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Resistance minimum in dilute Magnetic Alloys
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For metal, resistivity ~ 𝑇2 at low 𝑇
(electron contribution), ~ 𝑇5 at high 𝑇
(phonon contribution).

With magnetic impurity, it has a 
minimum.
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Kondo model
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Kondo model (sd model)

In momentum space



Kondo model
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Kondo model (sd model)

In momentum space

Second order perturbation



Kondo model
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Kondo model (sd model)

In momentum space

Second order perturbation

Problem: resistivity diverges when T goes to 0 !!!



Numerical Renormalization Group (NRG)
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The Kondo problem was solved by Wilson with numerical renormalization 
group method (in 1975).

He earned his PhD from Caltech in 1961, studying under Murray Gell-Mann 
(September 15, 1929 – May 24, 2019)



Numerical Renormalization Group (NRG)
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By linearize the dispersion and replaced it with a spectrum of discrete
levels equally distributed on logarithm scale as

The Kondo model is transformed to



Numerical Renormalization Group (NRG)
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Numerical Renormalization Group (NRG)
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Truncation criteria: energy

𝑈 is the unitary matrix to diagonalize 𝐻. In order to truncate the basis, we 
truncate the row index of 𝑈, which means the dimension of 𝑤 is less than 
the multiply of the dimension of 𝑟 and 𝑠.

In NRG, that is:



Numerical Renormalization Group (NRG)
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Application of NRG to lattice models

13This idea was proposed in Mitchel D. Kovarik, Phys. Rev. B 41, 6889 (1990)



Application of NRG to lattice models
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...

Truncate the basis to 𝑁𝑐𝑢𝑡in the low energy space



Application of NRG to lattice models
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Gap for spin-1 chain ~ 0.4105



NRG“failed”in lattice models
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S. R. White and R. M. Noack, Phys. Rev. Lett. 68, 3487（1992）



NRG“failed”in lattice models
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NRG“failed”in lattice models
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An attempt to cure the failure of NRG in
lattice model
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An attempt to cure the failure of NRG in
lattice model
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The birth of Density Matrix Renormalization 
Group (DMRG)
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Results from DMRG



The birth of Density Matrix Renormalization 
Group (DMRG)
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...



Truncation scheme in DMRG
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Suppose we have a wave-function as

We need to truncate it to a new 

wave-function
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Suppose we have a wave-function as

We need to truncate it to a new 

wave-function

The reasonable criteria is to minimize the 

difference

In the original paper of Steven R White, the answer is to truncate

according to the reduced density matrix.



Truncation scheme in DMRG
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Density matrix:

Reduced density 

matrix:
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Density matrix:

Reduced density 

matrix:

In matrix form:



Truncation scheme in DMRG
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Density matrix:

Reduced density 

matrix:

In matrix form:

The spectral representation
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Density matrix:

Reduced density 

matrix:

In matrix form:

The spectral representation

For e, we also have

and



Truncation scheme in DMRG
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Density matrix:

Reduced density 

matrix:

In matrix form:

The spectral representation

For e, we also have

and

Why can we use the same Ω here?



Truncation scheme in DMRG
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is a diagonal matrix. Why?

Then we can truncate the new basis

We have

with



Truncation scheme in DMRG

The essence of DMRG is to truncate the reduced
density matrix instead of the energy as in NRG.

DMRG is a variational method.

DMRG is very accurate for 1D system.



Infinite algorithm

U. Schollwöck, Rev. Mod. Phys. 77, 259（2005）



Finite algorithm

U. Schollwöck, Rev. Mod. Phys. 77, 259（2005）



Extrapolation to infinite M (kept states)

Suppose wave-function has error λ

Energy is
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Suppose wave-function has error λ

Energy is

Truncation error δ: the total truncation

error in reduced density matrix.



Extrapolation to infinite M (kept states)

Suppose wave-function has error λ

Energy is

Truncation error δ: the total truncation

error in reduced density matrix.

Linear extrapolation with δ gives the exact energy



Extrapolation to infinite M (kept states)

100 site spin-1 chain, PBC

S. R. White, PRB, 72, 180403 (2005)



Haldane conjecture

S = half odd integer spin chain, S=1/2,

3/2, ...

S = integer spin chain, S=1, 2, ...

gapless gapped

Energy levels:
Δ

F.D.M. HALDANE, PHYSICS LETTERS, 93, 464 (1983); PRL, 50, 1153 (1983)



Haldane conjecture

S. R. White, PRB, 48, 10345 (1993) S. R. White & D. A. Huse, PRB, 48 , 3844 (1993)



Generalization of DMRG and its  applications

 Finite T

 Real time evolution (out of Equilibrium)

 Dynamic properties

 Quantum Chemistry

 Nuclear Physics

 ……



Matrix Product States

The wave-function in DMRG is Matrix Product States



Any state can be transformed to an MPS

For an arbitrary wave-function
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Any state can be transformed to an MPS

For an arbitrary wave-function

Reshape the wave-function

Perform a SVD

decomposition

Rewrite U

The wave-function is now



Any state can be transformed to an MPS
Perform a SVD decomposition of

Where we define:



Any state can be transformed to an MPS
Perform a SVD decomposition of

Where we define:

Repeat the above procedure to site L-1, we have

or:



Any state can be transformed to an MPS
Perform a SVD decomposition of

Where we define:

Repeat the above procedure to site L-1, we have

or:

The wave-function is now in a MPS form



Any state can be transformed to an MPS

The number of parameters in wave-function is 𝑑𝐿

The number of parameters in MPS ~ L  



Graphical representation of MPS



Graphical representation of MPS



Gauge degree freedom of MPS



Entanglement entropy
For any state written in basis of two parts

Reduced density matrix:



Entanglement entropy
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Entanglement entropy
For any state written in basis of two parts

Reduced density matrix:

Entanglement entropy defined as:

Renyi entropy

Question 1: prove when α→1, Renyi entropy → Entanglement entropy

Question 2: What if α→ ∞?



Entanglement Entropy vs bond dimension



Entanglement Entropy vs bond dimension

Suppose the bond dimension of MPS is M, what is the largest entanglement 

entropy this state can support?



Volume law for a random state

The number of parameters in wave-function is 𝑑𝐿

The number of parameters in MPS ~ L  

Volume law!!



Area law for low energy states

For one dimension system

For n-D system (𝐿𝑛)

Can be described by MPS with

finite bond dimension M

In DMRG, PBC needs more kept states than OBC, why?



Area law for low energy states



Area law for low energy states



1D critical chain
In 1D, criticality means:

 The spectral is gapless.

 correlation function decay algebraically.
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For 1D critical chain, logarithm correction to area law (cut the chain
in the middle):

c is related to the central charge in the
underlying conformal field theory (CFT).



1D critical chain
In 1D, criticality means:

 The spectral is gapless.

 correlation function decay algebraically.

Recall that for MPS with bond dimension M, we have

For 1D critical chain, logarithm correction to area law (cut the chain
in the middle):

c is related to the central charge in the
underlying conformal field theory (CFT).

So to capture the EE of a critical chain, M needs to increase algebraically
with the length of the chain.



The ground state of spin ½ chain?

Question: what are the states

with S = 0?

From Steven R White’s talk



AKLT state
Spin-1 Chain:



AKLT state
Spin-1 Chain:

Consider 2 sites:
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Projection operator:



AKLT state
Spin-1 Chain:

Consider 2 sites:

Projection operator:

So 𝑃𝑖𝑗 is a projection operator, which project the two sites into the S=2 sector



AKLT state

The Hamiltonian is non-negative, why?



AKLT state

The Hamiltonian is non-negative, why?

The following state is an eigen-state of AKLT Hamiltonian with energy

= 0. So it is also the ground state.



AKLT state

The Hamiltonian is non-negative, why?

The following state is an eigen-state of AKLT Hamiltonian with energy

= 0. So it is also the ground state.

Why?



AKLT state

The singlet state is with



AKLT state

The singlet state is with

The product of all singlet states



AKLT state

The singlet state is with

The product of all singlet states

Map the two S = ½ spins into a S = 1 spin (why?)

With the mapping matrix



AKLT state

Now the wave-function is

Define:



AKLT state

Now the wave-function is

Define:

AKLT state in MPS form:



AKLT state

 Spectral is gapped with PBC (4-fold degeneracy with OBC)

 Spin correlation function decays exponentially

 Hidden order:

 In the same phase with isotropic spin-1 chain: Haldane conjecture


