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The non-Markovian dynamics of a three-level quantum system coupled to a bosonic environment is a

difficult problem due to the lack of an exact dynamic equation such as a master equation. We present for

the first time an exact quantum trajectory approach to a dissipative three-level model. We have established

a convolutionless stochastic Schrödinger equation called the time-local quantum state diffusion (QSD)

equation without any approximations, in particular, without Markov approximation. Our exact time-local

QSD equation opens a new avenue for exploring quantum dynamics for a higher dimensional quantum

system coupled to a non-Markovian environment.
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Every small quantum system, such as a two-level atom
(qubit), a three-level atom (qutrit), or a cavity mode (sim-
ple harmonic oscillator), should be regarded as an open
quantum system due to the inevitable interaction with its
environment. The effect from the environment may bring
about some grave problems, such as quantum decoherence
and disentanglement, to the dynamics of the open system
[1]. Much has been studied in the Markov limit where the
dynamics of open quantum system is typically described
by a standard Lindblad master equation which is equivalent
to a quantum state diffusion (QSD) equation for a pure
state [2–7] (setting @ ¼ 1):

d

dt
c t ¼ �iHc t þ �tðLÞðzt þ hLyitÞc t � 1

2
�tðLyLÞc t;

(1)

where the notation �tðAÞ � A� hAit for any operator A
and hAit � hc tjAjc ti denotes the quantum average. L is
the system operator coupled to the environment, often
called the Lindblad operator. The dynamics of the open
system is driven by the classical stochastic process zt. The
reduced density matrix for the system of interest can be
recovered by averaging quantum trajectories generated by
the QSD equation (1): �t ¼ M½jc tðzÞihc tðzÞj�. Here M½��
denotes the ensemble average over the classical noise.
Besides many appealing features exhibited by pure state
quantum trajectories, Eq. (1) provides a very efficient
numerical tool in solving quantum dynamics of Markov
open systems.

Non-Markovian environments have become increas-
ingly important in recent times due to their relevance in
explaining new experimental advances in high-Q micro-
wave cavities, photonic crystals, and atom laser in Bose-
Einstein condensation [8–14]. It is also evident from the
recent progress in quantum information processing that
environmental memory may be utilized to generate or
modulate entanglement evolution of an open quantum
system [15,16]. Clearly, an approach that is capable of

dealing with non-Markovian quantum system is highly
desirable. A non-Markovian QSD equation for a general
non-Markovian open system by Diósi and co-workers has
provided a powerful tool in dealing with the exact dynam-
ics of quantum open systems irrespective of the coupling
strength, the correlation time, and the spectral density of
the bosonic environments [17–24]. Despite extensive re-
search, the explicit non-Markovian QSD equations only
exist for a single two-level system, the quantum Brownian
motion model, and optical cavities due to the intricate
functional derivative appearing in the fundamental QSD
equation [17,18,25–28]. Clearly, the power of the non-
Markovian quantum trajectory method cannot be readily
unleashed unless the stochastic QSD equation can be cast
into a convolutionless form in which the numerical simu-
lations and analytical applications can be easily imple-
mented [29,30].
In this Letter, we present, for the very first time, an exact

time-local QSD equation for the three-level dissipative
dynamics in the framework of non-Markovian quantum
trajectory at zero temperature. Our treatments of the
three-level model have opened up a new route of exploring
dynamics of higher dimensional quantum open systems.
Notably, our method of establishing a time-local non-
Markovian QSD equation can be applied to multiple qubit
systems to deal with the time behavior of them such as the
estimation of non-Markovian entanglement evolution and
fidelity [31,32].
We consider a Caldeira-Leggett-like model [28] involv-

ing a system with Hamiltonian H describing a three-level
atom, coupled linearly to a general boson environment

consisting of a set of harmonic oscillators ak; a
y
k (e.g.,

cavity modes). The total Hamiltonian for the system of
interest plus environment can be written as

Htot ¼ H þX
k

ðg�kLyak þ gkLa
y
kÞ þ

X
k

!ka
y
kak; (2)
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where the three-level system Hamiltonian H ¼ !Jz ¼
!ðj2ih2j � j0ih0jÞ, the Lindblad operator L ¼ J� ¼ffiffiffi
2

p ðj0ih1j þ j1ih2jÞ, and Ly ¼ Jþ. Note that ! is the spac-
ing of the two neighboring energy levels of the three-level
system, gk are the coupling constants between the three-
level system and the environmental modes. It is known [17]
that the linear QSD equation for the three-level system can
be formally written as

d

dt
c tðzÞ ¼ �i!Jzc tðzÞ þ J�ztc tðzÞ

� Jþ
Z t

0
ds�ðt; sÞ�c tðzÞ

�zs
; (3)

where �ðt; sÞ is the bath correlation function and zt ¼
�i

P
kg

�
kz

�
ke

i!kt is a complex Gaussian process satisfying
M½zt�¼M½ztzs�¼0 andM½z�t zs�¼�ðt;sÞ. When �ðt; sÞ ¼
�ðt� sÞ, it reduces to the memoryless Markov case.
The density matrix of the system is recovered from the
ensemble average of many realizations of quantum
trajectories:

�t¼M½jc tðzÞihc tðzÞj�¼
Z d2z

�
e�jzj2 jc tðzÞihc tðzÞj: (4)

One advantage of using quantum trajectory is that, while
deriving the non-Markovian master equation is known to
be a daunting task, the QSD equation governing the non-
Markovian open system can be read off directly once the
Hamiltonian of the total system is given by (2). However,
the formal non-Markovian QSD equation (3) or its non-
linear version (see below) cannot be easily implemented as
an analytical or numerical tool unless the term containing
the functional derivative can be written as �

�zs
c tðzÞ ¼

Oðt; s; zÞc tðzÞ, where Oðt; s; zÞ is an operator acting on
the system Hilbert space satisfying the initial condition
Oðs; s; zÞ ¼ J�. The equation of motion governing the O
operator (consistency condition [18]) is given by

@tOðt; s; zÞ ¼ ½�i!Jz þ J�zt � Jþ �Oðt; zÞ; Oðt; s; zÞ�

� Jþ
� �Oðt; zÞ
�zs

; (5)

where �Oðt; zÞ ¼ R
t
0 ds�ðt; sÞOðt; s; zÞ. For the model given

by (2), it can be shown that this nonlinear operator equation
can be solved by the following ansatz solution:

O¼ fðt;sÞJ�þgðt;sÞJzJ�þ i
Z t

0
pðt;s;s0Þzs0ds0J2�; (6)

where the coefficient functions fðt; sÞ, gðt; sÞ, and pðt; s; s0Þ
satisfy

@

@t
fðt; sÞ ¼ i!fðt; sÞ þ 2GðtÞfðt; sÞ � 2iPðt; sÞ; (7)

@

@t
gðt;sÞ¼ i!gðt;sÞ�2FðtÞfðt;sÞþ2FðtÞgðt;sÞ

þ4GðtÞfðt;sÞ�2GðtÞgðt;sÞ�2iPðt;sÞ; (8)

@

@t
pðt; s; s0Þ ¼ 2i!pðt; s; s0Þ þ 2FðtÞpðt; s; s0Þ

þ 2fðt; sÞPðt; s0Þ � 2gðt; sÞPðt; s0Þ; (9)

where the time-dependent functions FðtÞ�R
t
0�ðt;sÞfðt;sÞds, GðtÞ�R

t
0�ðt;sÞgðt;sÞds, and Pðt; s0Þ �R

t
0 �ðt; sÞpðt; s; s0Þds together with a set of boundary con-

ditions for f, g, and p: fðs; sÞ ¼ 1, pðt; s; tÞ ¼ �igðt; sÞ,
gðs; sÞ ¼ 0, pðs; s; s0Þ ¼ 0.
With the explicit O operator (6), the exact linear non-

Markovian QSD equation may be compactly written into a
time-local form:

d

dt
c tðzÞ ¼ ½�i!Jz þ J�zt � FðtÞJþJ� �GðtÞJþJzJ�

� i
Z t

0
Pðt; s0Þzs0ds0JþJ2��c tðzÞ: (10)

Note that the time-dependent coefficients FðtÞ, GðtÞ, and
Pðt; s0Þ could be calculated once the correlation function
�ðt; sÞ is explicitly given. It should be emphasized that the
non-Markovian properties are encoded in a finite width
correlation function �ðt; sÞ, and hence in the time-
dependent coefficients FðtÞ, GðtÞ, and Pðt; s0Þ appearing
in the QSD equation (10). Clearly, the terms containing
GðtÞ and Pðt; s0Þ give rise to the most important correction
to the Markovian dynamics. This can be easily seen if we
take the Markov limit in which FðtÞ ¼ 1=2, GðtÞ ¼
Pðt; s0Þ ¼ 0 recovering the standard Markovian QSD equa-
tion. Equation (10) is the fundamental equation for the
three-level system coupled to a bosonic environment de-
scribed by (2).
For numerical simulations, it is more efficient to use

the nonlinear non-Markovian QSD equation [18] for the

normalized state ~c t ¼ c t

kc tk obtained from Eq. (10):

d

dt
~c t ¼ �i!Jz ~c t þ�tðJ�Þ~zt ~c t þ hJþitFðtÞ�tðJ�Þ ~c t

� FðtÞ�tðJþJ�Þ ~c t þ hJþitGðtÞ�tðJzJ�Þ ~c t

�GðtÞ�tðJþJzJ�Þ ~c t þ ihJþit
�

Z t

0
Pðt; s0Þ~zs0ds0�tðJ2�Þ ~c t

� i
Z t

0
Pðt; s0Þ~zs0ds0�tðJþJ2�Þ ~c t: (11)

Here ~zt ¼ zt þ
R
t
0 �

�ðt; sÞhJþisds is the shifted complex

Gaussian process.
The correlation function �ðt; sÞ at zero temp-

erature is given by �ðt;sÞ¼P
kjgkj2e�i!kðt�sÞ ¼R1

0 d!Sð!Þe�i!ðt�sÞ, where Sð!Þ is the spectral density

of the environment modes. Equation (11) is capable of
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describing non-Markovian dynamics with an arbitrary cor-
relation function �ðt; sÞ, but for the sake of simplicity, we

now consider the correlation function �ðt; sÞ ¼ �
2 e

��jt�sj

for the Ornstein-Uhlenbeck process. The Ornstein-
Uhlenbeck process is a useful approach to modeling noisy
relaxation with a finite environmental memory time scale
1=�. When � ! 1, the environment memory time ap-
proaches zero and �ðt; sÞ reduces to �ðt� sÞ, which cor-
responds to the Markov limit. Then Eq. (11) reduces to the
standard nonlinear QSD equation [4]:

d

dt
~c t ¼ �i!Jz ~c t þ�tðJ�Þðzt þ hJþitÞ ~c t

� 1

2
�tðJþJ�Þ ~c t: (12)

For the Ornstein-Uhlenbeck correlation, the partial dif-
ferential equations (7)–(9) could be converted into a set of
ordinary differential equations:

dFðtÞ
dt

¼�

2
þð��þ i!ÞFðtÞþ2FðtÞGðtÞ�2i �PðtÞ; (13)

dGðtÞ
dt

¼ ð��þ i!ÞGðtÞ � 2F2ðtÞ þ 6FðtÞGðtÞ
� 2G2ðtÞ � 2i �PðtÞ; (14)

d �PðtÞ
dt

¼ �i
�

2
GðtÞ þ 2ð��þ i!Þ �PðtÞ þ 4FðtÞ �PðtÞ

� 2GðtÞ �PðtÞ; (15)

where �PðtÞ ¼ R
t
0 �ðt; s0ÞPðt; s0Þds0 and the initial condi-

tions are given by Fð0Þ ¼ Gð0Þ ¼ �Pð0Þ ¼ 0. It is easy to

show that Pðt; s0Þ ¼ �iGðs0Þe
R

t

s0 ½��þ2i!þ4FðsÞ�2GðsÞ�ds
.

With the nonlinear non-Markovian QSD equation (11),
the simulations of the three-level system (a spin-1 particle
or a three-level atom) dynamics can be efficiently imple-
mented by realizing Gaussian sample paths. We first cal-
culated the ensemble average of the angular momentum
time evolution with different memory parameter �. The
plots are shown in Fig. 1. The zero-temperature environ-
ment prohibits the transitions from a lower level to a higher
level, so for the three-level atom with an arbitrary initial
state, the spontaneous emission always causes the system
to decay into its ground level j0i in the long time limit.
Therefore, when t ! 1, we get hJxi ¼ hJyi ! 0 and

hJzi ! �1; this scenario can be easily seen from the
Markov limit shown in Fig. 1(d). The non-Markovian
features of the environment for different � are illustrated
in Figs. 1(a)–1(c), where we can see that the transition of
dynamics from non-Markovian to Markov regimes is
dictated by environment memory time � ¼ 1=�. Clearly,
the non-Markovian features are lost when the system
approaches its Markov limit. The most important non-
Markovian corrections are dominated byGðtÞ and the noise
terms contained in the O operator of Eq. (6); they become

more significant in the case of smaller � (or longer �). As a
consequence of long environmental memory, the dynamics
of hJzi has a long ‘‘tail,’’ which means that it needs more
time to reach its final steady state compared with the case
of the Markov limit [Fig. 1(d)]. The Markov dynamics
emerges when � becomes shorter and shorter; that is, for
the large � � 1, GðtÞ and the noise terms can be effec-
tively neglected.
As a measure of degree of decoherence, we now con-

sider the purity dynamics of the three-level system as
shown in Fig. 2. It can be shown that the purity varies
from 1 for a pure state to 1=d (d is the dimension of the
density matrix, here we have d ¼ 3) for a maximally
mixed state. We begin with a pure initial state jc 0i ¼
ð1= ffiffiffi

3
p Þðj0i þ j1i þ j2iÞ, so for the zero-temperature case,

the final state of the three-level system is also pure. As
shown in Fig. 2, the decoherence pathways of the three-
level system are profoundly modified by the environmental
memory parameter �. An interesting feature of the quan-
tum trajectory is that it can reveal how a quantum state
evolves into decoherence with only a small number of
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FIG. 1 (color online). Ensemble average of h ~Ji over 1000
realizations (red dot-dashed line for hJxi, green dashed line for
hJyi, and blue solid line for hJzi) with different �’s. Here we

choose ! ¼ 1 and the initial state jc 0i ¼ ð1= ffiffiffi
3

p Þðj0iþ
j1i þ j2iÞ. (a) � ¼ 0:2, (b) � ¼ 1:0, (c) � ¼ 2:0, (d) Markov.
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FIG. 2 (color online). Ensemble average of purity ¼ Tr½�2ðtÞ�
over different number of realizations, with red dot-dashed
line for � ¼ 0:2, green dashed line for � ¼ 0:8, and blue solid
line for � ¼ 2:0. Here we choose ! ¼ 1 and the initial state
jc 0i ¼ ð1= ffiffiffi

3
p Þðj0i þ j1i þ j2iÞ. (a) 5 trajectories and (b) 1000

trajectories.
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realizations. For example, Fig. 2(a) shows the results gen-
erated by only five realizations. Clearly, one cannot expect
that the five-realization simulations can quantitatively
reproduce an accurate description about decoherence
dynamics. Nevertheless, they still give rise to a rather
interesting qualitative picture about the general dissipative
behaviors of the purity including the correct information
about the decay and recovery tendencies. For the numerical
simulations with 1000 realizations shown in Fig. 2(b),
it can be shown that a reliable physical picture can be
obtained. Specifically, when � ¼ 0:2, the system exhibits
a stronger non-Markovian feature, as such, the exchanges
of quantum information (the energy distribution among
the three levels j0i, j1i, j2i and the coherence between
any two levels) with the environment via dissipation
proceed slowly and information dissipated into the
environment may come back to the system in a finite
time. Consequently, the decoherence time is effectively
prolonged. On the contrary, for short memory time with
� ¼ 2, as shown in Fig. 2(b), the system quickly evolves
into a mixed state and then relaxes itself to the final pure
state. When � ¼ 0:8, the purity dynamics shows a moder-
ate non-Markovian behavior.

In conclusion, we present an exact non-Markovian quan-
tum state diffusion equation for the dissipative three-level
model described by Eq. (2). We instigated significant and
important progress by obtaining an explicit form of the O
operator at zero temperature. With the time-local non-
Markovian QSD equation, we are able to attack the tran-
sient property of quantum decoherence dynamics of the
three-level system in all possible non-Markovian regimes
and the well-known Markov limit. There are many impor-
tant connections of our current work with multiple qubit
and qutrit systems. A more detailed research into this
subject will be useful.
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