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Resistance minimum in dilute Magnetic Alloys
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Fig. 1. Electrical resistance of Au,.

Physica III, no. 6 Juni 1936

THE ELECTRICAL RESISTANCE
OF GOLD AND SILVER AT LOW TEMPERATURES

by W. J. DE HAAS and G. J. VAN DEN BERG

OFor metal, resistivity ~ T% at low T
(electron contribution), ~ T> at high T
(phonon contribution).

OWith magnetic impurity, it has a
minimum.



Resistance minimum in dilute Magnetic Alloys

Jun Kondo (3% /Z Kondo Jun, born on February 6, 1930) is a theoretical physicist from Japan.

Progress of Theoretical Physics, Vol. 32, No. 1, Juij' 1964
Resistance Minimum in Dilute Magnetic Alloys

Jun KONDO

Electro-technical Laboratory
Nagatacho, Chiyodaku, Tokyo

(Received March 19, 1964)



Kondo model

H = ngCLnga +2Js-8S
k,o

Kondo model (sd model)

In momentum space H = Z’fk CLJCka + JZ CLJf T i Cier ™ O
k,o k,k’



Kondo model

H = ngCLnga +2Js-S

k,o

Kondo model (sd model)

In momentum space H = Zé“k CkoCko T JZ Cko! Torg Ccor ™ O
k. Kk’

Second order perturbation R = R, [1 —4Jpln (kZT> + .. ]



Kondo model

_ I
Kondo model (sd model) H=) kel ¢y +2J5-S

k,o
In momentum space H = Zi‘?k CloCko T JZ Cio’ Ogip Cicg * O
k. k’
: kT
Second order perturbation R=Ry|1—4Jpln — | e

Problem: resistivity diverges when T goes to 0 !!!



Numerical Renormalization Group (NRG)

The Kondo problem was solved by Wilson with numerical renormalization
group method (in 1975).

Kenneth Geddes "Ken" Wilson (June 8, 1936 - June 15, 2013) was an American theoretical
physicist and a pioneer in leveraging computers for studying particle physics. He was awarded
the 1982 Nobel Prize in Physics for his work on phase transitions—illuminating the subtle
essence of phenomena like melting ice and emerging magnetism. It was embodied in his
fundamental work on the renormalization group.

He earned his PhD from Caltech in 1961, studying under Murray Gell-Mann
(September 15, 1929 — May 24, 2019)



Numerical Renormalization Group (NRG)

By linearize the dispersion and replaced it with a spectrum of discrete
levels equally distributed on logarithm scale as

g, = A"

The Kondo model is transformed to

N-1
Uy = AD=LYE {Z A2 (clepyr + CILch) — Jeloc - S}
n=0

-~

H = lim A-®V-D/2qq

N—o0



Numerical Renormalization Group (NRG)

N Ay Y g;;/
Ir,s> Ir) ® Is(N+1))
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Numerical Renormalization Group (NRG)

H =UEU!

N Ncut
- § : T A T
H = €U U, ~ €, U; U,
t=1 =1

Truncation criteria: energy

In NRG, that is: W) N1 = ZU w, r8)|r; 8) N41

U is the unitary matrix to diagonalize H. In order to truncate the basis, we
truncate the row index of U, which means the dimension of w is less than
the multiply of the dimension of r and s.
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Numerical Renormalization Group (NRG)

a) b) ., C) d)
E, (r) A E (r) E... (r) after truncation

12



Application of NRG to lattice models

(1)

(2)

(3)

(4)

(5)

This idea was proposed in Mitchel D. Kovarik, Phys. Rev. B 41, 6889 (1990)

Describe interactions on an 1nitial sublattice

(“block™) A of length ¢ by a block Hamiltonian H
acting on an M-dimensional Hilbert space.

Form a compound block AA of length 2¢ and the
Hamiltonian H AA, consisting of two block Hamilto-
nians and interblock interactions. H aA has dimen-
sion M?.

Diagonalize H aa to find the M lowest-lying eigen-
states.

Project H aa onto the truncated space spanned by
the M lowest-lying eigenstates, H A A—>PAIK A

Restart from step (2), with doubled block size: 2¢

—4¢, AA—A, and HY, — H ,, until the box size is
reached.
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Application of NRG to lattice models

l Truncate the basis to N_,;in the low energy space
Ncut

N
1=1

1=1




Application of NRG to lattice models

TABLE IIl. E,, E,, and AE at indicated maximum value of N,, corrected values at the indicated
maximum value of N, (corr.), linear extrapolations (lin. ext.), corrected linear extrapolations (corr. lin.
ext.), and the results of Nightengale and Blote (NB) for s=1. The values for E, and E, obtained at
N, =300 are the best upper bounds for these eigenvalues.

E, E, AE
N=16
Ny, =195 —22.44027572 —21.991 18077 0.449014 95
Lin. ext. —22.4461+0.005 —22.005+0.005 0.44110.005
NB —22.446310.005 —22.0049+0.005 0.4414+0.007
N=32
N, =300 —44.761 73076 —44.31323295 0.447497 81
N, =300 corr. —44.7867 —44.3452 0.4415
Lin. ext. —44.820+0.005 —44.39110.005 0.429+0.005
Corr. lin. ext. —44.845+0.005 —44.42410.005 0.42110.005
NB —44.8497+0.015 —44.436410.015 0.4133+0.02

Gap for spin-1 chain ~ 0.4105
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NRG “failed” in lattice models

PHYSICAL REVIEW
LETTERS

VOLUME 68 15 JUNE 1992 NUMBER 24

Real-Space Quantum Renormalization Groups

S. R. White and R. M. Noack

Department of Physics, University of California, Irvine, California 92717
(Received 20 January 1992; revised manuscript received 27 April 1992)

Although originally thought to show great promise in solving quantum many-body problems on a lat-
tice, numerical real-space renormalization-group techniques have had little success for such problems.
We explore the nature of the difficulties involved by studying the application of the method to the simple
tight-binding model in one dimension. The standard approach fails dramatically for this model. We
show that the key to successfully applying the renormalization-group technique lies in applying a variety
of boundary conditions to a block in order to simulate the effect of neighboring blocks.

S. R. White and R. M. Noack, Phys. Rev. Lett. 68, 3487 (1992)
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NRG “failed” in lattice models

It is easy to see in this simple example, however, that
this procedure is quite poor in describing large-scale,
low-energy behavior. The Hamiltonian in this example is
just a finite-difference discretization of the kinetic energy
of a 1D particle, and in the limit of large block size, the
eigenstates are just particle-in-a-box eigenstates. The
boundary condition of ignoring the connections T to
neighboring blocks corresponds to setting the wave func-
tion to 0 at the sites just outside the block. Figure 1 illus-
trates the difficulty. Any state made only of low-lying
states from the previous iteration imust have a “kink” in
the middle. In order to accurately represent states in the
larger block, one must make use of nearly all the states in
the smaller block: Any truncation leads to large errors.

FIG. 1. Lowest eigenstates of two 8-site blocks (solid circles)
and a 16-site block (open squares) for the one-dimensional
tight-binding model with fixed boundary conditions.
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NRG “failed” in lattice models

It is easy to see in this simple example, however, that i " i "
this procedure is quite poor in describing large-scale,
low-energy behavior. The Hamiltonian in this example is g 0 0 g
just a finite-difference discretization of the kinetic energy
of a 1D particle, and in the limit of large block size, the
eigenstates are just particle-in-a-box eigenstates. The
boundary condition of ignoring the connections T to . P &
neighboring blocks corresponds to setting the wave func- o o
tion to 0 at the sites just outside the block. Figure 1 illus-
trates the difficulty. Any state made only of low-lying
states from the previous iteration must have a “kink” in o A b A e w o w g e B Gy 0
the middle. In order to accurately represent states in the ] , _ o
larger block, one must make use of nearly all the states in | HF}. 1. l.,owest eigenstates of'two 8-site blocks (_so]nd cnr‘cle‘s)

and a 16-site block (open squares) for the one-dimensional

the smaller block: Any truncation leads to large errors. tight-binding model with fixed boundary conditions.

TABLE 1. Lowest energies after ten blocking transforma-
tions for the noninteracting single particle on a 1D chain with
fixed boundary conditions.

Exact Standard Fixed free
Eo 2.3508x10¢ 1.9207x10 2 2.3508x10 "¢
E, 9.4032x10°¢ 1.9209x 10 ~2 9.4032x10"°
E; 2.1157x10 73 1.9214x10 "2 2.1157x10 3
E; 3.7613x10 3 1.9217x 10 ~2 3.7613x10 3
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An attempt to cure the failure of NRG in

lattice model

Journal of Magnetism and Magnetic Materials 104-107 (1992) 861-862
North-Holland

M
M

g

tat]

W

Real space renormalisation group study of Heisenberg spin chain

Tao Xiang *' and G.A. Gehring °

“ Department of Theoretical Physics, University of Oxford, UK
b Department of Physics, University of Sheffield, Sheffield S3 7RH, UK

A new method for determining the ground state and first excitation state energy of a one-dimensional quantum
Hamiltonian with short range interaction is proposed. This method, based on the Wilson renormalisation group technique, is
illustrated by applying it to the one-dimensional quantum antiferromagnetic systems. Long spin chain calculations are
performed iteratively by diagonalising a smaller system, retaining the lowest m states, and constructing from these a longer
spin chain basis and corresponding Hamiltonian matrices. The computation can be easily and quickly done for spin § =1/2
and 1 system on a chain up to 60 sites. By extraploting with respect to both m and the chain length L, the ground state
energy of the spin 1/2 Heisenberg model is estimated to be —0.44313. It agrees to one part in 10° to the exact result. The
energy gap between the first excitation state and the ground state for the spin 1 Heisenberg model with both open and
closed boundary conditions is calculated. As m increases, it converges to the exact result rapidly.
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An attempt to cure the failure of NRG in

lattice model

The method is straightforward. Consider a quantum
spin chain where each spin has g degrees of freedom
(g =28+ 1). A cluster of r spins is diagonalised ex-
actly: this has g” basis states. We retain m states and a
further spin added to the cluster to give gm states. The
r + 1 cluster i1s diagonalised with in the gm basis states
and again m states are retained and the procedure is
repeated out to a cluster of length L. The ground state

spect to p we get €,= —0.44313 which agrees to one
part in 10° to the exact value 1/2 — In2 = —0.443147.

be slightly different. By extrapolating E(p) with re-
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The birth of Density Matrix Renormalization
Group (DMRG)

VOLUME 69, NUMBER 19 PHYSICAL REVIEW LETTERS 9 NOVEMBER 1992

Density Matrix Formulation for Quantum Renormalization Groups

Steven R. White

Department of Physics, University of California, Irvine, California 92717
(Received 22 May 1992)

A generalization of the numerical renormalization-group procedure used first by Wilson for the Kondo
problem is presented. It is shown that this formulation is optimal in a certain sense. As a demonstration
of the effectiveness of this approach, results from numerical real-space renormalization-group calcula-
tions for Heisenberg chains are presented.

S=1 S=13 S=1 S=

m Eq:)—E(?"act l—Pm ""Eo l—Pm

16 58%x107% 8.0x107% 1.401089 4.8x107°

24 1.7X10~%  1.9%x10~% 1.401380 1.6x10
Results from DMRG 36 78x107¢ 9.0x10~7  1.401437 6.6%10

44 3.2x107%  3.6x10”7 1.401476 1.1x10°¢

o0 1.9%x10~7 1.401484(2)

MC o=5x10"* 1.4015(5)
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The birth of Density Matrix Renormalization
Group (DMRG)
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Truncation scheme in DMRG

Suppose we have a wave-function as 1)) = Z Yo |Sm)€n)
D
We need to truncate it to a new DeutDeut
[P = Z ohalsh,

wave-function
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Truncation scheme in DMRG

Suppose we have a wave-function as 1)) = Z Yo |Sm)€n)
D
We need to truncate it to a new DeutDeut
[P = Z ohalsh,

wave-function

The reasonable criteria is to minimize the 1) — [3")]]

difference
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Truncation scheme in DMRG

Suppose we have a wave-function as 1)) = Z Yo |Sm)€n)
We need to truncate it to a new DeutDout
[P = Z ohalsh,

wave-function

The reasonable criteria is to minimize the 1) — [3")]]

difference

In the original paper of Steven R White, the answer is to truncate
according to the reduced density matrix.
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Truncation scheme in DMRG

Density matrix: p=10YWl = D Crnlsm)len) P (smil(en]
Reduced density ps =Tre(p) = Y lenrlplenr) = D bmntrnlsm)(smi

n'! m,n,m/’

matrix:

26



Truncation scheme in DMRG

Density matrix: p=10)l=" D Pmalsm)len) Vi (sml(en]
Reduced density ps =Tre(p) = Z(en”w@n“> = Z VWi |Sm) (S|
matrix: ! M

In matrix form: (Ps)mm’ = Z VmnWmin = il

27



Truncation scheme in DMRG
p= W = 3 ol sm)en) s (Sl e

m,n,m’,n’

ps =1Tre(p) = Z(en”‘p‘en”> = Z Vi W |$m) (Smi|

n’’ m,n,m’

Density matrix:

Reduced density
matrix:

(ps)mm’ — Z wmn/‘,b:;q,’n — wa

In matrix form:

The spectral representation (ps)mm: = (UQUT) s = Zwruru}i
T
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Truncation scheme in DMRG

Density matrix: p=10)l=" D Pmalsm)len) Vi (sml(en]
Reduced density ps =Tre(p) = Z(en”\ﬂ\en”> = Z ViV |Sm) (Smi|
matrix: " T
_ * _ T
In matrix form: (Ps)mm’ = Z VimnVm/n, = YUY
The spectral representation (ps)mm: = (UQU),, Zw”’“u"“

— Z Q’bmnwmn’ — ¢Tw
For e we also have
and (pe) m/ — VQVJr m/ = war
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Truncation scheme in DMRG

Density matrix: p=10)l=" D Pmalsm)len) Vi (sml(en]
Reduced density ps =Tre(p) = Z(en”w@n”> = Z ViV |Sm) (Smi|
matrix: " T
: — * _ T
In matrix form: (Ps)mm’ = Z VrmnPirn, = YU
The spectral representation (ps)mm: = (UQUT) s = Zwruru}i
Z wmnwmn — w

For e we also have
and (pe) m/ — VQVJr m/ = war

Why can we use the same Q here? .



Truncation scheme in DMRG

D.D.,
) = Z Ymn|Sm)|€n)
We have e
— Z Umm//U m”m’wm’n’Vn’n”vn”n‘sm>‘en>
mmfmlf n nln/f
- Z Jm”n”‘sm”He%“)
m//’nll
with wm//n// — Ufrﬁz”m’/l’bm’n, n'n'’

15" ) = Ui | Sm) e,y =V, len) =V len)

Ymne is a diagonal matrix. Why?

Then we can truncate the new basis |s;,,) and |e;, )

31



Truncation scheme in DMRG

OThe essence of DMRG is to truncate the reduced
density matrix instead of the energy as in NRG.

ODMRG is a variational method.

ODMRG is very accurate for 1D system.



Infinite algorithm

I b B

block S block E

b e

Fooby

superblock
I system environment |
new block S new block E

1] |

U. Schollwdéck, Rev. Mod. Phys. 77, 259 (2005)




Finite algorithm

and of infinite RlockS 2 sites block E

ovRe L J0O[ ]
A NI e = m—
system size

mnimal [ JOO[_______ ]
i o T I T R—

U. Schollwdéck, Rev. Mod. Phys. 77, 259 (2005)




Extrapolation to infinite M (kept states)

Suppose wave-function has error A ) = [vo) + A|i1)

_ (W[H[Y)
(¥])

~ (ol + A1 |)H (|tho) + A1)

. (%ol + A1) ([tho) + Al¢h1))
Energy Is _ Ey+NE,

142

= (1 =X (Ep + N°E;1) + O\

= Ey + \2(E; — Eg) + O(\Y)




Extrapolation to infinite M (kept states)

Suppose wave-function has error A ) = [vo) + A|i1)

(Y| H|p)
(W)
((o| + A1 |)H ([t0) + Alb1))
, (%ol + A1) ([tho) + Al¢h1))
Energy Is _ Eo+ \E,

1+ A2
= (1= M) (Eo + N E1) + O(\Y)
= FEo+ M\(E, — Ey) + O(\Y)

Truncation error &: the total truncation 5 )2

error in reduced density matrix.



Extrapolation to infinite M (kept states)

Suppose wave-function has error A ) = [vo) + A|i1)

(Y| H|p)
(W)
((o| + A1 |)H ([t0) + Alb1))
, (Dol + Awn])([1o) + Aleh1))
Energy Is _ Eo+ \E,

1+ A2
= (1= M) (Eo + N E1) + O(\Y)
= FEo+ M\(E, — Ey) + O(\Y)

Truncation error &: the total truncation 5 )2

error in reduced density matrix.

Linear extrapolation with & gives the exact energy E =Ey+Co



Extrapolation to infinite M (kept states)

-140.135 T I T |
; - 4

-140.140
-

-140.145

| 100 site spin-1 chain, PBC

_ 1 |
140.1500 0.001

Truncation error

|
0.002

FIG. 4. Error in the total energy for the system of Fig. 3 versus
the truncation error, with @=1072. In this run two sweeps for each
value of m were made. The points shown are for m=80, 100, 120,
160, 200, 260, and 340. The line is a linear extrapolation, weighted
with a standard deviation for each point assumed to be proportional
to the truncation error at that point.

S. R. White, PRB, 72, 180403 (2005)



Haldane conjecture

S = half odd integer spin chain, S=1/2, S = integer spin chain, S=1, 2, ...
3/2, ..

gapless gapped

Energy levels:

F.D.M. HALDANE, PHYSICS LETTERS, 93, 464 (1983); PRL, 50, 1153 (1983)



Haldane conjecture

V. CONCLUSIONS
0-5 T T T T

Using density-matrix numerical renormalization-group
techniques, we have calculated a variety of properties of
04 | | the Heisenberg chain with unprecedented reliability and
accuracy. The results we have obtained largely support
conclusions obtained from a variety of other methods over
- the last decade. In the case of the Haldane gap A, previ-
ous numerical work had established with reasonable cer-
tainty the existence of a gap, in agreement with Haldane’s
= conjecture, with A = 0.41. Our results must remove all
remaining doubt, and provide an accurate value for the
gap, A = 0.41050(2). We were able to determine the
7 ground-state energy per site of the infinite chain to es-
pecially high accuracy, e; = —1.401484038971(4). The
. J . ] correlation length was found to be identical to the decay
0.0 length of the local spin moment away from the effective

0.00 0.02 0.04 0.06 0.08 0.10 S = 1/2 spins on the ends of open S = 1 chains, with
1/L £ =6.03(1).

0.3
-
<
0.2 r

0.1 ¢

S. R. White, PRB, 48, 10345 (1993) S. R. White & D. A. Huse, PRB, 48, 3844 (1993)



Generalization of DMRG and its applications
O Finite T

O Real time evolution (out of Equilibrium)
O Dynamic properties
O Quantum Chemistry

O Nuclear Physics



Matrix Product States

The wave-function in DMRG is Matrix Product States

VOLUME 75, NUMBER 19 PHYSICAL REVIEW LETTERS 6 NOVEMBER 1995

Thermodynamic Limit of Density Matrix Renormalization

Stellan Ostlund and Stefan Rommer

Institute of Theoretical Physics, Chalmers University of Technology, S-41296 Gditeborg, Sweden
(Received 20 March 1995)

The density matrix renormalization group discovered by White is investigated. In the case where
renormalization eventually converges to a fixed point we show that quantum states in the thermodynamic
limit with periodic boundary conditions can be simply represented by a “matrix product ground state”
with a natural description of Bloch states of elementary excitations. We then observe that these
states can be rederived through a simple variational ansatz making no reference to a renormalization
construction. The method is tested on the spin-1 Heisenberg model.



Any state can be transformed to an MPS

For an arbitrary wave-function ) = Z S [ PRER 0L)



Any state can be transformed to an MPS

For an arbitrary wave-function V) = Z Coyonn0y 015+ o aL)

Reshape the wave-function Vo1 (02..0) = Cay,..01



Any state can be transformed to an MPS

For an arbitrary wave-function V) = Z Coy.nn0y 015+, OL)
01,.-., or
Reshape the wave-function Vo1 (02..0) = Cay,..01
I
_ _ T
Perform d SVD CO.] _____ o, — TO'] (0-2 _____ O-L) — Z UO.] aq Sa.l aq (V )al (0.2 O-L)

decomposition “



Any state can be transformed to an MPS
W) = Z Coy...0,101,---,0L)

For an arbitrary wave-function

.....

Reshape the wave-function

B - T
Perform d SVD CO.] _____ o — ?O-‘l ’(0'2 _____ O'L) — Z UO'1 a1 Sa‘l a1 (V )a1 ,(0-2 ..... O-L)
decomposition n
— Z UO’] ay Cal gy,..., or
aq

Rewrite U as



Any state can be transformed to an MPS

For an arbitrary wave-function

Reshape the wave-function

Perform a SVD Coqop = lPo-l,(()'z ar) — Z U01,al Sa]ﬂ] (Vf)al,(az ..... or)

..........

decomposition .
1

Rewrite U A311 — Ucr],al Cal 03,..,0, = lp(alaz),(@ ..... o)

The wave-function is now =



Any state can be transformed to an MPS

Perform a SVD decomposition of O3

Where we define:

o
Aafaz_U(alffz)aaz qj(0203),(04 ----- o) = Saz,az(w)az,(ff



Any state can be transformed to an MPS

Perform a SVD decomposition of

Where we define:

AO_Z 1,02 — U Cl] 0_2) a T(a263)7(04 O-L) — Sa27a2 (VT) ,(O'

Repeat the above procedure to site £-7, we have

§ : 01 A02 JL] gL — A1 A02 A0L-1ACL
----- Aa1 Aﬂl ,an ‘ aL 2.0 lAﬂ[_ 1 Or- CO'1,...,O'L o A A A A

----- ar—



Any state can be transformed to an MPS

Perform a SVD decomposition of

Where we define:

o
Aalzaz_U(alo-Z)’az lp(azﬁ?,),(fm ----- o) = Saz,az(w)az,(ff

Repeat the above procedure to site £-7, we have

C, o = Z AO']AO'Z . AJL] AO'L CO- 5, = AO'1A0'2 . .AO-L—IAO-L

13 a, " "aq.a; ar—2,ar-1° "ay_4 Or- | REERS)
a,...,.a.—1 )

The wave-function is now in a MPS form
)= Y _ ATA%...ATA% oy, ..., 0p)



Any state can be transformed to an MPS

The number of parameters in wave-function is d* Co1...01
The number of parameters in MPS ~ L Co,o = O ANAZ . - Agya AL
aq,..., ap—1
Al (1 x d)
A% (d x d*)

ALz (A2 % g2
AO'L/Q (dL/Z % dL/2—1)

A% (d* x d)
A%t (dx 1)




Graphical representation of MPS

bbb bbb 60




O
*7 a

01 Oﬁ
A1 a1
A ‘ af

dp

A_O-g ]7af

ag_

a. 4‘
Or
AC!L,]



Gauge degree freedom of MPS



Entanglement entropy

For any state written in basis of two parts W) = Zijlﬁij|i>Alj>B

Reduced density matrix: Pa = Py Pp = Py



Entanglement entropy

For any state written in basis of two parts W) = Zijlﬁij|i>Alj>B

Reduced density matrix: Pa = Py Pp = Py

Entanglement entropy defined as: 9AB = —Trpalogypp = — Zwalogzwa
X



Entanglement entropy

For any state written in basis of two parts W) = Zijlﬁij|i>Alj>B

Reduced density matrix: Pa = Py Pp = Py

Entanglement entropy defined as: 9AB = —Trpalogypp = — Zwalogzwa
X

1
| s

Renyi entropy Sa(pa) = log tr(p%) = Sa(pB)

Question 1: prove when a—1, Renyi entropy — Entanglement entropy
Question 2: What if a— o?



Entanglement Entropy vs bond dimension

.....




Entanglement Entropy vs bond dimension

.....

O 6 6 6066666 WX W Ao

Suppose the bond dimension of MPS is M, what is the largest entanglement

entropy this state can support?

M
mam_z —)—logM



Volume law for a random state

The number of parameters in wave-function is d* Coy.....o1
The number of parameters in MPS ~ L Cg,.... Z AdAaa, Aa' 0. Aal
..... arp 1
A01 (l X d)
A” (d x d*)
“ o e o o SN]O (dL/Q) Llod
AUL/Q—l (dL/2_1 X dL/z) & 2 5
o L/2 L/2-1
AL/ (d” xd’") Volume law!!
A% (d* x d)

A% (d x 1)




Area law for low energy states

Many-body Hilbert space

A S ~dA

Area-law states

Can be described by MPS with

For one dimension system § ~ C . : .
y finite bond dimension M

v

For n-D system (L") § ~ !
In DMRG, PBC needs more kept states than OBC, why?



Area law for low energy states

An area law for one-dimensional
quantum systems

M B Hastings

Center for Nonlinear Studies and Theoretical Division, Los Alamos National
Laboratory, Los Alamos, NM87545, USA
E-mail: hastings@lanl.gov

Received 16 May 2007
Accepted 27 July 2007
Published 20 August 2007

Online at stacks.iop.org/JSTAT /2007/P08024
doi:10.1088/1742-5468 /2007 /08 /P08024

Abstract. We prove an area law for the entanglement entropy in gapped one-
dimensional quantum systems. The bound on the entropy grows surprisingly
rapidly with the correlation length; we discuss this in terms of properties of
quantum expanders and present a conjecture on matrix product states which
may provide an alternate way of arriving at an area law. We also show that, for
gapped, local systems, the bound on Von Neumann entropy implies a bound on
Rényi entropy for sufficiently large o < 1 and implies the ability to approximate
the ground state by a matrix product state.
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Area law for low energy states

We now introduce some notation. We let X ; denote the set of sites ¢ with 7 <7 < £.
We let ¥, denote the ground state of the Hamiltonian H and we let p} y = W) (¥, be the
ground state density matrix. We let p?’ . denote the reduced ground state density matrix on
the interval X ;. That is, P?,k; = trigx, . (P} ), where the partial trace is over sites not in
X x. We define the entropy of any density matrix p; by S(pjx) = —tricx, , (pjx In(pjr))-

Theorem 1. Consider a Hamiltonian on a finite lattice as above satisfying the finite range
and finite interaction strength conditions above. Suppose H has a unique ground state
with a gap AFE to the first excited state. Then, for any i,

S(P?z) < Smax (2)
where we define
Smax = o€’ In(¢') In(D)2¢ ™P), (3)

for some numerical constant cq of order unity, and where we define
g — Hllﬂ(2'U/AE’ gC)a (4)
¢ = 6€.
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1D critical chain

In 1D, criticality means:

O The spectral is gapless.
O correlation function decay algebraically.

For 1D critical chain, logarithm correction to area law (cut the chain
in the middle):

S=clogl ¢ is related to the central charge in the
underlying conformal field theory (CFT).

Recall that for MPS with bond dimension M, we have

M

1 1
Smax:ZMlog(ﬂ)zlogM logM =clogL = M = L*

1=1

So to capture the EE of a critical chain, M needs to increase algebraically
with the length of the chain.



The ground state of spin %2 chain?

Ground states have low entanglement

| | | | 1

I

4_

12 site Heisenberg chain

N/21n 2

From Steven R White’ s talk

Question: what are the states
with S = 07?
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AKLT state
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Spin-1 Chain: Hagrr = 2(557;5} + E(Sisj)Q + g)
ij
1R1=0p12

Consider 2 sites: .

S18 = —((S1 + So)? — 57 — 53) = 5SS +1) 2

1
2
S5152(012) = —2,5152|112) = —1,5152(212) = 1

P2 =a -+ b8182 -+ 6(5182)2

Projection operator: P2|012) =a—2b+4c=0
P2|112> :a—b+c:O

P2|212>:a+b+621



AKLT state

Spin-1 Chain: Haxrr = Z(%&Sj + %(Sisj)Q + %)

]

1®1=0D1D2

Consider 2 sites: .

S18 = —((S1 + So)? — 57 — 53) = 5SS +1) 2

1
2
S5152(012) = —2,5152|112) = —1,5152(212) = 1

Pz =a -+ bSng -+ 6(5182)2

Projection operator: P2|012) =a—2b+4c=0
P2|112> :a—b+c:O

P2|212>:Cb+b+621

So P, is a projection operator, which project the two sites into the S=2 sector
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AKLT state

The Hamiltonian is non-negative, why?
Py = P;

The following state is an eigen-state of AKLT Hamiltonian with energy

= 0. So it is also the ground state.
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AKLT state

spin-1 singlet spin-1/2
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AKLT state

spin-1 singlet spin-1/2

~——o e

@) = |ay,...,a) and |b) = |by,....b;) representing the first and second spin-1 on each site
: : 0o L
The singlet state is Z Ypalbid|ai1)  with T=| \65]
aj 1 V2
The product of all singlet states Vs) Z Zzblazzbm, ooy by 10, Zbya, |AD)

Map the two S = ¥ spins into a S = 1 spin (why?) 2. 2 M, M}, -+ Mg, lo) abl

0 0 1 0 1

With the mapping matrix M" = [1 0] M= [; \(/1;] M= [O 0]



AKLT state

spin-1 singlet spin-1/2
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Now the wave-function is
= Tr(M"EM”X.--M’3])|6)

Define:



AKLT state

spin-1 singlet spin-1/2
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Now the wave-function is
= Tr(M"EM”X.--M’3])|6)

Define: A7 = M°X
1 1

At = 0 % A0 = | 2 0 A~ 01 0

0 0 0 +3 -5 0

AKLT state in MPS form: W) = ZTF(EQE@ = -EJL)IO?



AKLT state

spin-1 singlet spin-1/2
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O Spectral is gapped with PBC (4-fold degeneracy with OBC)
O Spin correlation function decays exponentially
O Hidden order: (Sie"™wusis?) = —4/9 forj—i>2

O In the same phase with isotropic spin-1 chain: Haldane conjecture



