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Semilinear fractional differential equation with order
α ∈ (1, 2)

Consider, with α ∈ (1, 2),

C
0 Dα

t y(t) = βy(t) + f (y(t)), 0 ≤ t ≤ T , (1)

y(0) = y0, y ′(0) = y 1
0 , (2)

• β < 0, y0, y
1
0 ∈ R,

• f satisfies the global Lipschitz condition:

|f (s1)− f (s2)| ≤ L|s1 − s2|.

The equation (1)-(2) is equivalent to

R
0 Dα

t

[
y(t)− y(0)− y ′(0)

1!
t
]

+ βy(t) = f (y(t)).

Here 0CDα
t y(t) and 0RDα

t y(t) denote the Caputo and
Riemann-Liouville fractional derivatives, respectively.
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Hadamard finite-part integral
Let p /∈ N and p > 1, the Hadamard finite-part integral on a
general interval [a, b] is defined as follows (Diethelm (1997)):

=

∫ b

a
(x − a)−pf (x)dx :=

bpc−1∑
k=0

f (k)(a)(b − a)k+1−p

(k + 1− p)k!

+

∫ b

a
(x − a)−pRbpc−1(x , a)dx ,

where Rµ(x , a) := 1
µ!

∫ x
a (x − y)µf (µ+1)(y)dy and =

∫
denotes the

Hadamard finite-part integral. bpc denotes the largest integer not
exceeding p, where p 6∈ N.
For example, with p > 1,

=

∫ b

a
(x − a)−pdx =

1

−p + 1
(b − a)−p+1.
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Relation between Riemann-Liouville fractional derivative
and Hadamard finite-part integral

It is well-known that the Riemann-Liouville fractional derivative for
α ∈ (1, 2) can be written as

R
0 Dα

t f (t) =
1

Γ(2− α)

d2

dt2

∫ t

0
(t − s)1−αf (s)ds

=
1

Γ(−α)
=

∫ t

0
(t − s)−α−1f (s)ds

=
1

Γ(−α)
=

∫ 1

0
(tw)−α−1f (t − tw)tdw

=
t−α

Γ(−α)
=

∫ 1

0
w−α−1f (t − tw)dw ,

where the integral =
∫ 1

0 is interpreted as the Hadamard finite-part
integral, see Diethelm (2010)
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Approximate the Riemann-Liouville fractional derivative
with order α ∈ (1, 2)

Let 0 = t0 < t1 < · · · < tN = T be a partition of [0,T ].

R
0 Dα

t f (tn) =
t−αn

Γ(−α)
=

∫ 1

0
w−α−1f (tn − tnw)dw .

Denote g(w) = f (tn − tnw). Let wl = l
n , l = 0, 1, 2, . . . , n, n ≥ 2.

Approximate g(w) by the piecewise quadratic interpolation
polynomial g2(w).
On [w0,w1], we use g(w0), g(w1), g(w2),

g2(w) =
(w − w1)(w − w2)

(w0 − w1)(w0 − w2)
g(w0) +

(w − w0)(w − w2)

(w1 − w0)(w1 − w2)
g(w1)

+
(w − w0)(w − w1)

(w2 − w0)(w2 − w1)
g(w2), w ∈ [w0,w1],
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Approximate the Riemann-Liouville fractional derivative
with order α ∈ (1, 2)

On [wk−1,wk ], k ≥ 2, we use g(wk−2), g(wk−1), g(wk)),

g2(w) =
(w − wk−1)(w − wk)

(wk−2 − wk−1)(wk−2 − wk)
g(wk−2)

+
(w − wk−2)(w − wk)

(wk−1 − wk−2)(wk−1 − wk)
g(wk−1) (3)

+
(w − wk−2)(w − wk−1)

(wk − wk−2)(wk − wk−1)
g(wk), w ∈ [wk−1,wk ],
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Approximate the Riemann-Liouville fractional derivative
with order α ∈ (1, 2)

Lemma

Let 0 = t0 < t1 < · · · < tN = T with N ≥ 2 be a partition of
[0,T ] and τ = T

N the step size. Let α ∈ (1, 2). Then, with n ≥ 2,

R
0 Dα

t f (tn) = τ−α
n∑

k=0

wknf (tn−k) + O(τ3−α), (4)

where some suitable weights wkn, k = 0, 1, 2, . . . , n and
n = 2, 3, . . . ,N.

Other higher order numerical methods: Chen and Li (2016), Du et
al (2010), Gao and Sun (2016), Hao et al (2021), Jin et al (
2016), Lyu et al (2020), Qiao et al 2020 Shen et al (2020), Sun
and Wu (2006), Zhao et al. (2015).
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The error formula for the approximation of the
Riemann-Liouville fractional derivative

Theorem

Let α ∈ (1, 2) and let f be sufficiently smooth on [0,T ].

R
0 Dα

t f (tn) =
t−αn

Γ(−α)

[
=

∫ 1

0
w−α−1g2(w)dw + Rn(g)

]
=

t−αn

Γ(−α)

[ n∑
k=0

αkng

(
k

n

)
+ Rn(g)

]
, (5)

Here
Rn(g) =(
d3nα−3 +d4nα−4 +d5nα−5 +. . .

)
+
(
d∗2 n−4 +d∗3 n−6 +d∗4 n−8 +. . .

)
,

In particular, for n = N, there holds for tn = tN = T = 1
RN(g) =(
d3τ

3−α + d4τ
4−α + d5τ

5−α + . . .
)

+
(
d∗2 τ

4 + d∗3 τ
6 + d∗4 τ

8 + . . .
)
.
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The error formula for the approximation of the
Riemann-Liouville fractional derivative

Proof:
Step 1.

Rn(g) = =

∫ 1

0
w−α−1g(w) dw− =

∫ 1

0
w−α−1g2(w) dw

= =

∫ w1

w0

w−α−1
(
g(w)− g2(w)

)
dw

+ =
n−1∑
l=1

=

∫ wl+1

wl

w−α−1
(
g(w)− g2(w)

)
dw = I1 + I2.

For I1, we have

I1 ==

∫ 1

0
(w0 + hs)−α−1

[
g(w0 + hs)−

(1

2
(s − 1)(s − 2)g(w0)

− s(s − 2)g(w1) +
1

2
s(s − 1)g(w2)

)]
h ds.
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The error formula for the approximation of the
Riemann-Liouville fractional derivative

Proof: Since g is sufficiently smooth, by using the Taylor series
expansion, we find for k = 0, 1, 2 that

g(wk) =g(w0 + hs) +
g (1)(w0 + hs)

1!
(hk − hs)

+
g (2)(w0 + hs)

2!
(hk − hs)2 +

g (3)(w0 + hs)

3!
(hk − hs)3 + . . . .

We get

I1 = =

∫ 1

0
(w0 + hs)−α−1

[
h3g (3)(w0 + hs)π0(s) + h4g (4)(w0 + hs)π1(s)

+ h5g (5)(w0 + hs)π2(s) + . . .
]
h ds

=
+∞∑
k=0

hk+3

∫ 1

0

[
h(w0 + hs)−α−1g (k+3)(w0 + hs)

]
πk(s) ds,
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The error formula for the approximation of the
Riemann-Liouville fractional derivative

Proof: Note that

h(w0 + hs)−α−1g (l)(w0 + hs) = h−α
∞∑
k=0

bkl(s)hk +
∞∑
k=0

akl(s)hk ,

for some suitable functions akl(s), bkl(s), k = 0, 1, . . . and
l = 3, 4, . . . , which are not necessarily the same at different
occurrences. Hence, we obtain

I1 =
(
d3h3−α + d4h4−α + d5h5−α + . . .

)
+
(
d∗2 h4 + d∗3 h6 + d∗4 h8 + . . .

)
,
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The error formula for the approximation of the
Riemann-Liouville fractional derivative

Proof: For I2, we have

I2 =
n−1∑
l=1

=

∫ 1

0
(wl + hs)−α−1

[
g(wl + hs)− g2(w)

]
dw

=
n−1∑
l=1

=

∫ 1

0
(wl + hs)−α−1

[
g(wl + hs)−

(1

2
(s − 1)(s − 2)g(wl)

− s(s − 2)g(wl+1) +
1

2
s(s − 1)g(wl+2)

)]
h ds.
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The error formula for the approximation of the
Riemann-Liouville fractional derivative

Proof: A use of the Taylor series expansion as in the estimate of I1
shows

I2 =h
n−1∑
l=1

=

∫ 1

0
(wl + hs)−α−1

[
h3g (3)(wl + hs)π0(s) + h4g (4)(wl + hs)π1(s)

+ h5g (5)(wl + hs)π2(s) + . . .
]

ds

=
∞∑
k=0

hk+3

∫ 1

0

[
h
n−1∑
l=1

(wl + hs)−α−1g (k+3)(wl + hs)
]
πk(s) ds.

Hence

I2 =
(
d3h3−α + d4h4−α + d5h5−α + . . .

)
+
(
d∗2 h4 + d∗3 h6 + d∗4 h6 + . . .

)
.

Combining these estimates completes the proof. (Note that
h = 1

n )
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Linear fractional differential equations
Consider

R
0 Dα

t

[
y(t)− y0 −

y ′(0)

1!
t
]∣∣∣

t=tj
= βy(tj) + f (tj). (6)

The exact solution is:

y(tj) =
1

α0,j − tαj Γ(−α)β

[
tαj Γ(−α)

(
f (tj) +

t−αj

Γ(1− α)
y(0) +

t1−α
j

Γ(2− α)
y ′(0)

)
−

j∑
k=1

αkjy(tj−k)− Rj(g)
]
. (7)

The approximate solution is:

yj =
1

α0,j − tαj Γ(−α)β

[
tαj Γ(−α)

(
f (tj) +

t−αj

Γ(1− α)
y(0) +

t1−α
j

Γ(2− α)
y ′(0)

)
−

j∑
k=1

αkjyj−k

]
, (8)
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Linear fractional differential equations

Theorem

Let α ∈ (1, 2). . Let y(tj) and yj be the exact and the
approximate solutions of (7)and(8), respectively. Assume that the
function y ∈ Cm+2[0, 1], m ≥ 3. Further assume that we obtain
the exact starting values y0 = y(0) and y1 = y(t1). Then

y(tN)− yN =
m+1∑
µ=3

cµNα−µ +

µ∗∑
µ=2

c∗µN−2µ + . . . , for N →∞,

or, since τ = 1
N ,

y(tN)− yN =
∑m+1

µ=3 cµτ
µ−α +

∑µ∗

µ=2 c∗µτ
2µ + . . . , for τ → 0.

proof: The proof is based on the technique in Diethelm and Walz
(1997) where the case α ∈ (0, 1) is considered.
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Semilinear fractional differential equations
Consider

R
0 Dα

t

[
y(t)− y(0)− y ′(0)

1!
t
]

= βy(t) + f (y(t)), 0 ≤ t ≤ T . (9)

Let yj ≈ y(tj) denote the approximation of the exact solutions
y(tj). Denote

Dα
τ yj := τ−α

j∑
k=0

wkjyj−k .

Given the starting values y0 and y1, define the following numerical
scheme for approximating (9)

Dα
τ yj−

t−αj

Γ(1− α)
y(0)−

t1−α
j

Γ(2− α)
y ′(0) = βyj+f (yj), for j = 2, 3, . . . ,N

(10)
with y0 = y(0) and y1 = y(t1).
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semilinear fractional differential equations

Theorem

For α ∈ (1, 2), let y(tj) and yj be the exact and the approximate
solutions of (9) and (10), respectively. Assume that the function
y ∈ Cm+2[0, 1], m ≥ 3. Further, assume that exact starting values
y0 = y(0) and y1 = y(t1) are known. Then, there exist coefficients
cµ = cµ(α) and c∗µ = c∗µ(α) such that the error satisfies

y(tN)− yN =
m+1∑
µ=3

cµτ
µ−α +

µ∗∑
µ=2

c∗µτ
2µ + . . . , for τ → 0. (11)
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semilinear fractional differential equations

Proof:
Step 1. Set for j = 2, 3, . . . ,N

ej = (y(tj)− ỹj) + (ỹj − yj) =: ηj + θj ,

where ỹj , j = 2, 3, . . . ,N be the solutions of the linearized
problem: with j = 2, 3, . . . ,N,

Dα
τ ỹj −

t−αj

Γ(1− α)
y(0)−

t1−α
j

Γ(2− α)
y ′(0) = βỹj + f (y(tj)), (12)

with ỹ0 = y(0) and ỹ1 = y(t1).
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semilinear fractional differential equations

Proof:
Step 2. By the error formula of the linear fractional differential
equation, we have

ηj =
m+1∑
µ=3

cµτ
µ−α +

µ∗∑
µ=2

c∗µτ
2µ + . . . , for τ → 0. (13)

Step 3: Therefore, it remains to prove a similar error expansion of
θN . Now the error equation in θj becomes

Dα
τ θj = βθj +

(
f (y(tj))− f (yj)

)
, for j = 2, 3, . . . ,N (14)

with θ0 = 0 and θ1 = 0.
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semilinear fractional differential equations
Proof: Step 3: With the help of

δtφn− 1
2

=
φ(tn)− φ(tn−1)

τ
, (15)

and

pl =
l−1∑
k=0

(l − k)wkl , l = 1, 2, . . . , n, n = 2, 3, . . . ,N, (16)

rewrite Dα
τ θj in a suitable manner in terms of δtθj− 1

2
and hence,

obtain an equivalent equation θj for j = 1, 2, . . . ,N as

τ1−α

(
p1δtθj− 1

2
−

j−1∑
l=1

(pj−l − pj−l+1)δtθl− 1
2

)
= βθj +

(
f (y(tj))− f (yj)

)
(17)

with θ0 = 0 and θ1 = 0.
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semilinear fractional differential equations

In order to derive an estimate of θj , we need the following Lemma,
whose proof is given in the subsection 7.2 of the Appendix.

Lemma

Let 1 < α < 2. Then, the coefficients pl defined by (16) satisfy
the following properties

pl > 0, l = 1, 2, . . . , n, n = 2, 3, . . . ,N, (18)

pl > pl+1, l = 1, 2, . . . , n − 1, n = 2, 3, . . . ,N, (19)
n∑

l=1

pl ≤
n2−α

Γ(3− α)
, n = 2, 3, . . . ,N. (20)
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semilinear fractional differential equations

Proof: Step 3: Multiplying (17) by τδtθj− 1
2
, it follows that

τ1−α
(

p1δtθj− 1
2
−

j−1∑
l=1

(pj−l − pj−l+1)δtθl− 1
2

)(
τδtθj− 1

2

)
− βθj

(
τδtθj− 1

2

)
=
(
f (y(tj))− f (yj)

)(
τδtθj− 1

2

)
.
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semilinear fractional differential equations

Proof: Step 3: Note that

[ j−1∑
l=1

(pj−l − pj−l+1)δtθl− 1
2

]
δtθj− 1

2

≤
j−1∑
l=1

(pj−l − pj−l+1)
1

2

(∣∣δtθl− 1
2

∣∣2 +
∣∣δtθj− 1

2

∣∣2)

=
1

2

j−1∑
l=1

(pj−l − pj−l+1)
∣∣δtθl− 1

2

∣∣2 +
1

2
(p1 − pj)

∣∣δtθj− 1
2

∣∣2
=

1

2

j−1∑
l=1

pj−l
∣∣δtθl− 1

2

∣∣2 − 1

2

j∑
l=1

pj−l+1

∣∣δtθl− 1
2

∣∣2
+

1

2
p1

∣∣δtθj− 1
2

∣∣2 +
1

2
(p1 − pj)

∣∣δtθj− 1
2

∣∣2,
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semilinear fractional differential equations

Proof: Step 3: and

−βθj
(
τδtθj− 1

2

)
= −βθj

(
θj − θj−1

)
≥ −β

2

(
|θj |2 − |θj−1|2

)
,

and

(
f (y(tj))− f (yj)

)(
τδtθj− 1

2

)
≤ L|y(tj)− yj |

∣∣τδtθj− 1
2

∣∣
≤ 1

2
τα

L2

pj

(
|ηj |2 + |θj |2

)
+

1

2
pjτ

2−α∣∣δtθj− 1
2

∣∣2,
(21)
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semilinear fractional differential equations

Proof: Step 3:

τ1−α(p1δtθj− 1
2

)
− τ2−α

[1

2

j−1∑
l=1

pj−l
∣∣δtθl− 1

2

∣∣2 − 1

2

j∑
l=1

pj−l+1

∣∣δtθl− 1
2

∣∣2
+

1

2
p1

∣∣δtθj− 1
2

∣∣2 +
1

2
(p1 − pj)

∣∣δtθj− 1
2

∣∣2]− β

2

(
|θj |2 − |θj−1|2

)
≤ 1

2
τα

L2

pj

(
|ηj |2 + |θj |2

)
+

1

2
pjτ

2−α∣∣δtθj− 1
2

∣∣2.
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semilinear fractional differential equations
Proof: Step 3: Denoting

Ej = −β|θj |2 + τ2−α
j∑

l=1

pj−l+1|δtθl− 1
2
|2,

we obtain

Ej ≤ Ej−1 +
C (L)

pj
τα
(
|ηj |2 + |θj |2

)
. (22)

It follows using 1/pj = Γ(2− α)τ1−α tα−1
j , j ≥ 2, θ0 = 0, θ1 = 0,

and τ
∑j

l=2 tα−1
l ≤ Ctαj that

Ej ≤ E1 + C Γ(2− α) τ

j∑
l=2

tα−1
l

(
|ηl |2 + |θl |2

)
≤ C (L, α) tαj max

1≤l≤j
|ηl |2 + C (L, α) tα−1

j τ

j∑
l=2

|θl |2. (23)
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semilinear fractional differential equations

Proof: Step 3: A use of Gronwall’s inequality yields

|θj |2 ≤ C (L,T , α) max
1≤l≤j

|ηl |2, (24)

which implies that

|ej | = |ηj |+ |θj | ≤ C (L,T , α) max
1≤l≤j

|ηl |,

where ηl , by (13), has the asymptotic expansion. This completes
the rest of the proof.
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Richardson extrapolation method

Let A0(τ) denote the approximation of A calculated by an
algorithm with the step size τ . Assume that

A = A0(τ) + a0τ
λ0 + a1τ

λ1 + a2τ
λ2 + . . . as τ → 0, (25)

where aj , j = 0, 1, 2, . . . are unknown constants and
0 < λ0 < λ1 < λ2 < . . . are some positive numbers.
Denote, with b = 2,

A1(τ) =
bλ0A0

(
τ
b

)
− A0(τ)

bλ0 − 1
, (26)

we then arrive at A = A1(τ) + b1τ
λ1 + b2τ

λ2 + . . . as τ → 0, for
some suitable constants b1, b2, . . . .
Similarly we may construct A2(τ),A3(τ), . . . .
Extrapolation methods for fractional differentil equations: Hao et
al. (2021), Li et al. (2022), Qi and Sun (2022),
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Numerical example 1

Denote A =R
0 Dα

t f (tN) and approximate A by

A0(τ) = τ−α
∑N

k=0 wkN f (tN−k). Then we have

A =A0(τ) +
(
d3τ

3−α + d4τ
4−α + d5τ

5−α + . . .
)

+
(
d∗2 τ

4 + d∗3 τ
6 + d∗4 τ

8 + . . .
)
.

In Table 1, we choose f (t) = t5, τ = 1/20, b = 2 and T = 1. We
obtain the approximate solutions with the step sizes(
τ, τ2 ,

τ
22 ,

τ
23 ,

τ
24 ,

τ
25

)
=
(

1
20 ,

1
40 ,

1
80 ,

1
160 ,

1
320 ,

1
640

)
.
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Numerical example 1

Step size Error of the scheme (4) Extrapolated values

1/20 4.17e-01
1/40 1.53e-01 8.34e-03
1/80 5.51e-02 1.51e-03 4.18e-05

1/160 1.96e-02 2.70e-04 4.26e-06
1/320 6.97e-03 4.82e-05 4.47e-07
1/640 2.47e-03 8.56e-06 4.85e-08

EOC 1.48 (1.50) 2.48 (2.50) 3.25 (3.50)

Table: Errors for approximating R
0 Dα

t

(
t5
)

with α = 1.5, taken at T = 1
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Numerical example 1

Step size Error of the scheme (4) Extrapolated values

1/20 1.96e-02
1/40 7.06e-03 1.91e-04
1/80 2,52e-03 3.43e-05 8.73e-07

1/160 8.94e-04 6.14e-06 8.86e-08
1/320 3.17e-04 1.09e-06 9.23e-09
1/640 1.12e-04 1.94e-07 9.81e-10

EOC 1.49 (1.50) 2.48 (2.50) 3.27 (3.50)

Table: Errors for approximating R
0 Dα

t

(
cosπt

)
with α = 1.5, taken at

T = 1
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Numerical example 1

Step size Error of the scheme (4) Extrapolated values

1/20 5.33e-02
1/40 1.92e-02 5.16e-04
1/80 6.84e-03 9.32e-05 2.41e-06

1/160 2.43e-03 1.67e-05 2.46e-07
1/320 8.61e-04 2.97e-06 2.58e-08
1/640 3.05e-04 5.27e-07 2.74e-09

EOC 1.49 (1.50) 2.48 (2.50) 3.26 (3.50)

Table: Errors for approximating R
0 Dα

t

(
et
)

with α = 1.5, taken at T = 1
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Numerical example 2

Consider the following linear fractional differential equation

R
0 Dα

t

[
y(t)− y(0)− y ′(0)

1!
t
]

= βy(t) + f (t), 0 ≤ t ≤ T , (27)

where y(t) = t5 and β = −1 and f (t) = R
0 Dα

t t5 + t5. The initial
values are y0 = y 1

0 = 0.
Let A = y(tN) with TN = 1 be the exact solution of (27). Let
A0(τ) = yN be the approximate solution obtained from (8). By
Theorem 4, we arrive at

y(tN)− yN =
(
c3τ

3−α + c4τ
4−α + c5τ

5−α + . . .
)

+
(
c∗2τ

4 + c∗3τ
6 + c∗4τ

8 + . . . .
)
.

(28)

In Tables 4, 5, we choose τ = 1/20, b = 2, y0 = 0 and y1 = τ5.
We obtain the extrapolated values of the approximate solutions
with the step sizes

(
τ, τ2 ,

τ
22 ,

τ
23 ,

τ
24 ,

τ
25

)
=
(

1
20 ,

1
40 ,

1
80 ,

1
160 ,

1
320 ,

1
640

)
.
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Numerical example 2

Step size Scheme (8) Extrapolated values Scheme (47)-(49) in [?]

1/20 2.69e-02 1.67e-03
1/40 7.85e-03 1.78e-04 2.38e-04
1/80 2.27e-03 2.76e-05 2.41e-06 3.44e-05

1/160 6.56e-04 4.17e-06 2.32e-07 5.04e-06
1/320 1.88e-04 6.14e-07 1.80e-08 7.50e-07
1/640 5.43e-05 8.94e-08 1.47e-09 1.13e-07

EOC 1.79 (1.80) 2.74 (2.80) 3.56 (3.80) 2.76 (2.80)

CPU times 0.2576 seconds 0.0012 seconds 0.0012 seconds 0.2867 seconds

Table: Errors for equation (27) with α = 1.2, taken at T = 1
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Numerical example 2

Step size Scheme (8) Extrapolated values Scheme (47)-(49) in [?]

1/20 1.59e-01 3.00e-02
1/40 7.24e-02 5.80e-03 6.62e-03
1/80 3.23e-02 1.32e-03 7.40e-05 1.48e-03

1/160 1.42e-02 3.07e-04 2.49e-05 3.36e-04
1/320 6.23e-03 7.10e-05 5.40e-06 7.73e-05
1/640 2.72e-03 1.63e-05 1.06e-06 1.80e-05

EOC 1.19 (1.20) 2.13 (2.20) 2.90 (3.20) 2.14 (2.20)

CPU times 0.2584 seconds 0.0012 seconds 0.0012 seconds 0.2897 seconds

Table: Errors for equation (27) with α = 1.8, taken at T = 1
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Numerical example 3

Consider the following semilinear fractional differential equation

R
0 Dα

t

[
y(t)−y(0)− y ′(0)

1!
t
]

= βy(t)+ f (y(t))+g(t), 0 ≤ t ≤ T ,

(29)
where y(t) = t5, β = −1, f (y) = sin(y) and
g(t) = R

0 Dα
t t5 + t5 − sin(t5).

For given y0 = y(0) = 0, y1 = y(τ) = τ5, we define the following
numerical method, with n ≥ 2,

w0yn − ταβyn − ταf (yn) = −
n∑

j=1

wjyn−j + ταg(tn)

+ τα
( Γ(1)

Γ(1− α)
t−αn

)
y(0) + τα

( Γ(2)

Γ(2− α)
t1−α
n

)
y ′(0). (30)
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Numerical example 3

Let A = y(tN) with TN = 1 be the exact solution of (29). Let
A0(τ) = yN be the approximate solution obtained from (30) by
using MATLAB function ”fsolve.m”.
In Table 6, we choose τ = 1/20, b = 2. We obtain the
extrapolated values of the approximate solutions with the step
sizes

(
τ, τ2 ,

τ
22 ,

τ
23 ,

τ
24 ,

τ
25

)
=
(

1
20 ,

1
40 ,

1
80 ,

1
160 ,

1
320 ,

1
640

)
.
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Numerical example 3

Step size Error of the scheme (30) Extrapolated values

1/20 1.89e-01
1/40 7.03e-02 5.04e-03
1/80 2.57e-02 1.40e-03 6.24e-04

1/160 9.32e-03 3.23e-04 9.06e-05
1/320 3.35e-03 8.20e-05 3.02e-05
1/640 1.19e-03 9.52e-06 -6.03e-06

EOC 1.46 (1.50) 2.26 (2.50) 3.15 (3.50)

Table: Errors for equation (29) with α = 1.5, taken at T = 1
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Numerical example 4

Consider the following semilinear fractional differential equation

R
0 Dα

t

[
y(t)−y(0)− y ′(0)

1!
t
]

= βy(t)+ f (y(t))+g(t), 0 ≤ t ≤ T ,

(31)
where y(t) = t5, β = −1, f (y) = y − y 3 and
g(t) = R

0 Dα
t t5 + t5 −

(
t5 − (t5)3

)
.
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Numerical example 4

Step size Error of the scheme (30) Extrapolated values

1/20 1.71e-01
1/40 6..59e-02 8.44e-03
1/80 2.44e-02 1.79e-03 3.71e-04

1/160 8.89e-03 3.70e-04 6.35e-05
1/320 3.20e-03 8.68e-05 2.59e-05
1/640 1.41e-03 1.54e-05 1.36e-07

EOC 1.44 (1.50) 2.27 (2.50) 3.40 (3.50)

Table: Errors for equation (29) with α = 1.5, taken at T = 1



Asymptotic expansion of the error to approximate the Riemann-Liouville fractional derivative with order α ∈ (1, 2) Asymptotic expansion of the error to approximate the linear fractional differential equations Asymptotic expansion of the error to approximate the semilinear fractional differential equations Numerical examples Future works

Numerical example 5

Consider the following linear fractional differential equation

R
0 Dα

t

[
y(t)− y(0)− y ′(0)

1!
t
]

= βy(t) + f (t), 0 ≤ t ≤ T , (32)

where y(t) = tγ , γ > 1 and β = −1 and f (t) = R
0 Dα

t tγ + tγ . The
initial values are y0 = y 1

0 = 0.
In this example, we consider the case where the solution is not
sufficiently smooth. We shall choose γ = 1.4 and the exact
solution takes y(t) = t1.4 which is not sufficiently smooth. In Table
8 we choose α = 1.4, τ = 1/20, b = 2, y0 = 0 and y1 = τ1.4. We
obtain the extrapolated values of the approximate solutions with
the step sizes

(
τ, τ2 ,

τ
22 ,

τ
23 ,

τ
24 ,

τ
25

)
=
(

1
20 ,

1
40 ,

1
80 ,

1
160 ,

1
320 ,

1
640

)
.
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Numerical example 5

Step size Scheme (8) Extrapolated values

1/20 1.26e-02
1/40 5.03e-03 1.30e-03
1/80 2.11e-03 6.69e-04 5.45e-04

1/160 9.35e-04 3.57e-04 2.95e-04
1/320 4.32e-04 1.85e-04 1.51e-04
1/640 2.06e-04 9.44e-05 7.64e-05

EOC 1.18 (1.80) 0.94 (2.80) 0.94 (3.80)

Table: Errors for equation (32) with α = 1.4, taken at T = 1 in Example
??
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Future works

• Consider the extrapolation nmethod for nonsmooth solutions

• Consider the extrapolation method for nonlinear time
fractional wave equation.

• Consider the extrapolation method for nonlinear space
fractional partial differential equations.
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THANK YOU VERY MUCH FOR YOUR ATTENSION!

ANY QUESTIONS
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