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Feynman’s ratchet and pawl: An exactly solvable model

C. Jarzynski1,* and O. Mazonka2,†

1Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
2Institute for Nuclear Studies, S´wierk, Poland
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We introduce a simple, discrete model of Feynman’s ratchet and pawl, operating between two heat reser-
voirs. We solve exactly for the steady-state directed motion and heat flows produced, first in the absence and
then in the presence of an external load. We show that the model can act both as a heat engine and as a
refrigerator. We finally investigate the behavior of the system near equilibrium, and use our model to confirm
general predictions based on linear-response theory.@S1063-651X~99!07506-6#
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INTRODUCTION

Feynman’sratchet and pawlsystem@1# is a well-known
~but not the earliest@2,3#! example of a proposed ‘‘mechan
cal Maxwell’s demon,’’ a device whose purpose is to conv
into useful work the thermal motions present in a heat re
voir. The idea is beautifully simple: set up a ratchet and pa
so that a wheel is allowed to turn only in one direction, th
attach that wheel to a windmill whose vanes are surroun
by a gas at a finite temperature; see Fig. 46-1 of Ref.@1#.
Every so often, an accumulation of collisions of the gas m
ecules against the vanes will cause the wheel to rotate by
notch in the allowed direction, but presumably never in
forbidden direction. Such rectification of thermal noise cou
be harnessed to perform useful work~such as lifting a flea
against gravity!, in direct violation of the second law of ther
modynamics. Of course, in order for statistical fluctuations
cause rotation at a perceptible rate, the ratchet and pawl
be microscopic, and this points to the resolution of the pa
dox. If thermal motions of the gas molecules are sufficien
cause the wheel to rotate a notch, then the thermal motio
the pawl itself will occasionally cause it to disengage fro
the ratchet, at which point the wheel could move in the ‘‘fo
bidden’’ direction. Feynman compared the rates of the t
processes—rotation in the allowed and the forbidd
directions—and found them to be equal when the system
maintained at a single temperature. Thus no net rota
arises, and the second law is saved.

Since the failure of the ratchet and pawl system to p
form work arises from thermal fluctuations of the pawl,
natural solution to the problem is to reduce these fluctuati
by externally cooling the pawl to a temperature below tha
the gas. In this case the device does indeed operate a
signed, but this no longer constitutes a violation of the s
ond law: the ratchet and pawl is now effectively a micr
scopic heat engine, capitalizing on a temperature differe
to extract useful work from thermal motions.

While the ratchet and pawl was introduced in Feynma
Lecturesprimarily for pedagogical purposes, recent yea
have seen a renewed interest in this system@4–22#, largely
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due to the fact that analogous mechanisms have been
posed as simple models of motor proteins.

Our purpose in this paper is to introduce an exactly so
able model of Feynman’s microscopic heat engine. T
model is discrete rather than continuous, but it captures
essential features of the original example:~i! a periodic but
asymmetric interaction potential between the ratchet and
pawl ~corresponding to the sawtooth shape for the ratch
teeth!, and~ii ! two ‘‘modes’’ of interaction~corresponding to
the pawl being either engaged or disengaged from
ratchet!. @Note that a particle~or, more generally, a reactio
coordinate!, evolving from one sufficienctly deep potentia
~or free-! energy minimum to another, behaves much as
hopping from one site to another on a discrete lattice. S
for instance, Fig. 6 of Ref.@15#.# These features are sufficien
for the model to reproduce the behavior discussed by Fe
man. Related discrete models of noise-induced trans
have appeared in the literature@16–18#; however, in our
model ~as in Feynman’s example! the transport is explicitly
driven by a temperature difference between two reservoi

In Sec. I, we will introduce our model—a system in co
tact with two heat reservoirs—and consider it in the abse
of an external load. We will solve for the net rate at whi
the device produces directed motion, in terms of the res
voir temperaturesTA andTB @Eq. ~14!#. We will also solve
for the net rates of heat flow from reservoirA to the system,
and from the system to reservoirB; see Fig. 3. For zero

external load, these rates,Q̇A andQ̇B , must be equal, as we
will indeed find them to be. We will finally use these resu
to solve for the entropy production rate.

In Sec. II, we will allow the device to perform work
against an external loadf. We will again solve exactly for the
directed motion and heat flows, in terms ofx[( f ,TA ,TB). In
this situation, the heat flowsQ̇A and Q̇B are not necessarily
equal; the difference between them is thepower Ẇ, which
the device delivers against the loadf. WhenẆ.0, the sys-
tem operates as a heat engine. Conversely, one can ima
that for some parameter values, the system will operate
refrigerator, creating a net flow of heat from the colder to t
hotter reservoir. In Sec. III we will use our analytical resu
to show that our model indeed exhibits both these behav
~heat engine and refrigerator!. Finally, in Sec. IV we will
6448 ©1999 The American Physical Society
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PRE 59 6449FEYNMAN’S RATCHET AND PAWL: AN EXACTLY . . .
consider the near-equilibrium regime of small load and te
perature difference. We will show that our model confirm
general predictions based on linear-response theory.

I. ZERO EXTERNAL LOAD

Consider a particle that jumps between neighboring s
along a one-dimensional regular lattice, whered is the lattice
spacing. We assume that the particle is coupled to a
reservoir at temperatureTB , and that its jumps are thermal i
nature. That is, the probability~per unit time! of making a
jump to sitei 11, starting from sitei, is related to the prob-
ability rate of the inverse process by the usual detailed
ance relation:Pi→ i 11 /Pi 11→ i5exp(2DE/TB), where DE
5Ui 11

(m) 2Ui
(m) is the instantaneous change in the particl

potential energy, associated with the jump fromi to i 11.
We use the notationUi

(m) to denote the potential energy o
the particle at sitei; the superscriptm denotes the ‘‘mode’’
of the potential, to be explained momentarily. The integ
index i runs from 2` to 1`, and we are using units in
which Boltzmann’s constantkB51.

Next, we assume that the potential energy functionUi
(m)

has two possiblemodes, m51,2, and that it changes stocha
tically between these two. In the first mode, the energy
each site is zero:Ui

(1)50. In the second mode, the energy
periodic: Ui

(2)5a•@( i mod 3)21#, wherea is a positive
constant with units of energy. As shown in Fig. 1, the seco
mode is a discrete version of an asymmetric sawtooth po
tial. We assume that the stochastic process governing
changes between modes is also a thermal process, drive
a heat reservoir at temperatureTA . Thus, the probability rate
of a change to mode 2, starting from mode 1, relative to
probability rate of the reverse mode change, is given by
detailed balance factor exp(2DE/TA), where DE5Ui

(2)

2Ui
(1) is now the~site-dependent! change in particle energ

due to an instantaneous change from mode 1 to mode 2
We now describe more precisely these two stochastic

cesses, governing the jumps of the particle, and the cha
between modes. We assume the processes are indepe
and each is a Poisson process occurring at a rateG. That is,
during every infinitesimal time intervaldt, there is a prob-
ability Gdt that the particle will attempt a jump to a neigh
boring site. An ‘‘attempt’’ looks as follows. First, the pa
ticle decides~randomly, with equal probability! whether to
try jumping to the left (2d) or to the right (1d). Then the
Metropolis algorithm@23# is used to satisfy detailed balanc

FIG. 1. Potential energyUi
(m) is shown for both modes,m

51,2, in the absence of an external load; the lattice spacing id,
and site 1 is labeled explicitly.
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if the value ofDE associated with the jump is zero or neg
tive, then the jump takes place; ifDE.0, then the jump
occurs with probability exp(2DE/TB). Similarly, during ev-
ery infinitesimal time intervaldt, there is a probabilityGdt
that the mode will attempt to change, and the attemp
accepted or rejected according to the Metropolis algorit
~at temperatureTA).

We have introduced three parameters, which we will vi
as being ‘‘internal’’ to the system:d, a, andG; these essen
tially set the relevant length (d), energy (a), and time (G21)
scales. The two remaining parametersTA and TB , we will
view as ‘‘external.’’

The analogy between our model and Feynman’s ratc
and pawl runs as follows. First, the position of our partic
corresponds to an angle variableu specifying the orientation
of the ratchet wheel. When the particle accomplishes a
displacement of three lattice sites, to the right or to the l
this is equivalent to the ratchet being displaced by one no
or tooth; see Fig. 1.~Thus, the distance 3d in our model
translates to an angular intervalDu52p/Nteeth, where
Nteeth is the number of teeth along the perimeter of t
ratchet wheel.! Since we want to keep track of the whe
over long intervals of time, possibly including many full ro
tations,u varies from2` to 1`, rather than being a peri
odic variable from 0 to 2p.

When a ratchet and pawl are ‘‘engaged’’—that is, wh
the pawl actually presses against the teeth of the ratch
then there exists an interaction energy, arising from the co
pression of the spring that holds the pawl against the ratc
which has the form of a periodic sawtooth potential in t
variable u. In our model, the analogue of this interactio
energy is the discrete sawtooth potentialUi

(2) ; mode 2 thus
corresponds to the situation in which the ratchet pres
against the pawl. By contrast, mode 1 corresponds to
ratchet and pawl begin ‘‘disengaged,’’ as will occur every
often as a result of thermal fluctuations of the pawl.
course, in Feynman’s system, the potential energy of
disengaged mode is always greater than that of the eng
mode ~due to the spring compression needed to actu
place the pawl out of reach of the ratchet’s teeth!, whereas in
our model this is not the case:Ui

(1)50. This, however, does
not change the problem in any qualitatively significant wa

As mentioned, the motion of the particle from site to s
is a thermal process occurring at temperatureTB , while the
stochastic ‘‘flashing’’ between modes occurs at temperat
TA . Thus, in the context of the analogy with the physic
ratchet and pawl,TB denotes the temperature of the gas s
rounding the panes connected to the ratchet wheel, andTA is
the temperature at which the pawl is maintained.

To analyze the model, we first note that it maps nice
onto the problem of a spin-1/2 particleA coupled to a spin-1
particleB with the following energy function:

E~SA ,SB!5aS SA1
1

2DSB , ~1!

whereSA561/2 andSB50,61. Here, spinA represents the
mode ~pawl!, and spinB represents the particle~ratchet!.
When spinA is ‘‘down’’ ( SA521/2), the energy of the
system is independent of the state of spinB, as with mode 1;
when spinA is ‘‘up,’’ the energy is2a, 0, or 1a, depend-
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ing on the state of spinB, as with mode 2. Thus, changes
the state of spinA correspond to changes in the mod
whereas changes in the state of spinB correspond to the
particle making a jump. IfSB changes from21 to 0, or from
0 to 11, or from 11 to 21, then this amounts to the pa
ticle jumping to the right; the reverse processes~0 to 21,
etc.! correspond to jumps to the left. We now couple spinA
to a reservoir at temperatureTA , spin B to a reservoir at
temperatureTB , with the stochastic dynamics as outline
above~two independent Poisson processes!, and solve for the
net drift of the particle.

This system can be visualized as shown in Fig. 2. SpiA
flips between up and down; spinB performs sudden ‘‘rota-
tions’’ by 6120°. A clockwise rotation corresponds to
jump to the right (1d) by the particle; counterclockwis
ones translate into jumps to the left.

Our system has six possible states, listed in Table I.
dynamics of the particle is described by a Markov proce
for which we can write a set of rate equations. Letpn(t)
denote the probability that the system is found in staten at
time t. Then

dpn

dt
5G (

n8Þn
@pn8P~n8→n!2pnP~n→n8!#, n51, . . . ,6.

~2!

Here,GP(n→n8) is the probability rate at which the system
when its state isn, makes a transition to staten8. If the
transition n→n8 involves only a flip of spinA, then P(n
→n8) is the probability that such an attempt will be a
cepted, under the Metropolis rule. If the transition involv

FIG. 2. Our system maps onto that of a spin-1/2 particle~A!
coupled to a spin-1 particle (B). The former is depicted in the usua
manner~as up or down!, the latter by an arrow, which can point i
one of three directions on the face of a clock. The thin lines den
the coupling between the two spins, as well as the coupling of e
spin to a heat reservoir.

TABLE I. The six states of the system, and their energies

State~n! SA SB E(SA ,SB)

1 21/2 21 0
2 21/2 0 0
3 21/2 11 0
4 11/2 21 2a
5 11/2 0 0
6 11/2 11 1a
,

e
s,

just a rotation of spinB ~by 6120°), thenP(n→n8) is the
probability of generating this move, given an attempt
changeSB . If the transition involves changes in the states
both spins, thenP(n→n8)50. Examples of these rules ar

P~1→4!51, P~1→2!5
1

2
, P~1→5!50,

~3!

P~3→6!5e2a/TA, P~4→5!5
1

2
e2a/TB, P~4→2!50.

The factors of one half come from the fact that, when t
system attempts to rotate spinB, there are two possible state
for which it can aim.

Our rate equations can be expressed as:dp/dt5GRp,
wherep5(p1 , . . . ,p6)T,

R5

¨

22
1

2

1

2
m 0 0

1

2
22

1

2
0 1 0

1

2

1

2
212m 0 0 1

1 0 0 2m2
n1n2

2

1

2

1

2

0 1 0
n

2
2

31n

2

1

2

0 0 m
n2

2

n

2
22

©

,

~4!

and we have introduced the constants

m5e2a/TA and n5e2a/TB. ~5!

Note thatm andn are monotonically increasing functions o
TA andTB , and the temperature range 0,TA(TB),` trans-
lates to 0,m (n),1. We thus think ofm and n as ‘‘re-
scaled’’ temperatures.

The long-time behavior of our system is governed by
steady-state distribution of probabilitiesp̄ which is the null
eigenvector ofR ~i.e.,Rp̄50). Determiningp̄ is an exercise
in Jordan elimination, and leads to the following result:p̄
5x/N, where

x1552m128m2112n119n215n3121mn12mn218m2n,
~6!

x2536m116m2128n127n215n3125mn18mn212m2n,
~7!

x3544m119mn120n149n2115n3, ~8!

x4564120n148m115mn, ~9!

x5524m140n120n2118m2130mn115mn2, ~10!

x6522m2116mn144mn2114m2n115mn3126n2110n3,
~11!

te
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andN(m,n)5( i 51
6 xi is a normalization factor.

When both temperatures go to zero,m,n→0, we getp̄T

5(0,0,0,1,0,0). This makes sense: in that limit, the syst
freezes to the state of lowest energy,n54.

We now address the question of net drift. We first defi
a net current,J[J12J2 , whereJ1 is the rate at which spin
B is observed to change from state 0 to state11, andJ2 is
the rate of the reverse transitions, from11 to 0. This can be
interpreted by imagining an observer placed at two o’clo
on the clock face depicting spinB in Fig. 2;J1 (J2) is then
the rate at which the hand of the clock passes that observ
the clockwise~counterclockwise! direction; by ‘‘rate,’’ we
mean number of passes per unit time, averaged over an
nitely long interval of time.~Of course, we could just as we
have placed our observer at six or ten o’clock; in the ste
state, the current measured will be independent of where
observer is placed.! The currentJ represents thenet average
rate of clockwise revolutions of spinB. Since each revolu-
tion corresponds to 3 steps of the particle to the right, t
translates into a particle drift:

v53 dJ, ~12!

where v denotes the~steady-state! average velocity of the
particle.

Explicit expression for the quantitiesJ6 are given by

J15G~ p̄2R321 p̄5R65!, ~13a!

J25G~ p̄3R231 p̄6R56!. ~13b!

~SinceGRmn is the transition rate to statem, given that the
system is found in staten, p̄nGRmn is the net rate at which
transitions fromn to m are observed to occur in the stea
state.! Using our results forp̄, we get, after some algebra:

v~TA ,TB!523 d
G

N
~m2n!~12n!~3m14!. ~14!

There are a number of things to note about this res
First, it implies that ifTA.TB ~i.e., m.n), then there is a
net flow of the particle to the left; ifTB.TA , the particle
drifts to the right. IfTA5TB , then there is no drift, in agree
ment with Feynman’s analysis~as well as the second law!.

Next, notice thatv→0 asTB→` (n→1). In that limit,
the change in energy arising from a jump to the left or to
right becomes negligible in comparison to the temperatur
the reservoir, which drives those jumps; thus, from any
tice site, the particle is as likely to jump to the left as to t
right, resulting in no net drift.

Finally, in the limit TA→` (m→1), we get:

v5221d
G

N
~12n!2, TA→`. ~15!

This is the limit in which changes between the modes oc
independently of location of the particle: every attempt
change the mode is accepted. This is analogous to the s
tion studied by Astumian and Bier@5#, where the ‘‘flashing’’
between the two modes of the potential is a Poisson pro
independent of the particle position.
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We can also compute the average rates at which he
transferred between the two reservoirs and our syst
Whenever the system makes a transition from state 1 to s
4, or from state 6 to state 3, its energy drops bya; this
energy is released into the reservoir at temperatureTA . Con-
versely, during the transitions 4→1 and 3→6, the system
absorbs energya from reservoirA. The net rate at which the
system absorbs energy from reservoirA is then

Q̇A5aG~ p̄4R141 p̄3R632 p̄1R412 p̄6R36!. ~16!

We can similarly write down an expression for the rate
which heat flows from our system to reservoirB:

Q̇B5aG~ p̄5R451 p̄6R5612p̄6R462 p̄4R542 p̄5R65

22p̄4R64!. ~17!

Figure 3 illustrates the sign convention which we choose
definingQ̇A andQ̇B . Plugging in the values for the compo
nents ofp̄ andR, we find thatQ̇A5Q̇B , as we could have
predicted, since in the steady state there is no net absorp
of heat by the system, nor is any of the heat delivered
work against an external load. Thus, the particle drift
driven by a net passage of heat fromA to B, by way of the
system. The explicit expression for this heat flow is

Q̇A→B5Q̇A5Q̇B53
aG

N
~m2n!P~m,n!, ~18!

where P(m,n)54114m115n14mn15n2.0. The ratio

v/Q̇A→B then gives us the average displacement of the p
ticle, per unit of heat passed~via the system! from reservoir
A to reservoirB:

lim
t→`

Dx

DQ
5

v

Q̇A→B

52
d

a

~12n!~3m14!

P~m,n!
,0. ~19!

FIG. 3. Schematic representation of our system~S! in contact
with two heat reservoirs~at temperaturesTA and TB). As implied

by the arrows, we defineQ̇A to be the net flow of heat from reser

voir A to the system, andQ̇B to be the heat flow from the system t

reservoirB. Therefore,Ẇ5Q̇A2Q̇B is the power delivered as work
against an external load.~In Sec. I, there is no such load; henc

Q̇A5Q̇B .)
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Here,Dx andDQ are the net particle displacement, and t
net heat transferred fromA to B, over a time intervalt. The
factor (m2n) in Eq. ~18! guarantees that the direction of th
heat flow is from the hotter to the cooler reservoir.

We can also compute the rate at which entropy is p
duced during this process. The rate of entropy produc
associated with the flow of heat from reservoirA to the sys-
tem is ṠA52Q̇A /TA ; and for reservoirB, ṠB5Q̇B /TB .
The net entropy production rate is thus

Ṡ5ṠA1ṠB5
TA2TB

TATB
Q̇A→B ~20!

53
G

N S ln
m

n D ~m2n!P~m,n!>0. ~21!

Figures 4 and 5 illustrate the results obtained in this s
tion. Figure 4 is a contour plot of the driftv, as a function of
the rescaled reservoir temperaturesm andn. The contourv
50 runs along the diagonal,m5n, as well as alongn

FIG. 5. Drift v ~multiplied by 10!, heat flowQ̇A→B , and rate of

entropy productionṠ, plotted as functions ofn, for fixed m51/2.

FIG. 4. Contour plot of the functionv(m,n), where m
5exp(2a/TA) andn5exp(2a/TB) are the rescaled temperatures
the two reservoirs.
-
n

c-

51 (TB→`). The appearance of positive contours (v.0) to
the left of the diagonal, and negative ones to the right, ill
trates the point that the drift is rightward whenTB.TA and
leftward whenTA.TB .

In Fig. 5 we have fixed the value ofTA by settingm

51/2, and have plottedv, Q̇A→B , and Ṡ as functions ofn.
All three quantities hit zero atn51/2, whereTA5TB : noth-
ing interesting happens when the system is maintained
single temperature. Note also thatv andQ̇A→B are opposite
in sign @in agreement with Eq.~19!#, while Ṡ is always non-
negative~in agreement with the second law!. Finally, note
that v→0 asn→1 (TB→`).

In plotting these two figures, we set all the internal p
rameters to unity:a5d5G51.

II. NONZERO EXTERNAL LOAD

In this section we add an external load to our model.
Feynman’s example, this load is a flea, attached by a thr
to the ratchet wheel: when the wheel rotates in the appro
ate direction, the creature is lifted against gravity. In o
model, we add a slope to the discrete potential:

Ui
(m)→Ui

(m)1 i f d, ~22!

wheref is a real constant~andi is the lattice site!; see Fig. 6.
Effectively, f is a constant external force that pulls the pa
ticle leftward if f .0, rightward if f ,0.

The presence of an external load allows the system
perform work. If, in the steady state achieved for fixedx
5( f ,TA ,TB), the particle experiences a driftv(x), then the
powerdelivered against the external load is

Ẇ~x!5 f v~x!. ~23!

By conservation of energy, this must be balanced by heat
by the reservoirs:

Ẇ5Q̇A2Q̇B . ~24!

Our approach to solving for the steady-state behavio
the same as in Sec. I, except that the presence of the termi f d
in the potential changes the elements ofR, and, therefore,
the steady-state probabilitiesp̄.

FIG. 6. Discrete, two-mode potential energy functionUi
(m) is

illustrated for the situation in which there is a nonzero external lo
Here we have chosenf 5a/4d.
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Because the acceptance probability of an attempted m
in the Metropolis scheme has the form Pr
5min$1,exp2DE/T%, each matrix elementRi j is piecewise
analytic in f. A little thought reveals that thef axis can be
divided into four ranges of values, over each of which t
elements ofR can be written as analytic functions ofa, d, f,
TA , andTB . These ranges are

2`, f ,2a/d, ~25a!

2a/d, f ,0, ~25b!
ve

e

0, f ,2a/d, ~25c!

2a/d, f ,1`. ~25d!

In the two extreme ranges, Eqs.~25a! and~25d!, stretching to
2` and1`, the slope is so steep that the potential ene
function no longer has a sawtooth shape in mode 2. We
ignore these ranges and focus instead on the ones for w
Ui

(2) doeslook like a discrete sawtooth.
For range~25b!, i.e., 2a/d, f ,0, the potential slopes

downward with increasingi, and an explicit expression forR
is
R b5

¨

2
3

2
2

1

2s

1

2s

1

2
m 0 0

1

2
2

3

2
2

1

2s

1

2s
0 1 0

1

2s

1

2
2

1

2
2m2

1

2s
0 0 1

1 0 0 2m2
n2

2s
2

ns

2

1

2

1

2

0 1 0
ns

2
2

3

2
2

ns

2

1

2

0 0 m
n2

2s

ns

2
22

©

, ~26!

where

s5e2 f d/TB. ~27!

For range~25c!, 0< f ,2a/d, the potential slopes upward withi, and we have
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Note that bothR b andR c reduce to the matrixR of Sec. I,
whens51, i.e., f 50.

As in Sec. I, the first order of business is to solve forp̄,
using Jordan elimination, only now the process is consid
ably more tedious: terms do not cancel as nicely as whef
50. The final results for the steady-state probability vect
p̄b andp̄c ~corresponding to the two ranges off values! are of
the form

p̄n
j 5

Pn
j ~m,n,s!

Nj~m,n,s!
, j 5b,c n51, . . . ,6 ~29!

where thePn
j ’s are finite polynomials in the variablesm, n,

and s, andNj5(n51
6 Pn

j is a normalization factor. Explicit
expression for the polynomialsPn

j are given in the Appen-
dix.

We can now obtainv(x), Q̇A(x), andQ̇B(x) from p̄, as in
Sec. I. The results for the two ranges off values,j 5b,c, are

v j~x!5
3

2
d G

Xj

sNj , ~30a!

Q̇A
j ~x!5aG

Yj

Nj , ~30b!

Q̇B
j ~x!5aG

Yj

Nj 2
3

2
f d G

Xj

sNj , ~30c!

whereXj (m,n,s) andYj (m,n,s) are polynomials for which
explicit expressions are presented in the Appendix.

Note that the steady-state behavior described by Eq.~30!
clearly satisfies energy conservation@see Eqs.~23! and~24!#:

Q̇A2Q̇B5 f v. ~31!

Equation~30! is the central result of this paper~and re-
duces to the results of Sec. I whenf 50). In Sec. III, we use
Eq. ~30! to show that our model can act both as a heat eng
and as a refrigerator. In Sec. IV, we consider the behavio
our system near equilibrium, and we use Eq.~30! to confirm
predictions based on a general, linear-response analysis

III. SYSTEM AS HEAT ENGINE
AND REFRIGERATOR

We can anticipate two different scenarios in which o
system acts as a ‘‘useful’’ device:~i! Ẇ.0. In this case, the
system is aheat engine, causing the particle to drift up th
potential energy slope, with efficiencyheng5Ẇ/Q̇. , where
Q̇. is the rate of heat flow out of the hotter reservoir.~ii !
Ẇ,0 andQ̇,.0, whereQ̇, is the rate of heat flow out o
the colder reservoir. Here the system is arefrigerator, with
efficiencyh ref5Q̇, /uẆu. The particle drifts down the poten
tial slope, and the resulting energy liberated allows for a
transfer of heat from the colder to the hotter reservoir, wi
out violating the second law.

We will now use the results derived in Sec. II to show th
our simple model indeed exhibits both these behaviors.

The system is a heat engine whenv( f ,TA ,TB) and f are
r-

s

e
of

r

t
-

t

of the same sign. Let us introduce the variables,

b5
TA1TB

2TATB
, ~32!

g5
TA2TB

TATB
, ~33!

and consider the behavior of our system in (f ,g) space, for a
fixed value ofb. ~Note thatb is the average inverse tem
perature of the reservoirs, andg is the difference between
inverse temperatures.! BecauseQ̇A , Q̇B , andv are mutually
dependent@Eq. ~31!#, we can generically explore a measu
able fraction of the space of steady-state behaviors by v
ing only two independent parameters,f andg, while holding
the third,b, fixed.

In Fig. 7 we plot the contourv( f ,g)50, having setb
51, anda5d5G51. ~The range ofg values for this choice
of b is 22,g,2.! To the left of this contour, we havev
.0; to the right,v,0. The shaded region thus represents
values of (f ,g) for which v and f are of the same sign, i.e
where the system behaves as a heat engine.

We can understand the placement of the shaded regio
follows. Consider a pointP on the positiveg axis: f 50, g
.0 ~i.e., zero external load,TA.TB). From Sec. I, we know
that the particle then drifts leftward,v,0, although no work
is performed, sincef 50. Let us now imagine tilting the
potential slightly ‘‘downward’’ (f ,0). For a small enough
tilt, we expect that the particle will continue to drift to th
left, but now this drift is uphill, and, therefore, work is don
against the external load:Ẇ.0. We conclude that points
immediately to the left of the positive vertical axis will co
respond to external parameters for which the system beh
as a heat engine, and Fig. 7 confirms this.~Similar reasoning
applies for the negativeg axis, where the regionẆ.0 ap-
pears to the right.! If we now continue to tilt the slope more
and more downward (f increasingly negative!, at fixed g

FIG. 7. Contourv( f ,g)50 is shown, for fixed average invers
temperatureb51. The shaded regions are those for whichf v.0,
i.e., for which the system behaves as a heat engine.
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.0, we expect the leftward drift to become progressiv
slower, until for some tilt we getv50. At this point the
leftward ‘‘thermal force’’ exerted on the particle due to th
temperature difference between the reservoirs, exactly
ances the external load. This occurs at the boundary of
shaded region~the contourv50): for more negative slopes
the particle slides down the slope, and the system no lon
acts as a heat engine.

Our system is a refrigerator whenQ̇,.0, whereQ̇, is
the rate at which heat leaves the colder of the two reservo
In Fig. 8 we plot the contoursQ̇A( f ,g)50 and Q̇B( f ,g)
50, again forb51. These two contours are tangent at t
origin, and divide the plane of (f ,g) values as follows:Q̇A is
positive for points lying above the contour, and negative
low. Similary, Q̇B.0 (Q̇B,0) for points lying above~be-
low! the contourQ̇B50. Now, above the horizontal axi
(g.0) we haveTA.TB , hence Q̇,52Q̇B . The small
shaded region in the second quadrant therefore repres
values of (f ,g) for which reservoirB is the colder of the two
reservoirs,and it is losing heat (Q̇B,0). Hence in this re-
gion our system acts as a refrigerator. Below the horizo
axis,TB.TA and thusQ̇,5Q̇A . The larger shaded region i
the fourth quadrant thus also represents refrigeration, o
now reservoirA is being drained of heat.

We can understand the general shape of the shade
gions by assuming that, when the temperatures are e
(g50) and the slope is very small, the quantitiesv, Q̇A , and
Q̇B are linear functions of the slope:

v~ f ,0!5cv f 1O~ f 2!, ~34a!

Q̇A~ f ,0!5cAf 1O~ f 2!, ~34b!

Q̇B~ f ,0!5cBf 1O~ f 2!, ~34c!

with cv , cA , and cBÞ0. ~Then cv,0, since the particle
cannot slideup the slope when the reservoir temperatures

FIG. 8. The contoursQ̇A( f ,g)50 andQ̇B( f ,g)50 are shown,
for fixed b51. In the shaded regions, there is a net flow of heat
of the colder reservoir; the system then acts as a refrigerator.
y
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equal.! Energy conservation implies that the difference b
tween Q̇A and Q̇B must be quadratic inf ~since Q̇A2Q̇B

5Ẇ5 f v5cv f 2), hencecA5cB . Thus, for equal tempera
tures and a sufficiently small slope, one of the reservoirs w
be losing heat and the other will be gaining it. If we no
slightly lower the temperature of the reservoir that is losi
heat, we have a refrigerator: heat flows out of the col
reservoir. In our model, we havec[cA5cB.0, hence for
points on theg50 axis immediately to the right of the ori
gin, heat flows out of reservoirA and into reservoirB; im-
mediately to the left of the origin the reverse holds true. T
explains why, just to the right~left! of the origin, the shaded
region corresponding to refrigeration hugs the horizontal a
from below~above!. If we continue to the right along the line
g50, increasing the value off, the particle will drift ever
more rapidly to the left as the slope becomes ever m
steeply inclined. The potential energy lost as the parti
slides down the incline gets dissipated into the reservoirs;
sufficiently largef, the rate of dissipation is great enough th
both reservoirs become heated:Q̇A,0, Q̇B.0. This hap-
pens to the right of the point at which the contourQ̇A50
crosses the horizontal axis with a positive slope; for valu
of f beyond this point the system can no longer operate a
refrigerator.

We can also understand why the two contoursQ̇A50 and
Q̇B50 ‘‘kiss’’ at the origin. The resultcA5cB means that
Q̇A andQ̇B are~to leading order! equal along the horizonta
axis g50, near the origin. However, they are also~exactly!
equal along the vertical axis, sinceẆ50 when f 50. Thus,
Q̇A andQ̇B are equal, to leading order inf andg, for a small
region around the origin:Q̇A5Q̇B5c f1bg. This implies
that their contours are both tangent to the lineg52c f /b at
the origin.

Since we have expressions forv(x), Q̇A(x), andQ̇B(x),
we can compute the thermal efficiencyh, when it acts as
either a heat engine or a refrigerator. By the second l
these efficiencies must never exceed the Carnot efficienc
heng

C andh ref
C ~which depend only onTA andTB). Ideally, we

could use our exact results to find the maximumrelative
efficiency(y5h/hC) that our model achieves, both as a he
engine and as a refrigerator. Unfortunately, the express
for v, Q̇A , andQ̇B are sufficiently complicated that we ar
not able to find these maxima analytically. However, at
end of Sec. IV, we will present analytical results for th
maximum relative efficiencies achieved when the system
eratesclose to equilibrium.

IV. LINEAR RESPONSE

When f 50 andTA5TB[b21, our system is in equilib-
rium, and there results no average particle drift or heat flo
In Sec. III we briefly considered the behavior of our syste
near equilibrium @see, e.g., Eq.~34!#. We now consider this
case in more detail. We will present a general analysis
sentially the same as that of Ju¨licher, Ajdari, and Prost@13#,
and then show that the exact results obtained for our mo
confirm the predictions of this analysis.

For a sufficiently small loadf and inverse temperatur
differenceg, and a fixed value ofb ~characterizing the in-

t
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verse temperature of the equilibrium state around which
expand!, we expect to be in thelinear responseregime: the
particle drift and heat flows depend linearly onf andg. Let
us introduce the quantity

F5 1
2 ~Q̇A1Q̇B! ~35!

roughly, a ‘‘heat flux’’ from A to B, and let us write, to
leading order inf ,g:

S v

F
D 5S ]v/] f ]v/]g

]F/] f ]F/]g D S f

g D , ~36!

with the derivatives ofv andF evaluated at equilibrium (f
5g50). As per the arguments given at the end of the p
vious section,Q̇A andQ̇B are equal, to leading order inf and
g, near equilibrium.

The rate of entropy production is then

Ṡ52
Q̇A

TA
1

Q̇B

TB
52bẆ1gF5~ f g!S M11 M12

M21 M22
D S f

g D ,

~37!

where M1152b ]v/] f , M1252b ]v/]g, M215]F/] f ,
andM225]F/]g, evaluated at equilibrium. The second la
implies that

detM>0, ~38!

whereas Onsager’s reciprocity relation@24# predicts that
M125M21, or

2b
]v
]g U

f 5g50

5
]F

] f U
f 5g50

. ~39!

Also, the diagonal elements ofM must be positive: the par
ticle must slidedown the potential slope when the temper
tures are equal (M11.0), and there must be a flow of he
from the hotter to the colder reservoir when the slope is z
(M22.0). Jülicher et al. @13# have obtained identical result
for a molecular motor driven by a difference in chemic
potential rather than temperature.

Using the exact results obtained in Sec. II, we differen
atev andF with respect tof andg to evaluate the element
of the matrixM for our model:

M5S 3b2d2C~314z! abdC~12z!

abdC~12z! a2C@41z~291z!#/~413z!
D ,

~40!

where

z5e2ab~0,z,1!, C5
3zG

~1615z!@11z~41z!#
.0.

~41!

@Recall that the expressions forv(x), Q̇A(x), andQ̇B(x) dif-
fer according to the sign off. We have verified that, regard
less of whether we use the results valid for range~25b! ( f
,0), or those for range~25c! ( f .0), we obtain the same
results for the elements ofM .# The variablez is akin to m
e

-

o

l

-

and n: it is the ‘‘rescaled temperature’’ of the equilibrium
state with respect to which the linear response behavio
defined. Then,

detM5
9~abzdG!2~2119z121z2!

~413z!~1615z!@11z~41z!#2 , ~42!

and we see by inspection thatM11,M22.0; that M12
5M21, as mandated by Onsager reciprocity@Eq. ~39!#; and
that detM.0, in agreement with the second law@Eq. ~38!#.

It is interesting to consider the operation of our system
a heat engine and refrigerator, in the linear-response reg
In this regime, the conditions for these two behaviors
v f .0 for a heat engine~as before!, andgF,0 for a refrig-
erator~sinceF5Q̇A5Q̇B , to leading order inf,g!. In Fig. 9,
the shaded regions indicate values of (f ,g) for which the
system acts as a heat engine or refrigerator~compare with
Fig. 2 of Ref. @13#!. The two diagonal lines, which form
boundaries of these regions, are given byv50 andF50.
The slopes of these lines are

lv5052
M11

M12
, lF5052

M21

M22
. ~43!

The second law, by requiring that detM>0, guarantees tha
these shaded regions do not overlap:ulv50u>ulF50u.

The efficiencyof our system, when operating as a he
engine, is given by

heng5
Ẇ

uFu
~44!

~again usingF5Q̇A5Q̇B to leading order!. The Carnot ef-
ficiencydefined for the temperaturesTA andTB is

FIG. 9. General predictions based on linear response.
shaded regions adjacent to the vertical axis indicate the value
( f ,g) for which the system behaves as a heat engine; those adja
to the horizontal axis indicate that the system is a refrigerator.
diagonal lines bounding these regions are the contoursv( f ,g)50
andF( f ,g)50. This figure essentially combines Figs. 7 and 8,
near-equilibrium values off ,g'0.
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heng
C 5

uTA2TBu
T.

5
ugu
b

1O~g2!. ~45!

Then we can get an explicit expression for the relative e
ciency (y5h/hC) of our system, in the linear-response r
gime:

yeng[
heng

heng
C

52
1

l

M111M12l

M211M22l
, ~46!

where l5g/ f . The relative efficiency is the same for a
points along any straight line through the origin, and Eq.~46!
gives that relative efficiency as a function of the slopel of
the line. A similar analysis holds for the case of refrigeratio

yref[
h ref

h ref
C

52l
M211M22l

M111M12l
. ~47!

Note thatyref happens to be the inverse ofyeng, although the
two expressions are valid for different ranges ofl values,
corresponding to the shaded regions in Fig. 9.

The results of the previous two paragraphs were deri
with the implicit assumption thatM12,M21.0. This happens
to be true for our model, but, in general, these elements
be either positive or negative~or zero!, so long as they are
equal. IfM12 andM21 were negative, then the shaded regio
would occur in the the first and third quadrants of the (f ,g)
plane, and the negative signs would not appear in Eqs.~46!
and ~47!.

The above results imply that, near equilibrium, a mic
scopic device operating between two reservoirs either can
both as a heat engine and as a refrigerator~if M125M21
Þ0), or will exhibit neither behavior~if M125M2150). For
instance, in a microscopic ratchet-and-pawl device, if
sawteeth on the wheel have a symmetric shape, the sy
cannot behave as a heat engine:M1250, as is obvious by
symmetry. What is not so immediately obvious, but follow
from the conditionM125M21, is that it is equally impossible
for a system with symmetric teeth to operate as a refrige
tor, in the linear-response regime.

Finally, for a given inverse temperatureb of the equilib-
rium state, we can solve for themaximalrelative efficiency
achievable in the linear-response regime, by maximizingyeng
and yref with respect tol. It turns out that the maxima
efficiencies are equal in the two cases, and depend only
single parameterr characterizing the behavior of the syste
near equilibrium:

ymax[yeng
max5yref

max5
r

~11A12r !2
,

~48!

r ~b!5
M12M21

M11M22
~0<r<1!.

The value ofymax increases monotonically asr goes from 0
to 1.

From Eq.~40!, we find that our model gives

r 5
~12z!2~413z!

3~314z!@41z~2919z!#
, ~49!
-

:

d

an

s

-
ct

e
em

a-

a

which depends only on the rescaled temperaturez
5exp(2ab) of the equilibrium state. In Fig. 10 we plotr (z).
We see thatr approaches a limiting value of 1/9 as the eq
librium temperatureT5b21 goes to zero~i.e., z→0), and
decreases to zero asT→` ~i.e., z→1). For the limiting
valuer 51/9, our model gives a maximal relative efficienc

ymax~T→0!5
1

17112A2
'0.0294. ~50!

This is the best relative efficiency, which our system c
achieve near equilibrium.

We have carried out a cursory numerical search—18

points sampled randomly in (f ,m,n) space—and have found
away from equilibrium, relative efficiencies as high asy
'0.0432~heat engine! and y'0.0647~refrigerator!. These
are greater than the near-equilibrium value quoted in
~50!, but still far short of unity. This suggests that the ef
ciency of our model is always considerably lower than t
corresponding Carnot efficiency. Such a conclusion is
agreement with Parrondo and Espanol@19#, and Sekimoto
@20#, who have argued that Feynman’s analysis on the p
of efficiency—in which he concluded that the ratchet a
pawl would operate at Carnot efficiency—was in error. W
note also that Hondou and Takagi@21#, as well as Magnasco
and Stolovitzky@22#, have shown that, within a Langevi
model for two degrees of freedom~e.g., the ratchet and pawl!
coupled to two different heat reservoirs, Carnot efficien
cannot be achieved.

V. SUMMARY

Our aim in this paper has been to introduce a discr
model of Feynman’s ratchet and pawl, and to solve exa
for the behavior of that model as a function of external lo
~f! and reservoir temperatures (TA ,TB). The central result,
Eqs. ~30!, gives the average directed motion (v) and heat
flows (Q̇A ,Q̇B), in the steady state. We have shown that o

FIG. 10. Quantityr (z) is plotted for the entire range of value
of the ~rescaled! equilibrium state temperature (0,z,1).
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model can act both as a heat engine and as a refrigerator
we have investigated its behavior in the near-equilibriu
linear-response regime.
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APPENDIX

Here we present explicit expressions for the polynomialsPn
j , Xj , andYj appearing in Sec. II. ThePn

j ’s are obtained by
Jordan elimination, performed on the matricesR j , j 5b,c, andXj andYj then follow from Eqs.~12!, ~13!, ~16!, ~17!, ~29!,
and ~30!.

P1
b5n3s~11s13s2!1ns2$413m1~41m!~112m!s1@413m~312m!#s2%14ms@31s~513m15s14ms!#

1n2$41s@412m1s~61s1s213s3!#%,

P2
b5ns2$413m1~1217m!s1@121m~1512m!#s2%1n2@412~61m!s16~11m!s21s313s41s5#

1n3s@11s~31s!#14ms$31s@31m13~11m!s#%,

P3
b54ms@31s~513s!#1n3s@11s~519s!#1ns2$4~11s13s2!1m@31s~917s!#%

1n2$41s@121s~181s15s219s3!#%,

P4
b5s$1614~61n!s16~41n!s2110ns31m@41s~201n124s15ns19ns2!#%,

P5
b5n2@41m15~21m!s13~213m!s2#12ms@41m1~413m!s1~415m!s2#

12ns2@41m1~815m!s1~819m!s2#,
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1n2$416s12s2
„31s@112s~11s!#%1m$31s@111s~151s15s219s3!#%…. ~A1!

Xb5n3s~2122s13s3!1ns2$2423m22ms14ms213@41m~512m!#s3%1n2@2423~41m!s23~413m!s2

2~119m!s31~21m!s41~615m!s51~1319m!s6#12ms„261s$2416s213m@211~211s!s#%…,

Yb52n3s@31s~517s!#1ns2$22m2~11s!~112s!1m@211~325s!s#14~11s1s2!%22ms$2~11s1s2!

1m@51s~917s!#%1n2
†81m~211s23s2!1s„101s$121s@31s~517s!#%…‡. ~A2!

P1
c5n3s@11s~31s!#14ms@51m~512s!1s~513s!#1ns2$2m2~31s!14~11s1s2!13m@31s~31s!#%

1n2$412m1s@61s~41s13s21s3!#%,

P2
c5n3s~31s1s2!14ms@m13ms13~11s1s2!#1ns2$2m2s14@31s~31s!#1m@151s~713s!#%

1n2
„1212m~31s!1s$61s@41s~31s1s2!#%…,

P3
c54ms@513s~11s!#1n3s@91s~51s!#1ns2$4@11s~31s!#1m@91s~713s!#%

1n2
†161s„141s$41s@91s~51s!#%…‡,

P4
c5s†2412s~312s!~41n1ns!1m„281s$4~41s!1n@91s~51s!#%…‡,
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P5
c52ms$4~11s1s2!1m@31s~51s!#%1n2$1016s14s21m@91s~51s!#%12ns2$4@21s~21s!#

1m@91s~51s!#%,

P6
c52m2s@513s~11s!#12mns2$2~11s!21m@31s~31s!#%1n3s$2@21s~21s!#1m@91s~51s!#%

1n2
ˆ2†31s„31s$21s@21s~21s!#%…‡1m†151s„111s$31s@91s~51s!#%…‡‰. ~A3!

Xc5s~ns2@2425m14m~21m!s12~21m!2s21~413m!s3#1n3~23s12s31s4!

12ms$21016s31m@251s~2113s!#%1n2
ˆ2221m†2151s„251s$211s@91s~51s!#%…‡

1s†281s„221s$71s@101s~61s!#%…‡‰!,

Yc52ˆn3s@51s~713s!#1ns2$4~11s1s2!22m2@31s~21s!#2m@231s~51s!#%22ms$2~11s1s2!

1m@91s~715s!#%1n2
†102m@211s~31s!#1s„121s$81s@51s~713s!#%…‡‰. ~A4!
,’’

v

ib-

ev.
@1# R. P. Feynman, R. B. Leighton, and M. Sands,The Feynman
Lectures on Physics~Addison-Wesley, Reading, MA, 1966!,
Vol. I, Chap. 46.

@2# M. Smoluchowski, Phys. Z.13, 1069~1912!; in Vortgage uber
die Kinetische Theorie der Materie und der Elektrizitat, edited
by M. Planck ~Teubner und Leipzig, Berlin, 1914!, pp. 89–
121. For a numerical study of ‘‘Smoluchowski’s trapdoor
see Ref.@3# below.

@3# P. A. Skordos and W. H. Zurek, Am. J. Phys.60, 867 ~1992!.
@4# M. O. Magnasco, Phys. Rev. Lett.71, 1477~1993!.
@5# R. D. Astumian and M. Bier, Phys. Rev. Lett.72, 1766~1994!.
@6# J. Prost, J.-F. Chauwin, L. Peliti, and A. Ajdari, Phys. Re

Lett. 72, 2652~1994!.
@7# J.-F. Chauwin, A. Ajdari, and J. Prost, Europhys. Lett.27, 421

~1994!.
@8# J. Rousselet, L. Salome, A. Ajdari, and J. Prost, Nature~Lon-

don! 370, 446 ~1994!.
@9# L. P. Faucheux, L. S. Bourdieu, P. D. Kaplan, and A. J. L

chaber, Phys. Rev. Lett.74, 1504~1995!.
@10# C. R. Doering, Nuovo Cimento D17, 685 ~1995!.
@11# R. D. Astumian, Science276, 917 ~1997!.
.

@12# M. Bier, Contemp. Phys.38, 371 ~1997!.
@13# F. Jülicher, A. Ajdari, and J. Prost, Rev. Mod. Phys.69, 1269

~1997!, Sec. II.
@14# P. Hänggi and R. Bartussek, inNonlinear Physics of Complex

Systems: Current Status and Future Trends, edited by J. Parisi,
S. C. Müller, and W. Zimmermann~Springer-Verlag, Berlin,
1996!, p. 294.

@15# R. D. Astumian and M. Bier, Biophys. J.70, 637 ~1996!.
@16# L. Schimansky-Geier, M. Kschischo, and T. Fricke, Phys. R

Lett. 79, 3335~1997!.
@17# A. B. Kolomeisky and B. Widom, J. Stat. Phys.93, 633

~1998!.
@18# H. Ambaye and K. W. Kehr, e-print cond-mat/9901034.
@19# J. M. R. Parrondo and P. Espanol, Am. J. Phys.64, 1125

~1996!.
@20# K. Sekimoto, J. Phys. Soc. Jpn.66, 1234~1997!.
@21# T. Hondou and R. Takagi, J. Phys. Soc. Jpn.67, 2974~1998!.
@22# M. O. Magnasco and G. Stolovitzky, J. Stat. Phys.93, 615

~1998!.
@23# N. Metropoliset al., J. Chem. Phys.21, 1087~1953!.
@24# L. Onsager, Phys. Rev.37, 405 ~1931!; 38, 2265~1931!.


