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Exact non-Markovian master equations for multiple qubit systems: Quantum-trajectory approach
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A wide class of exact master equations for a multiple qubit system can be explicitly constructed by using
the corresponding exact non-Markovian quantum-state diffusion equations. These exact master equations arise
naturally from the quantum decoherence dynamics of qubit system as a quantum memory coupled to a collective
colored noisy source. The exact master equations are also important in optimal quantum control, quantum
dissipation, and quantum thermodynamics. In this paper, we show that the exact non-Markovian master equation
for a dissipative N -qubit system can be derived explicitly from the statistical average of the corresponding
non-Markovian quantum trajectories. We illustrated our general formulation by an explicit construction of a
three-qubit system coupled to a non-Markovian bosonic environment. This multiple qubit master equation offers
an accurate time evolution of quantum systems in various domains, and paves the way to investigate the memory
effect of an open system in a non-Markovian regime without any approximation.
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I. INTRODUCTION

A quantum open system, its temporal evolution governed
by a master equation or a stochastic Schrödinger equation, has
attracted widespread interest due to its applications in various
research fields such as nonequilibrium quantum dynamics,
quantum control, quantum cooling, quantum decoherence,
and quantum dissipation [1–12]. The quantum dynamics of
an open system is commonly formulated in the system plus
environment framework where the state of the open system is
described by a reduced density operator. Typically, deriving
the master equation governing the reduced density operator
involves several important elements regarding fine details of
the environment and the coupling between the system and
environment. In the conventional quantum optics where the
quantized radiation field is treated as an environment, the
master equation for an atomic system weakly coupled to
the radiation field is systematically derived, which applies the
Markov approximation and takes the standard Lindblad form
(setting � = 1) [13]

ρ̇ = −i[Hs,ρ] +
∑

i

(2LiρL
†
i − L

†
i Liρ − ρL

†
i Li). (1)

Here, Hs is the Hamiltonian of the system of interest, and Li

are a set of system operators called Lindblad operators which
couple the system to the environment.

An environment can bring about various physical phenom-
ena to the open quantum system [12,14]. For example, in
the case of two-qubit system coupled to two local bosonic
baths, a Markov environment typically induces both irre-
versible decoherence and disentanglement [15,16]. However,
the non-Markovian environment with a finite memory time can
assist in regenerating quantum coherence and entanglement
in the system [17–20]. Some interesting physics induced by
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a non-Markovian environment has been studied extensively
by employing an exact or an approximate non-Markovian
master equation, which has many experimental applications
in quantum device, quantum information, and quantum op-
tics [21–25].

The exact master equations provide a fundamental de-
scription to non-Markovian quantum open systems. Even
if the exact stochastic Schrödinger equation is known, it
is still highly desirable to derive the corresponding master
equation due to its conceptual importance in understanding
quantum decoherence and quantum-classical transition as well
as its wide applications in quantum optics, condensed matter
physics, and quantum information processing [1,12].

In the case of a non-Markovian open system, deriving
a non-Markovian master equation is a notoriously difficult
problem due to the lack of a systematic tool that is applicable
to a generic open quantum system irrespective of the system-
environment coupling strength and the environment frequency
distribution [26,27]. For a quantum system coupled to a
bosonic or fermionic bath, a systematic method is formulated
called non-Markovian quantum-state-diffusion method (QSD)
or stochastic Schrödinger equation approach [28–30]. In
the non-Markovian QSD method, the quantum dynamics
represented by a stochastic differential equation is driven by
a Gaussian type of process z∗

t . By construction, applying
the ensemble average on all possible stochastic processes,
one can get the reduced density matrix of the interested
system. For many models, such as multilevel atom and mul-
tiple qubit system, the exact non-Markovian dynamics have
been numerically studied by using the non-Markovian QSD
approach [31–36].

It is known that the Markov master equation for the open
system may be derived from the corresponding stochastic
unrevealing [14,37–39]. There are also some examples in
the non-Markovian case where the exact master equation
can be recovered from the non-Markovian QSD equation,
but we need to point out that these works are derived in
special conditions, such as the single-spin system [31,33,36]
or quantum Brownian motion [40,41]. For a multiple qubit
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system, deriving the exact master equations from the stochastic
Schrödinger equation is still an open problem. Unlike creating
thousands of trajectories to recover the reduced density matrix
in the QSD approach, the exact master equation can be solved
deterministically, so that it can significantly improve the nu-
merical efficiency. More importantly, the exact master equation
may allow an analytical solution of non-Markovian dynamics.
Such kinds of analytical evaluations give rise to useful infor-
mation about quantum dissipation and decoherence in the non-
Markovian regime. In this paper, we present a generic exact
master equation for a multiple qubit dissipative system coupled
to a non-Markovian bosonic bath. The methodology used in
this paper can also be extended to a multilevel atomic system
coupled to a quantized radiation field [42]. Our exact master
equation provides a systematic tool in dealing with quantum
coherence and optimal quantum control in a non-Markovian
regime [43,44].

Our paper is organized as follows. In Sec. II, we introduce
a three-qubit system and show the principle idea and the detail
of analytical derivation of exact master equation for the three-
qubit system. In Sec. III, we show some numerical simulation
results by applying the new master equation approach. In
Sec. IV, we start a general discussion on the derivation of
the master equation for the N -qubit system.

II. EXACT NON-MARKOVIAN MASTER EQUATION

An N -qubit system representing a carrier of quantum
information or memory is assumed to be coupled to one
or more dissipative environments described by a set of
harmonic oscillators. To be specific, now we consider a
three-qubit model to illustrate our method of deriving the exact
master equation from the non-Markovian QSD equation for a
multiple qubit system. A more generic N -qubit model can
be treated in a similar way. The total Hamiltonian for our
three-qubit system coupled to a bosonic bath may be written
as [8]

Htot = Hs + Hint + Hb,

Hs =
3∑

j=1

ωj

2
σ j

z + Jxy

2∑
j=1

(
σx

j σ x
j+1 + σ

y

j σ
y

j+1

)
,

(2)
Hint = L

∑
k

gkb
†
k + L†

∑
k

gkbk,

Hb =
∑

k

ωkb
†
kbk,

where L = κ1σ
1
− + κ2σ

2
− + κ3σ

3
− is the Lindblad operator

coupling system to its environment, σ± = (σx ± iσy)/2 are the
creation (annihilation) operators for a qubit, respectively, and
bk(b†k) is the annihilation (creation) operator of the kth mode
in the bosonic environment. Note that gk are the coupling
constants between the system and its environment modes.
For the case of zero temperature environment, the correlation
function for the non-Markovian environment is given by
α(t,s) = ∑

k |gk|2e−iωk (t−s).

A. Non-Markovian QSD equation

The non-Markovian diffusive stochastic Schrödinger equa-
tion is given by [29]

∂tψt (z
∗) = (−iHs + Lz∗

t )ψt (z
∗)

−L†
∫ t

0
dsα(t,s)

δ

δz∗
s

ψt (z
∗), (3)

where ψt (z∗) is the pure stochastic wave function of the
three-qubit system, and z∗

t = −i
∑

k gkz
∗
ke

iωkt is the complex
Gaussian stochastic process with zero mean M[z∗

t ] = 0,
and correlations M[z∗

t z
∗
s ] = 0 and M[z∗

t zs] = α(t,s). Note
that α(t,s) is the correlation function of the bath, which
determines environment memory time and dictates the tran-
sition from non-Markovian to Markov regimes. The symbol
M[. . .] = ∫

d2z
π

e−|z|2 . . . means ensemble average operation
on all stochastic trajectories z∗

t .
The stochastic Schrödinger equation (3) can be transformed

into a time-local form when the functional derivative of noise
is replaced by an operator O(t,s,z∗)ψt (z∗) = δ

δz∗
s
ψt (z∗) acting

on the system’s current state. In the Markov limit O operator
must be the same as Lindblad operator L, therefore, the
consistent initial condition for O operator is O(t,t,z∗) = L. By
the consistency condition ∂

∂t
δ

δz∗
s
ψt = δ

δz∗
s

∂
∂t

ψt , the O operator
satisfies the following time-evolution equation

∂tO(t,s,z∗) = [−iHs + Lz∗
t − L†Ō(t,z∗),O(t,s,z∗)]

−L† δŌ(t,z∗)

δz∗
s

, (4)

where Ō(t,z∗) = ∫ t

0 dsα(t,s)O(t,s,z∗).
For the three-qubit system with dissipative coupling, the

functional expansion of the O operator contains at most the
two-fold noises [36]

O(t,s,z∗) = O0(t,s) +
∫ t

0
ds1z

∗
s1
O1(t,s,s1)

+
∫∫ t

0
ds1ds2z

∗
s1
z∗
s2
O2(t,s,s1,s2), (5)

where O0(t,s),O1(t,s,s1),O2(t,s,s1,s2) are three 8 × 8 ma-
trices not containing any noise. One can get the evolution
equations for Oi by plugging the solution (5) into Eq. (4)

[−iHs + Lz∗
t − L†Ō(t,z∗),O(t,s,z∗)] − L† δŌ(t,z∗)

δz∗
s

= ∂tO0(t,s) + ∂t

∫ t

0
ds1z

∗
s1
O1(t,s,s1)

+ ∂t

∫∫ t

0
ds1ds2z

∗
s1
z∗
s2
O2(t,s,s1,s2). (6)

By equating the terms with the same order of noises for two
sides of Eq. (6), a group of differential equations for O0, O1,
and O2 are given by

∂tO0(t,s) = [−iHs, O0] − [L†Ō0,O0] + L†Ō1(t,s),

∂tO1(t,s,s1) = [−iHs, O1] − [L†Ō0,O1] − [L†Ō1,O0]

−L†[Ō2(t,s,s1) + Ō2(t,s1,s)],

∂tO2(t,s,s1,s2) = [−iHs, O2] − [L†Ō0,O2] − [L†Ō1,O1]

− [L†Ō2,O0]. (7)
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Meanwhile we collect the initial conditions for these operators

O1(t,s,t) = [L,O0(t,s)],

O2(t,s,s1,t) + O2(t,s,t,s1) = [L,O1(t,s,s1)].

With the exact O operator, the time-local QSD equation is
explicitly determined. Below, we will show that an exact
master equation can be derived from the exact non-Markovian
QSD equation.

B. Formal non-Markovian master equation

Our approach to the h andling of non-Markovian open
systems defined by Eq. (2) aims to derive the exact non-
Markovian master equation from the corresponding linear
QSD equation (3). By design, the reduced density matrix
ρt may be recovered from the ensemble average over all
quantum trajectories. As such, the formal non-Markovian
master equation can be written as

∂tρt = −i[Hs, ρt ] + LM[z∗
t Pt ] − L†M[ŌPt ]

+M[ztPt ]L
† − M[PtŌ

†]L,

where ρt = M[Pt ] and Pt = |ψt (z∗)〉〈ψt (z)|.
Applying Novikov-type theorem M[ztPt ] =∫ t

0 dsα(t,s)M[O(t,s,z∗
t )Pt ], the above formal master

equation can be reorganized as the following compact form

∂tρt = −i[Hs, ρt ] + [L,M[PtŌ
†]] − [L†,M[ŌPt ]]. (8)

From Eq. (8), it is clear that a corresponding non-Markovian
equation may be obtained if one can deal with the terms
containing the ensemble average M[ŌPt ]. In fact, several
exact master equations derived from quantum trajectories
have been worked out, including a single two-level system,
harmonic oscillator model, and so on. However, up to now,
deriving an exact master equation for a N -qubit system
from the non-Markovian stochastic differential equation is
an unsolved problem. The major purpose of this paper is
explicitly to show how to accomplish this goal using the
three-qubit model as a typical example. For the three-qubit
model considered in this paper

M[PtŌ
†] = ρtŌ

†
0 +

∫ t

0
ds1M[zs1Pt ]Ō

†
1

+
∫∫ t

0
ds1ds2M[zs1zs2Pt ]Ō

†
2.

Note that there are two extra terms containing the ensemble
averages over noise. Moreover, when we use Novikov-type
theorem for the operator mean value, we should note that the
time variables for the O operator are different from that for
the stochastic density matrix Pt . Hence, we have

M
[
zs1Pt

] =
∫ t

0
ds2α1,2M[O(t,s2)Pt ],

M
[
zs1zs2Pt

] =
∫ t

0
ds3α1,3M

[
zs2O(t,s3)Pt

]

=
∫∫ t

0
ds3ds4α1,3α2,4M[O(t,s3)O(t,s4)Pt ]

+
∫∫ t

0
ds3ds4α1,3α2,4M

[
δO(t,s3)

δz∗
s4

Pt

]
,

(9)

where αi,j = α(si,sj ). Clearly, all the terms on the right-hand
side of Eq. (9) still involve the statistical average over the noise.
How to deal with these noisy terms is a crucial step in deriving
the exact master equation for a multiple qubit O operator.

C. Derived exact master equation

To find the exact form of the term M[PtŌ
†], we recall the

Eq. (6), and take a careful analysis on the structure of each
term in O operator expansion. In the right side of Eq. (6),
the highest order of noise, coming from the term [L†Ō,O],
goes to fourth order. While the order of noise of the right side
is up to the second order. These redundant terms provide a
very important observation, named as “forbidden conditions,”
which take the following form for the three-qubit model

LO2 = 0, OO2 = 0,
(10)

O1O1 = 0, O1O0O0 = 0.

Now we deal with the term M[PtŌ
†], and it is easy

to eliminate several complex terms since they satisfy the
“forbidden conditions.” Thus the compact results in Eq. (9)
are

M[O(t,s2)Pt ]Ō
†
1 = O0(t,s2)ρtŌ

†
1

+
∫∫ t

0
ds3ds4α3,4O1(t,s2,s3)

× ρtO
†
0(t,s4)Ō†

1,

M[O(t,s3)O(t,s4)Pt ]Ō
†
2 = O0(t,s3)O0(t,s4)ρtŌ

†
2

M
[

δO(t,s3)

δz∗
s4

Pt

]
Ō

†
2 = O1(t,s3,s4)ρtŌ

†
2.

With the above results, the closed form of the ensemble average
M[PtŌ

†] can be written explicitly as

R(t) = M[PtŌ
†]

= ρtŌ
†
0 +

∫∫ t

0
ds1ds2α1,2O0(t,s2)ρtŌ

†
1(t,s1)

+
∫∫∫∫ t

0
ds1ds2ds3ds4α1,2α3,4O1(t,s2,s3)

× ρtO
†
0(t,s4)Ō†

1(t,s1)

+
∫∫∫∫ t

0
ds1ds2ds3ds4α1,3α2,4[O0(t,s3)O0(t,s4)

+O1(t,s3,s4)]ρtŌ
†
2(t,s1,s2).

Finally, we find the exact non-Markovian master equation
for three-qubit system

∂tρt = −i[Hs, ρt ] + [L,R(t)] − [L†, R†(t)]. (11)

This exact non-Markovian master equation is the major result
of this paper. In the following sections, we will apply our
result to several interesting cases where the non-Markovian
dynamics is studied by using our derived exact equation.
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III. NUMERICAL CALCULATIONS

Below we study the non-Markovian quantum dynamics of
three-qubit system. For simplicity, we use Ornstein-Uhlenbeck
noise depicted by the correlation function α(t,s) = γ

2 e−γ |t−s|.
Although our master equation is universally valid for an
arbitrary correction function, the advantage of choosing the
Ornstein-Uhlenbeck noise is that we can control the single
parameter γ to recover the Markov limit (γ → ∞) from a
non-Markov regime.

In Fig. 1, four initial states are chosen for three-qubit
system. The entanglement dynamics of selected two qubits
(the first and the second ones) is shown. Here we choose
concurrence as the measurement of entanglement [45]. In
Figs. 1(a) and 1(b), initially there is no entanglement between
the two qubits. As the onset of the non-Markovian environment
effects, the generation of entanglement is observed. Moreover,
as shown in Fig. 1, the degree of the generated entanglement
depends sensitively on the value of the parameter γ . When γ =
0.4 reprints a longer memory time, the degree of entanglement
is almost five times the case with γ = 1.5, which represents
a more Markovian regime. In Figs. 1(c) and 1(d), the initial
state of the three-qubit system is maximally entangled for
every two-qubit pair. When γ = 0.4, we observe a typical
behavior in the non-Markovian regime, that is, it exhibits a
stronger entanglement oscillation pattern compared to the case
of γ = 1.5.

In Fig. 2, the initial state between the first and the second
qubits is a Bell state, and the entanglement flow among the
three qubits is studied. In Figs. 2(a) and 2(c), the system
that is coupled to a non-Markovian environment exhibits a
strong oscillation, and shows a symmetric pattern of the system
dynamics. In particular, it shows that the entanglement shared
by each pair moves forward and backward between two pairs
periodically. In Figs. 2(b) and 2(d), when γ = 1.5, then the
environment is close to the Markov limit, we see that the
state drops to the final static state quickly as expected for a
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FIG. 1. (Color online) The dynamics of concurrence between
the first and the second qubits as a function of ωt with different
initial states. (a) |111〉, (b) (|111〉 + |000〉)/√2, (c) (|100〉 + |010〉 +
|001〉)/√3, and (d) (|110〉 + |101〉 + |011〉)/√3.
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FIG. 2. (Color online) The dynamics of entanglement flow
among three qubits c12 (red solid line), c13 (blue dashed line), and
c23 (black dotted line). Left column shows a non-Markovian regime
with γ = 0.4. Right column shows a regime close to Markov limit
(we choose γ = 1.5). Panels (a) and (b) use the same initial state
(|11〉 + |00〉) ⊗ |0〉/√2; while panels (c) and (d) use the initial state
(|10〉 + |01〉) ⊗ |0〉/√2.

Markov regime. It is interesting to note that the entanglement
that is present in one pair initially, will diffuse into three pairs
eventually. As we know, in a two-qubit system coupling to
the environment, the Bell state (|10〉 − |01〉)/√2 preserves
the quantum information. However, in Figs. 2(b) and 2(d),
entanglement goes to a constant after a long time evolution,
which shows direct evidence that the quantum information is
more easily preserved in a three-qubit system than in a two-
qubit system. More importantly, the exact master equation for
the multiple qubit systems will allow us to study systematically
the decoherence issues when the environmental noises are
colored.

IV. GENERAL DISCUSSIONS ON THE EXACT MASTER
EQUATION FOR AN N-QUBIT SYSTEM

In this section, we present some general discussions on
the derivation of the non-Markovian master equation for the
N -qubit model, with Hs = ∑

n ωnσ
(n)
z and L = ∑

n κnσ
(n)
− .

Since we have shown the formal master equation as Eq. (8),
which is applicable for the general case, so that the goal
of deriving exact master equation is based on finding
exact R(t).

It is easy to prove that the (N + 1)th order product of
operator L is zero. Note that, for a matrix polynomial, it
means that each term has the same order N + 1, therefore,
each term contains at least one zero factor (σ (j )

− )2 = 0. On the
other hand, from Eq. (4), we see that the higher order of noise
in the new O operator come from the commutator relation
z∗
t [L,O]. Combining the two conditions above, we arrive at

our first conclusion that, for the N -qubit model considered in
this paper, the highest order of noise is N − 1, which means
that the O operator contains only finite terms. This is the basic
conclusion on which our general discussion is based. On the
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other hand, in Eq. (6), the order of noise for both sides should
match each other. From the commutator relation [L†Ō,O],
we have all OjOk terms with (j + k) � N − 1 would go to
zero since the right side of Eq. (6) does not contain such order
terms. Now we have a general conclusion for the “forbidden
conditions”

OjOk = 0, (j + k � N − 1). (12)

Generally, one can get an explicit expression for M[PtŌ
†]

after applying Novikov-style theorem for multiple times. We
take one term of R(t) as an example

M
[
zs1 . . . zs2j−1PtŌ

†
j

]
=

∫ t

0
ds2α1,2M

[
zs3 . . . zs2j−1O(t,s2)PtŌ

†
j

]

=
∫∫ t

0
ds2ds4α1,2α3,4

×M
[
zs5 . . . zs2j−1O(t,s2)O(t,s4)PtŌ

†
j

]
,

where αi,j = α(si,sj ). We can keep applying the Novikov
theorem and do the iteration calculation. With the “forbid-
den conditions” (12), it is easy to see that the M[PtŌ

†]
will eventually become noise free. Following this proce-
dure, we can derive the general R(t) and the exact master

equation for an N -qubit system coupled to a non-Markovian
environment.

V. CONCLUSION

We have provided a systematic approach to deriving
non-Markovian master equations from the corresponding
quantum-state diffusion equations. Non-Markovian master
equations for open quantum systems are of importance in
describing quantum dynamics coupled to a non-Markovian
environment. Our exact non-Markovian master equations
provide an alternative method to handling the generic open
quantum systems where the standard Markov assumption is
no longer valid. For example, our derived N -qubit master
equations would be useful in quantum control and quantum
decoherence of quantum memory and quantum optics where
the atomic systems are coupled to a high-Q cavity. Note
that the quantum-state diffusion equations can be formally
established for a very wide class of problems in quantum open
systems, therefore, our method is likely to be useful for many
other applications.
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