
Chapter 25
Non-Markovian Dynamics of Qubit
Systems: Quantum-State Diffusion
Equations Versus Master Equations

Yusui Chen and Ting Yu

Abstract In this review we discuss recent progress in the theory of open quantum
systems based on non-Markovian quantum state diffusion and master equations. In
particular, we show that an exact master equation for an open quantum system
consisting of a few qubits can be explicitly constructed by using the corresponding
non-Markovian quantum state diffusion equation. The exact master equation arises
naturally from the quantum decoherence dynamics of qubit systems collectively
interacting with a colored noise. We illustrate our general theoretical formalism by
the explicit construction of a three-qubit system coupled to a non-Markovian
bosonic environment. This exact qubit master equation accurately characterizes the
time evolution of the qubit system in various parameter domains, and paves the way
for investigation of the memory effect of an open quantum system in a
non-Markovian regime without any approximation.

25.1 Introduction

Recent advances in open quantum systems, quantum dissipative dynamics and
quantum information science have attracted enormous interest in examining the
quantum dynamics of open systems in various time domains and coupling strength
ranges. Although the Lindblad master equation is a powerful theoretical tool to
study an open quantum system under the Born-Markov approximation, such a
Markov method will not be valid when the system is strongly coupled to an
environment or the surrounding environment has a structured spectrum. In this case,
it is inevitable to employ a non-Markovian quantum approach. However, unlike in
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the case of the standard Markov regimes, deriving the evolution equation that
governs the density operator for a non-Markovian open quantum system is a long
outstanding open problem. The recently developed non-Markovian quantum state
diffusion (QSD) approach [1] offers an alternative way of solving the
non-Markovian open quantum systems. However, from a more fundamental point
of view, particularly in conjunction with the investigation of quantum decoherence
and non-equilibrium quantum transport, a non-Markovian master equation
approach that can be applied to both strong coupling regimes and structured
medium is also highly desirable.

In this paper, we report a systematic theoretical approach that can be imple-
mented easily for realistic quantum systems such as multiple-qubit systems [2]. The
paper is organized as follows. In Sect. 25.2, we describe the principle ideas of
establishing stochastic Schrödinger equations for a generic open quantum system
coupled to a bosonic bath. We further present our recent work on developing a
systematic non-Markovian master equation based on the stochastic non-Markovian
QSD approach in Sect. 25.3. In Sect. 25.4, as examples, we study both two-qubit
and three-qubit systems analytically with our new master equation approach. Some
technical details are left to appendices.

25.2 Non-Markovian Quantum-State Diffusion Approach

The model under consideration is a generic open quantum system linearly coupled
to a zero-temperature bosonic environment. The total Hamiltonian may be written
as (setting !h ¼ 1) [3–5]:

Htot ¼ Hsys þHint þHenv

¼ Hsys þ
X

k

gkLb
y
k þ g$kL

ybk
! "

þ
X

k

xkb
y
k bk;

ð25:1Þ

where Hsys is the Hamiltonian of an arbitrary quantum system of interest, such as
spins, atoms, quantum harmonic oscillators, cavities etc. The operator L is an
arbitrary system operator, describing the coupling between the system of interest

and its environment. bkðb
y
k Þ is the bosonic annihilation (creation) operator of kth

mode in the environment, satisfying the usual commutation relations for bosons,

½bk; b
y
k0 ( ¼ dk;k0 and ½bk; bk0 ( ¼ ½byk ; b

y
k0 ( ¼ 0.

In the interaction picture with respect to the environment, the total Hamiltonian
can be rewritten as (the rest of this paper is discussed in the interaction picture),

Htot ¼ Hsys þ
X

k

gkLb
y
k e

ixk t þ g$kL
ybke)ixk t

! "
: ð25:2Þ
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With the total Hamiltonian, the evolution for the state of the total system jwtotðtÞi
is governed by the standard Schrödinger equation,

@tjwtotðtÞi ¼ )i Hsys þ
X

k

gkLb
y
k e

ixk t þ g$kL
ybke)ixk t

! "" #

jwtotðtÞi: ð25:3Þ

For a real-world problem, solving above Schrödinger equation in a
non-Markovian regime is by no means an easy task due to the complexity arising
from a large number of environmental variables and strong system-environment
coupling. Therefore, it is desirable to develop a dynamical approach for dealing
with a reduced density operator describing open quantum systems only. The
quantum-state diffusion approach was developed based on a special choice of
environmental basis consisting of a set of Bargmann coherent states
jzi ¼ jz1i* jz2i* ! ! ! * jzki* ! ! !. For each mode, the Bargmann state is defined
as

jzki ¼ ezkb
y
k j0i;

satisfying the following properties,

bkjzki ¼ zkjzki;

byk jzki ¼
@

@zk
jzki:

It should be noted that the Bargmann states completeness identity is given by,

I ¼
Z

d2z
p

e)jzj2 jzihzj;

where d2z ¼ d2z1d2z2 ! ! !. Then the state jwtotðtÞi for the combined total system can
be expanded as,

jwtotðtÞi ¼
Z

d2z
p

e)jzj2 jzihzjwtotðtÞi

¼
Z

d2z
p

e)jzj2 jwtðz$Þi* jzi; ð25:4Þ

where

jwtðz$Þi ¼ hzjwtoti:

Note that jwtðz$Þi is a pure state in the system’s Hilbert space, containing the
complex variables z$ that will be interpreted as complex Gaussian random vari-
ables. For reasons to be explained later, jwtðz$Þi is called a quantum trajectory
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[1, 6]. Remarkably, the reduced density operator qt at time point t for the system of
interest can be recovered by the quantum pure state as shown below. By definition,
the reduced density operator qt may be obtained from qtot by performing the partial
trace over the environmental variables. For this purpose, we choose Bargmann
coherent states as our basis,

qt ¼ trenvðqtotÞ

¼
Z

d2z
p

e)jzj2hzjwtotihwtotjzi

¼
Z

d2z
p

e)jzj2 jwtðz$ÞihwtðzÞj

¼ Mðjwtðz$ÞihwtðzÞjÞ; ð25:5Þ

where the symbol

Mð!Þ ¼
Z

d2z
p

e)jzj2ð!Þ ð25:6Þ

stands for the statistical average over the random variables z$ [1, 6, 7].
From (25.3), one can derive a stochastic differential equation for a quantum

trajectory when the environmental bath is in a vacuum state [1],

@tjwtðz$Þi ¼ )ihzj Hsys þ
X

k

gkLb
y
k e

ixk t þ h:c:
! "" #

jwtotðtÞi

¼ )iHsys þ Lz$t ) iLy
X

k

g$k
@

@z$k
e)ixk t

" #

jwtðz$Þi; ð25:7Þ

where

z$t ¼ )i
X

k

gkz$ke
ixk t ð25:8Þ

is a complex Gaussian process.
In a more general situation where the environment is in a thermal equilibrium

state

qenvð0Þ ¼
e)b
P

k
xkb

y
k bk

Z
;

where b ¼ 1
kBT

and Z is the partition function Z ¼ trðe)b
P

k
xkb

y
k bkÞ, the bath cor-

relation function can be written in the following form
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aðt; sÞ ¼
X

k

jgkj2 coth
xk

2kBT
cosxkðt ) sÞ ) i sinxkðt ) sÞ

# $
:

For the zero temperature case, the correlation function reduces to

aðt; sÞjT¼0 ¼
X

k

jgkj2e)ixkðt)sÞ: ð25:9Þ

It is interesting to note that the stochastic process defined in (25.8) satisfies,

MðztÞ ¼ 0;
MðztzsÞ ¼ 0;
Mðz$t zsÞ ¼ aðt; sÞ:

ð25:10Þ

Equation (25.10) shows that z$t typically represents a non-Markovian Gaussian
process characterised by the correlation aðt; sÞ. Taking the Lorenz spectrum as an
example,

JðxÞ ¼ C
2p

1

ðx) xs þXcÞ2 þ c2
;

we can explicitly show that the correlation function takes a very simple form,

aðt; sÞ ¼ Cc
2
e )cþ iXcð Þjt)sj; ð25:11Þ

which is commonly called the Ornstein-Uhlenbeck type correlation function. Xc

represents the central frequency of the environment and 1
c is the correlation-time of

the environment. When the parameter c ! 1, the Ornstein-Uhlenbeck correlation
function recovers the well-known Markov approximation described by a Dirac delta
function,

aðt; sÞ + Cdðt; sÞ:

In (25.7), the term @
@z$k

jwtðz$Þi can be cast as a functional derivative by using the

chain rule,

)i
X

k

g$kL
ye)ixk t @

@z$k
jwtðz$Þi ¼ )i

X

k

g$kL
ye)ixk t

Z t

0

ds
@z$s
@z$k

d
dz$s

jwtðz$Þi

¼ )Ly
Z t

0

dsaðt; sÞ d
dz$s

jwtðz$Þi:
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By defining the O operator,

Oðt; s; z$Þjwtðz$Þi ¼
d
dz$s

jwtðz$Þi; ð25:12Þ

the non-Markovian quantum-state diffusion (QSD) equation driven by the complex
Gaussian process z$t is written as,

@tjwtðz$Þi ¼ )iHsys þ Lz$t ) Ly !Oðt; z$Þ
! "

jwtðz$Þi; ð25:13Þ

where !Oðt; z$Þ ¼
R t
0 dsaðt; sÞOðt; s; z

$Þ.
The exact non-Markovian QSD equations are generic for open quantum system

models represented by (25.1). Note that these non-Markovian stochastic equations
are derived from the generic microscopic Hamiltonian (25.1) or (25.2) without any
approximation. For practical numerical simulations, it is useful to recast the QSD
equation into a time convolutionless form by introducing a time-local operator O.
The dynamical equation of the O operator can be determined by its consistency
condition,

@

@t
d
dz$s

jwtðz$Þi ,
d
dz$s

@

@t
jwtðz$Þi:

Putting the definition of O operator (25.12) and the QSD (25.13) into above
equation, the dynamical equation of O operator is given by,

@tOðt; s; z$Þ ¼ ½)iHsys þ Lz$t ) Ly !Oðt; z$Þ; Oðt; s; z$Þ( ) Ly d
!O

dz$s
: ð25:14Þ

with the initial condition

Oðt; s ¼ t; z$Þ ¼ L: ð25:15Þ

For many interesting models, such as dephasing models [8], multiple-qubit
dissipative systems [9–12], and quantum Brownian motion [13], the exact
non-Markovian QSD equations have been established [5, 14–17]. Consequently,
one can study the non-Markovian behaviors of quantum decoherence and quantum
entanglement, based on the numerically recovered reduced density operator qt.
However, from a more fundamental point of view, it is known that the corre-
sponding non-Markovian master equations are very useful in describing quantum
dissipative dynamics, quantum transport processes, and quantum decoherence.
Therefore, it is of great interest to establish a generic relation between the stochastic
QSD equations and their master equation counterparts.
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25.3 Non-Markovian Master Equation Approach

After discussing the non-Markovian QSD approach, we will study the relationship
between the non-Markovian QSD and master equation approaches in this section.
As a fundamental tool, the master equation governs the evolution of the reduced
density operator for an open quantum system. However, deriving a systematic
non-Markovian master equation for a generic open quantum system is a rather
difficult problem. Up to now, exact master equations are available only for some
specific models, such as the dephasing model, qubit dissipative model, and
Brownian motion model [5, 7, 13–26]. Traditionally in quantum optics, in the case
of weak coupling and broadband approximation, one can adequately describe the
dynamics of atoms coupled to a quantized radiation field by a Lindblad master
equation [27],

@tqt ¼ ½)iHsys; qt( )
C
2
ðLyLqt þ qtL

yL) 2LqtL
yÞ; ð25:16Þ

where qt is the reduce density operator of the system of interest, L is the Lindblad
operator and C represents a decay rate. However, when the Born-Markov
approximation ceases to be valid as shown in many cases involving strong cou-
plings and structured spectrum distributions, non-Markovian dynamics has to be
invoked. It is shown that the non-Markovian dynamics can bring new interesting
physical phenomena, such as a regeneration of quantum entanglement, slow
quantum coherence decay and so on. In this section, we show a systematic way of
deriving the non-Markovian master equations from stochastic QSD equations.

As shown in (25.5), the reduced density matrix qt can be formally recovered by
taking the statistical average over all the quantum trajectories,

qt ¼ M½jwtðz$ÞihwtðzÞj(:

From this starting point, we can write down the formal master equation as,

@tqt ¼ ½)iHsys; qt( þ LM½z$t Pt( ) LyM½!Oðt; z$ÞPt( þM½ztPt(Ly )M½Pt !Oyðt; zÞ(L;
ð25:17Þ

where Pt is the stochastic projection operator Ptðz; z$Þ ¼ jwtðz$ÞihwtðzÞj.
By applying the Novikov’s theorem [8],

M½z$t Pt( ¼
Z t

0

dsM½z$t zs(M½dPt

dzs
(;
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it is easy to obtain the following results,

M½z$t Pt( ¼ M½Pt !Oy(;
M½ztPt( ¼ M½!OPt(:

ð25:18Þ

The detailed proof of the above results can be found in the Appendix 1.
Therefore, the formal master equations can be written as

@tqt ¼ ½)iHsys; qt( þ ½L; RðtÞ( ) ½Ly; RyðtÞ(: ð25:19Þ

where,

RðtÞ ¼ MðPt !OyÞ:

As a note, we point out that non-Markovian master equations may provide a
possibility to find an exact analytical solution. Even in numerical simulations, in
some cases, such as small quantum systems, a master equation can significantly
reduce computational complexity. Generally, the O operator contains noise terms,
therefore, the term Mð!OPtÞ is still hard to derive analytically.

Example Here we consider the one qubit dissipative model as an example to show
how to use Novikov’s theorem to derive an exact master equation. The total
Hamiltonian in this case is given by [1, 8],

Htot ¼
x
2
rz þ r)

X

k

gkb
y
k e

ixk t þ rþ
X

k

g$kbke
)ixk t:

Then, the non-Markovian QSD (25.13) can be explicitly written as,

@tjwtðz$Þi ¼ ð)i
x
2
rz þ r)z$t ) rþ !OÞjwtðz$Þi: ð25:20Þ

And the O operator takes the form of

Oðt; sÞ ¼ f ðt; sÞr); ð25:21Þ

where the coefficient function f ðt; sÞ satisfies the initial condition f ðt; tÞ ¼ 1 and it
obeys the equation of motion,

@tf ðt; sÞ ¼ ixf þFf ;

FðtÞ ¼
Z t

0

dsaðt; sÞf ðt; sÞ:
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Here we choose the Ornstein-Uhlenbeck type correlation function (25.11) as an
example, such that the coefficient function FðtÞ satisfies

d
dt
FðtÞ ¼ Cc

2
) cFþ ixFþF2;

Fð0Þ ¼ 0:

Using Novikov’s theorem (25.18), we have

Mð!OPtÞ ¼ FðtÞr)qt;

MðPt !OyÞ ¼ F$ðtÞqtrþ :

Then the exact master equation can be shown explicitly as

@tqt ¼ ½)i
x
2
rz; qt( ) ðFrþ r)qt þF$qtrþ r) ) ðFþF$Þr)qtrþ Þ: ð25:22Þ

Next, we check its Markov limit: writing the correlation function in the form

aðt; sÞ ¼ Cdðt; sÞ; ð25:23Þ

then FðtÞ can be calculated as

FðtÞ ¼
Z t

0

dsCdðt; sÞf ðt; sÞ ¼ C
2
:

The master equation in the Markov limit is easily obtained from (25.22),

@tqt ¼ )i
x
2
rz; qt

h i
) C

2
ðrþ r)qt þ qtrþ r) ) 2r)qtrþ Þ; ð25:24Þ

which clearly takes the standard Lindblad form.

25.4 Multiple-Qubit Systems

In this section, we discuss a multiple-qubit system coupled to a common bosonic
environment. The multiple-qubit model is of interest in quantum information as it
represents a quantum memory realised by two-level systems such as spins or atoms
[28–34]. Studies of dissipation and decoherence for multiple qubit systems are
useful to understand quantum decoherence control and quantum disentanglement
processes. Such studies can help us to develop new theoretical and experimental
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strategies to control quantum decoherence [35–37]. Here, we consider a generic
N-qubit model,

Htot ¼ Hsys þ L
X

k

gkb
y
k e

ixk t þ Ly
X

k

g$kbke
)ixk t;

Hsys ¼
X

j

xj

2
r j
z þ Jxy

X

j

r j
xr

jþ 1
x þ r j

yr
jþ 1
y

! "
;

where L ¼
P

j jjr
j
) is the dissipative coupling operator of the system, jj is the

coupling constant for jth qubit. The non-Markovian QSD equation is written as

@tjwtðz$Þi ¼ )iHsys þ Lz$t ) Ly !O
! "

jwtðz$Þi; ð25:25Þ

where O operator is determined by the following equation,

@tOðt; s; z$Þ ¼ ½)iHsys þ Lz$t ) Ly !OðtÞ; Oðt; sÞ( ) Ly d
!OðtÞ
dz$s

; ð25:26Þ

together with the initial condition Oðt; s ¼ tÞ ¼
P

j jjr
j
).

Differing from the previous simple example, O operator is no longer free of
noise when the size of the system increases. In general, the O operator is typically
involved with noise z$. Note that O operator can be formally written in the func-
tional expansion of noise [8],

Oðt; s; z$Þ ¼ O0ðt; sÞþ
Z t

0

ds1z$s1O1ðt; s; s1Þþ
Z t

0

ds1

Z t

0

ds2z$s1z
$
s2O2ðt; s; s1; s2Þþ ! ! ! ;

ð25:27Þ

where O0 is the zeroth order, which does not contain noise z$; also, operators On by
definition do not contain noise. For a simple example, the one qubit case, O ¼
f ðt; sÞr) is a special case in which O operator only contains the O0 term. The initial
conditions for each term of the O operator are [13],

O0ðt; s ¼ tÞ ¼ L;

Onðt; s ¼ tÞ ¼ 0:

Substituting (25.27) into (25.26), we have a set of coupled differential equations
for each term On in the O operator (Appendix 2),
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@tO0ðt; sÞ ¼ ½)iHsys ) Ly !O0ðtÞ; O0ðt; sÞ( ) Ly !O1ðt; sÞ;

@tO1ðt; s; s1Þ ¼ ½)iHsys ) Ly !O0ðtÞ; O1ðt; s; s1Þ( ) ½Ly !O1ðt; s1Þ; O0ðt; sÞ(

) Ly !O2ðt; s1; sÞþ !O2ðt; s; s1Þð Þ;
etc:;

ð25:28Þ

together with the boundary conditions

O1ðt; s; tÞ ¼ ½L; O0ðt; sÞ(;
O2ðt; s; t; s1ÞþO2ðt; s; s1; tÞ ¼ ½L; O1ðt; s; s1Þ(;

etc:

As we have shown in (25.19), explicitly finding RðtÞ is the key to determine the
exact master equation. In the next section, we will exhibit the detail of deriving RðtÞ
for some important qubit systems.

25.4.1 Two-Qubit Systems

For simplicity, we take the two-qubit system as our first example to show the details
of our analytical derivation. The two-qubit system has generated enormous interest
due to its relevance in quantum computing and quantum information. For example,
the entanglement measure for a qubit system takes a particular simple form for the
two-qubit system known as concurrence [38]. The Hamiltonian for the two-qubit
model is given by,

Htot ¼ Hsys þ L
X

k

gkb
y
k e

ixk t þ Ly
X

k

g$kbke
)ixk t;

Hsys ¼
x1

2
r1z þ

x2

2
r2z þ Jxy r1xr

2
x þ r1yr

2
y

! "
;

L ¼ j1r1) þ j2r2):

As discussed above, the non-Markovian QSD equation is given by,

@tjwtðz$Þi ¼ )iHsys þ Lz$t ) Ly !O
! "

jwtðz$Þi; ð25:29Þ

where the O operator can be written as

Oðt; s; z$Þ ¼ O0ðt; sÞþ
Z t

0

ds1z$s1O1ðt; s; s1Þ; ð25:30Þ
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where,

O0ðt; sÞ ¼ f1ðt; sÞr1) þ f2ðt; sÞr2) þ f3ðt; sÞr1zr
2
) þ f4ðt; sÞr1)r

2
z ; ð25:31Þ

O1ðt; s; s1Þ ¼ f5ðt; s; s1Þr1)r
2
): ð25:32Þ

Inserting the explicit form of O operator into the equation of motion (25.26),

@tO0 ¼ ½)iHsys ) Ly !O0; O0( ) Ly
Z t

0

dsaðt; sÞf5ðt; s; sÞr1)r
2
); ð25:33Þ

@tO1 ¼ ½)iHsys; O1( ) ½Ly !O0; O1( ) ½Ly !O1; O0(; ð25:34Þ

we have the evolution equations for the coefficient functions as

@tf1 ¼ ix1f1 ) 2iJxyf3 þðj1F1 þ j2F3Þf1 þ j2ðF4 ) F1Þf3

þðj1F4 þ j2F3Þf4 )
j2
2
F5;

ð25:35Þ

@tf2 ¼ ix2f2 ) 2iJxyf4 þðj1F4 þ j2F2Þf2 þðj1F4 þ j2F3Þf3

þ j1ðF3 ) F2Þf4 )
j1
2
F5;

ð25:36Þ

@tf3 ¼ ix2f3 ) 2iJxyf1 þ j1ðF3 ) F2Þf1 þðj1F4 þ j2F3Þf2

þðj1F4 þ j2F2Þf3 )
j1
2
F5;

ð25:37Þ

@tf4 ¼ ix1f4 ) 2iJxyf2 þðj1F4 þ j2F3Þf1 þ j2ðF4 ) F1Þf2

þðj1F1 þ j2F3Þf4 )
j2
2
F5;

ð25:38Þ

@tf5 ¼ iðx1 þx2Þf5 þðj1F1 þ j1F4 þ j2F2 þ j2F3Þf5
þðj1f1 ) j1f4 þ j2f2 ) j2f3ÞF5;

ð25:39Þ

where FjðtÞ ¼
R t
0 dsaðt; sÞfjðt; sÞ (j ¼ 1; 2; 3; 4) and F5ðt; sÞ ¼

R t
0 dsaðt; sÞf5ðt; s; sÞ.

Based on the previous discussion, we have the initial conditions as

f1ðt; tÞ ¼ j1; f2ðt; tÞ ¼ j2; ð25:40Þ

f3ðt; tÞ ¼ 0; f4ðt; tÞ ¼ 0; ð25:41Þ

f5ðt; t; s1Þ ¼ 0; ð25:42Þ
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and the boundary condition,

f5ðt; s; tÞ ¼ 2ðj1f3ðt; sÞþ j2f4ðt; sÞÞ: ð25:43Þ

For this two-qubit model, RðtÞ ¼ MðPt !OyÞ can be evaluated explicitly. By the
ansatz of O operator,

RðtÞ ¼ MðPt !OyÞ

¼ MðPt !O
y
0 þPt

Z t

0

ds1zs1 !O
y
1 ðt; s1ÞÞ:

Since both O0 and O1 are free of noise, therefore, we have,

RðtÞ ¼ qt !O
y
0 þ

Z t

0

ds1Mðzs1PtÞ!O
y
1 ðt; s1Þ: ð25:44Þ

Applying Novikov’s theorem (25.18), we obtain,

Mðzs1PtÞ ¼
Z t

0

ds2aðs1; s2ÞMðOðt; s2ÞPtÞ

¼
Z t

0

ds2aðs1; s2Þ O0ðt; s2Þqt þ
Z t

0

ds3O1ðt; s2; s3ÞMðz$s3PtÞ

2

4

3

5:

Repeatedly applying Novikov’s theorem, we get,

Mðz$s3PtÞ ¼
Z t

0

ds4aðs3; s4ÞMðPtOyðt; s4ÞÞ

¼
Z t

0

ds4aðs3; s4Þ MðPtO
y
0 ðt; s4ÞÞþ

Z t

0

ds5MðPtzs5ÞO
y
1 ðt; s4; s5Þ

2

4

3

5:

In general, repeating the Novikov theorem may generate an infinite number of
terms. However, as shown below, for our two-qubit model, we can get a closed
equation in a finite number of steps. Note that, if we put all the results back into
RðtÞ, we have
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RðtÞ ¼ qt !O
y
0 þ

Z t

0

ds1

Z t

0

ds2aðs1; s2ÞO0ðt; s2Þqt !O
y
1 ðt; s1Þ

þ
Z t

0

ds1

Z t

0

ds2aðs1; s2Þ
Z t

0

ds3O1ðt; s2; s3ÞMðz$s3PtÞ!O
y
1 ðt; s1Þ: ð25:45Þ

It is easy to check that,

Mðz$s3PtÞO
y
1 ðt; s; s1Þ ¼ 0;

since

Oy0O
y
1 ¼ 0;

Oy1O
y
1 ¼ 0:

The two identities are called “forbidden conditions” [2], which result in a closed
noise-free RðtÞ operator,

RðtÞ ¼ qt !O
y
0 þ

Z t

0

ds1

Z t

0

ds2aðs1; s2ÞO0ðt; s2Þqt !O
y
1 ðt; s1Þ: ð25:46Þ

Finally, we determine the exact non-Markovian master equation for the
two-qubit system in a bosonic environment. Here, we explicitly exhibit RðtÞ with
coefficient functions:

RyðtÞ ¼ ðF1r1) þF2r2) þF3r1zr
2
) þF4r1)r

2
z Þqt

þ r1)r
2
)qt r1ðtÞr

1
þ þ r2ðtÞr2þ þ r3ðtÞr1zr

2
þ þ r4ðtÞr1þ r

2
z

% &
;

ð25:47Þ

where rjðtÞ ¼
R t
0 ds1

R t
0 ds2aðs1; s2Þf

$
j ðt; s2ÞF5ðt; s1Þ, ðj ¼ 1; 2; 3; 4Þ.

In Fig. 25.1, we show the dynamics of quantum entanglement in the two-qubit
system. For calculational simplicity, we choose the Ornstein-Uhlenbeck type of
correlation function (25.11) in our numerical simulation. Figure 25.1a shows a few
single-trajectory paths, numerically simulated by the non-Markovian QSD equa-
tion. In Fig. 25.1b, we use 100-trajectory averaged (dash-dotted curve) and
1000-trajectory (dashed curve) averaged reduced density operators qt to simulate
the entanglement dynamics. Also we show the result simulated by using the
non-Markovian master equation (solid line). The non-Markovian dynamics for
1000 quantum trajectories shows a high degree of agreement with the master
equation approach.
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25.4.2 Three-Qubit Systems

As another interesting example, in this section, we extend our derivation for the
two-qubit system to the case of a three-qubit model. With the derived
non-Markovian master equation, we study quantum decoherence and quantum
disentanglement in a multiple-qubit system. Although there is no convenient
computable measure of entanglement for multipartite systems, we can still inves-
tigate the entanglement transfer between two qubits in a multiple-qubit system. The
total Hamiltonian for the three-qubit system (shown in Fig. 25.2) is,

Htot ¼ Hsys þ L
X

k

gkb
y
k e

ixk t þ Ly
X

k

g$kbke
)ixk t;

Hsys ¼
X3

j¼1

xj

2
r j
z þ Jxy

X2

j¼1

r j
xr

jþ 1
x þ r j

yr
jþ 1
y

! "
;

where L ¼
P3

j¼1 jjr
j
) is the Lindblad operator coupling the system to the envi-

ronment. The non-Markovian QSD equation in this case is given by,

@tjwtðz$Þi ¼ )iHsys þ Lz$t ) Ly !O
! "

jwtðz$Þi: ð25:48Þ

For the three-qubit dissipative model, the O operator contains up to the
second-order of noise and can be written in a functional expansion as
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1000 Trajectory

Master Equation
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Fig. 25.1 Quantum entanglement in two-qubit system, initially prepared in a Bell state
1ffiffi
2

p ðj10iþ j01iÞ. We show the results: a a set of single-trajectory evolution (dashed), and b 100
trajectories averaged (dash-dotted), 1000 trajectories averaged (dashed) and master equation
(solid). The parameters are set as: x1 ¼ x2 ¼ x, j1 ¼ j2 ¼ 1, Jxy ¼ 0 and c ¼ 0:1
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Oðt; s; z$Þ ¼ O0ðt; sÞþ
Z t

0

ds1z$s1O1ðt; s; s1Þþ
Z t

0

ds1

Z t

0

ds2z$s1z
$
s2O2ðt; s; s1; s2Þ:

Here, we do not explicitly show the form of O operators. However, we still have
the boundary conditions and initial conditions from the O operator evolution
equation. The evolution equations for O0, O1 and O2 are

@tO0ðt; sÞ ¼ ½)iHsys ) Ly !O0; O0( ) Ly !O1ðt; sÞ; ð25:49Þ

@tO1ðt; s; s1Þ ¼ ½)iHsys; O1( ) ½Ly !O0; O1( ) ½Ly !O1; O0(

) Lyð!O2ðt; s; s1Þþ !O2ðt; s1; sÞÞ;
ð25:50Þ

@tO2ðt; s; s1; s2Þ ¼ ½)iHsys; O2( ) ½Ly !O0; O2( ) ½Ly !O2; O0(

) ½Ly !O1ðt; s1Þ; O1ðt; s; s2Þ( ) ½Ly !O1ðt; s2Þ; O1ðt; s; s1Þ(:
ð25:51Þ

The boundary conditions are

O1ðt; s; tÞ ¼ ½L; O0ðt; sÞ(;
O2ðt; s; t; s1ÞþO2ðt; s; s1; tÞ ¼ ½L; O1ðt; s; s1Þ(:

The initial conditions are

O0ðt; s ¼ tÞ ¼ L;

O1ðt; s ¼ t; s1Þ ¼ 0;
O2ðt; s ¼ t; s1; s2Þ ¼ 0:

Fig. 25.2 Schematic of the
3-qubit system coupled to a
common environment
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And the “forbidden conditions” are

O0O2 ¼ 0;
O1O2 ¼ 0;
O2O2 ¼ 0: ð25:52Þ

Equations (25.49–25.51), together with their initial conditions fully determine
the O operator. In order to derive the exact master equation, the last step is to
evaluate RðtÞ ¼ M½Pt !Oy( in the form

RðtÞ ¼ qt !O
y
0 þ

Z t

0

ds1Mðzs1PtÞ!O
y
1 ðt; s1Þþ

Z t

0

ds1

Z t

0

ds3Mðzs1zs3PtÞ!O
y
2 ðt; s1; s3Þ:

ð25:53Þ

Similar to the two-qubit case, employment of the Novikov theorem (25.18) and
the forbidden conditions (25.52) leads to RðtÞ of (25.53) in the form

R ¼ qt !O
y
0 þ

Z t

0

ds1

Z t

0

ds2aðs1; s2ÞO0ðt; s2Þqt !O
y
1 ðt; s1Þ

þ
Z t

0

ds1

Z t

0

ds2

Z t

0

ds3

Z t

0

ds4aðs1; s2Þaðs3; s4ÞO1ðt; s2; s3ÞqtO
y
0 ðt; s4Þ!O

y
1 ðt; s1Þ

þ
Z t

0

ds1

Z t

0

ds2

Z t

0

ds3

Z t

0

ds4aðs1; s3Þaðs2; s4ÞO0ðt; s3ÞO0ðt; s4Þqt !O
y
2 ðt; s1; s2Þ

þ
Z t

0

ds1

Z t

0

ds2

Z t

0

ds3

Z t

0

ds4aðs1; s3Þaðs2; s4ÞO1ðt; s3; s4Þqt !O
y
2 ðt; s1; s2Þ:

ð25:54Þ

The detailed derivation of this can be found in Appendix 3. With the exact form
of RðtÞ, the exact non-Markovian master equation may be explicitly obtained,

@tqt ¼ ½)iHsys; qt( þ ½L; R( ) ½Ly; Ry(: ð25:55Þ

It should be noted that in the above derivation, the correlation function aðt; sÞ
can have an arbitrary form. Therefore our derivation of the exact master equation is
completely general.

In Fig. 25.3, we plot the entanglement dynamics of a pair of qubits in the 3-qubit
model with four different initial states, including a separate state and three
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maximally entangled states (GHZ state and W state). Without loss of generality, the
concurrence between qubit 1 and qubit 2 is studied. In Fig. 25.3a, b, since the initial
three-qubit states are j111i and 1ffiffi

2
p ðj111iþ j000iÞ respectively, there is no entan-

glement between the qubit-pair considered. When we choose different memory
times 1=c (taking Ornstein-Uhlenbeck noise as an example again (25.11)), the
degrees of the generated quantum entanglement are different. When c ¼ 0:4, a
typical non-Markovian regime, the maximally generated entanglement is much
higher than that in the case with c ¼ 1:5 representing the Markov limit. In
Fig. 25.3c, d, the initial GHZ state of the three-qubit system is maximally entan-
gled, and the reduced density matrices for qubits 1 and 2 are also entangled. When
c ¼ 0:4, the early revival of entanglement in both cases is a typical non-Markovian
feature.

Furthermore, we consider the entanglement transfer between two pairs of qubits.
In Fig. 25.4, we prepare a Bell state for the qubit-pair 1 and 2. The idea is to observe
the way entanglement transfers from qubits 1 and 2 to qubits 2 and 3. Because of
the symmetry of the model, the behaviors of quantum entanglements C13 and C23
are identical. In Fig. 25.4a, c, the correlation parameter c ¼ 0:4 is fixed, therefore
these two graphs show the short-time behavior of non-Markovian entanglement
evolution. For different initial states, the speed of generating quantum entanglement
is also different. In Fig. 25.4b, d, with the environment close to the Markov limit
with c ¼ 1:5, we see that the entanglement drops to its final steady state quickly, as
expected. It is interesting to note that the quantum entanglement between a pair of
qubits does not actually vanish for a long time. Contrary to the two-qubit system
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Fig. 25.3 The dynamics of entanglement between qubit 1 and qubit 2 (see Fig. 25.2) with
different initial states. a j111i, b j111iþ j000ið Þ=

ffiffiffi
2

p
, c j100iþ j010iþ j001ið Þ=

ffiffiffi
3

p
,

d j110iþ j101iþ j011ið Þ=
ffiffiffi
3

p
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dissipatively coupled to a bosonic environment, most two-qubit entangled states
will be disentangled eventually, except for the Bell state j10i) j01ið Þ=

ffiffiffi
2

p
, which

preserves the quantum information due to the decoherence-free subspace. However,
as shown in Fig. 25.4b, d, quantum entanglement can be stored in a pair of qubits
robustly. This result can be naturally extended to N-qubit systems; the capacity of
storing quantum information will increase as the size of quantum system is
enlarged.

25.4.3 A Note on General N-Qubit Systems

We remark that the previous derivations for the two-qubit and the three-qubit sys-
tems can be extended to the more general case of N-qubit systems, with the Lindblad
operator L ¼

P
j jjr

j
). The general procedure for generalizing our results to N-qubit

systems is highlighted as follows. First, we need to determine the maximum order of
noise in the O operator. It is easy to prove that LNþ 1 ¼ 0 for a N-qubit system, and
the last term of the O operator, ON)1, must be in the form of LN . And the highest
order of noise in the O operator is N ) 1 [11]. For example, the O operator contains
the first-order noise in the two-qubit model, and up to the second order of noise in the
three-qubit models. Similarly, there is at most N ) 1 order of noise for the
N-qubit models. Second, we need to determine the “forbidden conditions”.
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Fig. 25.4 The dynamics of quantum entanglement between three qubit-pairs C12 (qubit 1 and 2,
solid) and C13 (qubit 1 and 3, dashed). Left column shows a non-Markovian regime with c ¼ 0:4.
Right column shows a regime close to Markov limit (we choose c ¼ 1:5). a and b use the same
initial state j11iþ j00ið Þ * j0i=

ffiffiffi
2

p
; while c and d use the initial state j10iþ j01ið Þ * j0i=

ffiffiffi
2

p
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The close condition for qubit is ðr j
)Þ

2 ¼ 0. One can see that if two O operator
components Oj and Ok satisfy this condition jþ k[N ) 2, then OjOk ¼ 0.

Therefore, generally, one can obtain the explicit form of RðtÞ ¼ MðPt !OyÞ, by
calculating

Mðzs1 ! ! ! zs2j)1PtÞ ¼
Z t

0

! ! !
Z t

0

ds2 ! ! ! ds2j
Y

j

aðs2j)1; s2jÞ

 !

M ð
Y

j

d
dz$s2j

ÞPt

" #

:

ð25:56Þ

Once the closed form of the RðtÞ operator is obtained, the exact master equation
is determined.

25.5 Conclusion

In this paper, based on the non-Markovian QSD approach, we analytically and
numerically investigate multiple-qubit systems dissipatively coupled to a
non-Markovian zero-temperature bosonic environment. We have explicitly
demonstrated how to establish an exact non-Markovian master equation from the
corresponding quantum state diffusion equation. Our approach is very flexible in
the sense that it can be readily modified to solve many other types of models such as
hybrid systems consisting of qubits, qutrits, continuous variable systems and
multiple-environment systems, to name a few [39]. The time-local exact master
equation approach studied in this paper represents a new advance in our investi-
gations of non-Markovian quantum dynamics and non-equilibrium quantum
dynamics. We expect that our newly developed theoretical approach will be useful
in attacking many real-world problems.

Appendix 1

Here we supply a proof of the Novikov theorem. To make the proof more generic,
we calculate the term MðzsPtÞ, where s and t are two independent time indexes. In
this, MðztPtÞ is the limit case in which s ¼ t. By the definition of ensemble average
in (25.6), we have [8]

MðzsPtÞ ¼
Z

d2z
p

e)jzj2zsPt: ð25:57Þ
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where jzj2 ¼
P

k jzkj
2 and d2z ¼ d2z1d2z2 ! ! !. With the definition of

zs ¼ i
P

k g
$
kzke

)ixks, we have

MðzsPtÞ ¼
Z

d2z1
p

d2z2
p

! ! !
Y

n

e)jznj2 i
X

k

g$kzke
)ixks

 !

Pt:

Since all zk are independent to each other, the above integration can be simplified
as

MðzsPtÞ ¼ i
X

k

g$ke
)ixks

Y

n 6¼k

Z
d2zn
p

e)jznj2
 !Z

dzkdz$k
p

e)jzk j2zkPt:

Integrating by parts, then we have,
Z

dzkdz$k
p

e)jzk j2zkPt

¼
Z

dzkdz$k
p

) @

@z$k
e)jzk j2

( )
Pt

¼
Z

dzkdz$k
p

) @

@z$k
e)jzk j2Pt

( )
þ e)jzk j2 @

@z$k
Pt

# $

¼
Z

dzkdz$k
p

e)jzk j2 @

@z$k
Pt:

Then

MðzsPtÞ ¼ i
X

k

g$ke
)ixks

Z
d2z
p

e)jzj2 @

@z$k
Pt:

Using the functional derivative chain rule,

MðzsPtÞ ¼ i
X

k

g$ke
)ixks

Z
d2z
p

e)jzj2
Z t

0

ds
@z$s
@z$k

d
dz$s

Pt

¼
Z

d2z
p

e)jzj2
Z t

0

dsaðs; sÞOðt; s; z$ÞPt;

MðzsPtÞ ¼
Z t

0

dsaðs; sÞM½Oðt; s; z$ÞPt(:
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Now we have the Novikov theorem,

MðzsPtÞ ¼
Z t

0

dsMðzsz$s ÞM½Oðt; s; z$ÞPt(;

Mðz$sPtÞ ¼
Z t

0

dsMðz$szsÞM½PtOyðt; s; zÞ(:

In the limit s ¼ t, we obtain

MðztPtÞ ¼ Mð!Oðt; z$ÞPtÞ;

Mðz$t PtÞ ¼ MðPt !Oyðt; zÞÞ:
ð25:58Þ

Appendix 2

Inserting the expansion series of O operator (25.27) into the O operator evolution
(25.26), we have

@tOðt; sÞ ¼ @tO0ðt; sÞþ z$t O1ðt; s; tÞþ
Z t

0

ds1z$s1@tO1ðt; s;1 Þþ ! ! ! ; ð25:59Þ

for the left hand side. Furthermore, the right hand side of (25.26) can be expanded
as

½)iHsys þ Lz$t ) Ly !O; O( ) Ly d
!O

dz$s

¼ ½)iHsys þ Lz$t ) Ly !O0; O0( ) Ly d
dz$s

Z t

0

dsaðt; sÞ
Z t

0

ds1z$s1O1ðt; s; s1Þ

þ ½)iHsys þ Lz$t ;
Z t

0

ds1z$s1O1( ) ½Ly !O0;

Z t

0

ds1z$s1O1( ) ½Ly
Z t

0

ds1z$s1
!O1; !O0(

) Ly d
dz$s

Z t

0

dsaðt; sÞ
Z t

0

ds1

Z t

0

ds2z$s1z
$
s2O2ðt; s; s1; s2Þ

þ ! ! ! : ð25:60Þ
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By the definition !O ¼
R t
0 dsaðt; sÞOðt; s; z

$Þ, we can calculate the terms

d
dz$s

Z t

0

dsaðt; sÞ
Z t

0

ds1z$s1O1ðt; s; s1Þ

¼
Z t

0

dsaðt; sÞ
Z t

0

ds1dðs; s1ÞO1ðt; s; s1Þ

¼
Z t

0

dsaðt; sÞO1ðt; s; sÞ ¼ !O1ðt; sÞ;

and

d
dz$s

Z t

0

dsaðt; sÞ
Z t

0

ds1

Z t

0

ds2z$s1z
$
s2O2ðt; s; s1; s2Þ

¼
Z t

0

dsaðt; sÞ
Z t

0

ds1

Z t

0

ds2z$s1dðs; s2ÞO2ðt; s; s1; s2Þ

þ
Z t

0

dsaðt; sÞ
Z t

0

ds1

Z t

0

ds2z$s2dðs; s1ÞO2ðt; s; s1; s2Þ

¼
Z t

0

dsaðt; sÞ
Z t

0

ds1z$s1O2ðt; s; s1; sÞþ
Z t

0

dsaðt; sÞ
Z t

0

ds2z$s2O2ðt; s; s; s2Þ

¼
Z t

0

dsaðt; sÞ
Z t

0

ds1z$s1 O2ðt; s; s1; sÞþO2ðt; s; s; s1Þð Þ

¼
Z t

0

ds1z$s1
!O2ðt; s1; sÞþ !O2ðt; s; s1Þð Þ:

Equating the two sides for each order of noise z$, we obtain a set of dynamical
equations for the On ðn ¼ 1; 2; . . .Þ. For the non-noise term, we have

@tO0 ¼ ½)iHsys ) Ly !O0; O0( ) Ly !O1:
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For the first-order noise terms, we have

Z t

0

ds1z$s1@tO1

¼
Z t

0

ds1z$s1 ½)iHsysLy !O0; O1( ) ½Ly !O1; O0( ) Ly !O2ðt; s1; sÞþ !O2ðt; s; s1Þð Þ
n o

;

and the evolution equation for O1 is obtained as

@tO1 ¼ ½)iHsys ) Ly !O0; O1( ) ½Ly !O1; O0( ) Ly !O2ðt; s1; sÞþ !O2ðt; s; s1Þð Þ:

Similarly, the set of coupled dynamical equations for all On can be determined
sequentially. For the terms containing z$t , the boundary conditions can be obtained as

O1ðt; s; tÞ ¼ ½L; O0ðt; sÞ(;
O2ðt; s; s1; tÞþO2ðt; s; t; s1Þ ¼ ½L;O1ðt; s; s1Þ(;

etc:

Appendix 3

In order to explicitly derive the RðtÞ for the three-qubit system model, we need to
calculate two termsMfzs1Ptg andMfzs1zs3Ptg. Since the termMfzs1zs3Ptg contains
second order of noise, it can be evaluated by using Novikov’s theorem twice (25.18).

Mfzs1Ptg ¼
Z t

0

ds2aðs1; s2ÞMfOðt; s2ÞPtg

¼
Z t

0

ds2aðs1; s2Þ O0ðt; s2Þqt þ
Z t

0

ds3O1ðt; s2; s3ÞMfz$s3Ptg

2

4

3

5

þ
Z t

0

ds2aðs1; s2Þ
Z t

0

ds3

Z t

0

ds5O2ðt; s2; s3; s5ÞMfz$s3z
$
s5Ptg;

Mfzs1zs3Ptg ¼
Z t

0

ds2aðs1; s2ÞMfzs3Oðt; s2ÞPtg

¼
Z t

0

ds2

Z t

0

ds4aðs1; s2Þaðs3; s4ÞM
dOðt; s2Þ

dz$s4
Pt

( )

þ
Z t

0

ds2

Z t

0

ds4aðs1; s2Þaðs3; s4ÞMfOðt; s2ÞOðt; s4ÞPtg:
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After eliminating the zero terms by the “forbidden conditions”, RðtÞ can be
explicitly shown as (25.54).
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