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■ Abstract Quantum dissipation involves both energy relaxation and decoherence,
leading toward quantum thermal equilibrium. There are several theoretical prescrip-
tions of quantum dissipation but none of them is simple enough to be treated exactly
in real applications. As a result, formulations in different prescriptions are practically
used with different approximation schemes. This review examines both theoretical
and application aspects on various perturbative formulations, especially those that are
exact up to second-order but nonequivalent in high-order system-bath coupling con-
tributions. Discrimination is made in favor of an unconventional formulation that in
a sense combines the merits of both the conventional time-local and memory-kernel
prescriptions, where the latter is least favorite in terms of the applicability range of pa-
rameters for system-bath coupling, non-Markovian, and temperature. Also highlighted
is the importance of correlated driving and disspation effects, not only on the dynamics
under strong external field driving, but also in the calculation of field-free correlation
and response functions.

1. INTRODUCTION

Quantum dissipation refers to the dynamics of a quantum system of primary
interest in contact with a quantum bath of practically infinite degrees of free-
dom. The key theoretical quantity in quantum dissipation is the reduced den-
sity operator ρ(t) ≡ trBρT(t), i.e., the partial trace of the total system and bath
composite ρT(t) over all the bath degrees of freedom. For a system dynamical
variable A, its expectation value, Ā(t) = Tr[AρT(t)] = tr[Aρ(t)], can therefore be
evaluated with the substantially reduced system degrees of freedom. Quantum dis-
sipation theory governs the evolution of the reduced density operator ρ(t), where
the effects of bath are treated in a quantum statistical manner. It thus provides
not just the aforementioned numerical advantage, but also the irreversibility of
quantum statistical mechanics.

Because of its fundamental importance in almost all fields of modern science,
quantum dissipation theory has remained as an active topic of research since about
the middle of the past century. Its development involved scientists working in
fields as diversified as nuclear magnetic resonance (1–4), quantum optics (5–13),
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quantum information and quantum measurement (14, 15), solid-state physics and
material science (16–18), mathematical physics (19–23), nonlinear spectroscopy
(24–34), and statistical dynamics and chemical physics (35–68).

The challenge here arises from the combined effects of strong system-bath in-
teraction, non-Markovian dissipation, and time-dependent external driving. These
combined effects can be incorporated in a formally exact manner via the Feynman-
Vernon influence functionals of path integral formalism (35–37). Numerically
exact methods for the path integral formalism, such as quantum Monte Carlo tech-
niques combined with iterative forward-backward propagation schemes (69–71),
have set up the benchmark to investigate non-Markovian dynamics beyond the
weak system-bath interaction regime. The integral formalism is, however, neither
numerically practical for realistic systems nor theoretically tractable for further
construction of such as nonlinear spectroscopy formulations.

This review considers the differential formalism of quantum dissipation the-
ory, abbreviated hereafter as QDT, which is also often termed as quantum master
equations in literature. The present review focuses on some second-order QDT for-
mulations in terms of their constructions and applicabilities, and sheds light partic-
ularly on the implication of the correlation between non-Markovian dissipation and
external time-dependent field drive. The high-order perturbative formulations are
usually too complicated for general purpose (72–74). The canonical transformation
methods can effectively reduce the system-bath coupling strength via considering
the transformed reduced system such as polaron (17, 18) or including the solvation
modes into explicit consideration. Readers may refer to, for example, Reference
52 on this topic. Semiclassical methods (75–87) where it would be practical to
include the strong system-bath coupling effects are not included in this review.

We note that there has recently been an increasing interest in stochastic Hilbert-
and/or Liouville-space dynamics that unravels the reduced description (11, 12,
88–92). Quantum stochastic description provides not only numerical methods on
reduced dynamics propagations (89, 90) but also powerful tools for the construction
of exact QDT formulations (91–94). Stochastic interpretation is also closely related
to continuous quantum measurements (14, 15). Readers may refer to Reference
88, for example, for the details of stochastic quantum dissipation.

Throughout this review, h̄ ≡ 1 and β ≡ 1/(kBT ) for simplicity, where kB is the
Boltzmann constant and T the temperature.

2. BACKGROUND OF NONEQUILIBRIUM QUANTUM
STATISTICAL MECHANICS

In this section, we review some background on the (two-time) correlation func-
tion and response function that arise from linear response theory. We discuss the
symmetry, detailed-balance, and fluctuation-dissipation relations implied there.
The importance of correlation/response functions to nonequilibrium statistical
mechanics is similar to that of partition functions to equilibrium statistical
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mechanics. Correlation/response functions have been widely used in the study of
physical problems such as spectroscopy (24–34), transport (38–43), and reaction
rate (68, 95–97).

2.1. Correlation and Response Functions Versus
Linear Response Theory

Consider the measurement on a dynamical variable A with a classical probe
field ε(t) that couples with the system as −Bε(t). For simplicity, both operators
A and B are assumed to be Hermite. The total composite material system was
initially at the thermal equilibrium, ρeq

M = e−β HM/Tre−β HM , before external field
disturbance. The field-induced deviation in Ā(t) from its equilibrium expectation
value is δ Ā(t) = Tr{A[ρT(t) − ρ

eq
M ]}, where ρT(t) is the total composite system

density operator in the presence of external field. To the first order of the external
disturbance, we have

δ Ā(t) =
t∫

−∞
dτχAB(t − τ )ε(τ ), 2.1.

with the material response function given by

χAB(t − τ ) ≡ i〈[A(t), B(τ )]〉M. 2.2.

Here, [. . ., . . .] denotes a commutator, O(t) ≡ ei HMt Oe−i HMt , and 〈. . .〉M ≡
Tr(. . . ρeq

M ). Physically, the response function χAB(t) is needed only for t ≥ 0 due to
causality (cf. Equation 2.1). Its extension to t < 0 is formally made with Equation
2.2 as

χAB(−t) = −χBA(t). 2.3.

Obviously, the response function χAB(t) for Hermitian operators is real.
We now turn to the correlation function, denoted as

C̃AB(t − τ ) ≡ 〈A(t)B(τ )〉M. 2.4.

Either χAB(t − τ ) of Equation 2.2 or C̃AB(t − τ ) of Equation 2.4 depends only on
the duration t − τ . This is a property of the stationary statistics as [HM, ρ

eq
M ] = 0.

We have also that 〈A(t)〉M = 〈A〉M, which does not depend on time, and

〈 Ȧ(t)B(0)〉M = −〈A(t)Ḃ(0)〉M. 2.5.

Moreover, the correlation function satisfies the following symmetry and detailed-
balance relations:

C̃∗
AB(t) = C̃BA(−t) = C̃AB(t − iβ). 2.6.

Note that χAB(t) = −2ImC̃AB(t). The common phenomenon of statistical indepen-
dence as t → ∞ implies that C̃AB(t → ∞) = 〈A〉M〈B〉M in a general dissipative
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system. One may remove this nonzero asymptotic value by setting A − 〈A〉M

and B −〈B〉M as new variables and consider only the shifted correlation functions
that satisfy C̃AB(t → ∞) = 0.

2.2. Spectrum and Dispersion Functions
Versus Kramers-Kronig Relations

Let us now introduce the so-called causality transformation via

ĈAB(ω) ≡
∞∫

0

dt eiωt C̃AB(t). 2.7.

Here, C̃AB(t → ∞) = 0 is implied. The generalized spectrum CAB(ω) and disper-
sion DAB(ω) functions, by which

ĈAB(ω) = CAB(ω) + i DAB(ω), 2.8.

can then be defined, respectively, as

CAB(ω) ≡ 1

2
[ĈAB(ω) + Ĉ∗

BA(ω)] = 1

2

∞∫
−∞

dt eiωt C̃AB(t) = C∗
BA(ω) and 2.9a

DAB(ω) ≡ 1

2i
[ĈAB(ω) − Ĉ∗

BA(ω)] = D∗
BA(ω). 2.9b

Thus, Equation 2.8 represents the separation of Hermite and anti-Hermite compo-
nents rather than that of real and imaginary parts.

An important mathematical property implied in the causality transform Equa-
tion 2.7 is that ĈAB(z) is an analytical function in the upper plane (Imz > 0). By
using the contour integration formalism, together with the identity 1/(ω′ − ω) =
P{1/(ω′ − ω)} + iπδ(ω′ − ω), we have

ĈAB(ω) = i

π
P

∞∫
−∞

dω′ ĈAB(ω′)
ω − ω′ . 2.10.

Here,P denotes the principle part. This is the Kramers-Kronig relation, which can
be recast as

CAB(ω) = − 1

π
P

∞∫
−∞

dω′ DAB(ω′)
ω − ω′ , DAB(ω) = 1

π
P

∞∫
−∞

dω′ CAB(ω′)
ω − ω′ . 2.11.

Similarly, the causality transform of the response function is

χ̂AB(ω) ≡
∞∫

0

dteiωtχAB(t) = χ̂
(+)
AB (ω) + i χ̂ (−)

AB (ω), 2.12.
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where χ̂
(+)
AB (ω) = [χ̂ (+)

BA (ω)]∗ and χ̂
(−)
AB (ω) = [χ̂ (−)

BA (ω)]∗ are the Hermite and anti-
Hermite components, respectively. They also satisfy the aforementioned Kramers-
Kronig relations.

Using Equations 2.2, 2.7, 2.8 and 2.12, we obtain

χ̂
(+)
AB (ω) = −[DAB(ω) + DBA(−ω)], 2.13a.

χ̂
(−)
AB (ω) = CAB(ω) − CBA(−ω) = 1

2i

∞∫
−∞

dt eiωtχAB(t). 2.13b.

It then follows that, χ̂ (+)
AB (−ω) = χ̂

(+)
BA (ω) and χ̂

(−)
AB (−ω) = −χ̂

(−)
BA (ω). As described

in Equation 2.13b, {χ̂ (−)
AB (ω)} is also termed the spectral density function.

2.3. Fluctuation-Dissipation Theorem

The detailed-balance relation in terms of spectrum functions reads as

CBA(−ω) = e−βωCAB(ω). 2.14.

Together with the first identity of Equation 2.13b, we have

χ̂
(−)
AB (ω) = (1 − e−βω)CAB(ω). 2.15.

This relation is called the fluctuation-dissipation theorem (FDT). It can be recast
as

C̃AB(t) = 1

π

∞∫
−∞

dω
e−iωt χ̂

(−)
AB (ω)

1 − e−βω
. 2.16.

It thus also establishes the relation between the correlation function C̃AB(t) and the
response function χAB(t) (cf. Equation 2.13b). The FDT is a result of the detailed-
balance relation.

In Appendix A, the FDT is applied to formulate the equilibrium phase-space
variances, σ eq

qq ≡ 〈q2〉 − 〈q〉2 and σ
eq
pp ≡ 〈p2〉 − 〈p〉2, in terms of the coordinate

response function χqq (t) for arbitrary one-dimensional systems. Some additional
properties in relation to the spectrum and/or spectral density functions are sum-
marized as follows.

It is easy to show that not just CAA(ω) ≥ 0, but also CAA(ω)CB B(ω) ≥ |CAB(ω)|2,
for all real ω. In fact, the Hermitian matrix {CAB(ω)} of spectrum functions is of
complete positivity (60, 98). It leads also to the positivity of spectral density
{χ̂ (−)

AB (ω)} for ω ≥ 0 as inferred from Equation 2.15.
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We have also the following expressions,

χ̂AB(0) = 1

π

∞∫
−∞

dω
χ̂

(−)
AB (ω)

ω
, χ̇AB(0) = 1

π

∞∫
−∞

dω ωχ̂
(−)
AB (ω). 2.17.

The first expression is obtained when the Kramer-Kronig relation is at zero fre-
quency, together with χ̂

(+)
AB (0) = χ̂AB(0) as inferred from Equation 2.15 that

χ̂
(−)
AB (0) = 0. Note that as χAB(t) is real for Hermite operators, χ̂AB(0) must be

real (cf. Equation 2.12). The second expression in Equation 2.17 is obtained by
taking the time derivative of the inverse Fourier transform of Equation 2.13b,
followed by setting t = 0.

Later in this review, the bath correlation/response functions for a set of bath
operators {Fa(t) ≡ eihBt Fae−ihBt } will be exploited to describe the energy relax-
ation and decoherence processes in the reduced system of primary interest. The
bath correlation functions will be denoted similarly as

C̃ab(t) ≡ trB[Fa(t)Fb(0)ρeq
B ] ≡ 〈Fa(t)Fb(0)〉B. 2.18.

However, the bath response functions χab(t) will be renamed as

φab(t) ≡ i〈[Fa(t), Fb(0)]〉B, 2.19.

to avoid possible confusions that may occur there. The bath spectral density functi-
ons φ̂

(−)
ab (ω) [or χ̂

(−)
ab (ω)] will further be renamed as Jab(ω). Clearly, all relations

presented earlier in this section remain valid for the bath correlation/response
functions. For example, the FDT of Equation 2.16 now reads as

C̃ab(t) = 1

π

∞∫
−∞

dω
e−iωt Jab(ω)

1 − e−βω
. 2.20.

The generalized frictional function γab(t) can also be introduced via

φab(t) ≡ −γ̇ab(t) or φ̂ab(ω) = γab(0) + iωγ̂ab(ω). 2.21.

Note that γab(t) = γba(−t). The first expression in Equation 2.17 is now

γab(0) = φ̂ab(0) = 1

π

∞∫
−∞

dω
Jab(ω)

ω
. 2.22.
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3. EXACT DYNAMICS OF DRIVEN
BROWNIAN OSCILLATORS

This section discusses an exactly solvable model, the driven Brownian oscillator
(DBO) systems (36, 37, 60, 99, 100). It also highlights some issues on the general
QDT formulation.

3.1. Model and Quantum Langevin Equations

Let us start with the total composite Hamiltonian in the presence of external clas-
sical field drive, HT(t) ≡ HM + Hsf(t). In the DBO model, the system-field inter-
action assumes Hsf(t) = −qε(t), and the total field-free system-plus-bath material
Hamiltonian assumes the Calderia-Leggett form (50, 51)

HM =
(

p2

2M
+ 1

2
M�2

0q2

)
+

∑
j

[
p2

j

2m j
+ 1

2
m jω

2
j

(
x j − c j

m jω
2
j

q
)2

]
. 3.1.

The last term here contains the free-bath hB = ∑
j [p2

j/(2m j ) + m jω
2
j x

2
j /2], the

system-bath {q · x j }-coupling, and the coupling-induced renormalization Hren that
depends only on the DBO’s degree of freedom. Thus,

HM = H0 + Hren + hB −
√

M q F ≡ Hs + hB −
√

M q F. 3.2.

The mass-scaled Langevin force, F = f/
√

M = ∑
j c j x j/

√
M , is adopted to

satisfy the relation in Equation 2.21, i.e.,

φ(t) ≡ i〈[F(t), F(0)]〉 = −γ̇ (t) or φ̂(ω) = γ (0) + iωγ̂ (ω). 3.3.

Here, F(t) = eihBt Fe−ihBt and γ (t) assumes the classical frictional function,

γ (t) = 1

M

∑
j

c2
j

m jω
2
j

cos(ω j t). 3.4.

In Equation 3.2, H0 is given by the first term in Equation 3.1 with frequency �0,
and

Hs ≡ H0 + Hren = p2

2M
+ 1

2
M�2

Hq2, 3.5.

with

�2
H ≡ �2

0 + 1

M

∑
j

c2
j

m jω
2
j

= �2
0 + γ (0). 3.6.

We shall later show that �0, rather than �H, represents the DBO frequency in the
Markovian white-noise limit. However, in general the DBO frequency appears as
neither �0 nor �H.
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The quantum Langevin equations for the DBO system can easily be derived
via the Heisenberg equations of motion with HT(t) = HM − qε(t). By using the
formal solutions of bath degrees of freedom, we obtain

˙̂q(t) = p̂(t)/M, 3.7a

˙̂p(t) = −M�2
Hq̂(t) + M

t∫
t0

dτφ(t − τ )q̂(τ ) + ε(t) + fB(t)

= −M�2
0q̂(t) −

t∫
t0

dτγ (t − τ ) p̂(τ ) + ε(t) + fB(t). 3.7b

Here fB(t) ≡ √
M F(t) is the standard quantum Langevin force operator. The

second identity of Equation 3.7b is the conventional form of the Langevin equa-
tion, obtained by performing the integration by part, together with Equations 3.3
and 3.6.

3.2. Quantum Master Equation

The formal solution to Equations 3.7 is given by (60)

[
q̂(t)

p̂(t)

]
= T(t − t0)

[
q̂(t0)

p̂(t0)

]
+

t∫
t0

dτT(t − τ )

[
0

ε(τ ) + fB(τ )

]
, 3.8.

with

T(t) =
[

χpq (t) χqq (t)

−χpp(t) χpq (t)

]
≡

[
Mχ̇ (t) χ (t)

M2χ̈ (t) Mχ̇ (t)

]
. 3.9.

Here, χAB(t) (Equation 2.2) denotes the conventional response function in the total
composite material HM-space. In the second identity of Equation 3.9, we made use
of Equation 2.5 and χ (t) ≡ χqq (t), which will be specified later in terms of bath
response or frictional function (cf. Equations 3.13–3.15).

Equation 3.8 may be used to construct an exact quantum master equation via,
for example, the Yan-Mukamel method based on the Gaussian wave packet dy-
namics in the Wigner phase space (26, 60). However, as pointed out by Karrlein &
Grabert (100), there does not exit a generally exact QDT for arbitrary initial bath
preparations.

In this review, we shall focus on the reduced dynamics induced by the external
field. The natural initial condition to be adopted acquires the thermal equilibrium
state for the total composite material system, ρT(t0) = ρ

eq
M , before the external field

interaction. The initial time can thus be set to t0 → −∞.
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The exact quantum master equation for the DBO system is summarized as
follows (60):

ρ̇(t) = −i

[
p2

2M
+ 1

2
M�̃2q2 − qεeff(t), ρ(t)

]
− i

2
γ̃ [q, {p, ρ(t)}]

− γ̃ σ eq
pp[q, [q, ρ(t)]] − (

σ eq
pp/M − M�̃2σ eq

qq

)
[q, [p, ρ(t)]]. 3.10.

Here, ( [. . ., . . .] denotes a commutator and {. . ., . . .} an anticommutator)

�̃ ≡ lim
t0→−∞ �̃t−t0 , γ̃ ≡ lim

t0→−∞ γ̃t−t0 , 3.11a.

with

�̃2
t = χ̈2(t) − ···χ(t)χ̇ (t)

χ̇2(t) − χ̈ (t)χ (t)
, γ̃t =

···χ (t)χ (t) − χ̈ (t)χ̇ (t)

χ̇2(t) − χ̈ (t)χ (t)
, 3.11b.

and

εeff(t) = ε(t) +
t∫

t0

dτχε(t, τ )ε(τ ), 3.12a.

with

χε(t, τ ) ≡ M[�̃2χ (t − τ ) + γ̃ χ̇ (t − τ ) + χ̈ (t − τ )]. 3.12b.

The thermal equilibrium phase-space variances, σ eq
qq and σ

eq
pp, involved in Equation

3.10 are given by Equation A.1 or A.3 in terms of the causality transform of χ (t).
In deriving Equation 3.10, the determinant |T(t)| of the transfer matrix in Equa-

tion 3.9 is assumed nonzero; otherwise both �̃t and γ̃t diverge (Equations 3.11).
Equation 3.10 recovers the well-established result (100) by setting ε(t) = 0 and
replacing �̃ and γ̃ with �̃t and γ̃t as the initial time of t0 = 0 was adopted in their
work.

The key quantity here is the well-established Brownian response function χ (t) ≡
χqq (t). With the linear response theory being applied for Equations 3.7, one can
readily obtain that (cf. Equations 3.3 and 3.6)

χ̈ (t) + �2
Hχ (t) −

t∫
0

dτφ(t − τ )χ (τ ) = 0, 3.13a.

or equivalently

χ̈ (t) + �2
0χ (t) +

t∫
0

dτγ (t − τ )χ̇(τ ) = 0. 3.13b.

From its definition, Equation 2.5, and Equation 3.13, we have

χ (0) = χ̈ (0) = 0, χ̇ (0) = −···χ (0)/�2
H = 1/M. 3.14.
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Therefore (cf. Equation 3.3)

χ̂ (ω) = 1/M

�2
H − ω2 − φ̂(ω)

= 1/M

�2
0 − ω2 − iωγ̂ (ω)

. 3.15.

3.3. Comments

The correlated driving-dissipation effect on the reduced DBO dynamics is de-
scribed by the second term in the right-hand side of Equation 3.12a as an effective
field correction. This correlated effect is completely coherent in the present case.
In a general anharmonic system, the correlated driving and dissipation effects are
usually quite complicated. We shall come back to this point below.

In the Markovian white-noise limit, γ (t) = 2γmarδ(t) or γ̂ (ω) = γmar is a con-
stant. In this limit, Equations 3.15, 3.11 and 3.12 reduce, respectively, to

χ (t) → sin
[(

�2
0 − γ 2

mar/4
) 1

2 t
]

M
(
�2

0 − γ 2
mar/4

) 1
2

e−γmart/2, 3.16a.

�̃t → �0, γ̃t → γmar, 3.16b.

χε(t, τ ) = 0, εeff(t) = ε(t). 3.16c.

The effects of the driving and dissipation correlation, due to δεeff(t) ≡ εeff(t) − ε(t)
in the DBO system, vanish completely in the Markovian limit. The δ(t)-noise is ill-
defined for short time; it causes σ

eq
pp to diverge (Equation A.3). However, analysis of

the white-noise limit is instructive; it implies that H0 would rather be the choice of
the reduced system Hamiltonian if a phenomenological description of dissipation
were to be adopted. For example, σ eq

qq and σ
eq
pp may be replaced with their zeroth-

order values σ 0
qq and σ 0

pp in the pure-H0 system, and approximate Equation 3.10
as (55)

ρ̇(t) → −i[H0 − qε(t), ρ(t)] − i

2
γ̃ [q, {p, ρ(t)}] − γ̃ σ 0

pp[q, [q, ρ(t)]]. 3.17.

The last term in Equation 3.10 becomes zero in this phenomenological description.
Note that �̃ and γ̃ serve as the frequency and friction constants entering into

Equation 3.10, and they are the long-time asymptotic values of �̃t and γ̃t as de-
scribed by Equations 3.11. Clearly, �̃t=0 = �H and γ̃t=0 = 0 as inferred from
Equation 3.14. In strong non-Markovian interaction regime, �̃t ( �̃) and γ̃t ( γ̃ )
may diverge. One may argue that �̃ and γ̃ could be treated phenomenologically
as the Markovian parameters in Equation 3.10. However, the non-Markovian na-
ture of Equation 3.10 still remains as εeff(t) 
= ε(t). As mentioned earlier, this
inequality characterizes the correlated driving-dissipation effects in the present
case. We shall see later that for a general system the field-free dissipation could be
characterized by a Markovian-like, time-independent dissipative superoperator, as
the system was initially in the thermal equilibrium state before the external field
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excitation. The dynamical non-Markovian effects enter only through the field-
dressed dissipative superoperator component.

4. TWO PRESCRIPTIONS OF QUANTUM
DISSIPATION THEORY

4.1. General Description of Total Composite Hamiltonian

The total composite Hamiltonian in the presence of classical external field can be
written as

HT = HM + Hsf(t) ≡ Hs + Hsf(t) + hB −
∑

a

Qa Fa . 4.1.

The last term in Equation 4.1 describes the system-bath couplings, in which {Qa}
are Hermite operators of the primary system and can be called the generalized
dissipative modes. The generalized Langevin forces {Fa(t) ≡ eihBt Fae−ihBt } are
Hermite bath operators in the stochastic bath subspace assuming Gaussian statis-
tics. Without loss of generality, their stochastic mean values are set to 〈Fa(t)〉B = 0.
The effects of Langevin forces on the reduced primary system are therefore
completely characterized by their correlation functions C̃ab(t) = 〈Fa(t)Fb(0)〉B
(Equation 2.18), or other equivalent properties, such as the generalized frictional
functions γab(t), described in Section 2. For the later construction of coupled differ-
ential equations of motion, we adopt the extended Meier-Tannor parameterization
model that, as detailed in Appendix B, leads the bath correlation functions to the
following form (57, 60, 61):

C̃ab(t ≥ 0) =
m̄∑

m=0

νab
m tδm0 e−ζ ab

m t ; with ζ ab
0 ≡ ζ ab

1 . 4.2.

In Equation 4.1, the reduced system Hamiltonian in the presence of external
classical field is

H (t) ≡ Hs + Hsf(t) ≡ H0 + Hren + Hsf(t). 4.3.

Here, Hs is the time-independent, field-free Hamiltonian, whereas Hsf(t) is the
interaction between the system and the external classical field ε(t). The Calderia-
Leggett form of renormalization Hamiltonian assumes Hren = 1

2

∑
γab(0)Qa Qb

(cf. Equation 3.6). As discussed in Section 3, it is H0, rather than Hs , that resem-
bles the effective system Hamiltonian to be observed in the high temperature or
Markovian limit. The result is that H0 is adopted as the reduced field-free system
Hamiltonian in some phenomenological QDT formulations that also assume the
thermal equilibrium reduced state of ρeq ∝ e−β H0 . Further discussion on the issue
will be made in the last paragraph of Section 4.2.

The theory presented below goes beyond the phenomenological level, where Hs

enters as the reduced field-free system Hamiltonian. Both the reduced dynamics
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and the reduced thermal canonical state should be evaluated with dissipation. For
later use, let us denote the following Liouvillians,

L(t)O ≡ [H (t), O], Ls O ≡ [Hs, O], Lsf(t)O ≡ [Hsf(t), O]. 4.4.

The coherent propagatorG(t, τ ) associating withL(t) is defined via

∂

∂t
G(t, τ ) ≡ −iL(t)G(t, τ ). 4.5.

It is equivalent toG(t, τ )O = G(t, τ )OG†(t, τ ), where G(t, τ ) is the Hilbert-space
propagator with ∂t G(t, τ ) = −i H (t)G(t, τ ). The field-free counterpart is denoted
asGs(t, τ ), which is given by

Gs(t, τ ) = e−iLs ·(t−τ ) ≡ Gs(t − τ ). 4.6.

4.2. Perturbative Formulations in Two Prescriptions

There are two commonly used prescriptions of QDT. One is characterized by a
memory dissipation kernel ϒ(t, τ ) and reads as follows (39–42):

ρ̇(t) = −iL(t)ρ(t) −
t∫

−∞
dτϒ(t, τ )ρ(τ ). 4.7.

According to the temporal sequence of the involving actions in ϒ(t, τ )ρ(τ ), Equa-
tion 4.7 is also said to be in the chronological ordering prescription (COP). An
alternative prescription of the QDT is characterized by a time-local dissipation
kernelR(t) and reads (43)

ρ̇(t) = −iL(t)ρ(t) − R(t)ρ(t). 4.8.

According to the temporal sequence of the involving actions inR(t)ρ(t), Equa-
tion 4.8 is also said to be in a partial ordering prescription (POP) in contrast to
Equation 4.7. In principle, both ϒ(t, τ ) andR(t) can be formulated exactly by
using, for example, the Nakajima-Zwanzig-Mori projection operator techniques
(39–43). In this sense, Equation 4.7 and Equation 4.8 are equivalent. However,
the exact QDT in the forms of differential equations of motion (EOM) are by far
numerically tractable in very few systems, such as the DBO system (described
in Section 3) and the spin-boson system (89, 101, 102). In most cases, certain
approximation schemes are employed.

Let us consider the weak system-bath interaction regime and focus on a so-
called complete second-order quantum dissipation theory (CS-QDT). Here, the
system-bath couplings are rigorously accounted for to second order, not only for the
dynamics of ρ(t), but also for the initial reduced canonical state ρ(t0) = trBρ

eq
M (T );

this includes the nonfactorizable ρ
eq
M (T ), before external field excitation. Various

forms of CS-QDT are the same at the second order system-bath interaction level,
but differ at their partial resummation schemes in approximating higher order
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contributions. In this review, we shall discuss three nonequivalent forms of CS-
QDT. Two of them resemble Equations 4.7 and 4.8, and will be presented later in
this section as the COP-CS-QDT and the POP-CS-QDT, respectively. The third
one is nonconventional and will be discussed in detail in the next section.

A perturbative QDT can be formulated by some relatively simple methods
without explicitly invoking the Nakajima-Zwanzig-Mori projection operator tech-
niques (4–8, 38, 52–57, 59). By using explicitly the decomposite form of system-
bath couplings as shown in the last term of Equation 4.1, the COP-CS-QDT of
Equation 4.7 can be readily obtained, where (57, 59)

t∫
−∞

dτϒ(t, τ )ρ(τ ) =
∑

a

{[
Qa, Q̃cop

a (t)
] + H.c.

}
, 4.9a.

with

Q̃cop
a (t) =

∑
b

t∫
−∞

dτ C̃ab(t − τ )G(t, τ )[Qbρ(τ )], 4.9b.

and the POP-CS-QDT of Equation 4.8, where (23, 59)

R(t)ρ(t) =
∑

a

{[
Qa, Q̃pop

a (t)ρ(t)
] + H.c.

}
, 4.10a.

with

Q̃pop
a (t) =

∑
b

t∫
−∞

dτ C̃ab(t − τ )G(t, τ )Qb. 4.10b.

To investigate the correlated driving-dissipation effects involved here, we make
use of the following identity,

G(t, τ ) = Gs(t, τ ) − i

t∫
τ

dτ ′G(t, τ ′)Lsf(τ
′)Gs(τ ′, τ ). 4.11.

In particular, we can recast Equation 4.10b as

Q̃pop
a (t) = Q̃a −i

∑
b

t∫
−∞

dτ

t∫
τ

dτ ′C̃ab(t −τ )G(t, τ ′)Lsf(τ
′)Gs(τ ′−τ )Qb, 4.12.

with

Q̃a ≡
∑

b

t∫
−∞

dτ C̃ab(t − τ )e−iLs (t−τ ) Qb =
∑

b

Ĉab(−Ls)Qb. 4.13.
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Here, Ĉab(−Ls) is a reduced Liouville-space operator, defined by the field-free
LiouvillianLs and the causality spectrum Ĉab(ω) of the bath correlation function.
The field-free dissipation in the POP-CS-QDT is therefore characterized by the
time-independentRs , with (cf. Equation 4.10a)

Rsρ(t) ≡
∑

a

[Qa, Q̃aρ(t) − ρ(t)Q̃†
a]. 4.14.

Similarly, the field-free dissipation in the COP-CS-QDT is characterized by the
memory kernel of ϒs(t − τ ), which is defined similarly as Equations 4.9 but with
theG(t, τ ) in Equation 4.9b replaced byGs(t, τ ) = e−iLs ·(t−τ ).

To conclude this subsection, let us make some comments on the non-Markovian
nature of a QDT. Traditionally, a QDT characterized by a time-independentRs

would be classified as Markovian, whereas a QDT characterized by a memory
kernel ϒs(t −τ ) would be classified as non-Markovian. However,Rs and ϒs(t −τ )
are equivalent at the field-free CS-QDT level and both of them can describe colored
noises. In the white-noise limit, the field-free COP assumes

t∫
−∞

dτϒs(t − τ )ρ(τ ) → Rmarρ(t), 4.15.

where

Rmarρ(t) ≡
∑
a,b

[Qa, Ĉab(−Ls){Qbρ(t)}] + H.c. 4.16.

Clearly,Rs 
= Rmar. This implies that classifying theRs-based CS-QDT as Marko-
vian is due to the lack of driving-dissipation cooperativity rather than to the nature
of bath. In fact, non-Markovian nature enters into the reduced equilibrium density
operator ρ

pop
eq of theRs-based CS-QDT, but does not enter into its ϒs(t − τ )-based

counterpart ρcop
eq (cf. Section 4.4).

It is worth mentioning here that in some phenomenological quantum master
equations, the reduced equilibrium state is set to be independent of dissipation,
together with the neglect of correlated driving and dissipation effects. In this case,
the phenomenological QDT would read (55)

ρ̇(t) → −i[H0 + Hsf(t), ρ(t)] −
∑
a,b

{[Qa, {Cab(−L0)Qb}ρ(t)] + H.c.}. 4.17.

Here, H0 = Hs − Hren was given in Equation 4.3, and only the bath spectrum
functions {Cab(ω)} are involved. The effects of bath dispersions {Dab(ω)} are phe-
nomenologically incorporated into the coupling-induced renormalization contri-
bution to the reduced system Hamiltonian. It can easily show that Equation 4.17
assumes the equilibrium state of ρ0

eq ∝ e−β H0 (55). Equation 4.17 recovers Equa-
tion 3.17 in the DBO system. As discussed in Section 3.3, the phenomenological
QDT (Equation 4.17) does amount to a Markovian formulation (cf. Appendix D
of Reference 59).
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4.3. Differential Equations of Motion

With the model bath of Equation 4.2, the COP-CS-QDT and the POP-CS-QDT
presented in Section 4.2 can further be expressed in terms of closed sets of
differential EOM. Let us start with the COP-CS-QDT (Equations 4.7 and 4.9).
We have

Q̃cop
a (t) ≡

m̄∑
m=0

∑
b

νab
m K cop

m,ab(t), 4.18.

where

K cop
m,ab(t) ≡

t∫
−∞

dτ (t − τ )δm0 e−ζ ab
m (t−τ )G(t, τ )[Qbρ(τ )]. 4.19.

Note that ζ ab
0 = ζ ab

1 . The final EOM for COP-CS-QDT read (60)

ρ̇(t) = −iL(t)ρ(t) −
∑
m,a,b

{
νab

m

[
Qa, K cop

m,ab(t)
] + H.c.

}
, 4.20a.

K̇ cop
m,ab(t) = δm0 K cop

1,ab(t) + (1 − δm0)Qbρ(t) − [
iL(t) + ζ ab

m

]
K cop

m,ab(t). 4.20b.

The natural initial conditions to the above coupled set of EOM are

ρ(t0) = ρcop
eq and K cop

m,ab(t0) = (
iLs + ζ ab

m

)−(δm0+1)(
Qbρ

cop
eq

)
. 4.21.

Here, t0 can be any time before the external field acts. The COP reduced thermal
equilibrium density operator ρ

cop
eq will be discussed in Section 4.4.

We now turn to the POP-CS-QDT (Equations 4.8 and 4.10). Let Equation 4.12
be recast as

Q̃pop
a (t) ≡ Q̃a + δ Q̃pop

a (t). 4.22.

Here, δ Q̃pop
a (t) is given by the second term of Equation 4.12, which together with

Equation 4.2 can be expressed as

δ Q̃pop
a (t) =

m̄∑
m=0

∑
b

νab
m K pop

m,ab(t), 4.23.

with (noting that ζ ab
0 = ζ ab

1 )

K pop
m,ab(t) = −i

t∫
−∞

dτ

t∫
τ

dτ ′ (t − τ )δm0 e−ζ ab
m (t−τ )

×G(t, τ ′)Lsf(τ
′)Gs(τ

′ − τ )Qb. 4.24.
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The final EOM for POP-CS-QDT therefore read (60)

ρ̇(t) = −iL(t)ρ(t) − Rsρ(t) −
∑
m,a,b

{
νab

m

[
Qa, K pop

m,ab(t)ρ(t)
] + H.c.

}
, 4.25a.

K̇ pop
m,ab(t) = δm0 K pop

1,ab(t) − [
iL(t) + ζ ab

m

]
K pop

m,ab(t) − i
[
Hsf(t), Q̂ab

m

]
. 4.25b.

HereRs was given by Equation 4.14, and the ordinary operator Q̂ab
m (t) in the

inhomogeneous term in Equation 4.25b is

Q̂ab
m ≡ (

iLs + ζ ab
m

)−(δm0+1)
Qb. 4.26.

Note that the EOM for K pop
m,ab(t) is independent, except for K pop

0,ab(t) that couples
also to K pop

1,ab(t). The initial conditions to Equations 4.25 are ρ(t0) = ρ
pop
eq , which

will be discussed later, and K pop
m,ab(t0) = 0 for m ≥ 0.

4.4. Evaluation of Reduced Canonical States

The reduced canonical equilibrium density operator applies for both the initial
and the asymptotic states before and after the external field excitation. It can be
evaluated via the field-free propagation for long time as ρeq = ρ(t → ±∞).
Alternatively, ρeq can be evaluated via the nondynamical approach by considering
the stationary condition for the field-free version of QDT, which in the POP-CS-
QDT assumes

ρ̇pop
eq = −(iLs + Rs)ρ

pop
eq = 0. 4.27.

The details of evaluation of ρ
pop
eq are presented in Appendix C. Similarly, we have

(cf. Equations 4.7 and 4.9)

ρ̇cop
eq = −(iLs + Rmar)ρ

cop
eq = 0. 4.28.

Here,Rmar describes the white-noise Markovian limit of dissipation (Equation
4.16). Therefore, ρcop

eq is identical to its Markovian counterpart! It is in contrast
with ρ

pop
eq in Equation 4.27, and implies that the time-independentRs does physi-

cally describe certain non-Markovian effects at least on the equilibrium properties.
To demonstrate the points raised above, let us consider the DBO system and

compare ρ
pop
eq and ρ

cop
eq with respect to the exact ρex

eq . Depicted in Figure 1 are the
results of the reduced phase-space variances σqq and σpp as functions of tempera-
ture. Note that both ρex

eq and ρ
pop
eq are Gaussian wave packets in the reduced phase

space (cf. Appendix D); thus they are completely described by the variances shown
in Figure 1 as their 〈q〉eq, 〈p〉eq, and 〈pq + qp〉eq are all zero values. Appendix D
also explicitly shows that both the exact DBO propagator and its POP-CS-QDT
counterpart are Gaussian and preserve positivity. The COP-CS-QDT does not have
these properties. The non-Gaussian ρ

cop
eq (T ) starts to violate the positivity even at

a moderately low temperature, which is kBT/�0 ≈ 0.7 (checked against the un-
certainty principle) in the case under study in Figure 1.
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Figure 1 Equilibrium phase-space variances, σqq and σpp, depicted in the dimensionless
unit for the Brownian oscillator of mass M and frequency �0, as functions of temperature.
Shown are results from the exact formulation (Equation A.1 or Equation A.3), the POP-
CS-QDT (Equations D.4), and the COP-CS-QDT (Equations D.5), with the Drude model
of frictional function γ (t) = γ0ωDe−ωDt , where γ0 = ωD = �0 is used. Note that the exact
results are of (M�0) σ ex

qq (T → ∞) = σ ex
pp(T → ∞)/(M�0) = n̄(�0) + 1

2 , with n̄(ω) =
1/(eβω −1), approaching their friction-free counterparts (not shown) in the high temperature
regime.

To conclude, let us make some remarks on the two forms of CS-QDT presented
in this section. Usually, POP-CS-QDT is superior to COP-CS-QDT owing to its
significantly wider applicability range of parameters for system-bath interactions,
non-Markovian nature, and temperature in all the systems we have studied, either
harmonic or anharmonic (60, 61). For the DBO system where the exact solution is
available, the POP-CS-QDT is always physically well behaved, whereas the COP-
CS-QDT often leads to unphysical results, especially for its long-time dynamics,
including the equilibrium properties. On the other hand, the POP-CS-QDT is
composed of semicoupled nonlinear EOM (Equations 4.25), whereas the COP-
CS-QDT is composed of a set of coupled linear EOM (Equations 4.20). In contrast
with the {K cop

m,ab(t)} (Equation 4.20b), which are auxiliary state operators, the POP-
CS-QDT auxiliary operators {K pop

m,ab(t)} (Equations 4.25) are dynamical variables.
As a result, the evaluation of {K pop

m,ab(t)}, which are often unbounded, with finite
numerical grid may cause certain numerical problems. The main drawback of
POP-CS-QDT is its nonlinearity [cf. the K pop

m,ab(t)ρ(t) terms in Equations 4.25],
which makes it complicated to use, for example, in optical response and optimal
control problems.

5. AN ALTERNATIVE FORMULATION—THE CODDE

We are now in a position to describe an alternative CS-QDT formulation (59–61),
which will be termed correlated driving-dissipation equations (CODDE). Although
it retains the aforementioned merits of POP-CS-QDT, the CODDE are composed
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of a set of coupled linear equations of motion, which is convenient and versatile
for applications (cf. Section 7). Thus, the CODDE constitutes the formulation of
choice among the three nonequivalent CS-QDT.

The CODDE formulation results as a variation of POP-CS-QDT, but it fixes the
drawback of nonlinearity that arises from the field-dressed dissipation and terms
it as (59)

δ Q̃pop
a (t)ρ(t)

= −i
∑

b

t∫
−∞

dτ

t∫
τ

dτ ′C̃ab(t − τ )[G(t, τ ′)Lsf(τ
′)Gs(τ ′ − τ )Qb]ρ(t)

≈ −i
∑

b

t∫
−∞

dτ

t∫
τ

dτ ′C̃ab(t − τ )[G(t, τ ′)Lsf(τ
′)Gs(τ ′ − τ )Qb][G(t, τ ′)ρ(τ ′)]

= −i
∑

b

t∫
−∞

dτ ′
τ ′∫

−∞
dτ C̃ab(t − τ )G(t, τ ′){[Lsf(τ

′)Gs(τ ′ − τ )Qb]ρ(τ ′)}

≡ Q̃codde
a (t). 5.1.

The approximation above leads the POP-CS-QDT to a new form of CS-QDT, i.e.,

ρ̇(t) = −iL(t)ρ(t) − Rsρ(t) −
∑

a

{[
Qa, Q̃codde

a (t)
] + H.c.

}
. 5.2.

This constitutes the intego-differential form of CODDE, which is of the same field-
free dissipationRs as the POP-CS-QDT, but now the field-dressed dissipation is
effectively described by a partially ordered memory kernel. Upon substituting the
parameterized C̃ab(t) (Equation 4.2) and

Q̃codde
a (t) ≡

m̄∑
m=0

∑
b

νab
m ρab

m (t), 5.3.

we obtain (59–61)

ρ̇(t) = −iL(t)ρ(t) − Rsρ(t) −
∑
m,a,b

{
νab

m

[
Qa, ρ

ab
m (t)

] + H.c.
}
, 5.4a.

ρ̇ab
m (t) = δm0ρ

ab
1 (t) − [

iL(t) + ζ ab
m

]
ρab

m (t) − i
[
Hsf(t), Q̂ab

m

]
ρ(t). 5.4b.

Here,Rs and Q̂ab
m were given by Equations 4.14 and 4.26, respectively.

The CODDE formulation of CS-QDT (Equations 5.4) couples between
ρ(t) and a set of auxiliary state operators {ρab

m (t); 0 ≤ m ≤ m̄} that describe the
correlated driving and dissipation. The action of field-free dissipationRs (Equation
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4.14) can be evaluated in terms of the causality spectral function Ĉab(ω) without
invoking the parameterization form of Equation 4.2, which is required only for the
correlated driving-dissipation effects described by the auxiliary operators.

The natural initial conditions for the CODDE (Equations 5.4) are

ρ(t0) = ρeq(T ) = ρpop
eq and ρab

m (t0) = 0; m = 0, 1, · · · , m̄. 5.5.

Here, t0 is chosen at any moment before the external field excitation. The above
initial conditions also serve as the stationary state solution to Equations 5.4 if the
external field contains no continuing-wave component. The CODDE and POP-
CS-QDT share the same thermal equilibrium reduced density operator (Equation
4.27), i.e., (iLs + Rs)ρeq(T ) = 0, together with the normalization condition as
described in Appendix C. The CODDE (Equations 5.4) is also applicable to other
initial conditions that will be illustrated in the coming sections.

6. QUANTUM MECHANICS BASED ON THE CODDE
FORMULATION

To illustrate the Liouville-space algebra in relation to the CODDE dynamics (Equa-
tions 5.4), it is sufficient to consider the single-dissipative-mode case in which the
system-bath coupling contains only one term, −QF(t). The bath correlation func-
tion is parameterized in the form of C̃(t ≥ 0) = ∑

νmtδm0 exp(−ζmt) (cf. Equa-
tion 4.2) for its field-dressed dissipation dynamics. The multiple-dissipation-mode
indexes a and b are omitted hereafter.

6.1. Schrödinger Picture

Let σ (t) be an arbitrary reduced state operator, which can be non-Hermite, and
{σ (±)

m ; m = 0, · · · , m̄} be the auxiliary operators for correlated driving-dissipation
effects. The CODDE (Equations 5.4) now reads

σ̇ (t) = −[iL(t) + Rs]σ (t) −
m̄∑

m=0

[Q, νmσ (−)
m (t) − ν∗

mσ (+)
m (t)], 6.1a.

σ̇ (−)
m (t) = δm0σ

(−)
1 (t) − [iL(t) + ζm]σ (−)

m (t) − i[Hsf(t), Q̂m]σ (t), 6.1b.

σ̇ (+)
m (t) = δm0σ

(+)
1 (t) − [iL(t) + ζ ∗

m]σ (+)
m (t) − iσ (t)[Hsf(t), Q̂†

m]. 6.1c.

For the normal case where Hsf(t) and σ (t) are Hermite, and [σ (+)
m (t)]† = σ (−)

m (t),
Equations 6.1 become equivalent to Equations 5.4. In fact, they share the same
CODDE dynamic generator and propagator. In general, the initial time t0 and initial
values for Equations 6.1 are to be specified depending on applications.

In Equations 6.1, Q̂m = (iLs + ζm)−(δm0 + 1) Q was defined in Equation 4.26,
while the Liouville-space operators,L(t) andRs were given respectively by
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Equations 4.4 and 4.14 for their left-actions on an arbitrary operator, i.e.,

L(t)A ≡ [H (t), A], Rs A ≡ [Q, Q̃ A − AQ̃†]. 6.2.

For later use, we shall also define the right-action of a superoperatorO via the
identity of Tr[(AO)B] = Tr[A(OB)]. The right-actions equivalent to Equation
6.2 are therefore

AL(t) = [A, H (t)], ARs = [A, Q]Q̃ − Q̃†[A, Q]. 6.3.

Clearly, the CODDE dynamics (Equations 6.1) can be numerically implemented at
matrix level without invoking tensor manipulation. Particularly in the Hs-eigenstate
representation, Q̃uv = Ĉ(−ωuv)Quv , and Q̂uv

m = Quv/(iωuv + ζm)δm0+1 (cf. Equa-
tions 4.13 and 4.26), where ωuv ≡ εu − εv are the transition frequencies between
the Hs-eigenstates. The tensor-free implementation of the CODDE thus follows
immediately.

6.2. Related Linear-Space Algebra

For the algebraic construction, let us denote ({m = 0, 1, · · · , m̄} be implied
hereafter)

σ(t) ≡ {σ (t), σ (−)
m (t), σ (+)

m (t)} 6.4.

as a vector of 1 + 2(m̄ + 1) elements, and recast Equations 6.1 as

σ̇(t) = −Λ̂(t)σ(t) ≡ −[Λ̂s + Λ̂sf(t)]σ(t). 6.5.

The CODDE-space propagator Ĝ(t, τ ) is then defined via the formal solution to
Equation 6.5,

σ(t) ≡ Ĝ(t, τ )σ(τ ); with t ≥ τ. 6.6.

It is easy to show that

∂Ĝ(t, τ )/∂t = −Λ̂(t)Ĝ(t, τ ), ∂Ĝ(t, τ )/∂τ = Ĝ(t, τ )Λ̂(τ ), 6.7a.

Ĝ(τ2, τ0) = Ĝ(τ2, τ1)Ĝ(τ1, τ0), with τ2 ≥ τ1 ≥ τ0. 6.7b.

The field-free propagator is given by Ĝs(t, τ ) = Ĝs(t − τ ),

Ĝs(t) ≡ exp(−Λ̂st), 6.8.

with the time-independent field-free generator Λ̂s.
We shall hereafter refer to the linear space defined by Equation 6.5 (or Equations

6.1) as the CODDE space. Its element can be time-dependent and is defined as

A ≡ {A, A(−)
m , A(+)

m }, 6.9.

where A relates to an ordinary dynamical or state variable, while {A(−)
m , A(+)

m } are a
set of auxiliary components (cf. Equation 6.4). The CODDE-space scalar product
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can then be defined in the tetradic notation as (103)

〈〈A|B〉〉 ≡ 〈〈A|B〉〉 +
∑

m

〈〈A(−)
m |B(−)

m 〉〉 +
∑

m

〈〈A(+)
m |B(+)

m 〉〉. 6.10.

Here, 〈〈A|B〉〉 ≡ Tr(A† B), and so on. The propagator Ĝ(t, τ ) and its generator Λ̂(t)
are examples of the CODDE-space operators.

The left-actions of Λ̂(t) and its field-free Λ̂s and field-dressed Λ̂sf(t) counter-
parts are all specified via Equation 6.5 with Equations 6.1. Their right-actions can
then be equivalently defined following the derivations presented in Appendix E.
In particular, we have

Λ̂sf(t)A = i[Hsf(t), A] + {0, i[Hsf(t), Q̂m]A, i A[Hsf(t), Q̂†
m]}, 6.11a

AΛ̂sf(t) = i[A, Hsf(t)] +
{

i
∑

m

([Hsf, Q̂†
m]A(−)

m + A(+)
m [Hsf, Q̂m]), 0, 0

}
.

6.11b

6.3. Heisenberg Picture

We are now in a position to define the Heisenberg picture, for example, via the
field-free generator Λ̂s,

〈〈A(t)| ≡ 〈〈A| exp(−Λ̂st), 6.12.

or equivalently

A(t) ≡ A(0) exp(−Λ̂st). 6.13.

Here

A(0) ≡ {A, 0, 0}, 6.14.

where A is an ordinary dynamic variable that can be non-Hermitian. The Heisen-
berg equation of motion in the CODDE space is then

Ȧ(t) = −A(t)Λ̂s, 6.15.

which is equivalent to (cf. Appendix E)

Ȧ(t) = −A(t)(iLs + Rs), 6.16a.

Ȧ(−)
m (t) = δm1 A(−)

0 (t) − A(−)
m (t)(iLs + ζ ∗

m) + ν∗
m[A(t), Q], 6.16b.

Ȧ(+)
m (t) = δm1 A(+)

0 (t) − A(+)
m (t)(iLs + ζm) − νm[A(t), Q]. 6.16c.

The right-actions ofLs andRs were given by Equation 6.3. Clearly, A(t) = A†(t)
and A(±)

m (t) = A(∓)†
m (t) if they were Hermitian conjugate initially. Note that the

established Heisenberg picture here is closely related, but not identical, to the
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backward propagation (cf. Equations 7.14 or 7.15) in the CODDE space. The
latter will be discussed in relation to optimal control (cf. Section 7.2).

It is interesting to compare the Heisenberg dynamics of A(t) = {A(t), A(−)
m (t),

A(+)
m (t)}, to its corresponding Schrödinger dynamics ofσ(t) = {σ (t), σ (−)

m (t),
σ (+)

m (t)}. The former is described by Equations 6.16 and the latter by Equations 6.1
by setting Hsf(t) = 0. The field-free propagation ofσ(t) is characterized by σ̇ (t),
which depends on σ (±)

m (t), but σ̇ (±)
m (t) does not depend on σ (t). The Heisenberg

dynamics of A(t) in Equations 6.16 are opposite.

7. APPLICATIONS

7.1. Reduced Linear Response Theory

Consider the measurement on a dynamical variable A via a classical weak probe
field εpr(t) that couples with the system by Hpr(t) = −Bεpr(t). Both A and B are
Hermite operators in the reduced system subspace. The weak probe-induced vari-
ation of the expectation value Ā(t) is then given by

δ Ā(t) = tr[A δρ(t)] = 〈〈A(0)|δρ(t)〉〉. 7.1.

Here, A(0) and δρ(t) denote the CODDE-space extensions of the dynamical
variable A and the probe-induced reduced density operator change δρ(t) (cf. Equa-
tions 6.4 and 6.14). By applying the standard first-order perturbation theory to
Equation 6.5, we obtain

δ Ā(t) = i

t∫
−∞

dτ 〈〈A(0)|Ĝ(t, τ )B̂|ρ(τ )〉〉εpr(τ ). 7.2.

Here, B̂ ≡ iΛ̂pr(t)/εpr(t), i.e., (cf. Equation 6.11a)

B̂ρ = [B,ρ] + {0, [B, Q̂m]ρ, ρ[B, Q̂†
m]}. 7.3.

The above formulation is valid whether there is a pump field or not. In the absence of
pump excitation,ρ(τ ) and Ĝ(t, τ ) in Equation 7.2 assume the thermal equilibrium
stateρeq(T ) ≡ {ρeq(T ), 0, 0} and the field-free propagator Ĝs(t − τ ) of Equation
6.8. In this case, Equation 7.2 assumes the conventional linear response theory
(Equation 2.1), where the response function is now evaluated as

χAB(t) = i〈〈A(0)|exp(−Λ̂st)B̂|ρeq(T )〉〉. 7.4.

The nonlinear response formulations can also be readily constructed in terms of
CODDE dynamics.

In the Schrödinger picture, the above equation reads as χAB(t)=〈〈A(0)|σ(t)〉〉 =
tr[Aσ (t)] (cf. Equation 6.14). Hereσ(t) = exp(−Λ̂st)σ(0) = {σ (t), σ (−)

m (t),
σ (+)

m (t)} is governed by Equations 6.1 with Hsf(t) = 0. The initially prepared
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reduced state isσ(0) = iB̂ρeq(T ) (cf. Equation 7.3), which contains the non-
vanished σ (±)

m (0) to incorporate the correlated driving-dissipation effects on σ (t ≥
0). Note that for a Hermitian B, we have σ (t) = σ †(t) and σ (+)

m (t) = [σ (−)
m (t)]†.

In the Heisenberg picture, Equation 7.4 reads as χAB(t) = i〈〈A(t)|B̂|ρeq(T )〉〉,
in which A(t), with the initial condition of Equation 6.14, is governed by Equations
6.16. For a Hermitian A, we have A(t) = A†(t), A(−)

m (t) = [A(+)
m (t)]†, and thus

χAB(t) = i〈[A(t), B(0)]〉 + i
∑

m

〈A†
m(t)[B(0), Q̂m] + [B(0), Q̂†

m]Am(t)〉. 7.5.

Here, Am ≡ A(−)
m and 〈O〉 ≡ tr[Oρeq(T )]. Clearly, χAB(t) of Equation 7.5 is real.

The first term in the right-hand-side of Equation 7.5 resembles the definition of
the response function (Equation 2.2), but is now evaluated in the reduced system
subspace, rather than the total space, of composite material. The second term in
Equation 7.5 makes up the discrepancy, up to the second order in the system-bath
coupling, via the correlated driving and dissipation contribution.

The correlation function in terms of the CODDE-space dynamics can be ob-
tained as

C̃AB(t) = 〈〈A(0)|exp(−Λ̂st) �B|ρeq(T )〉〉, 7.6.

with

�Bρeq(T ) = {Bρeq, [B, Q̂m]ρeq, 0}. 7.7.

Again, Equation 7.6 can be implemented in either the Schrödinger or the Heisen-
berg picture. In the latter case, Equation 7.6 assumes

C̃AB(t) = 〈A(t)B(0)〉 +
∑

m

〈A†
m(t)[B(0), Q̂m]〉. 7.8.

Clearly, we have χAB(t) = i[C̃AB(t) − C̃∗
AB(t)] as required. Again, the second term

in the right-hand-side of Equation 7.8, arising from the correlated driving and
dissipation, makes up the difference, up to second order, between the reduced and
the complete descriptions.

Note that the above formulations for correlation and response functions are
valid for t ≥ 0. Their values at t < 0 can be obtained via the symmetry relations
of Equations 2.6 and 2.3, respectively. Where the CS-QDT theory is concerned,
the response and correlation functions presented here satisfy the FDT (Equation
2.16) up to the second order of system-bath interaction.

7.2. Optimal Control Theory

In a control problem, an optimal field ε(t) is needed to drive the reduced system to
have minimal deviation from a desired target ρtar at a specified time t f . To formulate
the control problem, let us start with the control discrepancy operator (61),

A ≡ ρ(t f ) − ρtar. 7.9.
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The control objective is set to minimize the discrepancy,

trA2 = trρ2(t f ) + trρ2
tar − 2 tr [ρtarρ(t f )], 7.10.

under certain penalties or constraints (104, 105). Consider here the simplest penalty
might be that the incident energy of the control field is minimal in balance with
meeting the control objective. In this case, we arrive at the following control
equation for the optimal field (61),

〈〈A(t ; t f )|iD̂|ρ(t)〉〉 = −λε(t), with t0 ≤ t ≤ t f . 7.11.

Here, λ > 0 is a weight factor to enforce the energy constraint, and D̂ is the
CODDE extension of the dipole commutator (cf. Equation 6.11a),

D̂ρ(t) = [µ,ρ(t)] + {0, [µ, Q̂m]ρ(t), ρ(t)[µ, Q̂†
m]}. 7.12.

In Equation 7.11, A(t ; t f ) is the backward-propagated CODDE-space target,

A(t ; t f ) ≡ AĜ(t f , t), with A(t f ; t f ) ≡ A ≡ {A, 0, 0}. 7.13.

Using the second identity in Equation 6.7a, we have

Ȧ(t ; t f ) = A(t ; t f )Λ̂(t), 7.14.

which is equivalent to (cf. Appendix E)

Ȧ(t ; t f ) = i
∑

m

{[Hsf(t), Q̂†
m]A(−)

m (t ; t f ) + A(+)
m (t ; t f )[Hsf(t), Q̂m]}

+ A(t ; t f )[iL(t) + Rs], 7.15a.

Ȧ(−)
m (t ; t f ) = A(−)

m (t ; t f )[iL(t) + ζ ∗
m] − ν∗

m[A(t ; t f ), Q] − δm1 A(−)
0 (t ; t f ), 7.15b.

Ȧ(+)
m (t ; t f ) = A(+)

m (t ; t f )[iL(t) + ζm] + νm[A(t ; t f ), Q] − δm1 A(+)
0 (t ; t f ). 7.15c.

In other words, Equations 7.15 define the right-action of the CODDE generator Λ̂(t)
in the backward propagation of Equation 7.14.

We note that the Heisenberg equation of motion (Equation 6.15) is also defined
via the right-action with the time-independent field-free generator Λ̂s . However,
the Heisenberg equation of motion is intrinsically a forward-propagation, arising
from the field-free variation of the first identity of Equation 6.7a, i.e., ∂Ĝs(t, τ )/
∂t = −Λ̂sĜs(t, τ ). As Ĝs(t, τ ) ≡ Ĝs(t − τ ) and Λ̂sĜs(t) = Ĝs(t)Λ̂s , we have
thus ∂Ĝs(t)/∂t = −Ĝs(t)Λ̂s . It is this variation of forward-propagation that con-
stitutes the Heisenberg equation of motion in Equation 6.15.

In contrast, the backward-propagation in Equation 7.14 arises from the second
identity of Equation 6.7a, where the derivative is taken with respect to the early
time of the two in the propagator. Therefore, the evaluation of the control kernel in
the left-hand-side of Equation 7.11 involves the forward propagation ofρ(t) from
the initial time t0 withρ(t0) = ρeq(T ) ≡ {ρeq(T ), 0, 0}, and backward propagation
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of A(t ; t f ) from the final time t f with the A(t f ; t f ) in Equation 7.13. Both propa-
gations are governed by the control field-dressed generator Λ̂(t). In principle, the
forward and the backward propagations can be performed independently. How-
ever, the control equation (Equation 7.11) shall be solved in an iterative manner for
the control field. To improve the numerical convergency, these two propagations
may need to be carried out alternatively in iteration (61, 106, 107).

8. CONCLUDING REMARKS

An exact QDT may be constructed for arbitrary systems via, for example, stochastic
system-bath decoupling methods (93, 94). However, the resulting hierarchical
formulation is rather complicated, even when the bath correlation function is set
to be of a single complex exponential term (62, 63, 93). If C(t) = νe−ζ t were real,
the resulting hierarchical QDT would be simplified as ρ̇(n) = −inν[Q, ρ(n−1)] −
(iL+nζ )ρ(n) − i[Q, ρ(n+1)], where the auxiliary operator ρ(n); n ≥ 1 accounts for
the effects of the 2n-order system-bath coupling on ρ ≡ ρ(0). The COP-CS-QDT
(Equations 4.20) sets all ρ(n≥2) = 0 in this type of hierarchical construction with
general forms of bath correlation function. However, a satisfactory CS-QDT should
go beyond this simple truncation scheme to meet some basic physical requirements
at least in the simplest system as demonstrated in Section 4.4.

The CODDE theory presented in the final three sections is the choice of CS-
QDT formulation by far. The CODDE (Equations 5.4 or 6.1) is a variation of the
cumulant resum scheme to partially account for higher order contributions on the
reduced dynamics including the reduced canonical states. The involving auxiliary
operators {ρm} or {σ (±)

m } are of the same number for the terms in the exponential
series for bath correlation function (Equation 4.2). They account for the correlated
driving-dissipation effects, which are usually nonnegligible for a non-Markovian
bath, even in the calculation of field-free correlation/response functions.
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APPENDIX

A. EQUILIBRIUM PHASE-SPACE VARIANCES

The FDT of Equation 2.16 can be directly exploited to establish the general ex-
pressions for the thermal equilibrium values of σ

eq
qq ≡ 〈q2〉 − 〈q〉2 and σ

eq
pp ≡

〈p2〉 − 〈p〉2 in terms of the response function χqq (t) or its causality Fourier
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transform χ̂qq (ω). Here, q and p = Mq̇ denote the Cartesian coordinate and mo-
mentum of an arbitrary reduced degree of freedom, respectively. Thus, σ eq

qq =
C̃qq (0) and σ

eq
pp = −M2 ¨̃Cqq (0). The latter is obtained by using Equation 2.5, which

gives also σ
eq
pq = 〈qp + pq〉/2 = 0. The FDT (Equation 2.16) leads immediately

to the expressions of the phase-space variances

σ eq
qq = 1

π
Im

∞∫
−∞

dω
χ̂qq (ω)

1 − e−βω
, σ eq

pp = M2

π
Im

∞∫
−∞

dω
ω2χ̂qq (ω)

1 − e−βω
. A.1.

Note that χ̂qq (z) is an analytical function in the upper plane (Imz > 0). Equation
A.1 can then be recast in terms of contour integrations. The involving poles can
be readily identified via the following Laurent expansion expression,

1

1 − e−βω
= 1

2
+ 1

βω
+ 2

β

∞∑
n=1

ω

ω2 + � 2
n

. A.2.

Here, �n ≡ 2πn/β is the Matsubara frequency. In derivation, we also make use
of the properties where χqq (t) is real with χqq (0) = 0 and χ̇qq (0) = 1/M , while
real functions χ̂ (+)

qq (ω) and χ̂ (−)
qq (ω) are symmetric and antisymmetric, respectively

(cf. Section 2.2). After some elementary algebra, we finally arrive at the following
alternative expressions equivalent to Equation A.1 for the phase-space variances:

σ eq
qq = 1

β

∞∑
n=−∞

χ̂qq (i |�n|), σ eq
pp = M

β

∞∑
n=−∞

[
1 − M� 2

n χ̂qq (i |�n|)
]
. A.3.

Note that the above expressions were traditionally presented only for the harmonic
Brownian oscillator systems (37). The general equivalence between Equation A.1
and Equation A.3 including anharmonic systems is proved via the principles in
quantum mechanics (60).

B. PARAMETERIZATION OF BATH CORRELATION
FUNCTIONS

The extended Meier-Tannor parameterization scheme to the exponential series
of C̃ab(t) (Equation 4.2) starts with the following form of interaction bath spectral
density functions (57, 60, 61):

Jab(ω) =
k̄∑

k=0

ηab
k ω + i η̄ab

k ω2

|ω2 − (
ωab

k + iγ ab
k

)2|2
, with ωab

0 ≡ 0. B.1.

The parameters here are all real (ωab
k 
=0 and γ ab

k are positive as well) and satisfy
the symmetry relations of (ωba

k , γ ba
k , ηba

k , η̄ba
k ) = (ωab

k , γ ab
k , ηab

k , −η̄ab
k ), along with

η̄aa
k = 0. Thus, Equation B.1 meets the required symmetry relations, Jab(ω) =

−Jba(−ω) = J ∗
ba(ω), with Jab(0) = 0, for the interaction bath spectral density
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functions. In comparison with the original Meier-Tannor formulation (57), Equa-
tion B.1 extends to a 
= b cases and also includes ωab

0 = 0 to improve the quality
of parameterization. Note that Equation B.1 results in the frictional functions of
(cf. Equation 2.21)

γab(t ≥ 0) =
[

ηab
0

(γ ab
0 )2

+
(

ηab
0

γ ab
0

+ η̄ab
0

)
t

]
e−γ ab

0 t

2γ ab
0

+ 2 Re
k̄∑

k=1

αab
k eizab

k t

zab
k

, B.2.

where

zab
k ≡ ωab

k + iγ ab
k and αab

k ≡ ηab
k − i η̄ab

k zab
k

4ωab
k γ ab

k

, for k > 0. B.3.

The bath correlation function can now be obtained by using the FDT in Equation
2.20 and the contour integration algorithm, which can be easily carried out via
Equation A.2. We have

C̃ab(t ≥ 0) = νab
0 te−γ ab

0 t + νab
1 e−γ ab

0 t

+
k̄∑

k=1

[
αab

k

eβzab
k − 1

eizab
k t +

(
αab

k

)∗

1 − e−β(zab
k )∗ e−i(zab

k )∗
t

]

− 2

β

∞∑
n=1

J̃ab(�n)e−�n t , B.4.

with

νab
0 ≡ ηab

0 /γ ab
0 + η̄ab

0

2i(1 − eiβγ ab
0 )

, B.5a.

νab
1 ≡ β

(
ηab

0 /γ ab
0 + η̄ab

0

)
2|1 − eiβγ ab

0 |2 + i η̄ab
0 /γ ab

0

2(1 − eiβγ ab
0 )

, B.5b.

and

J̃ab(ω) ≡ i Jab(−iω) =
k̄∑

k=0

ηab
k ω + η̄ab

k ω2∣∣ω2 + (
ωab

k + iγ ab
k

)2∣∣2 . B.6.

Note that J̃ab(ω) is a real function, which is involved in Equation B.4 because of
its values at the Matsubara frequencies �n ≡ 2πn/β. Equation B.4 assumes the
form of Equation 4.2. The involving parameters, {νab

m , ζ ab
m ; m = 0, · · · , m̄}, with m̄

being determined via numerical convergence, are now all specified. The first two
terms (with coefficients νab

0 and νab
1 and decaying exponents ζ ab

0 ≡ ζ ab
1 = γ ab

0 ) in
Equations B.4 or 4.2 arise from the ωab

k=0 ≡ 0 term in Equation B.1.
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C. EVALUATION OF REDUCED CANONICAL DENSITY
MATRIX

In a given Hilbert-space representation {|u〉; u = 0, · · · , N − 1}, Equation 4.27
consists of N 2 equations,

ρ̇eq
uv = −

∑
u′v′

(
iLs

uv,u′v′ + Rs
uv,u′v′

)
ρ

eq
u′v′ = 0. C.1.

Here, ρeq
uv ≡ 〈u|ρpop

eq |v〉. The tensor elements in Equation C.1 are given by (cf.
Equations 4.4 and 4.14)

Ls
uv,u′v′ = H s

uu′δv′v − H s
v′vδuu′ , C.2a.

Rs
uv,u′v′ =

∑
a

[
(Qa Q̃a)uu′δv′v + (Qa Q̃a)∗vv′δuu′ − Qa

v′v Q̃a
uu′ − Qa

uu′ Q̃a∗
vv′

]
.

C.2b.

Here, Q̃a
uv ≡ 〈u|Q̃a|v〉, which can be evaluated as follows (cf. Equation 4.13).

Let Hs|ū〉 ≡ εū |ū〉 and ωūv̄ ≡ (εū − εv̄). We then haveLs
ūv̄,ū′v̄′ = ωūv̄δūū′δv̄v̄′

(cf. Equation C.2a), and (where Sūu ≡ 〈ū|u〉)

Q̃a
uv =

∑
b

∑
ūv̄

S∗
ūuĈab(−ωūv̄)Qb

ūv̄ Sv̄v. C.3.

It is easy to show that
∑

u Ls
uu,u′v′ = ∑

u Rs
uu,u′v′ = 0. Therefore, the N 2 equa-

tions in Equation C.1 are not independent; they are subject to
∑

u ρ
eq
uu = 1. By

using this normalization condition to replace a diagonal one in Equation C.1 (for
example, ρ̇eq

00 = 0), we obtain a set of N 2 independent linear equations (cf. Equation
C.4) that uniquely determine ρeq in the specified Hilbert-space representation (60,
61). For systems involving degenerate states, Equation C.1 can further incorpo-
rate relevant conditions for evaluating ρeq unambiguously. To write the normalized
Equation C.1 explicitly in terms of ordinary linear equations, we may rearrange
the tensor �s

uv,u′v′ ≡ iLs
uv,u′v′ + Rs

uv,u′v′ and matrix ρ
eq
uv into the matrix �s

αα′ and
vector ρ

eq
α , respectively. Here, α = uN + v. We then have

N 2−1∑
α′=0

�s
αα′ρ

eq
α′ = 0, for α 
= 0, C.4a.

N−1∑
u=0

ρ
eq
uN+u = 1. C.4b.

These N 2 equations uniquely determine the ρ
pop
eq of POP-CS-QDT.
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D. RESULTS OF PERTURBATIVE THEORIES ON
DRIVEN BROWNIAN OSCILLATOR SYSTEMS

Let us start with the exact QDT for the DBO system described in Section 3.1,
i.e, Equation 3.10, which can be recast as

ρ̇(t) = −i[H (t) − qδε(t), ρ(t)] − Rex
s ρ(t), D.1.

where δε(t) is given by the last term in Equation 3.12a, and

Rex
s ρ = i

2
M

(
�̃2 − �2

H

)
[q2, ρ] + i

2
γ̃ [q, {p, ρ(t)}] + γ̃ σ eq

pp[q, [q, ρ(t)]]

+ (
σ eq

pp/M − M�̃2σ eq
qq

)
[q, [p, ρ(t)]]. D.2.

By using the boson algebra, one can also easily obtain the POP-CS-QDT (Equa-
tion 4.8 with Equations 4.10a, 4.12, and 4.14) for the DBO system, which is of the
same expression as Equation D.1, but replacingRex

s , we have (59, 60)

Rsρ(t) = iκ ′′
+[q2, ρ(t)] + i

κ ′
−

M�H
[q, {p, ρ(t)}] + κ ′

+[q, [q, ρ(t)]]

− κ ′′
−

M�H
[q, [p, ρ(t)]]. D.3.

Here, κ± ≡ M
2 [Ĉ(�H) ± Ĉ(−�H)] ≡ κ ′

± + iκ ′′
±. Also note that the local field

correction δε(t) is now characterized by χε(t) ≡ ∫ ∞
0 dτ cos(�Hτ )γ (t + τ ), in

comparison with the exact χ ex
ε (t), which was given by Equation 3.12b in terms

of χ ex
ε (t, τ ) = χ ex

ε (t − τ ). The comparison between each individual term in Equa-
tion D.2 and their counterparts in Equation D.3 results therefore in four relations
for the POP-CS-QDT counterparts of �̃, γ̃ , σ eq

qq , and σ
eq
pp. In particular, the latter

two are

σ pop
qq (T ) = �2

H coth(β�H/2) + D−(�H)

2M�H
[
�2

H + D+(�H)
] , D.4a.

σ pop
pp (T ) = 1

2
M�H coth(β�H/2). D.4b.

Here, D±(�H) ≡ D(�H) ± D(−�H). Note that σ pop
pp is the same as its dissipation-

free value of the Hs-system. Obviously, the POP-CS-QDT preserves the Gaussian
property.

In contrast, the COP-CS-QDT propagator results in a non-Gaussian ρcop(t),
despite the fact that it has the exact first moments. The non-Gaussian ρ

cop
eq (Equation

4.28) can be found to have

σ cop
qq (T ) = coth(β�H/2)

2M�H
, D.5a.
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σ cop
pp (T ) =

[
1

2
M�H + M

2�H
D+(�H)

]
coth(β�H/2) − M

2�H
D−(�H). D.5b.

E. ABOUT THE RIGHT ACTION OF CODDE GENERATOR

Let 〈〈Ã| ≡ 〈〈A|Λ̂, |B̃〉〉 ≡ Λ̂|B〉〉 and 〈〈Ã|B〉〉 ≡ 〈〈A|B̃〉〉 define the relationship
between the left and right actions of Λ̂. Given that

ζ (+)∗
m ≡ ζ (−)

m ≡ ζm and ν(+)∗
m ≡ ν(−)

m ≡ νm, E.1.

the action of Λ̂ to the right, where B̃ = Λ̂B, is obtained by Equations 6.1 as

B̃ = (iL + Rs)B +
∑

m

[Q, ν(−)
m B(−)

m − ν(+)
m B(+)

m ], E.2a.

B̃(−)
m = −δm0 B(−)

1 + [iL + ζ (−)
m ]B(−)

m + i[Hsf, Q̂m]B, E.2b.

B̃(+)
m = −δm0 B(+)

1 + [iL + ζ (+)
m ]B(+)

m + i B[Hsf, Q̂†
m]. E.2c.

The involving terms in 〈〈A|B̃〉〉 are therefore (cf. Equation 6.10)

〈〈A|B̃〉〉 = 〈〈A|iL + Rs|B〉〉 +
∑

m

〈〈A|[Q, ν(−)
m B(−)

m − ν(+)
m B(+)

m ]〉〉, E.3a.

〈〈A(−)
m |B̃(−)

m 〉〉 = −δm0〈〈A(−)
m |B(−)

1 〉〉 + 〈〈A(−)
m |iL + ζ (−)

m |B(−)
m 〉〉

+ i〈〈A(−)
m |[Hsf, Q̂m]B〉〉, E.3b.

〈〈A(+)
m |B̃(+)

m 〉〉 = −δm0〈〈A(+)
m |B(+)

1 〉〉 + 〈〈A(+)
m |iL + ζ (+)

m |B(+)
m 〉〉

+ i〈〈A(+)
m |B[Hsf, Q̂†

m]〉〉. E.3c.

Now using the identity 〈〈Ã|B〉〉 = 〈〈A|B̃〉〉, we have

〈〈 Ã|B〉〉 = 〈〈A|iL + Rs|B〉〉
− i

∑
m

{〈〈[Hsf, Q̂†
m]A(−)

m |B〉〉 + 〈〈A(+)
m [Hsf, Q̂m]|B〉〉}, E.4a.

〈〈 Ã(±)
m |B(±)

m 〉〉 = −δm1〈〈A(±)
0 |B(±)

m 〉〉 + 〈〈A(±)
m |iL + ζ (±)

m |B(±)
m 〉〉

∓ ν(±)
m 〈〈A|[Q, B(±)

m ]〉〉. E.4b.

Let us first consider Equation E.4a. By using the identity,

〈〈A|O|B〉〉 ≡ Tr[A†(OB)] = Tr[(A†O)B], E.5.

together with Equation 6.3, we have
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{A†(iL + Rs)}† = {i[A†, H ] + [A†, Q]Q̃ − Q̃†[A†, Q]}†

= i[A, H ] − Q̃†[A, Q] + [A, Q]Q̃

= A(iL + Rs). E.6.

We thus obtain

Ã = A(iL + Rs) + i
∑

m

{[Hsf, Q̂†
m]A(−)

m + A(+)
m [Hsf, Q̂m]}. E.7a.

Similarly, Equation E.4b gives us

Ã(±)
m = −δm1 A(±)

0 + A(±)
m

(
iL + ζ (∓)

m

) ± ν(∓)
m [A, Q]. E.7b.
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