
Chapter 5
Basics of Stochastic Thermodynamics

Stochastic thermodynamics is a discipline exhibiting a rapid development over the
past two decades. The progress is driven by many applications to small (nano-sized)
systems of current interest (such as individual Brownian particles, biomolecules,
quantum dots) and, from the theoretical point of view, by recent discoveries of rather
general relations called fluctuation theorems. The adjective “stochastic” in the name
of the field means that the dynamics of the system under consideration is governed
by stochastic evolution equations, which in our case is the Langevin equation. The
key quantities of the classical thermodynamics such as heat, work and entropy are
(within the framework of the stochastic thermodynamics) defined along individual
trajectories of the system. Thus defined quantities are valid for finite, and even small
systemswhich are driven arbitrarily far from equilibrium, in contrast to their classical
counterparts which are used for macroscopic systems in equilibrium (or in a linear-
response regime).

The main aim of the present chapter is to introduce basic concepts and rela-
tions which are necessary for the study presented in Chap. 6. First, we identify the
work and the heat for the system whose dynamics obeys the Langevin equation
(Sect. 5.1), second we introduce two fluctuation theorems which proved to be useful
in experiments (Sect. 5.2), and third, we provide references to several reviews and
to just a few selected original works in the field (Sect. 5.3).

5.1 Definition of Stochastic Work and Heat

Nonequilibriumprocesses in biology andnanosystems are generally strongly affected
by thermal fluctuations. A paradigmatic model for gaining a better understanding of
nonequilibriumprocesses in such systems is a colloidal particle diffusing inwater and
driven by an externally controlled potential. In the overdamped regime (characterized
by low Reynolds numbers) the position of the particle evolves according to the
Langevin equation
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dX(t) = F(X(t), t)dt + √
2D dB(t), (5.1)

where D controls the strength of the thermal noise and B(t) is the standard Wiener
process. Specifically, in the present case of a thermal environment, the noise strength
is proportional to the heat-bath temperature, D = kBT (the particle mobility is set
to one). The external force, F(x, t), is derived from the potential U (x, t), F(x, t) =
−∂U/∂x , which represents, e.g., the confinement imposed by an optical trap.

If the potential ismodulated in time following a given externally imposed protocol,
the position of the particle evolves along a stochastic trajectory. Any single trajectory
of the particle in the time interval [0, t] yields a single value of the work W(t) done
on the particle by an external filed. The work W(t) is a functional of the position
process X(t ′), 0 ≤ t ′ ≤ t , and it is distributed with a probability density function
p(w, t). The probability p(w, t)dw that the work W(t) falls into an infinitesimal
interval (w,w + dw) equals the probabilistic weight of all trajectories giving work
values in that interval. Analogical reasoning holds true for the heat exchanged with
the heat reservoir, Q(t).

The stochastic heat and work are identified with the aid of the first law of thermo-
dynamics. In the overdamped regime which we consider here, the “internal energy”
of the particle is given by itsmean potential energy 〈U (X(t), t)〉. The total differential
of the potential energy

dU =
(

∂U

∂x

)
t

dx +
(

∂U

∂t

)
x

dt (5.2)

is decomposed into two parts. If we substitute into the above expression the (random)
position of the particle at time t , x → X(t), the following interpretation emerges [1,
2]. The first term on the right-hand side describes the infinitesimal increment of the
potential energy due to the particle relaxation in the time-independent potential. We
identify this term with the heat accepted by the system from heat bath:

δQ(t) = −F(X(t), t)dX(t). (5.3)

This relation is physically plausible since in the overdamped regime the totalmechan-
ical force times the displacement corresponds to dissipated energy. The minus sign
corresponds to the convention that the heat transferred into the system is positive.

The second term on the right-hand side of Eq. (5.2) describes the increment of
the potential energy due to the time-variation of the potential while the particle
position is held constant. In this case, the potential energy of the particle is either
raised or lowered purely due to the externally controlled modulation of potential U .
Correspondingly, this term describes as the work performed on the particle:

δW(t) =
(

∂U

∂t

)
X(t)

dt, (5.4)

and hence altogether we have
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dU (X(t), t) = δQ(t) + δW(t). (5.5)

The above definition of the stochastic work is in agreement with the definition
of “thermodynamic work” used in equilibrium theory [3]. However, the definition
is not identical to that used in introductory courses of classical mechanics, where to
“work = force times displacement”.1 For the discussion of (un)ambiguity of the
definition used see Refs. [4–7] and references therein. See also Refs. [8, 9] for
implications of different work definitions in context of fluctuation relations.

5.2 Crooks Fluctuation Theorem and Jarzynski Equality

Many important processes in biophysics take place in the liquid environmentwhich is
maintained at a constant temperature. In classical thermodynamics, workw required
to transfer the system from the specified initial equilibrium state i to the specified final
equilibrium state f by the means of an isothermal process is equal to the increase
of the system’s free energy �F , �F = Ff − Fi , only if the process is carried out
quasistatically. That is the variation of the external parameters must be so slow that
the system is at any instant in the state of thermodynamic equilibrium with the heat
bath (the environment). Theoretically such a process would take an infinite time.
Contrary to this, any finite-time process is accompanied by the dissipation and the
required work fulfills w ≥ �F . The extra amount of work performed on the system
during the nonequilibrium process as compared to the equilibrium one is dissipated
as heat which is accepted by the heat bath. The Crooks fluctuation theorem [10, 11]
states something remarkable. Consider the process i → f , carried out at an arbitrary
rate. At the initial state i the system resides in a thermal equilibrium and the external
potential is equal to U (x, 0). Afterwards, in a finite time interval [0, t], the potential
is varied according to a given (forward) protocol U (x, τ ), τ ∈ [0, t]. Then the PDF
of the work performed on the particle during the described nonequilibrium process
fulfills

p(w, t)

pR(−w, t)
= exp[β(w − �F)] , (5.6)

where 1/β = kBT is the thermal energy, and pR(w, t) stands for the PDF of the work
performed on the particle during the reversed process: the process that departs from
the equilibrium state f (in this state the potential is equal to U (x, t)) and, during the
process, the potential is varied according to the time-reversed protocol U (x, t − τ ),
τ ∈ [0, t].

If we multiply the both sides of the Crooks theorem by pR(−w, t)e−βw and then
integrate over all possible values of w we obtain perhaps the most widely known

1The mechanical definition of work is used whenever it is meaningful to split the total poten-
tial energy U into two contributions: U = U0(x) + Uext(x, t), the first being an intrinsic time-
independent potential and the second describes the external driving. Then the “mechanical work”,
δWmech = −(∂Uext/∂x)dx , satisfies the integrated first law of the form �U0 = Q(t) + Wmech(t).



84 5 Basics of Stochastic Thermodynamics

fluctuation theorem, the Jarzynski equality [12]

∫ +∞

−∞
dw e−βw p(w, t) = 〈

e−βW(t)
〉 = e−β�F . (5.7)

The equality relates the free energy difference between two equilibrium configura-
tions of the system to the exponential average of the work done during a finite-time
far-from-equilibrium (forward) process.

Notice that the both above relations are perfectly consistent with the classical
thermodynamics. If the process i → f is reversible, then the work done during the
reversed process has exactly the same distribution as that in the forward one and the
Crooks relation implies that w = �F . This should be understood in the sense that
the work loses its stochastic nature and it simply becomes a number. On the other
hand, for an arbitrary process the Jensen relation 〈ex 〉 ≥ e〈x〉 applied on the Jarzynski
equality gives us 〈W(t)〉 ≥ �F .

The both fluctuation theorems provide us a completely new possibility how to
measure equilibrium thermodynamic properties of small systems. Instead of trying
to perform an equilibrium manipulation e.g. with the single RNA macromolecule,
one can carry out a far-from-equilibrium experiment and use one of the fluctuation
theorems to recover the free energy differences. The latter procedure is favorable
in systems with complex free-energy landscapes where the condition of equilibrium
manipulation cannot be achieved in a reasonable time. Indeed, the Crooks fluctuation
theorem has been experimentally used e.g. in RNA pulling experiments with optical
tweezers [13] proving to be a reliable tool for extracting the free energy differences.
In the (bidirectional) experiment the both distributions p(w, t) and pR(−w, t) are
measured, then, according to Eq. (5.6), �F equals to value of w at which the two
histograms p(w, t), pR(−w, t) intersect when plotted against the common w axis.

In situations when the forward and reverse work distributions are separated by a
large gap on the w axis the above bidirectional method is biased by a rather large
error [14]. In these cases, the Jarzynski equality, or its modification due to Hummer
and Szabo [15] can be used to extract �F from a unidirectional experiment only
[16–22]. In general, however, the application of Eq. (5.7) can be difficult, because
the exponential average 〈exp[−βW(t)]〉 is dominated by rare trajectories with excep-
tionally low work values w � �F . In experiments these rare trajectories are almost
never observed and even in computer simulations it is difficult to generate them with
a sufficient statistical weight. A possible solution is to extend measured histograms
to the tail regime w � �F by fitting to theoretical predictions. To this end, some
generic behavior in the tail regime needs to be assumed and attempts have been made
recently in this direction [23–25]. For example, in the case of DNA/RNA unfolding,
Palassini and Ritort [23] suggested that the lower tail of the work distribution is
unbounded and decays as

p(w, t) ∼ q

�

( |w − wc|
�

)ν

e−( |w−wc |
� )

δ

, w → −∞, (5.8)
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with q > 0 and � > 0, wc is a characteristic work value. For the Jarzynski equal-
ity (5.7) to hold, it needs to be either δ > 1, or � < 1 and δ = 1. Interestingly,
the asymptotic behavior of the work distribution for a driven Brownian particle
in a harmonic potential was found to satisfy Eq. (5.8) with δ = 1 and ν = −1/2
[25, 26]. One of the important results of the analysis presented in the next chapter
is that Eq. (5.8) holds with δ = 1 also for an asymmetric and anharmonic potential,
the exponent ν in this case quantifies a degree of anharmonicity.

A further information on experiments with single biomolecules (mechanical
manipulation of biomolecules by optical tweezers, or an atomic force microscope)
can be found e.g. Refs. [27–33]. Recent progress in fluctuation theorems and free
energy recovery is reviewed in Ref. [14].

The above discussion may evoke an impression that the work fluctuations are
observable in small systems only. Notice, however, that both the Jarzynski equality
and the Crooks theorem does not refer explicitly to the system size. As a matter of
fact, the two fluctuation theorems have been confirmed in an experiment involving a
macroscopic torsional pendulum [34, 35]. See also Ref. [36] for an experiment with
a granular gas.

5.3 Further Reading

The stochastic thermodynamics, despite its long history [37], experiences a rather
rapid development in recent years. The growing interest in the field is certainly
stimulated by discoveries of fluctuation theorems (FTs). Two prominent examples of
FTs, the Crooks theorem and the Jarzynski equality, have been discussed in Sect. 5.2.
The theorems are remarkable for their generality and they extend our understanding
of thermodynamics far beyond its original area of validity (i.e., to small systems
driven arbitrarily far from the thermal equilibrium). Besides new relationships for
free-energy differences, the theorems resulted in a long-awaited breakthrough in
our understanding of how macroscopic irreversibility (dictated by the second law)
emerges from a time-reversal symmetric microscopic dynamics [38].

Probably the first appearance of fluctuation relations in the literature can be found
in papers byBochkov andKuzovlev [39, 40]. The twoworks, however, have remained
unnoticed until recently, see Refs. [8, 9, 41] for detailed discussion. A fluctuation
theorem for entropy production was first observed in simulations of sheared fluids
by Evans et al. [42, 43]. Shortly after that a related FT for the deterministic dynam-
ics has been proven by Gallavotti and Cohen [44], for the Langevin dynamics by
Kurchan [45], and for fairly general Markov processes by Lebowitz and Spohn [46]
andMaes [47]. The (experimental) usefulness of fluctuation relations has been recog-
nized after Jarzynski [12, 48] and Crooks [10, 11] demonstrated how to relate equi-
librium quantities to non-equilibrium work measurements. A fluctuation theorem
(analogous to Jarzynski equality) that applies to transitions between two different
non-equilibrium steady states has been derived by Hatano and Sasa [49].
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Since 2000 a number of significant contributions to stochastic thermodynamics
and to fluctuation theorems have been published (see e.g. Refs. [50–61] to name just
a few). Fortunately, the rapidly growing amount of literature has became a subject of
numerous reviews, lecture notes and introductory texts [38, 62–77]. In particular, for
a pedagogical introduction to fluctuation relations and related topics we recommend
recent book [76]. For a comprehensive overview of the stochastic thermodynam-
ics including the fluctuation relations, their classification and interrelations see the
review by Seifert [75], which is possibly the most complete survey in the field.
Further, nonequilibrium work relations for Langevin dynamics are summarized by
Kurchan [68]. Fluctuation theorems for the systems governed by the Master equa-
tion are reviewed by Harris and Schütz [69]. For other reviews focusing on different
aspects related to fluctuation relations we refer to Van den Broeck [73] (performance
of Brownian machines), Sevick et al. [38] (irreversibility of macroscopic dynamics),
Maes [63, 64] (entropy in out-of-equilibrium systems), Ritort [30, 65] and Busta-
mante et al. [66] (FTs from experimental perspective), and Gaspard [67] (statistical
mechanics based on Hamiltonian dynamics).

Finally, it should be noted that also quantum versions of FTs are nowadays subject
to an active (mainly theoretical) development. For the reviews we refer to Refs.
[78, 79].
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