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Fractional diffusion equation (FDE)

@ Conservation of mass Ju/0t + dq/0x = f+Fick law ¢ = —0u/0x
= Ou/0t — 0%u/0x* = f = Steady state —D?u(z) = f(x).

@ Nonlocal Fick law on spatial domain (0,1): ¢ = —I27%0u/dx where
7 =rol7*+(1—-r) I} % 1<a<2, 0<r<1

and

2—a 1 ’ g(S) s 2—a 1 ! g(S) s
= ), G 0 | e

= —DI?> °Du(z) = f(z).
@ When r =1/2, —DI?> D corresponds to (—A)*/2.

@ Variable-coefficient problems:
q=—K()I}*0u/0x = —D|[K(2)I?~*D]u(z) = f(z),
9= 127 (K(2)0u/dx) = ~DI2=* (K(x) Du(x)) = f(z).
@ Boundary conditions: u(0) = u(1) = 0.
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Weighted Sobolev spaces

o Let w(® = w@(z) := (1—-2)"ab for a,b> —1, {G%*(x)} be Jacobi
polynomials on (O 1) and Ga b(x) = GoP(2)/||GYP (). Let

LZ2(0,1) == {g() (z)g(z)*dz < oo}, for weight function
( )(> 0 on (0 1)) assouated with the inner product
fo (z)dz and the norm ||g|l. := (g, 9)/>.

@ Weighted space HL(M) := {v | v is measurable and [[v]],. ,@.» < oo} for
r € N with associated norm and semi-norm

r ‘ 1/2
||U\|r,w<avb> = (ZHDJUHZ(aH,bH)) s vl w@n = (ID ]| atr bt -

H' . . with non-integer r could be defined by K-method of interpolation.
wla,

o Equivalent space: For 7 € R, Hy, , := {v € L2, ) [[[v]|r(a,5) < 00} where
1012 () = 2oj20(1 +5%)" 07 and {v;} are Fourier coefficients of v under
the orthonormal basis {G‘?b(x)} of L2 ...
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2

Properties of I2~% = r g + (1 —7) »I; (Ervin-Heuer-Roop Math. Comp. 18)
1

o Coercivity: (IZ~*Du, Du) > collul|3;.-

@ Eigen-relation: —DI2~*D(w(@=PAGa=B:B(z)) = \,,GB*~F(x) where
a—1<a-p4,06 <1 satisfies (1 — r)sin(rf) = rsin(r(a — 8)) and

B — sin(7wa) T(n+1+4«)
~ sin(m(a—B)) + sin(xB) T(n+1) °

o DI2ou@=BRG D gy = X, GPT P (1) where

B sin(mwa) I'(n+a) ~—(n o1
An = sin(m(a— B)) + sin(r3)  nl! (n+ 1%

o ker(DI?~*) =span{k(z) = (1—az)* P~ 1gf-1}.
@ DI>? *(zk(xz)) = A_q and DIZ=*((1 — z) k(x)) = —A_; where

sin(ma)

Ao = —(1=1) F(a)m.
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Spectral expansion and approximation (Ervin-Heuer-Roop Math. Comp. 18)

@ Consider the homogeneous boundary value problem of —DI2~“Dw = f.

o f(z) € L? ;. 4 could be expressed as f(z) = 3.7 FiGPP) (),
o If we assume w(z) = w@=#F) (z Zw G(a £:8) (x), we apply the relation
~DI?~*D(w@=BRGa=BB(g)) = /\ 2GB2=B(x) to obtain

~DI?*Dw = —DI*~ "‘DZ W@ ()G ()

(Be=B) (4 (B,0—8) fi
= ’U.)l G 1G — wW; = —.
-3 )= Y6 s

@ Spectral approximation of w: N-term truncation wy (z).
@ Error estimate: ||lw — wy||,-a-s5.8 < QN Y[l 5.0-5-
@ Questions for —D(KI?~*D)u = f and —DI?~*(KDu) = f:

o FEM: Loss of coercivity of bilinear forms (Wang-Yang SINUM 13).

e Spectral method: Loss of eigen-relations.
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Spectral method for —DI?~%(K Du) = f

@ The solution to —DI?~*(K Du) = f could be expressed in terms of w

u(z) = 01/0 Wl ﬂKl(’f DG / Dw (1)

where C is chosen such that u(1) = 0.

A direct verification

—DI}"*(KDu) = —DI}~* (Cw =11 (2) + Dw(z)) = 0+ f(z).

f(x) € L2 ;.. 4 = unique solution u € L™ and [[u]z~ < Q| f|| @.a-s-
@ Approximation uy of u is given by (1) with w replaced by wy.

o feH!,  ,fort>0and K'eL?, , , =

[t — unllw-@-pr- < QN[ flly wis. -,

I Dt = un)||o-a-pr+1, —p+1) < QNf(afl)*tHth’w(;s,a_g).
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Spectral method for —D(KI?~*D)u = f

@ Equivalent form of —D(KI?>~®D)u = f is
—I2*Du=f; — Afy
where A := K(0)[I?~*Du(x)] |x:0, fi(z) = K~ (z) [y f(y)dy and
fo(z) = K~ 1().
@ Spectral expansion u(z) = w(o‘*ﬁ’ﬁ)(z) Z;.io U Gga‘ﬂ’ﬁ)(x).
@ A useful relation L?*D‘D(w(afﬁ’ﬁ)G%a_’B’B) (2)) = M Gﬁfi‘ll’“_ﬁ_l)(x)-
e fe LZ(B,Q,M = fi,[2 € Lz(ﬁ—l,a—ﬂ—l) = unique u € Li(—m—ﬂ),—fx)
such that
] (=a=p).—8) < C|fllo8.0-0)
and

A= (flv 1)0,;([3—1,&—/3—1)/([(71’ 1)“;([3—1«1—3—1)'
o feH!,, ,and Ke Wit fort>0—=

Ju = un |- o-pr- < QUK e N™7 ([ fllwipa-s +1).
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Bilinear form of —D(KI2~*D)u = f is a(g, §) := (KI2~“Dg, Dg).

Recall that this bilinear form is not coercive.

Product rule for —D(K - (I2~*Du)):

F(/ f
_ 22—« _ Y (2« _ J
D(IZ"“D)u (IZ7*D)u =
Weak coercivity (Garding inequality): ||g||%2 +a(g,g9) > Q||g||§{a/2

= Error estimate: ||u — up||z2 +h =2 |lu — up|| a2 < Q27 where o
is determined by ||u — Iul| a2 < Q||| zoh /2.

Application to —DI?~%(K Du) = f by using KDu = D(Ku) — K'u
= —D(I?"*D(Ku)) + DI} *(K'u) = f
= For v := Ku it holds —D(I?~®Dv) + DI?*(K'v/K) = f.

Extended to study high-dimensional problems.
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Regularity of FDEs

@ Regularity of —D(I2~“D)w = f: f € L? = w € H™»{Fo-B}+1/2-¢ (gee
e.g. Ervin JDE 21).

@ Equivalent form of —D(KI?> ®D)u = fis
—DI* *Du = f] — Af}

where A := K(0)[I2*Du(z)]| _,. fi(z) z) [y f(y)dy and
fo(z) = K~ (z) = f € L? implies u € Hmm{ﬁ o 5}+1/2 €.

@ In fact, the above conclusion also holds for —D(I2~“K D)u = f. Recall that

u(x)201/0(ﬁl(ﬁ d—i—/Dw

— Key ingredient: 27 € HY*1/2=¢ for 0 < v < 1 by interpolation estimate.
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Petrov-Galerkin spectral method for space-fractional problems

@ It was shown that the bilinear form of —DI?>~*(K D) is not coercive and
the accuracy of FEM is relatively low, which motivates the (weighted)
Petrov-Galerkin method.

o Let w(z):= (1 —2)* P28 and w*(x) := (1 — 2)#2x*~#. Based on the
structure of u(z) (u(z) = w(x)d(z) for some ¢(x)), we propose a weak
formulation of —DI?~*(KD) = f via B: H, x H®-' - R

B(¢, ) = (KD(wé), = D(w ) = (f,w*y).
Here we used the following adjoint property (I2~“g,§) = (g, I}~%§).
o Key difficulty: Prove the inf-sup condition in the Banach-Netas-Babuska

Theorem
B(¢,v)
sup

o = Collollay-
0£YEH ! ||¢||Hj;1 “
@ Idea: Given ¢ € H}, find ¢» € H>! such that
D(w¢) - (I D(w*y)) > 0 or even D(w¢) = I}~ D(w*y),

which allows moving K outside of the inner product by its low bound and
then using the orthogonality of Jacobi polynomials.
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Petrov-Galerkin spectral method for space-fractional problems

e For ¢(z) =32, qbiégo‘_ﬁ’ﬁ) (r) € H}, define ®; := —¢;/uu; where {u;}
are given by

=D (@) G (@) = G (@), k>0
® pup~—(k+1)*1as k— oo
@ ¢(z) could be rewritten as ¢(z) = —> .7 Mi(biégo"ﬁ’ﬁ)(x),
@ It is also known that for n > 0

D(W(O‘_B’ﬂ)(x)fo_Bﬁ)(x)) =—(n+ 1)w(0‘_5_175_1)G(oflﬁ_l*ﬁ_l)(x),

n

o Define ¢(z) by ¢(z) = >°72,(j + 1)<I>j(§'§’6’a_6)(x).

o As g e HL, [[0ll3, = S2o(1+%)! (i) = T3 (1+7%)7®F < o, then
(1200 = Sg L+ 2% (G + 1) 85)? = T20(1+57)°92 < o,
e, e HS™  and ] oot = [16] .
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Petrov-Galerkin spectral method for space-fractional problems

We invoke the above relations, K (z) > ko > 0 and

1,5—1
e ™)
el

to find
B(¢,v) = (K(Dwé(x)), ;-2 D(w*(z)))
IGESTT T IN e g D ()

_ (a—B-1,8-1)N\"(; .
(KOJ z;(l + 1)/'61(1)1 ||G(a_ﬁ7ﬂ) H i+1
% )

=, . HGJ(‘?}IS_M_”H Ala—B—1,8-1)
Z(]Jrl)/tjq’jW J+1 (z)

=0
B 15 1||2 o0

- 2,2 2” P41 ~ , 2252
ZkO;(Z‘FU i P ||G(-Ba 5)H2 ko ;(Z"‘l) i P;

0 D (1 +2) 8 = Kollél = Folldlay vl oot
=0
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A two-dimensional generalization

@ Space-fractional diffusion equation in two space dimension
V- (=A) 7 K(2)Vi(z) = f(z), z€Q,
u(z) = 0, =€ R*\Q.

@ ) is the unit disk in R?, 0 < o < 2, K = diag(k1, k2), and (—A)C%2 is the
Riesz Potential operator defined by

A () = )
(=A) 2 g(=) aB) /Rd [P dy, 0<p<d

with
() = 2° 72T (8/2)/T((d ~ B)/2)
@ Note that this is different from the Riesz space-fractional diffusion equation
0%u 0%u

—k —
Dol 7 Ol

= f(l'lafrz), ($1,$2) c 0.

as (—A) 2 - is not a one-dimensional fractional integral operator.
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A two-dimensional generalization

@ The solid harmonic polynomials in R¢ are the polynomials in d variables
which satisfy Laplace equation. In R? the solid harmonic polynomials of
degree [ can be conveniently written in polar coordinates,

((r,e) : 0<r<oo, 0<p< 2m), as {rlcos(lp) , r'sin(lp)}. Define
w? = (1 —7r?)" and

Via(z) :==rlcos(lp), 1>0and V;_i(x):= r'sin(lp), 1>1.
@ In R? an orthogonal basis for L2, (f2) is given via V, , and the Jacobi
polynomials {P""(-)} on (~1,1)
{U[’io U, {Vl,l(x) P (272 }} u{ul LU, {V 1(z) POD (207 — 1)}} .
@ We assume the solution u(z) = w2 u(z ) with

Uo,n,
W@ = N g Vi) P22 @)+ v (2) PR (207 -1)
1>1,n>0,pe{1,—1} n>0
and similarly express f(x) with coefficients f ,, ,..
@ To determine w5, , by comparing both sides of the equation, we need to

compute V - (— A)O‘TQK(Q;W(Q—T) 3V, P (202 — 1)),
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A two-dimensional generalization

e Compute V((1 — rz)%W,MPfl%’l)(QTQ — 1)) by properties of Jacobi
polynomials and translation between Cartesian and polar coordinates.

a—2
@ To act(—A) 2 on the resulting expression of

K(z)V((1- 7”2)%1/}#3(1%7”(27'2 —1)), we employ the following relation.

Theorem (Dyda et al., Constr. Approx., 2017)
For§ = d + 2I, s an integer, S =8> =1

a_g gfs’g,
fl@) = (1= |2 F 7 Viu(@) P 50 - 1),

F(n+1—s+2)T(n—1+ %)

—A) 2 f(z) = (— 1—s ga—2
I F(n+1)T(n+1-s+3)

a_94g S
X Viu(@) PE2T 2 2ge? - 1).

@ We finally differentiate the resulting equation to obtain the expression of
a—2 o o
V- (-A)T K@)V ((1-r2)5V,P " 22 - 1)).
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A two-dimensional generalization

By comparing the coefficients on both sides of the resulting equation and
rescaling them by

T(n+1+1)

L _ Tti+g)
b T(n+1+2+1)

" d ~n _ 27(0472)
, T+ 1) Uin,1, and fy

fl,n,h

we obtain

(n=0,1=0): (k1 +k2)doo = foo

(n=0,1=1): (2ky + (k1 +k2)) dio = fr0
{(n=0,0}>2: 2(ki +ka)dio + (k1 —k2)di—21 = J?l,o

{(n, 1= 0)}ns1: (ki — ko) donor + (k1 +k2)dow = fon
{(n,l=D}ns1: (ki —k2)dsn1 + (k1 + (k1 +k2))din = fin
{(n,D}n>1052: (k1 — ko) diyon—1 + 2(k1 +k2)din + (k1 —k2)di—2nt1 = ﬁn

A similar system is generated for the case u = —1. Thus we only consider the
case 4 = 1 as above for representation.
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A two-dimensional generalization

Recall the most general case in the above 6 formulas
{(n, D}n>1,52 0 (ki—k2) digon—1 + 2(k1+k2) din + (k1—k2) di—2ny1 = ﬁn
dl+2,n—|

d,,

dl—Z .0+l

Figure: Stencil illustrating the coupling of the unknowns d; .

This motivates us to decouple the system into infinite subsystems, each of which
is composed by the relations starting from djy2 ,—1 = djy.0, dig—2,1, dig—a,2,"
until o — 2m =0 or lo — 2m = 1 for some m (Note that since lo — 2m = 0 and
lo — 2m = 1 correspond to different formulas, thus the coefficient matrices
corresponding to even and odd [y are slightly different).
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A two-dimensional generalization

Following the aforementioned rule, we obtain decoupled linear systems of
equations of sizes: 1, 1, 2, 2, 3, 3, ..., m, m, ... with the coefficient matrices of

m x m (m > 2) given as
[ 2(k1 +k2) (k1 —k2) 1
(k1 —k2)  2(k1+ ko) (k1—k2)

Am =
(k1 — k2) | 2(k1 + ko) (k1 — k2)
L (k1 —k2)  2(k1+ ko)
and
[ 2(k1 +k2) (k1 —k2) ]
(k1 — k2)  2(k1+ ko) (k1 — k2)
Amx = |

(kl — kz) 2(k1 =+ kg) (kl — kz)
L (k1 — ko) 2ki+ (k1 + ko)
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A two-dimensional generalization

@ As A,, and A,, . are real, symmetric matrices, and hence have real
eigenvalues (singular values), a simple application of Gerschgorin's theorem
establishes that there exists constants ¢,,,;,, and ¢4 such that the
minimum and maximum eigenvalues of the matrices satisfy
0 < cmin < Amins Amaz < cmaz < oo Hence A,, and A,, . are uniformly
invertible with [ A, |2, [ A, |2 < €5, i-e. the system is uniquely solvable.

min’

@ To estimate the regularity of u, we introduce the weighted function space
B,7(Q) = {v|v € L2,(Q) and [vlgs1e2 () < oo} , S1, 82 >0
where the semi-norm | - |ge1.e2 ) is defined by
2 2 2
[0ffe () = >+ n®2) of, by,
Ln,p

Here hy, refers to the norm of the basis function V; 1 (z) Pr([y’l)(2r2 —1) and
the norm is then defined as

||/U||]23i1";32 (Q) = Z (1 + l251 + nQSQ) ,Uln h

Ln,p
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A two-dimensional generalization

To bound o -
SN @+ P 4 )}, b,

=1 n=0

we introduce a diagonal matrix W with entries w;; > 0 such that
WAW™'Wd = Wf, A= A, or Ay, ..

With A = W AW ™!, note that A is symmetric, positive definite, and has the
same eigenvalues as A. Thus, c;,b. < A7 |2 < ¢}, and [Wd|2 < |[WE|2,
which can be used to for weighted estimates.

For f(z) € Bs%“”(Q) there exists a unique solution t(x) = w? u(x) to the

proposed model with u(zx) € BS%IJF% ’ SQJ”I(Q). Furthermore, for § = w? g with
g € L?.(Q), we have
w2

[N

(-A)EG= -V (-A)*T Vg

o
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Thank You

for Your Attention!
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