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Background

Develop the fast method to calculate the convolution
t
k% u(t) = / k(t — s)u(s) ds. 1)
0

The convolution (1) arises in

e the integral models, i.e., the fractional differential equations, describing the
anomalous diffusion *.

e wave propagation on bounded domains, which requires to impose transparent

(nonreflecting) boundary conditions 2 * * ®

¢
;(z,t) = —/ fi(t — 8)0vii;(z,s)ds, x € 9.
0

1D Schrodinger EQ: 1/2-order Caputo fractional derivative
1R4 Metzler, J.H. Jeon, A.G. Cherstvy, and E. Barkai, Phys. Chem. Chem. Phys., 2014.

2C4 Lubich and A. Schadle, SIAM J. Sci. Comput., 2002.

3L. Banjai, M. Lépez-Ferndndez, and A. Schadle, SIAM J. Numer. Math., 2017.
45. Jiang and Greengard, Comput. Math. Appl., 2004

5B. Li, J. Zhang, C. Zheng, , SIAM J. Numer. Math., 2018.
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The fractional operator: choosing k(t) = kq(t) = F(w) yields

ko xu(t) = /0 %u(s) ds. (2)

e The Riemann-Liouville (RL) fractional integral of order o for o > 0;
e The RL fractional derivative of order —a > 0 for ao < 0 in the sense of

Hardamard finite-part integral.

An example: k_o *u(t) = P.V. {/ %

d
=7 [(k1—a xu)(t)], 0<a<l.

u(s)ds
®3)
e Variable-order fractional operators: | @ = a(t)

t —s a(t)—1
ko) *u(t) = /o %u(s) ds. (4)

e How about m in (4)?
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Numerical methods

e Interpolation: uniform or nonuniform grid points {to, 1, ..., ta}
(ka *u)(tn) = (ka * Iru)( ankutk 1<n< M. (5)

e Convolution quadrature (CQ, fractional linear multistep method):

uniform grid points ¢t = k7, 7 > 0 is a step size

(ko *u) an wu(ty) —&—ZWH,JU tj), 1<n<M, (6)

convolution part corrections

where w,, are the coefficients of the Taylor expansion of the generating

function,

which can be derived from the generating function of the linear multistep
method.
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Storage and computational cost
Direct calculation of

ko * u(tn) =~ an,ku(tk), 1<n<M (7)
k=0

needs

1) storage: O(M) — O(1) as o — +1. For example, for linear interpolation
and @ — —1, (7) reduces to

U(tn) - U(tn—l)
tn - tnfl '

an,ku(tk) —
k=0
2) computational cost: O(M?) = O(M) as o — £1

Fast calculation yields
1) storage: O(log(M)) or O(Q); log(M) < M, Q < M.
2) computational cost: O(M log(M)) or O(QM).
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Sum-of-exponentials

The basic idea is to seek a suitable sum-of-exponentials to approximate the
kernel function ko (t) = t*71/T'(c), i.e.,

ta—l Q

ko (t) = ) = > wieNt + 0t ), (8)

Jj=1
where € > 0 is a given precision.

e Global approximation: (8) holds for V¢ € [0, 77, 6,7 > 0 .

e Local approximation: (8) holds for Vt € I, C [4,T], i.e.,
I, = [B*"'7,2B"7], B > 1 is a positive integer, satisfying

0,7 C hULULU---Ul, L= [1og§§/ﬂ — O(log(T/7)).
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The method based on the numerical Laplace transform

inversion

The Laplace transform of the kernel function ke (t) = t*~*/T'(a) is
Kao(N) = Llka](A) = A7

The inverse Laplace transform yields [Lubich and Schadle, SISC, 2002;
Lépez-Fernandez, Lubich, and Schiadle, SISC, 2008]
ko (t) :i/K (NedX = i/x“e”dx
“ 27 Jo o 27i Je
1 U

(z(0)" 2 ()"0 (A= 2(0)) )

2mi J_

N
(€)
~ Z wy)eAi ¢ tel, = [BLIT, QBZ’T],
j=—N+1

4 )\ —a 4 2j—1)m
where w(” = ;L (A)79p2(0;, 1), A = 2(0;, o), 0, = C P~
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e The optimal Talbot contour with z(0, u¢) given by [Weideman, SINUM,
2006]

2(0, pe) = pe(—0.4814 + 0.6443(0 cot(0) + i10.56530)), (10)

where g = N/Ty, T, = 2B%r, B > 1 is a positive integer.

e The hyperbolic contour with z(8, ue) given by [Lopez-Fernandez, Lubich,
et al., Numer. Math., 2005]

2(0, o) = pe(1 —sin(yp +i6)) + o. (11)

In numerical simulations, we can select o = 0, ¢ = 0.47, pe = N/Ty,

T,=B‘r, N = (— log(Tl_“e)-‘, € is a given precision.
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The method based on the multi-pole approximation

Find a rational approximation 7(\) to the Laplace transform of
ka(t+6) = (t+6)*!/T(a),s >0,

which takes the following form [Baffet and Hesthaven, SINUM, 2017]

Q

r(\) :injx' (12)

j=1 J

Applying the inverse Laplace transform yields

Q
bolt+0) % g [P = 3 we, (13)
j=1
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The method based on the Jacobi—Gauss quadrature

ko(t) = ta;l can be expressed as

ka(t)_m/ A% AN (a< 1)
T 0
(14)
:Sm:” / A% AN+ O(et™ ).

Taking A = 2™2 yields

o—m1 mo—1 ok+1

A
/ x"e*”dA:/ A%+ Z / A%
0 0

k=—m1q ,
Jacobi-Gauss Legendre-Gauss ( ]_5)

N, mo—1 Ng

- o 7)\(.0) k k)\—« 7/\(,,6)
ST RIS S 3 IR

j=1 k=—mq j=1
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Jacobi—Gauss quadrature [Jiang, Zhang, Zhang, and Zhang, Commun.
Comput. Phys., 2017]

ko (t) & SB0OT )/ A% A

™
sm sin(am) e A me b Uk (k) RQ
(o) — t —a —ALt
(z £ 30 Yulad) e g
Jj=1 k=—mq j=1

™
Q
Legendre—Gauss quadrature [Jing-Rebecca Li, SISC, 2010]

. o . A
ka(t)z—sm(om)/ x"e*”dA+—Sm(°‘”)/ A% A
T 0 ™ o

O(e)

mo—1 Ny

_sin( ( 33w () aefxﬁ-’“)t) (17)

k=—mq j=1

Q
At
= E wie’
Jj=1
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The method based on the Laguerre-Gauss quadrature

Rewrite

ka(t) = M/O A=A\

as

——
weight

ka(t) = sm(‘”)/o A e TN == TA g\

N
_ sin(am) (0 —(t—T)A(?
= j§:1wj e ©% +0(), t-Tiel (18)

Q
= Z w;e’ + O0(e).
j=1

See [Zeng, Turner, Burrage, JSC, 2018].
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The method based on the trapezoidal rule on the real line

Let A = ¢e®. Then

ko (1) :smgTaW) / A=A = / Slnsrowr) ot e g
0 —oo

(19)
¢ (z,t)
where |¢(z,t)| — 0 as |x| — oo for t > 0. The trapezoidal rule for
approximating (19) is [Trefethen, Weideman, SIAM Rev., 2014; McLean,
Contemporary Computational Mathematics, 2018]
ka(t) = h Y. ¢(iht)+0(e ")
j=—00
—N1—1
= h > ¢(jht)+h Z #(jh,t) + h Z ¢(jh, t) +O(e~ /™)
Jj=—0o0 Jj=—N1 Jj=Nz+1
O(e) O(e)
Q
= > w;e' +0(e ")+ 0(e). (20)

j=1
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Table: Comparison of different methods for approximating ke (t) = t*~/T'(a).

Kernel Are \; Extension to
approximation Rc;'afnge dependént variable-order Glorbili{rt_otcialn
method on a? a=a(t)? approximatio
qua(é?:ttl?ruer(Q) a€eR No Yes Local, t € I,
ml\éltuhlg(—jpé)llg) a<l Yes No Global, t € [§,T]
qu(é?l:;(r;ea?isé) a<l Yes No Global
:Eii?g{ﬁ:f?f;? a<l No Yes Global
Laguerre—Gauss 1 Y. N Local
quadrature (18) | ¢ < es ° oca
T:iree?%j)al a<l1 No Yes Global
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Compare the different kernel approximation methods.

Define the relative error
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Figure: Comparison of different kernel approximation methods, § = 0.1,
T =1000, o« = —0.4, and B = 5.
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An improved kernel approximation method

We already have

. o Q
ka(t) = M/ AP A Y wi(@)eM @, a <l (21)
7r o o
Hence, ko (t) can be approximated by
Fa(t) =——Fua (1)
(e 70[ 1 a—1
t &
S — w; (o — 1)@t (a < 2) (22)

ka(t) = ka—2(t), a € (2,3).

(a=1)(a—2)



Error

1010

e BN,
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t t

(a) The hyperbolic quadrature. (b) The improved method.

Figure: Comparison between the hyperbolic quadrature (9) based on the
contour quadrature (11) and the improved method (22), @ = 256.
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Variable-order fractional case

Table: Comparison of different methods for approximating ke (t) = t*~/T'(a).

. Kernel Range Are \; Extension to Global/Local
pproximation dependent | variable-order y :
method of o on a? o =a(t)? approximation
qua(d:(:anttL(J)rL:er(Q) acR No Yes Local
ml\éltuflgc-jpzjllg) a<l Yes No Global
quadrature (1) | © <1 [ Yes No Global
aundrature (17) | <1 | No Yes Global
dundrarare (18 | @ <1 | Yes No Local
T:i:)ee?z)i(;j)al a<l1 No Yes Global
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Variable-order fractional case: o = «(t)

Contour quadrature: From (9), we can obtain

Ko (£) = (=1 :L/ A A g (23)
¢ T(a(t)) 27 /o

Legendre—Gauss quadrature:

ka<t>(t):75m(°7‘r(t)”) / AT
0

L / AT AN + O(e) (24)

_sin( Z/ —a® ) + O(e)
=1v9j-1
Trapezoidal rule: \ = e”

ka<t>(t):73m(‘;(t)”) /0 AW

_sin(a(t)m) /°° p—a(®)z ~te” g
7r — 0o

(25)
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10° —o— Trapezoidal rule 100, —o— Trapezoidal rule
—b— Talbot quadrature —b— Talbot quadrature
—+— Hyperbolic quadrature —*— Hyperbolic quadrature
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Figure: Comparison of different kernel approximations for variable-order
fractional orders, 7 =1, T'= 1000, and Q@ = N x L = 64 x 4 = 256.
The trapezoidal rule shows better accuracy than the other two methods
for negative «(t), but displays the worst accuracy when a(t) > 0.
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Figure: The accuracy of the Legendre—Gauss quadrature for the method
(17) for the variable order fractional case, 7 = 1, T' = 1000, my = 6,
N =16,and Q = N x m.
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The unified fast time-stepping method

1. Fast method for RL fractional integral (ko * u)(t) is
Fast method for RL fractional derivative rr DS, u(t) = P.V.((k—a *u)(t)) is

2. Fast method for the Caputo fractional derivative
o DG u(t) = (km-a xu™)(t) = PV.(k—a * (u—¢)(t)), m—1<a<m

reads as
F(—a) + B(a).

el @ (0)
For a smooth u(t), ¢(t) = Z].:(Jl F(;Jr((l)i t?, so that

m—1 '7&
(j)O.
;F (J+1—-a) 0)
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The linear interpolation operator II* : C[0,7] — C[0,T] reads as

t—1t,; t—1t_
——u(tj1) + ——u(ty), (26)

' u(t) e, 0 =
wB)leetty 1.t tj—1 —t; tj —tj-1

Then the convolution integral (kq * u)(t) can be approximated by

n

D™= (ko x Tu)(ta) = D (A0~ + B2)w), (27)

n,J
j=1

where u/ = u(t;) and

t; sy
Agla) = / ka(tn - S) d 2 dS,
R ti—1—t;

. t (28)
J -t
B = / ko (tn — ) ——Lds.
™ . ty—tj1
ti_1 A

e « > 0: (27) is the fractional trapezoidal rule.

e o < 0: (27) is the popularly used L1 method for discretizing the RL
fractional derivative.
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The aim of this section is to design fast algorithms to calculate

n

(ko # ') (£) = / (b — )Tl u(s)ds — S (A1 + Bu). (29)

to j=1

Divide (ko * IT'w)(t,) into two parts as

(o 5 1T 0) (1) = /t "

n—1

tn—1
ka(tn — )T u(s)ds +/ ko(tn — )T u(s)ds,
0

Local part : Loy History part : H "y
(30)
where the local part L*™u and the history part H* ™ can also be expressed as

Loy = AW+ Bun, (31)
n—1

H"u = Y (A% 4+ BO ). (32)
j=1

Develop the fast memory-saving method to calculate the history part H* " u.
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The history part H*"u can be approximated via

n—1 ] ) tr—1
H*"u = Z(Aif,“}ufl + Bff‘])uj) = /0 Eo(tn — )T u(s)ds

Jj=1

Direct calculation
tp—1

Z (a)ei =T (s)ds
j=1

M@%

_— (33)
wj(a)ekj(tn_tnfl)/ eAj(t"’l_S)Hlu(S)ds
0

=1

<.

Yj (tnfl)

w;(a)e Y (4, ) = p HO

I
Mo

.
Il
-

Fast calculation

where Yj(t) satisfies the following ODE

Y (t) = A\ Y5(t) + u(t),  Y;(0) =0. (34)
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The above linear ODE has the analytical solution
t
Y;(t) :e*jtyj(0)+/ e Ty (s)ds,
0

which can be exactly solved by the following recursive relation

tm
Yj(tm) — eAj(t"”itm_l)Yj(tmfﬂ + / 6>\j(tm7t)1_[lu(t)dt

tm—1

=MAY;(tm-1) + Agu™ ! + Agu™

(35)

at t = tp,, where Y;(0) =0 and
A = eAj(tnl_tmfl)

1 . e —z—1
e T G e B e

<

I

)
As = /\iﬂ 2= Aj(tm — bm1).

v z
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Algorithm 1: Fast calculation of the fractional operator k, * u(t) based on the

kernel approximation

tal

Q
ha(t Z )N @t e [5,T] (37)

Step 1. Divide (ko * IT'w)(t,) into two parts as

(kew # TM0) (£) :/t" ka(tn—s)Hlu(s)ds+/() " k(b — )T u(s)ds.

n—1

Local part : L%y History part : H®: "y

Step 2. Calculate the local part L™ u directly by (31).
Step 3. Approximate the history part H*"u by

H”‘"H—ng M@ty )| nz2 (39)

where p H"u = 0 for n < 1, Y;(tn—1) satisfies (35).
Step 4. Output p D™ “"u = L*"u+ p H""u.



Algorithm 2: Fast calculation of the fractional operator k, * u(t) based on the
improved kernel approximation
et t

Q
ko(t) = e~ a- ka1 (t) 1S @, e [5,1] (39)

Step 1. Divide (ko * II'u)(t,) into two parts as

(o # T ) (1) = /;”

n—1

tn—1
ka(tn — $)IT'u(s)ds +/ ko(tn — )T u(s)ds.
0

Local part : L™y History part : H:"y

Step 2. Calculate the local part L™ u directly.

Step 3. Approximate the history part H*"u by

Q -
P = 3 @) @Y (1) — Zy(tae1) | n> 2, (40)
j=1

where p H*"u = 0 for n < 1, Y;(tn—1) satisfies (35).
Step 4. Output p D~ “"u = L¥"u+ pH*"u.
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3
|
—

HY"y,

) ) tp—1
(a4 B = [ ot — M atehas
0

.
Il
-

2
Mo
Sk

tno1 -
'(oz)/ (tn — 8)e I y(s)ds
0

e (41)
Q -
= Z Aj(a)eAj(tn*tn—l) (tnY(tno1) — Z;(tn_1))
j=1
=: FI’IOL’nU7
where .
n—1 =
Yrj(tn—l) :/ e/\j(tnil_S)Hlu(S)d&
’ (42)

tho1 —
Zj(tn-1) :/ e (tn=17) 5Ty (5)ds.
0
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Application to FODEs

Consider the following fractional ODE (FODE)

W) = —u i o
CD(J’,5 (t) )+ f(u,t), O0<a(t)<1l, te(0,7], (43)
u(0) = wo,
where
a(t) t=o®
cDy u(t) = PV.(k_a@) *u(t)) — mu(()).

The fast method for (43) reads: Find pU™ for n > 1 such that

—x
t, "

DO — —
" T T = am)

FUO :—FUn+f(FUn,tn), FUO = Ug. (44)

The direct method for (43) reads: Find U™ for n > 1 such that

—
[

Demn
v I'(l—an)

U =—U"+ f(U", tn), U°=uo. (45)
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Error of the direct method (uniform time mesh ¢; = j7)

R" = ¢D§ u(ty) — ¢ D I u(t,) = O(T°~%).

Theorem (Huang, Zeng, Guo, 2022)

Assume that

a—1
k_alt) = t

Zw L O(et™), telsT). (46)

Let U™ and rU"™ be the solutions of the direct method and fast method,
respectively. If T is sufficiently small and /7% < 1, then

U™ — pU™| S en®, 1<n <M. (47)
Hence,
U™ —u(ta)| U™ = pU" |+ U" —u(tn
|F ()] <| FU"| | (tn)] (48)
<en< Error of the direct method<|R™ |
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Time-fractional PDEs

Semi-linear time-fractional subdiffusion equation

o DG yu(z, t) = Oeau(z,t) + f(u), (x,t) € Qx (0,17,
u(z,0) = uo(z), =z €Q, (49)
u(z,t) =0, (x,t) €9 x[0,T].

Fast FDM for (49) is given by: For 1 <n < nr, find pUj" such that

pD*" U = 83 pUS + f(RUF), 1<5<M -1,

U = rUn =0, rpUj =wo(z;), 0<j<M.
Direct FDM for (49) is given by: For 1 < n < nr, find U such that
DU = U+ f(UF), 1< <M -1, (51)

Uy =Us; =0, U =wuo(z;), 0<j<M.
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Theorem

Let u and U} be the solutions of (49) and (51), respectively, u(-,t) € C*(),
and f(z) satisfies the local Lipschitz condition. If T is sufficiently small, then

lu(,tn) —U™lr S 7ta '+ A%, 1<n<M,

where p = 2, 0.

See [Dongfang Li et al., JSC, 2022; Natalia Kopteva and Xiangyun Meng,
SINUM, 2020].
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Theorem (Huang, Zeng, Guo, 2022)

Let U} and rUj" be the solutions of (51) and (50), respectively, f(z) satisfies
the local Lipschitz condition. If T is sufficiently small and /7% < 1, then

U™ = U"||er Sen®, 1<n< M,

where p = 2, 0.

Furthermore,
|PU™ = u(tn)lle S (tta~' + h25) +en®, 1<n < M,

where p = 2, 0.
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Nonuniform grids

t; =TG/M)" r =1 reduces to the uniform grid.

Theorem (Yang, Zeng, 2022)

Let U} and rpU;" be the solutions of (51) and (50), respectively, f(z) satisfies
the local Lipschitz condition. If eM< < 1, then

|FU™ = U™||er S eM™2/™ <en®, 1<n< M,

where p = 2, 0.
Furthermore,

[PU™ —u(,tn)llzr S

~

(temporal error + h°t) +en®, 1<n < M.
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Numerical results

Consider the following fractional ODE
Dy u(t) = —u(t) + f(u,t), w(0) =uo, te (0,77, (52)

where 0 < a(t) < 1.
Choose the nonlinear term f = u(1 — »?) and the initial value uo = 1.

Compute the reference solutions U, ; with a smaller step size 7 = 1073,
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Relative error
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t t

(a) Numerical solutions.
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Figure: (a) Numerical solutions for & = 0.1,0.5,0.9. (b) the errors

between numerical solutions and reference solutions for different
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Consider the following time-fractional Allen—Cahn equation

oDgu(x, t) = 'y(aAu(x, t) — a*lF’(u)), (x,t) € Q x (0,17, 53

u(x7 0) = uO(X)7 x €4,

subject to periodic boundary conditions, where o € (0,1],  C R?, x = (z,9)
for d =2, x = (x,y, z) for d = 3, € is the thickness of phase interface, v is
mobility constant, and F' is defined by
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The computational domain Q = (—1,1)? is partitioned uniformly into 128 x 128

subdomains, € = 0.02, and v = 0.02. The initial condition is taken as

up = — tanh ( (= — 0.3)> +4° — 0.22) /5) tanh ( (= + 0.3)° 4+ y° — 0.22) /E)

X tanh ( (x2 +(y—0.3)%— 0.22) /5) tanh ( (x2 + (y+0.3)° — 0.22) /E)
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Figure: Numerical solutions of the Allen—Cahn equation (53). Solution
snapshots at ¢t = 1,10, 50, 100 (from top to bottom) for three fractional
orders « = 0.4,0.7,0.9 (from left to right).
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Figure: Numerical solutions of (53) with variable-order
a(t) = 0.4 + sin?(t) /2. Solution snapshots at ¢ = 1,30, 50 (top: from
left to right) and ¢ = 100, 150, 200 (bottom: from left to right).
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Figure: The comparison of the fast method (red stars) and direct method
(blue circles) for solving two-dimensional Allen—Cahn equation (53) with
the time step size 7 = 0.01, the spatial step size h = 1/64, and o = 0.9.
We can see that the proposed unified fast method can significantly reduce
the memory and thus use much less time than that of the direct method.
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Three-dimensional time-fractional Allen—Cahn equation (53) subject to the

following initial condition

14 0.2c08(60) — /22 + 2y + 22
uo_tanh<+ cos(60) ““Z),

V2e

where 6 = tan~*(z/z). The computational domain Q = (—1.5,1.5)? is divided
uniformly into 32 x 32 x 32 subdomains, ¢ = 0.05, and v = 0.05. The time
step size is taken as 7 = 0.01.

The initial condition is a star-shaped ball, which becomes smaller as the time ¢
increases for o = 0.4, 0.7,0.9. For a fixed time ¢, the ball becomes smaller as

the fractional order a becomes larger.
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Figure: Numerical solutions of the three-dimensional Allen—Cahn
equation (53). Solution snapshots at ¢ = 1,10, 50,100 (from left to
right) for three fractional orders oo = 0.4,0.7,0.9 (from top to bottom).
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Figure: Snapshots of numerical solutions of the three-dimensional
Allen—Cahn equation (53). Top: « = 0.4, ¢ = 300, 500, 800, 1000 (from
left to right); center: a = 0.7, t = 140, 200, 250, 300 (from left to right);
bottom: a = 0.9, t = 110,120, 130, 140 (from left to right).
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Consider the following one-dimensional Schrédinger equation

iue(z,t) = —uze(x,t), fort >0, z€R,

u(z,0) = uo(x), for x € R. (34)

In applications, we are concerned with the solution on the bounded domain
z € Q, for example, Q = [—3,3]. In such a case, (54) is equivalent to a

time-dependent Schrodinger equation with nonreflecting boundary conditions

[?]

iue(t) = —um( ), for t > 0,

u(z,t) = (k1/2 * uz ) (t), at x = —3, (55)
u(w,t) = —et (k1/2 *ug)(t), atx =43,

u(z,0) = uo(z), for x € [-3,3],

where i? = —1 and u(t) = u(x,t), uz(t) = uz(z,t) = pu(x, t).
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The Crank—Nicolson method is applied to the first equation in (55), the
fractional integral operator in the second or third equation in (55) is discretized

by the fast Algorithm 1, we obtain a semi-discrete method for (55) as follows:
Find U™ = U(,tn) for n > 1 such that

Un _ Un—l Un + Un—l
- — T T f _
7 S — 3 , or x € (—3,3),

U™ (43) = FeT p DV 1, (£3), (56)

U%(z) = uo(x), for z € [-3, 3].

The initial data u(z,0) = %ei“’ﬁ/(‘l@. The exact solution of (54) is

1

u(et) = g

eik(a:fkt)7(1—2kt)2/4(§+it)’ £ keR.

7
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Figure: Numerical solutions of the Schrédinger equation (54) on the
interval [—3,3], h =7 =0.001,£ = 0.04, k = 2. (a) The real part of the
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Figure: (a) The L? errors of the numerical solution under different time
step size; (b) Comparison of the computational time between the fast
method and the direct method.
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