
suppressed, the remaining result is the Breit—Wigner res-
onance containing two peaks associated with the bonding
and antibonding states. In the present formalism, It in
Eq. (147) are the transport currents flowing through the
bonding and antibonding state channels, respectively,
which gives the two peaks in the electron conductance for
Breit—Wigner resonance, as shown in Ref. [130], and I _
is the transport current due to interference between the
bonding and antibonding state channels, which induce
the Fano resonance in the electron conductance when
lar.r| — 1, as shown in Refs. [129, 130]. The transport
currents flowing through the bonding and antibonding
state channels was explicitly detected later [131]. The
theoretical analysis in Ref. [130] and the experimental
analysis in Ref. [131] inspire an explicit relation between
the DQD reduced density matrix elements and the trans-
port currents in the molecular state basis.

In the experiment [131], the electron currents are mea-
sured under two different energy configurations for the
bonding and antibonding state channels with the fixed
bias and indirect interdot weak couplings, as shown in
Fig. 15(a). Other parameter settings in Ref. [131] are as
follow: the level broadenings of the left lead I';, = 0.31"
and the right lead I'y = 0.7I" (I" = I'y, 4+ I'g), the indi-
rect interdot coupling parameters ay, = —0.1 for the left
lead and ar = 0.15 for the right lead, the direct interdot
coupling t. = —601", the chemical potentials of the left
lead pr = 125" and the right lead pr = —1251", and
the temperature of the reservoirs is set at kg1 = 10I".
The measured currents are the total electron currents in
each configuration. As shown by Fig. 15(a), in config-
uration 1, only the energy of the bonding state locates
within the bias window (w7, — pg). In configuration 2,
both the energies of the bonding and antibonding states
lie in the bias window. These two energy configurations
can be succeeded by tuning gate voltages.

In configuration 1, the current flowing through the
bonding state channel, denoted by I;_, is dominant such
that the total current is almost given by I ~ I1_, where
the current I, flowing through the antibonding state
channel in configuration 1 is negligible. In configura-
tion 2, the total current Iy = Isy + Io_ + 154, where
Iy, Is_ are the currents flowing through the antibond-
ing and bonding state channels in configuration 2, re-
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spectively, and Ioy_ is the current due to the interfer-
ence between the bonding and antibonding state chan-
nels. The latter is negligible in the weak indirect coupling
regime [130]. Therefore, the total current in configura-
tion 2 is mainly given by Io ~ Iy + Io_. With the
assumption that currents flowing through the bonding
state channel in configuration 1 and 2 are almost the
same [131], I;_ ~ I5_, one can determine the currents
flowing through the bonding and antibonding state chan-
nels, respectively by the total currents measured sepa-
rately in configuration 1 and 2. This is the method used
in Ref. [131] for analysing the currents flowing through
the bonding and antibonding state channels.

For the above experimental analysis, one shall ask that
whether the current I7 flowing through the antibonding
channel in configuration 1 is really negligible; and what
are the conditions that should be satisfied such that the

(@)

AS
Hr
BS e AS
BS
193
Configuration 1 Configuration 2
(©
040,-=2 T &
1. '
1" 1
035" :
g i '
= 030! !
=~ 1y Conf.2 |1 Conf. 1
il 1
0.25" ]
t@=0
1
0.20

T T
-125 =75 =25 25 75 125
e/’

assumption I;_ & Io_ is valid. According to Eq. (147),
I+ depends on the overlap of the difference of parti-
cle number distributions in the two leads, fr(¢) — fr(e),
with the effective transmission coefficient of antibonding
state channel, Ity I'ryy }Gf+(5)|2. In Fig. 15(b), the
difference fr(e) — fr(e) is shown by the black dashed
line. The energy of the bonding state is theoretically
fixed, e = €9 — |t¢|, and the interdot coupling t. is
changed to compare the corresponding antibonding state
channel contributions to the current. In experiments,
€_ can be manipulated through tuning the energy of
DQDs and the interdot coupling simultaneously. The
effective transmission coefficient I'r,__I'r__ ]G’_%_(a)|2
of the bonding state channel is fixed because of con-
stant e_, which is shown by the blue peak in Fig. 15(b).
Other peaks are the corresponding effective transmis-
sion coefficient I'L4 4 I'riy |G, (¢) ]2 of the antibonding

(b) meeem f1(€) —fgr(e) === AS,(=10T"
— = AS,t=30I" == AS,t=60T
1.04e7
s, |tor 30T 60T
*
0.8 * |
aa " —_
5 o . | &
S 067 \ &
E 1 | L
~ 0.4] . &
i ; | =
LT] o
0.2 g
L
0.0 A -
100, 150 200

(@

‘7*\;
125 2

Fig. 15 (a) The schematic plot of the energy levels of the bonding and antibonding states in configuration 1 and 2 with the
chemical potential of the left and right leads, ur and pg. (b) The difference of the left and right lead particle distributions,
fr(e) — fr(e), and the effective transmission coefficients of the bonding and antibonding channels in configuration 1 for
different interdot coupling t. are plotted. In this case, the energy e_ of the bonding state is fixed at 115I", and the
corresponding transmission is plotted with the blue line. The transmissions of the antibonding state for ¢t. = 10, 30,60I" are
plotted with the red dashed line, purple long dashed line, and green dot-dashed line, respectively. (c) I— as a function of
e— is plotted. The blue solid line is for temperature kg7 = 10I", and the purple dashed line is for zero temperature. The
numbers 1, 2 in the plot denote the corresponding energy configurations 1 and 2 for |t.| = 60I". (d) I- is plotted as a
function of e and @ [60].
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state channel for different ¢.. As shown by Fig. 15(b),
the larger ¢. gives the smaller overlap of fr(¢) — fr(e)
with I'pyy Troy ‘Gf+(s)‘2 and hence the smaller cur-
rent ;4 flowing through the antibonding state chan-
nel in configuration 1. So one can conclude that Iy
is negligible when t. is properly large enough to make
Iy Iyt ]Gf+(5)|2 lesser overlap with fr(c) — fr(e)
[60].

On the other hand, the current I_ flowing through the
bonding state channel as a function of the energy e_ of
the bonding state is shown in Fig. 15(c). Figure 15(c)
shows that the current I_ flowing through the bonding
state channel becomes maximum when the energy e_ of
the bonding state is located in the middle of the bias
window. The current I symmetrically and dramati-
cally decays when e_ approaches closely to ur, or pugr. In
Fig. 15(c), the blue solid line gives the current I_ as a
function of e_ for temperature kg1 = 10I". It shows
that I_ is almost a constant within |e_| < 80I". This
indicates that the condition I;_ ~ Is_ is well satisfied
for |e_| < 80I'. The purple dashed line in Fig. 15(c)
shows I_ at zero temperature . In this case, the range
for I_ being almost a constant is wider. Also, this flat
pattern is maintained for arbitrary magnetic flux @ [see
Fig. 15(d)].

The experiment of Ref. [131] was performed under
wide band limit, weak coupling, and large bias regime,
which is a typical regime for transport experiment of
DQDs devices. As shown in Eq. (83), the steady-state
single-particle reduced density matrix in the wide band
limit is simply given by pM(t — o0) = v(t,t — 00). Be-
cause of the indirect interdot weak coupling (small ar, ),
one can ignore the higher order terms of ar, g [60]. The
steady-state diagonal elements vL then have the simple
forms as

L[ e Toss |GEL ()]
U:t:t_/_oo ga:ZLRfa(E) a:t:t‘ :I::I:(‘g)}

=VUr++ + URt+. (148)

The steady-state transport currents through the bonding
and antibonding state channels given in Eq. (147) can be
approximately expressed in terms of v,++

I =el'riyvpsy —elL4iVRt+. (149)

From the above results, one obtains the relations be-
tween occupation numbers of the bonding and antibond-
ing states and the corresponding currents approximately:

It
elpit

1
A~

(150)

The comparison between this approximated solution
with the exact one given by Eqs. (139) and (140) at the
steady-state limit ¢ — oo are presented in Fig. 16(a),

where energy configuration e_ = —40I" is chosen as an
example. As one see, the approximation solution is al-
most the same as the exact one. Eq. (150) implies that
the currents flowing through the bonding or antibond-
ing state channels can be used to determine the parti-
cle occupations in the corresponding state. The bonding
and antibonding state components of the retarded Green
function |G L (¢)|? in Eq. (148) have sharp peaks located
at e4, respectively, as the effective transmission shown in
Fig. 15. When the bias is large (e+ > ug), vgt+ are ig-
norable. This is because electrons in the right lead hardly
tunnel back into DQDs. The off-diagonal elements vi
relates to the tunneling probability between the bonding
and antibonding states. Because there is no direct cou-
pling between the bonding and antibonding states, the
electrons must hop to the leads, then hop back to the
other state. The weak couplings to the leads suppress
the probability, and hence vt are ignorable, as shown
in Fig. 16(b) in which the magnitude of v;_ is the or-
der of 1073 of the magnitude of the diagonal elements.
Consequently, the reduced density matrix of Eq. (141)
in the steady-state limit can be approximately given by
the bonding and antibonding currents:

poo = (1 B eZ{;r++) (1 B elf—};__>7 (151a)
po_ e~ eFf;__ (1 - 61{;+), (151b)
P eFin (1 — eé‘”), (151c)
pdd = eFI};Jr eFIR_,,’ (151d)
py— =vp_ ~0. (151e)

The comparison between the above approximated solu-
tion with the exact elements of Eq. (141) in the steady-
state limit is shown in Fig. 16(c), which give almost the
same results between the approximated solution and the
exact one.

For practical application of DQDs as a promising
qubit, one is interested in the quantum coherence be-
tween the two physical dots, which is described by the
off-diagonal matrix element pi2(t) in the physical dot ba-
sis. The reduced density matrix elements in the physical
dot basis (the charge qubit basis) of the DQDs is given
by the following relation [21, 53]:

pia(t) = 5o (1) — i (0)] +1 Tmp, (1)

~ Lo (1) = pis 1), (152a)
pis(t) = 3 [o- (1) + pr s (1] + Rep, (1)

~ Lo (1) + por (1] (152b)
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Fig. 16 (a) The exact and approximate occupation numbers given by Eq. (150) in the bonding and antibonding states.
(b) The real part and the imaginary part of v4_ (p4+—_). (c) The exact and approximate diagonal elements given by Eq. (151)
of the reduced density matrix in the molecular basis. (d) The exact and approximate off-diagonal reduced density matrix

elements in the dot basis [60].

The off-diagonal element p;5(t) is presented in Fig. 16(d).
In the charge qubit basis, the probability of the diagonal
elements, p11(t) and paq(t) can also be determined from
the diagonal density matrix element, p__ and p4 of the
bonding and antibonding states, as shown in the above
equation. Thus, the complete information of the reduced
density matrix of the DQDs can be obtained experimen-
tally from the measured currents through the relations
given by Egs. (151) and (152).

4 Conclusion

In summary, we have established a non-equilibrium
quantum theory for the transient electron dynamics of
various nanodevices, based on the path integral method
in the fermion coherent-state representation. Our the-
ory builds on the Master equation of the reduced den-
sity matrix. The non-equilibrium transport current is
directly derived from the reduced density matrix. The
Master equation for the reduced density matrix [i.e.,
Eq. (77), which provides all the information about the
electron quantum coherence in the device] plus the tran-

sient current [i.e., Eq. (82), which determines transient
electron transport phenomenal together provide a unique
procedure to address the quantum decoherence prob-
lem in nonequilibrium quantum transport. The Mas-
ter equation takes a convolutionless form and hence the
non-Markovian dynamics are fully encoded in the time-
dependent coefficients. Explicitly, the back-reaction ef-
fect of the gating electrodes on the central system is
fully taken into account by these time-dependent coeffi-
cients through the integrodifferential equations of motion
(76) for the nonequilibrium Green functions. The non-
Markovian memory structure is non-perturbatively built
into the integral kernels in these equations of motion.
All the physical observables can be calculated directly
from the Master equation. In particular, the transient
transport current (82), and the single particle density
matrix, (83), are found directly from the Master equa-
tion in a rather simple way. The Master equation and
the transient transport current are also explicitly related
to each other in terms of the superoperators acting on
the reduced density matrix [see Eq. (78)].

This exact non-equilibrium formalism should provide
a very intuitive picture showing how the change in the
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electron quantum coherence in the devices is intimately
related to the electron tunneling processes through the
leads and therefore responds nonlinearly to the corre-
sponding external bias and gate controls. This theory
is applicable to a variety of quantum decoherence and
quantum transport phenomena involving non-Markovian
memory effects, in both stationary and transient sce-
narios, and at arbitrary initial temperatures of the dif-
ferent contacts. The examples are given in Section 3.
As we have also presented, one can simply reproduce
the non-equilibrium transport theory in terms of the
non-equilibrium Green function technique from the Mas-
ter equation formalism. However, we should point out
that the quantum transport theory based on the non-
equilibrium Green function technique does not explic-
itly give the connection to the reduced density matrix
of the device and thereby lacks a direct description of
the quantum decoherence processes of the electrons and
the non-Markovian memory dynamics in nanostructures.
Besides, the Master equation approach can be easily ex-
tended to incorporate the initial correlations, the formula
for the Master equation and the transient current remain
unchanged, the only change is given by the system-lead
nonlocal time correlation (112) and (113) in the deter-
mination of the correlation Green function (111).
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