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INVERSE SCATTERING OF ELASTIC WAVES BY PERIODIC
STRUCTURES: UNIQUENESS UNDER THE THIRD OR FOURTH

KIND BOUNDARY CONDITIONS∗

JOHANNES ELSCHNER† AND GUANGHUI HU†

Abstract. The inverse scattering of a time-harmonic elastic wave by a two-dimensional periodic
structure in R2 is investigated. The grating profile is assumed to be the graph of a continuous
piecewise linear function on which the third or fourth kind boundary conditions are satisfied. Via an
equivalent variational formulation, existence of quasi-periodic solutions for general Lipschitz grating
profiles is proved by applying the Fredholm alternative. However, uniqueness of solution to the
direct problem does not hold in general. For the inverse problem, we determine and classify all the
unidentifiable grating profiles corresponding to a given incident elastic field, relying on the reflection
principle for the Navier equation and the rotational invariance of propagating directions of the total
field. Moreover, global uniqueness for the inverse problem is established with a minimal number
of incident pressure or shear waves, including the resonance case where Rayleigh frequencies are
allowed. The gratings that are unidentifiable by one incident elastic wave provide non-uniqueness
examples for appropriately chosen wave number and incident angles.

Key words. Diffraction gratings, inverse scattering, uniqueness, elastic waves.

AMS subject classifications. 78A46, 35B27, 35R30, 74B05.

1. Introduction. Assume a time-harmonic (with time variation of the form
exp(−iωt), ω > 0) incident plane elastic wave is scattered by a diffraction grating in
a linear isotropic and homogeneous elastic medium. Suppose further that the grating
is periodic in x1-direction and invariant in x3-direction, and that all elastic waves are
propagating perpendicular to the x3-axis, so that the problem can be treated as a
problem of plane elasticity. Moreover, the diffraction grating is supposed to have an
impenetrable surface on which normal displacement and tangential stress (or normal
stress and tangential displacement) vanish. This gives rise to the so-called third (or
fourth) kind boundary conditions for the Navier equation. The direct problem is
to predict the displacement distribution given the incident elastic waves and grating
profile, whereas the inverse problem is to determine the grating profile from near-
field measurements on a straight line above the grating. To the authors’ knowledge,
there does not exist any result regarding the direct and inverse scattering of elastic
waves by diffraction gratings under the third or fourth kind boundary conditions.
The aim of this paper is to fill these gaps. We refer to the monograph [20] for
a comprehensive treatment of the boundary value problem of elasticity (including
the boundary conditions of the third and fourth kinds) and the monograph [8] for
applications of diffraction gratings.

There exist several solvability results for the direct scattering problem when the
displacement vanishes on the grating surfaces ( which is called the first kind or Dirich-
let boundary condition). Based on the boundary integral equation method , T. Arens
(see [3]) established the existence and uniqueness of quasi-periodic solutions for the
Dirichlet problem if the grating profile is given by the graph of a smooth (C2) func-
tion; see also [4] for the investigation of the Green’s tensor of the Navier equation for
a half-space and [5], [6] for more general rough surface scattering problems. The same
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Dirichlet problem in general Lipschitz domains is investigated by Elschner & Hu [13]
but via a variational method. It is shown in [13] that, for either an incident plane
pressure or shear wave, there always exists a quasi-periodic solution to the direct prob-
lem by establishing the strong ellipticity of the corresponding variational formulation
over a bounded periodic cell and then applying the Fredholm alternative. Moreover,
uniqueness can be guaranteed if the grating profile is given by a Lipschitz graph. In
Section 3 of this paper, we will review the existence proof of [13] and show that it is
also valid for more general incident elastic waves when the boundary conditions of the
third or fourth kind are imposed on the grating profiles. However, uniqueness does
not hold in general since the solution scattered by a flat grating is not unique if a
Rayleigh frequency occurs; see Theorem 3.

We then proceed to consider uniqueness for the inverse problem which involves
near-field measurements. To our knowledge, the only paper dealing with the inverse
scattering of elastic waves by diffraction gratings is [2], which extends Hettlich and
Kirsch’s work on Schiffer’s theorem (see [18]) to the case of inverse elastic diffraction
problems. It is proved in [2] that a Dirichlet periodic smooth surface (C2) can be
uniquely determined from the scattered field for one incident pressure wave and an
interval of wave numbers. Furthermore, a finite set of wave numbers is enough if a pri-
ori information about the height of the grating curve is known. For other uniqueness
results within smooth periodic profiles, we refer to [7], [19], [1] and [11] for the inverse
scattering of acoustic or electromagnetic waves. It should be mentioned that, if the
grating profiles are piecewise linear, by the reflection principles for the Helmholtz and
Maxwell equations, global uniqueness results by several incident waves are available
for the inverse scattering of time-harmonic electromagnetic waves, including TE or
TM polarization; see [9], [10], [14], [15] and [16]. Relying on the reflection principle
for the Navier system developed in [17], in this paper we are aimed to prove global
uniqueness for the inverse elastic diffraction problem in the case of boundary condi-
tions of the third or fourth kind. Note that such an approach does not work under the
first kind (Dirichlet) or second kind (Neumann) boundary condition, since in these
cases there seems to be no reflection principle.

It is demonstrated in Section 4 that the global uniqueness by a fixed number of
incident pressure or shear waves is impossible for determining a flat grating. Thus,
such gratings should not be included in the admissible class A of grating profiles,
which, in this paper, are given by the graphs of piecewise continuous linear functions.
Following the arguments in [15], we prove that the total fields generated by two
different grating profiles of A but taking the same near-field values can be reduced to
a finite sum of propagating waves; see Lemma 3 in Section 5. Then, inspired by the
ideas in [9],[10] and [14], we obtain the rotational invariance of the reduced total field,
using the reflection principle for the Navier equation; see Lemma 7. By using the
rotational invariance, we can determine all classes of grating profiles of A that cannot
be uniquely identified from the knowledge of the scattered waves corresponding to only
one incident wave. This enables us to prove global uniqueness within the polygonal
periodic structures by a minimal number of incident waves. Our main results on the
inverse problem are

• Under the boundary conditions of the fourth kind, two incident pressure waves
(four incident shear waves) are enough to uniquely determine a grating Λ ∈ A,
while one incident pressure wave is (three incident shear waves are) sufficient
if Rayleigh frequencies for the compressional (shear) part of the displacement
are excluded.
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• Under the boundary conditions of the third kind, four incident pressure waves
(two incident shear waves) are enough to uniquely determine a grating Λ ∈ A,
while three incident pressure waves are (one incident shear wave is) sufficient
if Rayleigh frequencies for the compressional (shear) part of the displacement
are excluded.

Note that the above two results are similar to those in [16] on inverse scattering of
electromagnetic waves for TE and TM polarizations.

The paper is organized as follows. In Section 2, we rigorously formulate the direct
and inverse problems. Following [3] and [13], a radiation condition based on Rayleigh
expansions is used in the direct problem. In Section 3, we investigate the existence of
quasi-periodic solutions for a broad class of incident elastic waves in general Lipschitz
domains and present non-uniqueness examples for the direct diffraction problem. The
reflection principle for the Navier equation together with the reduction of the total field
to a finite number of terms is presented in Section 5. The aim of Section 6 is to prove
global uniqueness with a minimal number of incident pressure waves in the resonance
case. Compared to the case where Rayleigh frequencies are excluded (see [9] for the
inverse scattering of electromagnetic waves), the resonance case gives rise to additional
classes of unidentifiable grating profiles which provide non-uniqueness examples for
appropriately chosen wave number and incident angles. Finally, in Section 7, we apply
the arguments from Section 6 to prove uniqueness for the incident shear waves.

Throughout the paper, we assume that a grating profile is always given by the
graph of some continuous piecewise linear function, which excludes the case of piece-
wise constant profile functions. However, the method presented in Section 6 can be
extended to prove uniqueness for an arbitrary polygonal grating profile. To this end,
we need to justify the first assertion of Lemma 3 using the path argument developed
recently for bounded obstacle scattering problems (see, e.g., [17, 21, 23]), and then
determine the compressional and shear parts of the total field using rotational invari-
ance. Note that Lemma 8 would not remain true if the grating profile contained line
segments parallel to the x2-axis. The idea of proving rotational invariance can be
employed to simplify the uniqueness proof in [14].

We believe that all the arguments within this paper can be extended to the 3D
case of doubly periodic structures using a single incident pressure or shear wave. Note
that the diffraction problem in R3 can be reduced to a problem of plane elasticity
under the additional assumptions that the three-dimensional grating varies only in x1
and remain invariant in x3 and that all elastic waves are propagating perpendicular
to the x3-axis. Thus, it is quite natural to view the unidentifiable grating curves in
the (x1, x2)-plane as non-uniqueness examples for the inverse scattering by bi-periodic
structures in R3. Nevertheless, we still need to consider the three-dimensional gratings
which vary in both x1 and x2 and the case where the incident wave is not perpendicular
to the x3-axis.

2. Mathematical formulation of the direct and inverse scattering prob-
lems. Let the cross-section of the diffraction grating in the (x1, x2)-plane be given
by a Lipschitz curve Λ, which is 2π-periodic with respect to x1-direction. The region
above the grating is denoted by ΩΛ. Suppose that a time-harmonic plane elastic wave
with the incident angle θ ∈ (−π/2, π/2) is incident on Λ from above, which is either
an incident pressure wave taking the form

(1) uin = uinp (x) = θ̂ exp(ikpx · θ̂) with θ̂ := (sin θ,− cos θ)⊤
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or an incident shear wave taking the form

(2) uin = uins (x) = θ̂⊥ exp(iksx · θ̂) with θ̂⊥ := (cos θ, sin θ)⊤ ,

where

kp := ω/
√

2µ+ λ , ks := ω/
√
µ

are the compressional and shear wave numbers respectively, λ and µ are the Lamé
constants satisfying µ > 0 and λ + µ > 0, ω > 0 denotes the angular frequency of
the harmonic motion and ⊤ indicates the transpose of a vector in R

2. For simplicity
we assume the mass density of the elastic medium is equal to one, so that the total
displacement u(x1, x2), which can be decomposed as the sum of the incident field uin

and the scattered field usc, satisfies the Navier equation (or system):

(3) (∆∗ + ω2)u = 0 in ΩΛ , ∆∗ := µ∆+ (λ+ µ) grad div .

We assume the grating is impenetrable, and the vanishing normal displacement and
tangential stress (or normal stress and tangential displacement) lead to the following
boundary conditions on Λ:

boundary conditions of the third kind: n · u = 0, τ · Tu = 0,(4)

or boundary conditions of the fourth kind: τ · u = 0, n · Tu = 0,(5)

where Tu stands for the stress vector or traction having the form:

Tu = 2µ∂nu+ λn div u+ µτ(∂2u1 − ∂1u2)(6)

with the exterior unit normal n = (n1, n2)
⊤ and the unit tangential vector τ =

(−n2, n1)
⊤ on Λ. Here and in the following the notation ∂jv = ∂v

∂xj
is used. The

periodicity of the structure together with the form of the incident waves implies that
the solution u must be quasi-periodic with the phase-shift α (or α-quasi-periodic), i.e.

(7) u(x1 + 2π, x2) = exp(2iαπ)u(x1, x2) , (x1, x2) ∈ ΩΛ ,

where either α := kp sin θ for the incident pressure wave (1), or α := ks sin θ for the
incident shear wave (2). To ensure well-posedness of the boundary value problem
(3)–(7), a radiation condition must be imposed as x2 → +∞. Note that the scattered
field usc, which also satisfies the Navier equation (3), can be decomposed into its
compressional and shear parts,

usc =
1

i
(grad ϕ+

−−→
curl ψ) with ϕ := − i

k2p
div usc , ψ :=

i

k2s
curl usc ,(8)

where the two curl operators in R2 are defined by

curl u := ∂1u2 − ∂2u1 , u = (u1, u2)
⊤ and

−−→
curl v := (∂2v,−∂1v)⊤ ,

and the scalar functions ϕ, ψ satisfy the homogeneous Helmholtz equations

(∆ + k2p)ϕ = 0 and (∆ + k2s)ψ = 0 in ΩΛ .(9)
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Applying the Rayleigh expansion for the scalar Helmholtz equation to ϕ and φ respec-
tively, we finally obtain a corresponding expansion of usc into outgoing plane elastic
waves:

usc(x) =(10)
∑

n∈Z

{

Ap,n

(

αn

βn

)

exp(iαnx1 + iβnx2) + As,n

(

γn
−αn

)

exp(iαnx1 + iγnx2)

}

,

for x2 > Λ+, where the constants Ap,n, As,n ∈ C are called the Rayleigh coefficients
and

Λ+ := max
(x1,x2)∈Λ

x2 , αn := α+ n , βn = βn(θ) :=

{ √

k2
p − α2

n if |αn| ≤ kp
i
√

α2
n − k2

p if |αn| > kp ,
(11)

and γn := γn(θ) is defined analogously as βn with kp replaced by ks. This is the
radiation condition we are going to use in the following; see also [3]. Since βn and
γn are real for at most a finite number of indices, only a finite number of plane
waves in (10) propagate into the far field, with the remaining evanescent waves (or
surface waves) decaying exponentially as x2 → +∞. The above expansion converges
uniformly with all derivatives in the half-plane {x ∈ R2 : x2 ≥ b} for any b > Λ+.
Given a fixed incident angle θ, define

πp := {n ∈ Z : βn(θ) = 0}, πs := {n ∈ Z : γn(θ) = 0}.(12)

We say that a Rayleigh frequency occurs if either πp 6= ∅ or πs 6= ∅, and that Rayleigh
frequencies of the compressional (shear) part are excluded if πp = ∅ (πs = ∅).

Now, our diffraction problem can be formulated as the following boundary value
problem.

Direct problem (DP): Given a grating profile curve Λ ⊂ R2 (which is 2π-
periodic in x1) and an incident field uin of the form (1) or (2), find a vector function
u = u(x; θ) = uin + usc ∈ H1

loc(ΩΛ)
2 that satisfies the Navier equation (3), one of the

boundary conditions (4) and (5), the quasi-periodicity (7) and the radiation condition
(10).

The inverse problem which involves the near-field measurements u(x1, b) for some
fixed b > Λ+ can be formulated as follows:

Inverse problem (IP): Determine the grating profile Λ from the knowledge of
the near-field data u(x1, b; θj) for all x1 ∈ (0, 2π), j = 1, 2, · · · , N. Here u(x; θj) are
solutions of (DP) corresponding to N distinct incident pressure or shear waves uin of
the form (1) or (2) with distinct incident angles θj ∈ (−π

2 ,
π
2 ) (j = 1, 2, · · · , N).

In this paper we are mainly interested in the following uniqueness questions about
(IP):

Let the incident angle θ ∈ (−π
2 ,

π
2 ) be fixed, and let A be the admissible class

of grating profiles. Suppose the two gratings Λ1, Λ2 ∈ A generate the total fields uj
(j = 1, 2) for an incident pressure resp. shear wave of the form (1) resp. (2). Does
the relation

u1(x1, b) = u2(x1, b), ∀ x1 ∈ (0, 2π) , for some b > max{Λ+
1 ,Λ

+
2 }

imply Λ1 = Λ2? If not, what kind of geometric characteristics do Λ1 and Λ2 share
in order to generate the same near field on x2 = b ? And how many incident elastic
waves are sufficient to uniquely determine an arbitrary grating profile Λ ∈ A ?
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3. A solvability result for (DP). In this section, we propose an equivalent
variational formulation of the boundary value problem (DP) and give an existence
result for the direct problem. Moreover, we construct non-trivial quasi-periodic solu-
tions of the homogenous boundary value problem when Λ is given by a flat grating,
which provide non-uniqueness examples of (DP).

We restrict the scattering problem to a single bounded periodic cell by introducing
an artificial boundary

Γb := {(x1, b) : 0 ≤ x1 ≤ 2π} , b > Λ+ ,

and the bounded domain

Ωb = ΩΛ,b := {(x1, x2) ∈ ΩΛ : 0 < x1 < 2π, x2 < b} ,

lying between the segment Γb and one period of the grating profile curve which we
denote by Λ again. We assume that Λ is a Lipschitz curve, so that Ωb is a bounded
Lipschitz domain.

Let the energy space of our variational problem be defined by

Vα = Vα(Ωb) := {u ∈ H1
α(Ωb)

2 : u satisfies (4) or (5) onΛ},

where H1
α(Ωb) denotes the Sobolev space of scalar functions on Ωb which are α-quasi-

periodic with respect to x1. In the following Vα is equipped with the norm of the
usual Sobolev space H1(Ωb)

2 of vector functions.
Now we introduce the Dirichlet-to-Neumann (DtN) map T on the artificial bound-

ary Γb. LetH
s
α(Γb) andH

s
per(Γb) denote the Sobolev spaces of order s ∈ R of functions

on Γb that are α-quasi-periodic and periodic respectively. Then, for any u ∈ H1
α(Ωb)

2,
we have

v := u|Γb
∈ H1/2

α (Γb)
2 , exp(−iαx1) v ∈ H1/2

per (Γb)
2

from the trace theorem. For any v ∈ H
1/2
α (Γb)

2, we define T v as the traction Tusc

on Γb where usc is the unique α-quasi-periodic solution of the homogenous Navier
equation in {x2 > b} which satisfies (10) and usc = v on Γb.

It follows from the first Betti formula that for u, ϕ ∈ Vα

−
∫

Ωb

(∆∗ + ω2)u · ϕdx =

∫

Ωb

(aL(u, ϕ)− ω2u · ϕ) dx −
∫

Γb

ϕ · Tu ds(13)

where the bar indicates the complex conjugate, and

aL(u, ϕ) = (2µ+ λ) (∂1u1 ∂1ϕ1 + ∂2u2 ∂2ϕ2) + µ (∂2u1 ∂2ϕ1 + ∂1u2 ∂1ϕ2)

+λ (∂1u1 ∂2ϕ2 + ∂2u2 ∂1ϕ1) + µ (∂2u1 ∂1ϕ2 + ∂1u2 ∂2ϕ1) .(14)

Making use of the relation

Tu = T (usc + uin) = T usc + Tuin = T u+ f0 , with f0 := Tuin − T uin ,

we obtain the following variational formulation of (DP): Find u ∈ Vα such that

∫

Ωb

(

aL(u, ϕ)− ω2u · ϕ
)

dx−
∫

Γb

ϕ · T u ds =
∫

Γb

f0 · ϕds , ∀ ϕ ∈ Vα .(15)
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It should be remarked that each variational solution u ∈ Vα(Ωb) of (15) can
be extended to a solution u = uin + usc of the Navier equation (3) for x2 ≥ b via
the uniqueness for the exterior Dirichlet problem (see [13]), and that each solution
u ∈ H1

loc(ΩΛ)
2 of the boundary value problem (DP) satisfies the variational problem

(15). Thus the problem (DP) and (15) are equivalent. Next we show an existence
result for general incident pressure waves taking the form

uin(p)(x) =
∑

|αn|<kp

pn

(

αn

−βn

)

exp[i(αnx1 − βnx2)](16)

with α = kp sin θ, pn ∈ C, or incident shear waves taking the form

uin(s)(x) =
∑

|αn|<ks

sn

(

γn
αn

)

exp[i(αnx1 − γnx2)](17)

with α = ks sin θ, sn ∈ C. Note that the incident pressure wave (1) or shear wave (2)
is only one term of the finite sums in (16) or (17).

Theorem 1. Assume that the grating profile Λ is a Lipschitz curve. Then, for
all incident elastic waves of the form (16) or (17), there always exists a solution to
the variational problem (15) and hence to problem (DP).

Proof. We sketch the proof, referring to [13] for more details. Let the sesquilinear
form B(u, ϕ) be defined by

B(u, ϕ) :=

∫

Ωb

(

aL(u, ϕ)− ω2u · ϕ
)

dx−
∫

Γb

ϕ · T u ds , ∀ u, φ ∈ Vα ,(18)

with T u := T (u|Γb
). Problem (15) can be written in the form

Bu = F0 , F0 ∈ V ′
α ,(19)

where F0 is given by the right hand side of (15), and the operator B : Vα → V ′
α is

defined by the sesquilinear form (18). By a detailed analysis of the DtN map T , it is
verified in [13] that T is the sum of a finite dimensional operator and an operator T1
satisfying

Re

{

−
∫

Γb

u · T1u ds
}

≥ 0 , ∀ u ∈ H1
α(Ωb)

2 .(20)

This together with Korn’s inequality implies that the sesquilinear form B is strongly
elliptic over Vα and the operator B is always a Fredholm operator with index zero.
Therefore, equation (19) is solvable if its right hand side F0 is orthogonal (with respect
to the duality (·, ·)Ωb

extending the scalar product in L2(Ωb)
2) to all solutions v of

the homogenous adjoint equation B∗v = 0. Note that such v can always be extended
to a solution of (3) in the unbounded domain ΩΛ by setting

v(x) =(21)
∑

n∈Z

{

Ap,n

(

αn

−βn

)

exp(i αnx1 − iβnx2) + As,n

(

−γn

−αn

)

exp(i αnx1 − i γnx2)

}

,

for x2 ≥ b, where the Rayleigh coefficients Ap,n, As,n are determined by the n-th
Fourier coefficient v̂n of e−iαx1v|Γb

via the following relation:

v̂n =

(

αn −γn
−βn −αn

)(

Ap,ne
−iβnb

As,ne
−iγnb

)

.
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On the other hand, it can be derived from

(B∗v, ψ)Ωb
= (v,Bψ)Ωb

= B(ψ, v) = 0, ∀ψ ∈ Vα(22)

that

Ap,n = 0 for |αn| < kp and As,n = 0 for |αn| < ks;(23)

see [13]. This means that v has vanishing Rayleigh coefficients of the incoming modes,
and therefore,

v̂n = (0, 0)⊤ for |αn| ≤ kp < ks, v̂n = (αn,−βn)
⊤Ap,n exp(−iβnb) for |αn| ≤ ks.

Through direct calculations, we deduce that f0 := Tuin − T uin takes the form

f0 =
∑

|αn|<kp

pn
2iβnkp(λ+ 2µ)

α2
n + βnγn

(

−αn

γn

)

e−iβnbeiαnx1 =:
∑

|αn|<kp

hne
iαnx1

for the incident pressure wave uin(p) defined in (16), which leads to

F0(v) =

∫

Γb

f0 · vds = 2π
∑

|αn|<kp

hn · v̂n = 0.

For the incident shear wave uin(s) defined in (17), we obtain

f0 =
∑

|αn|<ks

sn
−2iγnksµ

α2
n + βnγn

(

βn
αn

)

e−iγnbeiαnx1 :=
∑

|αn|<ks

gne
iαnx1 ,

so that

F0(v) =

∫

Γb

f0 · vds = 2π
∑

|αn|<ks

gn · v̂n

= 2π
∑

|αn|<ks

sne
−iγnb

−2iγnksµ

α2
n + βnγn

(

βn αn

)

·Ap,ne
iβnb

(

αn

−βn

)

= 0.

Therefore, the right hand side of equation (19) is always orthogonal to each solution
of (22). Applying the Fredholm alternative completes the proof.

It is shown in [13] that uniqueness holds for the Dirichlet problem if Λ is given
by the graph of a Lipschitz function. However, the uniqueness for the third or fourth
kind boundary value problem is not valid even if Λ can be represented by a smooth
function. This can be seen from the scattering problem for flat gratings; see the
following theorem.

Theorem 2. Assume Λ := {x2 = a}, and let u satisfy the Rayleigh expansion
(10) in x2 > a.

(i) If u satisfies the boundary conditions of the third kind (4) on Λ, then

u = c1e1 exp(ikpx1) + c2e1 exp(−ikpx1).
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(ii) If u satisfies the boundary conditions of the fourth kind (5) on Λ , then

u = c3e2 exp(iksx1) + c4e2 exp(−iksx1).

Here cj ∈ C (j = 1, 2, 3, 4) are constants, e1 = (1, 0)⊤ and e2 = (0, 1)⊤.

Proof. We assume the boundary conditions of the third kind, n · u = τ · Tu = 0,
are imposed on Λ. Since n = (0, 1)⊤, τ = (−1, 0)⊤ on {x2 = a}, these boundary
conditions take the form

u2 = 0 and ∂2u1 = 0 on Λ.(24)

Inserting the Rayleigh expansion (10) into the conditions (24) and using the fact that
{exp(iαnx1), n ∈ Z} is an orthogonal basis of L2(0, 2π), we obtain

(

βn −αn

iαnβn iγ2n

)(

Ap,ne
iβna

As,ne
iγna

)

= 0 for n ∈ Z.(25)

Since γ2n + α2
n = k2s 6= 0, ∀n ∈ Z, it follows from (25) that As,n = Ap,n = 0 if βn 6= 0,

and As,n = 0 if βn = 0. In view of the definition of βn (see (11)), we can complete the
proof in the case of the third kind boundary conditions. Noting that the boundary
conditions of the fourth kind on {x2 = a} can be written as u1 = 0 and ∂2u2 = 0 on
Λ, we can prove the second assertion analogously.

Remark 1. If Λ := {x2 = a}, then the problem (DP) admits a unique solution
if Rayleigh frequencies of the compressional (resp. shear) part are excluded under the
third (resp. fourth) kind boundary conditions.

4. Inverse scattering by flat gratings. We begin with introducing some no-
tations that will be used throughout the following sections.

1. A#: the number of elements in a set A.
2. |A1A2|: the length of a line segment A1A2 with end points A1, A2 ∈ R2.
3. |c|: the modulus of a number c ∈ C; ||x||: the Euclidean norm of a vector

x ∈ R2.
4. Rl: the reflection with respect to a line l in R

2.
5. R′

l: the reflection with respect to the line l′ that passes through the origin O
and is parallel to l.

Theorem 3. Let Λj := {x2 = bj} where bj is a constant satisfying |bj | < b
(j = 1, 2), and assume that uj := uj(x; θ) satisfies problem (DP) corresponding to the
profile Λj. If

u1(x; θm) = u2(x; θm) on x2 = b(26)

holds for 2B# + 1 incident pressure (shear) waves of the form (1)((2)) with distinct
incident angles θm ∈ (−π

2 ,
π
2 ) (m = 1, 2, · · · , 2B# + 1), then b1 = b2. Here

B :=

{

n ∈ Z : |n| < 2bk

π

}

(27)

with k = kp for an incident pressure wave or k = ks for an incident shear wave.

Proof. Suppose the total fields uj satisfy the boundary conditions of the fourth
kind on Λj (j = 1, 2), and assume uin is the incident pressure wave defined in (1). We
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shall prove the theorem by contradiction. Assume that b1 6= b2. Following the proof
of Theorem 2, we can derive that

uj(x) = θ̂eikpx·θ̂ −
(

sin θ
cos θ

)

ei(αx1+β(x2−2bj ) +
∑

γn=0

A(j)
s,n

(

0
−αn

)

eiαnx1 , in x2 > bj(28)

for j = 1, 2. Substituting (28) into (26) gives

eiβ(b−2b1) = eiβ(b−2b2), and A(1)
s,n = A(2)

s,n if γn = 0,

which implies the relation

b2 − b1 =
π

β
m =

π

kp cos θ
m, for some m ∈ Z.

Since b2−b1 < 2b, m must belong to the set B defined in (27) with k = kp. Thus, it is
clear from (26) that for each incident angle θm, there exists some nm ∈ B. Moreover
nm1

= nm2
if and only if θm1

= θm2
or θm1

= −θm2
. Therefore, if (26) holds for

2B#+1 incident waves with distinct incident angles, then B contains at least B#+1
elements, which is impossible. The other cases can be proved by a similar argument.

Remark 2. It follows from B# → ∞ as k → ∞ or b→ ∞ that a fixed number of
incident elastic waves is not sufficient to uniquely determine an arbitrary flat grating,
since the corresponding counterexamples can be readily constructed from the proof of
Theorem 3. In fact, if the number of incident pressure waves is N ∈ N, then in
the case of the fourth kind boundary conditions, we may choose the grating profiles
Λ1 = {x2 = 0},Λ2 = {x2 = π}, take kp > N , and let ks and the incident angles θj
(j = 1, 2 · · · , N) satisfy

θj > 0, cos θj =
j

kp
, γn(θj) 6= 0, for j = 1, 2 · · · , N, ∀n ∈ Z.

It follows from (28) that the total fields u
(m)
j (x) corresponding to θj (j = 1, 2 · · · , N),

Λm (m = 1, 2) can be written as

u
(1)
j (x) =

(

sin θj
− cos θj

)

eikp(x1 sin θj−x2 cos θj) −
(

sin θj
cos θj

)

eikp(x1 sin θj+x2 cos θj),

u
(2)
j (x) =

(

sin θj
− cos θj

)

eikp(x1 sin θj−x2 cos θj) −
(

sin θj
cos θj

)

eikp(x1 sin θj+(x2−2π) cos θj).

Moreover, it can be verified from kp cos θj ∈ N that

u
(1)
j (x1, b; θj) = u

(2)
j (x1, b; θj), ∀ b > π, j = 1, 2 · · · , N.

Thus N incident plane pressure waves are not enough to uniquely determine a flat
grating under the fourth kind boundary conditions. The counterexamples for the other
cases can be constructed similarly. This implies that the global uniqueness by finitely
many incoming plane elastic waves is impossible for general periodic gratings.

To prove global uniqueness for the inverse problem, we therefore exclude flat
gratings by defining the following admissible class of periodic grating profiles:

A :=















(x1, f(x1)) :

f(x1) is a 2π-periodic continuous piecewise linear function
satisfying maxx1∈R{f(x1)} < b. The graph of f restricted
to [0, 2π] consists of finitely many line segments and is not
a straight line parallel to the x1-axis.















.



INVERSE SCATTERING OF ELASTIC WAVES BY PERIODIC STRUCTURES 225

5. Auxiliary lemmas. The following two lemmas play an important role in this
paper; the first one can be found in [9], while the second one on the reflection principle
for the Navier equation is the main tool of this paper.

Lemma 1. Let aj ∈ C2, and let λj ∈ R be distinct numbers (j = 1, 2, · · · , n). If

n
∑

j=1

aj exp(iλjt) = 0, ∀ t ∈ R,

then aj = (0, 0)⊤, j = 1, 2, · · · , n.

Definition 1. Let S ⊂ ΩΛ be a ray starting from one point and leading to
infinity in {x2 > b} for b > Λ+. If u satisfies the boundary conditions of the third
(fourth) kind on S, then S is called a third (fourth) kind ray of u. Similarly, S is
called a third (fourth) kind line of u if S is a straight line on which u satisfies the
corresponding conditions.

Lemma 2 (Reflection principle for the Navier equation). Let Ω be a symmetric
domain with respect to a line l, and let l̃ ⊂ Ω be a subset of another line such that
Rl(l̃) ⊂ Ω. Assume u ∈ H1(Ω)2 satisfies the Navier equation △∗u+ ω2u = 0 in Ω.

(i) If u satisfies the boundary conditions of the fourth kind, τ · u = n · Tu = 0 on
l ∩ Ω, then

u(x) + R′
l(u(Rl(x))) = 0 in Ω.(29)

(ii) If u satisfies the boundary conditions of the third kind, n · u = τ · Tu = 0 on
l ∩ Ω, then

u(x)− R′
l(u(Rl(x))) = 0 in Ω.(30)

In particular, if l̃ is a fourth (third) kind line of u in the case (i) ((ii)), then Rl(l̃) is
also a fourth (third) kind line of u.

Remark 3. The original version of the reflection principle for the Navier equa-
tion can be found in [17], which is proved in the three dimensional case when the
domain Ω is symmetric with respect to the x1x2-plane. The proof readily carries over
to the two dimensional domain Ω in the above lemma. Note that the relations (29)
and (30) are similar to those given in [21, 22] for the Maxwell equations.

In the following, we denote by uj(x; θ) the corresponding total fields for (DP)
associated with the profiles Λj := {x2 = fj(x1)} ∈ A (j = 1, 2), and assume b >
max{Λ+

1 ,Λ
+
2 }.

Lemma 3. If the relation u1(x1, b; θ) = u2(x1, b; θ), ∀x1 ∈ (0, 2π), holds for two
different grating profiles Λ1,Λ2 ∈ A, then

(i) Under the boundary conditions of the third (fourth) kind, there always exists
a third (fourth) kind ray of both u1 and u2. Moreover, this ray is non-parallel to the
coordinate axes.

(ii) Both the total fields uj = uin + uscj , j = 1, 2, can be reduced to a finite sum
of propagating waves, i.e.,

u1 = u2 = uin +
∑

|αn|≤kp

Ap,n

(

αn

βn

)

ei(αnx1+βnx2)(31)

+
∑

|αn|≤ks

As,n

(

γn
−αn

)

ei(αnx1+γnx2)
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for x2 > max{Λ+
1 ,Λ

+
2 }.

Proof. (i) Since Λj is piecewise linear and uj ∈ H1
loc(ΩΛj

)2, from the standard
elliptic regularity theory it follows that uj is infinitely smooth up to Λj except for the
corner points and is real-analytic in ΩΛj

. It follows from the assumption u1(x1, b; θ) =
u2(x1, b; θ), ∀x1 ∈ (0, 2π), and the uniqueness of the Dirichlet problem (see [3, 13])
that u1 = u2 for x2 ≥ b. By the unique continuation of solutions to the Navier
equation, we have

u1 = u2 for x2 > max{Λ+
1 ,Λ

+
2 }.(32)

Relying on the analyticity of uj and the reflection principle for the Navier equation,
the ’exit’ ray mentioned in assertion (i) can always be found if Λ1 6= Λ2 and Λj

(j = 1, 2) are given by the graphs of piecewise linear functions. We refer to [15]
for the details in the case of the Helmholtz equation with the Dirichlet or Neumann
boundary condition, and the argument can be carried over to the Navier equation
with the boundary conditions of the third or fourth kind.

(ii) Following [15], we prove the second assertion under the fourth kind boundary
conditions. The proof under the third kind boundary conditions is analogous. By the
identity (32), we can write

u(x) = u1(x) = u2(x) = I(x) +
∑

|αn|>kp

Ip,n(x) +
∑

|αn|>ks

Is,n(x)

for all x1 ∈ R and x2 > max{Λ+
1 ,Λ

+
2 }, where

Ip,n(x1, x2) := Ap,n(αn, βn)
⊤ei(αnx1+βnx2), Is,n(x1, x2) := As,n(−γn, αn)

⊤ei(αnx1+γnx2),

I(x1, x2) := uin(x1, x2) +
∑

|αn|≤kp

Ip,n(x1, x2) +
∑

|αn|≤ks

Is,n(x1, x2).

Without loss of generality, we let l := {x2 = kx1 : x1 > 0}, for some k 6= 0, be the
fourth kind ray involved in assertion (i), on which u satisfies τ · u = n · Tu = 0 with
τ = 1√

1+k2
(1, k). We then have

0 = τ · u|l = τ · I(x1, kx1) +
∑

|αn|>kp

τ · Ip,n(x1, kx1)(33)

+
∑

|αn|>ks

τ · Is,n(x1, kx1), ∀x1 > 0.

Noting that τ · I(x1, kx1) is an almost periodic function on R+ , and τ · Ip,n(x1, kx1)
for |αn| > kp, τ · Is,n(x1, kx1) for |αn| > ks are exponentially decaying functions
as x1 → +∞, we obtain from (33) that (see, e.g., [12, P. 407] concerning the first
equality)

max
x1∈R+

|τ · I(x1, kx1)| = lim sup
x1→+∞

|τ · I(x1, kx1)|

= lim sup
x1→+∞







∑

|αn|>kp

τ · Ip,n(x1, kx1) +
∑

|αn|>ks

τ · Is,n(x1, kx1)







≤ ǫ,
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for any ǫ > 0. Thus τ · I(x1, kx1) ≡ 0. This together with (33) implies that
∑

|αn|>kp

Ap,n(αn + ik|βn|)eiαnx1−|βn|kx1(34)

+
∑

|αn|>ks

As,n(−i|γn|+ kαn)e
iαnx1−|γn|kx1 = 0,

for all x1 > 0. Let A∗ = min{inf |αn|>kp
{|βn|}, inf|αn|>ks

{|γn|}}. Then there exist at
most four different indices n1, n2, m1, m2 ∈ Z such that

βn1
= βn2

= γm1
= γm2

= iA∗, αn1
= −αn2

> kp, αm1
= −αm2

> ks.

Multiplying (34) by exp(A∗kx1) and letting x1 → +∞, we obtain

0 =Ap,n1
(αn1

+ ikA∗) exp(iαn1
x1) +Ap,n2

(−αn1
+ ikA∗) exp(−iαn1

x1)

+As,m1
(−iA∗ + kαm1

) exp(iαm1
x1) +As,m2

(−iA∗ − kαm1
) exp(−iαm1

x1)

for x1 > 0. Since ±αn1
,±αm1

are four different real numbers and k is non-zero, we
obtain from Lemma 1 that

Ap,n1
= Ap,n2

= As,m1
= As,m2

= 0.

Setting A∗∗ = min{inf |βn|>A∗{|βn|}, inf|γn|>A∗{|γn|}} and repeating the argument
above, we see that Ap,n = 0 for |αn| > kp and As,n = 0 for |αn| > ks.

6. Inverse scattering of incident pressure waves. In this section, the
uniqueness of inverse scattering of incident pressure waves by one-dimensional diffrac-
tion gratings is investigated. Throughout this section, we make the following assump-
tions:

(A1) The incident wave is the incident pressure wave defined in (1), i.e. uin :=

θ̂ exp (ikpx · θ̂) with some fixed incident angle θ ∈ (−π
2 ,

π
2 ).

(A2) Λ1,Λ2 ∈ A are two different grating profiles. Furthermore, without loss of
generality we suppose that one of the profiles Λ1,Λ2 has a corner point at the origin
O = (0, 0).

(A3) u1(x; θ) = u2(x; θ) holds on Γb.
By Lemma 3 (ii), we have u = u1 = u2 on R2. Let Λ denote one of the profiles

Λj (j = 1, 2), and define (α, β) := (α0, β0) = (kp sin θ, kp cos θ).

6.1. Rotational invariance. In this subsection, based on the reflection prin-
ciple for the Navier equation, we will prove that the total field u of (31) remains
rotationally invariant, and then use such invariance to determine the finite number of
propagating directions and Rayleigh coefficients of the compressional part, whereas
the shear part of the total field is proved to be empty.

Since both the normal vector n and the tangential vector τ on a straight line are
constant vectors, and since by Lemma 3 (ii) u is an analytic function in R2, each
line segment of Λ can be extended to a third (fourth) kind line of u in R

2. Thus, by
the definition of A, there exist at least two third (fourth) kind lines, say L1 and L2,
extending two line segments of Λ. Furthermore, both L1 and L2 are not parallel to
the x2-axis since each element of A is given by the graph of a function. By assumption
(A2), we may suppose L1 ∩ L2 = O, and then u takes the form

u =
∑

n∈P

Ap,nPn exp(ix ·Pn) +
∑

n∈S

As,nS
⊥
n exp(ix · Sn) in R

2,(35)

where



228 J. ELSCHNER AND G. HU

P := {n ∈ Z : |αn| ≤ kp, Ap,n 6= 0} ∪ {κ}, S := {n ∈ Z : |αn| ≤ ks, As,n 6= 0},
Pn = (αn, βn)

⊤ for n ∈ P\{κ}, Pκ = (α,−β)⊤, Sn = (αn, γn)
⊤ for n ∈ S, Ap,κ = 1

kp
.

For convenience we introduce the following notations:

P = {Pn : n ∈ P}, S = {Sn : n ∈ S}.
Note that P consists of a finite number of upward propagating directions of the
compressional part of u, {Pn : n ∈ P\{κ}}, as well as the incident direction Pκ,
whereas S consists of finitely many upward propagating directions of the shear part
of u.

Remark 4. (i) By the definitions of αn, βn and γn (see (11)), we have that
P ⊂ Bkp

(O) and S ⊂ Bks
(O), where Br(O) := {x ∈ R2 : ||x|| = r} denotes the circle

centered at the origin O with radius r.
(ii) Since the plane pressure wave of the form (1) is taken as an incident wave,

Pκ is the unique element in P whose x2-component is negative. Moreover, if πp = ∅,
then each element of P but Pκ has a positive x2-component; and if πp 6= ∅, at most
two elements of P, (kp, 0) and (−kp, 0), have vanishing x2-components. The x2-
components of the elements in S are all positive if πs = ∅, while (ks, 0) or (−ks, 0)
belongs to S if πs 6= ∅. Recall that πp and πs are defined in (12).

By the α-quasi-periodicity of solutions of (DP), we arrive at

Lemma 4. If (−α, β) ∈ P, then 2kp sin θ ∈ Z. If (±kp, 0) ∈ P, then kp(1 ∓
sin θ) ∈ Z. Finally, if {(−α, β), (kp, 0), (−kp, 0)} ⊂ P, then kp(1 + sin θ) ∈ Z and
kp(1− sin θ) ∈ Z.

Define

D =







l :
l is a line that passes through the origin O. Furthermore, l is a
third (fourth) kind line of u corresponding to the boundary
conditions of the third (fourth) kind on the grating profile.







.

Obviously, we have D# ≥ 2 since L1, L2 ∈ D. Next we derive some important
properties of D by the reflection principle. The following lemma tells us that D# <∞
and the angles formed by every two neighboring lines of D are all equal.

Lemma 5. D consists of a finite number of lines which form an equi-angular
system of lines in R2.

Proof. We refer to [9] or [14] for the proof in the case of the Maxwell and
Helmholtz equations. Note that the result is already implicitly contained in [15] and
[16].

For all l ∈ D, the reflection Rl can be represented via an orthogonal matrix such
that Rl(x) · y = x ·Rl(y). Thus, it follows from the reflection principle that

0 =
∑

n∈P

Ap,n [Pn exp(ix ·Pn)± Rl(Pn) exp(ix ·Rl(Pn))]

+
∑

n∈S

As,n

[

S⊥
n exp(ix · Sn)± Rl(S

⊥
n ) exp(ix · Rl(Sn))

]

holds in R2, where + or − is taken for the fourth or third kind boundary conditions,
respectively. In view of Lemma 1, the following lemma can be readily derived from
the above identity.
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Lemma 6. Assume l ∈ D.
(i) Rl(P) = P, Rl(S) = S.
(ii) If Rl(Pn) = Pm for n,m ∈ P , then

Ap,n +Ap,m = 0 resp. Ap,n −Ap,m = 0

under the boundary conditions of the fourth resp. third kind.
If Rl(Sn) = Sm for n,m ∈ S, then

As,n Rl(S
⊥
n ) +As,mS

⊥
m = 0 resp. As,n Rl(S

⊥
n )−As,mS

⊥
m = 0

under the boundary conditions of the fourth resp. third kind.
(iii) In the case of the fourth kind boundary conditions, Rl(Pn) 6= Pn for all n ∈ P ,

and in particular, Rl(Pκ) 6= Pκ for the incident direction Pκ = (α,−β)⊤. In
the case of the third kind boundary conditions, Rl(Sn) 6= Sn for all n ∈ S.

Let Rotϕ be the rotation around the origin O by the angle ϕ, and let Refϕ be
the reflection about the line L through the origin which makes an angle ϕ with the
positive x1-axis. Both Rotϕ and Refϕ can be represented via orthogonal matrices.
With these definitions and representations, the following identity can be justified:

Refϕ1
Refϕ2

= Rot2(ϕ1−ϕ2).(36)

Lemma 7 (Rotational invariance). We have that

Rot 2π

D#
(u(x)) = u(Rot 2π

D#
(x)), Rot 2π

D#
(P) = P , Rot 2π

D#
(S) = S.

Proof. It follows from Lemma 5 that the angle formed by every two neighboring
lines of D is π

D# . Thus, by (36) we may choose two neighboring lines of D, l1 and l2,
such that

Rot 2π

D#
(x) = Rl1Rl2(x) ∀ x ∈ R

2.

Since u is analytic in R2, applying the reflection principle twice leads to

u(Rot 2π

D#
(x)) = u(Rl1Rl2(x)) = ∓Rl1(u(Rl2(x)))(37)

= ∓∓ Rl1Rl2(u(x)) = Rot 2π

D#
(u(x)).

Therefore, the total field u remains rotationally invariant in the sense of (37), which
together with Lemma 1 implies the relations Rot 2π

D#
(P) = P ,Rot 2π

D#
(S) = S.

Remark 5. Combining Lemma 6 (i) and Lemma 7, we obtain that

GP := {Rot 2jπ

D#
(P) : j = 1, 2, · · · , D#} ⊂ P , ∀P ∈ P ,(38)

GS := {Rot 2jπ

D#
(S) : j = 1, 2, · · · , D#} ⊂ S, ∀S ∈ S.(39)

In addition, if Rot 2jπ

D#
(Pn) = Pm for some n,m ∈ P , or Rot 2jπ

D#
(Sn) = Sm for some

n,m ∈ S, 1 ≤ j ≤ D#, then it holds that

Ap,m Pm = Ap,n Rot 2jπ

D#
(Pn), or As,m S

⊥
m = As,n Rot 2jπ

D#
(S⊥

n ).
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Lemma 8. The total field only consists of the compressional part, or equivalently,
S = ∅.

Proof. For all S ∈ S, the set GS defined in (39) consists of the vertices of some
D#-sided regular polygon centered at the origin. If D# ≥ 3, then one element of GS

must have a negative x2-component, which is impossible due to Remark 4 (ii). Thus
D# = 2, i.e., D = {L1, L2} with L1⊥L2, where Lj (j = 1, 2) are two third (fourth)
kind lines extending two line segments of Λ. Recalling that Rotπ(S) = S if D# = 2,
and that the second components of the elements in S are all non-negative, we obtain
that S = {(ks, 0), (−ks, 0)}. It is seen from RLj

(S) = S (j = 1, 2) (Lemma 6 (i))
that one of the lines L1, L2 must be parallel to the x2-axis, contradicting the fact
that Λ is given by the graph of a function. Thus S = ∅.

It follows from the proof of Lemma 8 that we may have S = {(ks, 0), (−ks, 0)} for
polygonal grating profiles which are not necessarily given by the graphs of piecewise
linear functions. By Lemma 8, we only need to consider the elements in P , which
remain invariant under the rotation Rot 2π

D#
.

Lemma 9.
(i) If D# = 2, then

(a) Under the boundary conditions of the third kind,

P = {(α,−β), (−α, β), (kp, 0), (−kp, 0)}, if πp 6= ∅,
P = {(α,−β), (−α, β)}, if πp = ∅.

(b) Under the boundary conditions of the fourth kind,

πp 6= ∅, P = {(α,−β), (−α, β), (kp, 0), (−kp, 0)}.

(ii) If D# ≥ 3, then P = GPκ
:= {Rot 2nπ

D#
(Pκ) : n = 1, 2, · · · , D#}.

Here πp := {n ∈ Z : βn(θ) = 0}.
Proof. (i) Assume D# = 2. The assertion (i) (a) follows directly from Remark 4

(ii) and the fact that Rotπ(P) = −P ∈ P for any P ∈ P . To prove (i) (b), we only
need to exclude the case πp = ∅. By Lemma 5 (ii), we may assume D = {L1, L2} with
L1⊥L2. If πp = ∅, then P = {(α,−β), (−α, β)}. Thus, we obtain from RLj

(P) = P
(j = 1, 2) that one of the lines L1, L2 must pass through Pκ, which contradicts
Lemma 6 (iii). This proves the first assertion.

(ii) Note that GPκ
consists of the vertices of some D#-sided regular polygon

centered at the origin. If there exists some P ∈ P\GPκ
, then at least one element

of GP has a negative x2-component if D# ≥ 3. However, this is impossible since
GPκ

∩GP = ∅ and only Pκ ∈ GPκ
⊂ P has a negative x2-component, −β.

We proceed to investigate D#. Denote the straight line which passes through the
origin and makes the angle ϕ with the positive x1-axis by

Lϕ := {(t cosϕ, t sinϕ) : t ∈ R, ϕ ∈ [0, 2π)}.

Lemma 10. (i) In the case of the boundary conditions of the third kind, 2 ≤
D# ≤ 4.

(ii) In the case of the boundary conditions of the fourth kind, D# = 2.
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Proof. (i) If D# ≥ 5, then P = GPκ
by Lemma 9 (ii), and thus there are at

least two elements of GPκ
, each of which has a negative x2-component. However, this

contradicts Remark 4 and proves the lemma in the case of the third kind boundary
conditions.

(ii) Under the boundary conditions of the fourth kind, we exclude the cases
D# = 3 and D# = 4, using the fact that Rl(P) 6= P for any P ∈ P , l ∈ D (see
Lemma 6 (iii)), i.e., each line of D does not pass through a point of P .

If D# = 3, then by Lemma 9, P = {Pκ,Rot 2π
3
(Pκ),Rot 4π

3
(Pκ)}. Since Rl(P) =

P for all l ∈ D, we obtain that

D = {Lθ−π
2
, Lθ+π

6
, Lθ+ 5π

6
},(40)

noting that the angle formed by the vector
−−→
OPκ and the positive x1-axis is θ − π

2 .
This implies that each line of D goes through a point of P , which is impossible.

If D# = 4, then P = {Pκ,Rotπ
2
(Pκ),Rotπ(Pκ),Rot−π

2
(Pκ)}. Since only one

element, Pκ = (α,−β) = kp(sin θ,− cos θ), has a negative x2-component, we have

θ = 0, P = {(0, kp), (−kp, 0), (kp, 0), (0,−kp)},(41)

which together with Lemma 5 and Lemma 6 (i) gives that

D = {L0, L π
4
, L−π

4
, L π

2
}.(42)

Hence, the elements belonging to P are all located on the equi-angular system formed
by the lines in D. This is again a contradiction. The proof of the lemma is thus
complete.

Remark 6. Under the boundary conditions of the third kind, the elements of
D are already given in (40) for D# = 3, and in (42) for D# = 4, respectively. An
argument similar to the proof of Lemma 10 (ii) can be employed to determine the
elements of D when D# = 2. More precisely, in the case of D# = 2, we deduce from
Lemma 9 (i) and RL(P) = P, ∀L ∈ D, that

D =

{ {Lθ, Lθ+π
2
} if P = {(α,−β), (−α, β)},

{L θ
2
+π

4
, L θ

2
−π

4
} if P = {(α,−β), (−α, β), (kp, 0), (−kp, 0)}.(43)

6.2. Uniqueness under the boundary conditions of the fourth kind.
Define a class of unidentifiable polygonal grating profiles D2(θ, kp) by

D2(θ, kp) :=







Λ ∈ A :

Each line segment of Λ lies on a straight line
defined by x2 = x1 tanϕ+ 2π

kp cos θn

for some n ∈ Z with ϕ ∈ { θ
2 + π

4 ,
θ
2 − π

4 }.







if kp(1± sin θ) ∈ Z, and by D2(θ, kp) := ∅ otherwise. Suppose A1A2 is a line segment
of Λ ∈ D2(θ, kp) connecting two corner points A1 and A2, and ϕ ∈ [−π

2 ,
π
2 ) is the

angle formed by A1A2 and the positive x1-axis. It follows from the definition of
D2(θ, kp) that either ϕ = θ

2 + π
4 or ϕ = θ

2 − π
4 . If ϕ = θ

2 ± π
4 , then it can be derived

that |A1A2| = π
k cos( θ

2
±π

4
)
n± for some n± ∈ N. Moreover, D2(θ, kp) 6= ∅ for all kp

and θ satisfying kp(1 ± sin θ) ∈ Z (see Lemma 11), and a Rayleigh frequency of the
compressional part always occurs in this case.
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Let us now give the main theorem for the fourth kind boundary conditions.

Theorem 4. Let Λ1,Λ2 ∈ A such that one corner point of Λ1 or Λ2 is located
at the origin. Assume the boundary conditions of the fourth kind are imposed on
Λj , j = 1, 2. If the relation

u1(x1, b; θ) = u2(x1, b; θ), ∀ x1 ∈ (0, 2π)(44)

holds for one incident pressure wave with incident angle θ ∈ (−π
2 ,

π
2 ), then one of the

following cases must occur:
(i) Λ1 = Λ2.
(ii) Λ1,Λ2 ∈ D2(θ, kp), πp = ∅, and the total field takes the form

u(x) = θ̂ exp(ikpx · θ̂)− θ̂ exp(−ikpx · θ̂)(45)

−e1 exp(ikpx1) + e1 exp(−ikpx1) in R
2,

where u = uj (j = 1, 2), e1 = (1, 0)⊤.

Proof of Theorem 4. Assuming Λ1 6= Λ2 and relying on the reflection principle
and the rotational invariance of the propagating directions of the compressional part,
we shall prove the second assertion. It follows from Lemma 8 that S = ∅, and from
Lemmas 9 and 10 and Remark 6 that πp 6= ∅, D# = 2 under the fourth kind of
boundary conditions. More specifically, we have

D = {L θ
2
+π

4
, L θ

2
−π

4
} and P = {(α,−β), (−α, β), (kp, 0), (−kp, 0)}.(46)

Furthermore, by Lemmas 5 and 6, we obtain that each line of D does not pass through
a point of P , Rl(P) = P for all l ∈ D, and that L θ

2
+π

4
⊥L θ

2
−π

4
, implying

{Rl(Pκ) : l ∈ D} = {Rl(−Pκ) : l ∈ D} = {(kp, 0), (−kp, 0)}, Rotπ(Pκ) = −Pκ.(47)

Note that Pκ = (α,−β) = (α0,−β0) = kpθ̂. In view of Lemma 3 (ii) and Lemma 6
(ii), the identities in (47) give rise to the desired explicit representation (45) for both
u1 and u2. It remains to prove Λ1,Λ2 ∈ D2(θ, kp).

Denote by l := {x ∈ R2 : x2 = kx1 + c} a straight line extending some line
segment of Λ (Λ = Λ1 or Λ2). Then the solution u defined in (45) satisfies the
boundary conditions of the fourth kind on l, and thus by the reflection principle,

u(x) + Rl′(u(Rl(x))) = 0 in R
2,

where l′ := {x ∈ R2 : x2 = kx1}. By a coordinate translation, we find that the
function v(x) := u(x1, x2 + c) satisfies the Navier equation with the fourth kind
boundary conditions on l′, and thus

v(x) + Rl′(v(Rl′(x))) = 0 in R
2.

This together with Lemma 14 gives the relation Rl′(P) = P . Recalling the elements
in P , we obtain that l′ coincides with one of the lines L θ

2
+π

4
, L θ

2
−π

4
. On the other

hand, since v can be written as

v(x) = θ̂ exp(ikpx · θ̂) exp(−iβc)− θ̂ exp(−ikpx · θ̂) exp(iβc)
−e1 exp(ikpx1) + e1 exp(−ikpx1),
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combining the first identity in (47) and Lemma 6 (ii) yields that exp(iβc) =
exp(−iβc) = 1, or equivalently,

c =
2π

β
n =

2π

kp cos θ
n, for some n ∈ Z.

To summarize, we have deduced that l can be represented as

l =

{

x ∈ R
2 : x2 = x1 tanϕ+

2π

kp cos θ
n for some n ∈ Z with ϕ ∈ {θ

2
+

π

4
,

θ

2
− π

4
}
}

.

Finally, it is seen from Lemma 4 and (46) that kp(1 ± sin θ) ∈ Z, which finishes the
proof of Λ1,Λ2 ∈ D2(θ, kp). The proof of the theorem is complete.

It is seen from the proof of Theorem 4 that each element of D2(θ, kp) generates
the same total field of the form (45). In the following, we will show that, for each
angle θ satisfying kp(1± sin θ) ∈ Z, D2(θ, kp) contains at least two elements, and thus
the corresponding counterexample to uniqueness with one incident pressure wave can
be constructed .

Lemma 11. For all kp and θ satisfying kp(1± sin θ) ∈ Z, D2(θ, kp) is not empty
and contains at least two different grating profiles.

Proof. Let ϕ1 = θ
2 + π

4 , ϕ2 = θ
2 − π

4 , and let Λi be the 2π-periodic extensions of
Λi|(0,2π) (i = 1, 2) defined by

Λ1 : x2 =

{

x1 tanϕ1 x1 ∈ (0, T1),
(x1 − 2π) tanϕ2 x1 ∈ [T1, 2π)

with T1 =
2π tanϕ2

tanϕ2 − tanϕ1
,

Λ2 : x2 =

{

x1 tanϕ2 x1 ∈ (0, T2),
(x1 − 2π) tanϕ1 x1 ∈ [T2, 2π)

with T2 =
2π tanϕ1

tanϕ1 − tanϕ2
.

It is easy to verify by using tan ϕ
2 = (1− cosϕ)/ sinϕ that

kp cos θ tan(
θ

2
± π

4
) = kp cos θ

1− cos(θ ± π
2 )

sin(θ ± π
2 )

= kp(1 ± sin θ) ∈ Z,

which implies that both Λ1 and Λ2 belong to D2(θ, kp). Thus there exist at least two
grating profiles in D2(θ, kp) if both kp(1 + sin θ) and kp(1− sin θ) are integers.

Essentially, given kp and θ satisfying kp(1 ± sin θ) ∈ Z, if Λ is 2π-periodic with
respect to x1-direction and lies on the rectangular grids generated by the 2π-periodic
extensions of x2 = x1 tan(

θ
2 ± π

4 ), then Λ ∈ D2(θ, kp) (see Figure 1). The elements
in D2(θ, kp) provide non-uniqueness examples for the inverse problem with the fourth
kind boundary conditions.

Counterexample 1. Under the boundary conditions of the fourth kind, one
incident pressure wave is not enough to uniquely determine Λ ∈ A.

Let Λ1 and Λ2 be the grating profiles defined in the proof of Lemma 11 with
θ = −π/6 and kp = 2; see Figure 1. Then the total fields

u1(x) = u2(x) =

(

−1/2

−
√
3/2

)

ei(−x1−
√

3x2) +

(

1/2√
3/2

)

ei(x1+
√
3x2) −

(

−1
0

)

e−2ix1 −
(

1
0

)

e2ix1
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−4*pi −2*pi 0 2*pi 4*pi

−10

−5

0

5

10

Fig. 1. D2(θ, kp) with θ = −π
6
, kp = 2.

satisfy the fourth kind boundary conditions on both Λ1 and Λ2, the α-quasi-periodicity
condition with α = kp sin θ = −1 and the Rayleigh expansion (10). Thus the near-
field data u(x1, b) from one incident plane pressure wave is not sufficient to determine
Λ ∈ A uniquely.

Remark 7. Let Λ ∈ A have one corner point at the origin. The following results
can be obtained directly from Theorem 4.
(i) Given the a priori information that Λ does not belong to D2(θ, kp), the data of

the total field on Γb from one incident pressure wave (with the incident angle
θ) are always enough to uniquely determine Λ.

(ii) Consider a fixed incident angle θ ∈ (−π
2 ,

π
2 ). If D2(θ, kp) = ∅, then one incident

pressure wave with the incident angle θ uniquely determines Λ ∈ A. Note
that D2(θ, kp) = ∅ if one of the numbers kp(1 + sin θ), kp(1 − sin θ) is not an
integer. In particular, if πp = ∅, then both kp(1 + sin θ) and kp(1− sin θ) are
not integers. Thus, one incident pressure wave is always enough if Rayleigh
frequencies of the compressional part are excluded.

(iii) Two incident pressure waves are sufficient to uniquely determine Λ ∈ A since

D2(θ1, kp) ∩ D2(θ2, kp) = ∅, θ1 6= θ2.

6.3. Uniqueness under the boundary conditions of the third kind. Be-
fore stating the main theorem for the third kind boundary conditions, we define the
following three classes of polygonal periodic structures. If 2kp sin θ ∈ Z, N2(θ, kp) is
defined by

N2(θ, kp) :=







Λ ∈ A :

Each line segment of Λ lies on a straight line defined
by x2 = x1 tan θ +

π
kp cos θn for some n ∈ Z, or

x2 = x1 tan(θ +
π
2 ) + c for some c ∈ R.







,

and if 2kp sin θ /∈ Z, N2(θ, kp) := ∅. The set N3(θ, kp) is defined by

N3(θ, kp) :=







Λ ∈ A :

Each line segment of Λ lies on a straight line defined by
x2 = x1 tanϕ+ 2π

kp

√
3 cosϕ

n for some n ∈ Z, with

ϕ ∈ {θ + 5π
6 , θ + π

6 , θ − π
2 }.







,
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if θ ∈ [−π
6 ,

π
6 ] and kp

√
3 sin(π6 ± θ) ∈ Z, and by N3(θ, kp) := ∅ otherwise. Finally,

N4(0, kp) :=







Λ ∈ A :

Each line segment of Λ lies on a straight line
defined by x2 = ±x1 + 2π

kp
n for some n ∈ Z

or x2 = π
kp
m for some m ∈ Z.







if θ = 0 and kp ∈ Z, and N4(0, kp) := ∅ otherwise.

Theorem 5. Let Λ1,Λ2 ∈ A be such that one of the profiles Λ1,Λ2 has a corner
point at the origin. Assume the third kind boundary conditions are imposed on Λj , j =
1, 2. If the relation (44) holds for one incident pressure wave with incident angle
θ ∈ (−π

2 ,
π
2 ), then one of the following cases must occur:

(i) Λ1 = Λ2.
(ii) (a) Λ1,Λ2 ∈ N2(θ, kp), πp = ∅, and the total field takes the form

u(x) = θ̂ exp(ikpx · θ̂)− θ̂ exp(−ikpx · θ̂) in R
2.(48)

(b) Λ1,Λ2 ∈ D2(θ, kp), πp 6= ∅, and the total field takes the form

u(x) = θ̂ exp(ikpx · θ̂)− θ̂ exp(−ikpx · θ̂)(49)

+e1 exp(ikpx1)− e1 exp(−ikpx1) in R
2.

(iii) Λ1,Λ2 ∈ N3(θ, kp) with θ ∈ [−π
6 ,

π
6 ]. In this case, πp 6= ∅ if θ = π

6 or θ = −π
6 ,

and the total field takes the following form in R2 :

u(x) = θ̂ exp(ikpx · θ̂) + Rot 2π
3
(θ̂) exp(ikpx ·Rot 2π

3
(θ̂))(50)

+Rot 4π
3
(θ̂) exp(ikpx · Rot 4π

3
(θ̂)).

(iv) Λ1,Λ2 ∈ N4(0, kp), θ = 0, πp 6= ∅, and the total field takes the form

u(x) = −e2 exp(−ikpx2) + e2 exp(ikpx2)(51)

+e1 exp(ikpx1)− e1 exp(−ikpx1) in R
2.

Here u = uj (j = 1, 2), e1 = (1, 0)⊤ and e2 = (0, 1)⊤.

Proof. Assuming Λ1 6= Λ2, we shall prove that one of the cases (ii), (iii) and (iv)
must happen. It is seen from Lemma 8 and Lemma 10 that S = ∅ and 2 ≤ D# ≤ 4.
Moreover, combining Lemmas 9 and 10 and Remark 6, we obtain the following results.
1. If D# = 2 and πp = ∅, then

D = {Lθ, Lθ+π
2
}, P = {(α,−β), (−α, β)} = {Pκ,−Pκ}

with the relations

RLθ
(Pκ) = Pκ, RLθ+ π

2

(Pκ) = −Pκ.

From Lemma 6 (ii) and Lemma 4, it follows that the total field takes the
form (48) and 2kp sin θ ∈ Z.

2. If D# = 2 and πp 6= ∅, then an argument similar to the case of the fourth
kind boundary conditions yields the same relations as in (46) and (47), which
together with Lemma 6 (ii) and Lemma 4 give the explicit expression of u in
(49) as well as the relation kp(1± sin θ) ∈ Z.
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3. If D# = 3, it follows from (40) and Lemma 9 (ii) that

D = {Lθ−π
2
, Lθ+π

6
, Lθ+5π

6
}, P = {Pκ,Rot 2π

3
(Pκ),Rot 4π

3
(Pκ)}

with the relations

RL
θ+5π

6

(Pκ) = Rot 2π
3
(Pκ),(52)

RLθ+ π
6

(Pκ) = Rot 4π
3
(Pκ), RLθ−π

2

(Rot 4π
3
(Pκ)) = Rot 2π

3
(Pκ).

By Lemma 6 (ii), we know that the identity (50) holds in R2.
4. If D# = 4, by (42) we have that θ = 0, and

D = {L0, L π
4
, L−π

4
, L π

2
}, P = {(0, kp), (−kp, 0), (kp, 0), (0,−kp)},

which implies that

RL
−

π
4

{(0,−kp)} = {(kp, 0)}, RLπ
4

{(0,−kp)} = {(−kp, 0)},
RL0

{(0,−kp)} = {(0, kp)}.

Applying Lemma 6 (ii) again gives (51).
The assertions (ii)(a), (ii)(b), (iii) and (iv) of Theorem 5 are direct consequences of
the above assertions 1 − 4. We next prove assertion (iii) in the case of D# = 3. To
do this, we need to prove that Λ1,Λ2 ∈ N3(θ, kp).

Firstly, we note that the elements of P can be written as

Pκ = kp(cos(θ −
π

2
), sin(θ − π

2
)),(53)

Rot 2π
3
(Pκ) = kp(cos(θ +

π

6
), sin(θ +

π

6
)),(54)

Rot 4π
3
(Pκ) = kp(cos(θ +

5π

6
), sin(θ +

5π

6
)).(55)

Since the second Cartesian components of Rot 2π
3
(Pκ),Rot 4π

3
(Pκ) are all non-negative,

we derive that θ + π
6 ≥ 0 and θ + 5π

6 ≤ π, or equivalently, −π
6 ≤ θ ≤ π

6 . Obviously,
πp 6= ∅ if θ = π

6 or θ = −π
6 .

Secondly, by the kp sin θ-quasi-periodicity condition imposed on u, we need to
check that

kp cos(θ +
π

6
) = kp sin θ + n, for some n ∈ Z,

kp cos(θ +
5π

6
) = kp sin θ +m, for some m ∈ Z,

from which kp
√
3 sin(π6 ± θ) ∈ Z follows.

Denote by l := {x ∈ R2 : x2 = x1 tanϕ + c} a straight line extending some line
segment of Λ, on which the solution u defined in (50) satisfies the boundary conditions
of the third kind. Finally, it remains to prove that ϕ ∈ {θ + π

2 , θ +
π
6 , θ +

5π
6 } and

c = 2π
kp

√
3 cosϕ

n for some n ∈ Z.

Analogously to the proof of Theorem 4, we claim that the function v(x) :=
u(x1, x2 + c) satisfies the Navier equation with the boundary conditions of the third
kind on l′. By the reflection principle, we have

v(x)− Rl′(v(Rl′(x))) = 0 in R
2,(56)
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where l′ := {x ∈ R2 : x2 = x1 tanϕ}. This together with Lemma 1 leads to the
relation Rl′(P) = P , and thus ϕ ∈ {θ + π

2 , θ +
π
6 , θ +

5π
6 }. By (53)-(55), v can be

written as

v(x) = θ̂ exp(ikpx · θ̂) exp(ickp sin(θ −
π

2
))

+ Rot 2π
3
(θ̂) exp(ikpx ·Rot 2π

3
(θ̂)) exp(ickp sin(θ +

π

6
))

+ Rot 4π
3
(θ̂) exp(ikpx ·Rot 4π

3
(θ̂)) exp(ickp sin(θ +

5π

6
)).

Without loss of generality, we can assume that ϕ = θ+ 5π
6 , or equivalently, l′ = Lθ+ 5π

6
.

Then, combining (52), (56) and Lemma 6 (ii) yields that

exp(ickp sin(θ −
π

2
)) = exp(ickp sin(θ +

π

6
)),

which implies that c = 2π
kp

√
3 cos(θ+ 5π

6
)
n for some n ∈ Z. Analogously, we can deduce

from the previous argument that

c =
2π

kp
√
3 cos(θ + π

6 )
n for some n ∈ Z, if l′ = Lθ+π

6
,

c =
2π

kp
√
3 cos(θ − π

2 )
m for some m ∈ Z, if l′ = Lθ−π

2
.

This proves assertion (iii) when D# = 3. The other cases when D# = 2 or D# = 4
can be treated similarly. Special attention should be paid to the case D# = 4, for
which we obtain that each line segment of Λ lies on one of the following straight lines,

x1 =
π

kp
n1, x2 =

π

kp
n2, x2 = x1 +

2π

kp
n3, x2 = x1 +

2π

kp
n4

for nj ∈ Z with j = 1, 2, 3, 4. Since all the profiles in A can be represented by the
graph of a piecewise linear function, Λ does not contain those line segments which
are parallel to the x2-axis. This leads to the class N4(0, kp) defined at the beginning
of Section 6.3 for D# = 4.

We next give several non-uniqueness examples of (IP) by describing the elements
in N2(θ, kp), N3(θ, kp) and N4(0, kp), and answer the question in Section 2 of how
many incident elastic waves are sufficient to uniquely determine a grating profile from
A.

Counterexample 2. If a Rayleigh frequency of the compressional part occurs,
two incident pressure waves are not sufficient to uniquely determine a grating profile
Λ ∈ A.

Set kp = 2, θ1 = π
6 and θ2 = −π

6 . Let Λ1|(0,2π) and Λ2|(0,2π) be defined by the
following piecewise linear functions

Λ1|(0,2π) : x2 =







√
3x1 x1 ∈ (0, 23π),

2
√
3π/3 x1 ∈ [ 23π,

4
3π],

−
√
3x1 + 2

√
3π x1 ∈ (43π, 2π),

Λ2|(0,2π) : x2 =







−
√
3x1 x1 ∈ (0, 23π),

−2
√
3π/3 x1 ∈ [ 23π,

4
3π],√

3x1 − 2
√
3π x1 ∈ (43π, 2π),
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and let Λi be the 2π-periodic extensions of Λi|(0,2π) (i = 1, 2). One can check that

Λ1,Λ2 lie on the grid generated by the lines x2 = ±
√
3x1 + 2π√

3
n, x2 = π√

3
m with

n,m ∈ Z (see Figure 2, left), and thus Λ1,Λ2 ∈ N3(
π
6 , 2) ∩ N3(−π

6 , 2). Furthermore,
the finite Rayleigh expansions

u
(1)
1 = u

(1)
2 =

(

1/2

−
√
3/2

)

ei(x1−
√
3x2) +

(

1/2√
3/2

)

ei(x1+
√
3x2) +

(

−1
0

)

e−2ix1 ,

u
(2)
1 = u

(2)
2 =

( −1/2

−
√
3/2

)

e−i(x1+
√
3x2) +

(−1/2√
3/2

)

e−i(x1−
√
3x2) +

(

1
0

)

e2ix1

all satisfy the Navier equation and the boundary conditions of the third kind on both
Λ1 and Λ2.

−2*pi 0 2*pi

−6

−4

−2

0

2

4

6

−2*pi 0 2*pi

−6

−4

−2

0

2

4

6

Fig. 2. Left: N3(θ, kp) with θ = π
6

or −π
6
, kp = 2. Right: the grid on which the profiles of

N4(0, kp) with kp = 4 are located.

Remark 8. Analogously to Counterexample 2, a non-uniqueness example for
illustrating that one incident pressure wave is not enough to uniquely identify Λ ∈ A
can be constructed from the elements in N4(0, kp). In fact, if Λ1,Λ2 ∈ A lie on the
solid grid indicated in Figure 2 (right), then Λ1,Λ2 ∈ N4(0, kp) with kp = 4, and thus
the total fields for Λ1 and Λ2 both take the form (51) with kp = 4 and θ = 0.

Counterexample 3. A grating profile Λ ∈ A cannot be uniquely determined
by two incident pressure waves, in general, even if Rayleigh frequencies of the com-
pressional part for each incident angle are excluded.

It follows from the proof of Theorem 5 (ii) (a) that if Λ1,Λ2 ∈ N2(θ, kp)∩N2(θ+
π
2 , kp) for some θ ∈ (−π

2 , 0) satisfying 2kp sin θ ∈ Z and 2kp cos θ ∈ Z, then, for θ1 = θ,

uin = θ̂1 exp(ikpx · θ̂1) = θ̂ exp(ikpx · θ̂), the total fields u
(1)
1 and u

(1)
2 corresponding

to Λ1 and Λ2 take the form

u
(1)
1 = u

(1)
2 = θ̂ exp(ikpx · θ̂)− θ̂ exp(−ikpx · θ̂) in R

2;

and for θ2 = θ + π
2 , u

in = θ̂2 exp(ikpx · θ̂2) = θ̂⊥ exp(ikpx · θ̂⊥), the total fields u
(2)
1

and u
(2)
2 corresponding to Λ1 and Λ2 take the form

u
(2)
1 = u

(2)
2 = θ̂⊥ exp(ikpx · θ̂⊥)− θ̂⊥ exp(−ikpx · θ̂⊥) in R

2.
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This implies that two incident pressure waves are not enough to uniquely determine
Λ ∈ A under the third kind boundary conditions. Take kp = 5

2 , choose θ satisfying
sin θ = − 3

5 , cos θ =
4
5 , and let the grating profiles Λ1 and Λ2 lie on the grid generated

by the 2π-periodic extensions of the lines x2 = − 3
4x1, x2 = 4

3x1. Then, one may check
that Λ1,Λ2 ∈ N2(θ, kp) ∩ N2(θ +

π
2 , kp) with the previously specified θ and kp, and

thus obtains a non-uniqueness example for (IP).

Counterexample 4. If a Rayleigh frequency of the compressional part occurs,
three incident pressure waves are not sufficient to uniquely determine a grating profile
Λ ∈ A.

It can be derived from the definitions of D2(θ, kp),N2(θ, kp) that

N2(θ1, kp) ∩ N2(θ2, kp) ∩ D2(θ3, kp) 6= ∅

if and only if θ1 ∈ (0, π2 ), θ2 ∈ (−π
2 , 0), θ3 ∈ (−π

2 ,
π
2 ) satisfy

θ2 = θ1 −
π

2
, θ3 = 2θ1 −

π

2
, 2kp sin θ1 ∈ Z, 2kp sin θ2 ∈ Z, kp(1± sin θ3) ∈ Z.

Thus, if Λ1,Λ2 ∈ N2(θ1, kp)∩N2(θ1− π
2 , kp)∩D2(2θ1− π

2 , kp) for some incident angle
θ1 ∈ (0, π2 ) satisfying

2kp sin θ1 ∈ Z, 2kp cos θ1 ∈ Z, 4kp(cos
2 θ1 − 1) ∈ Z, with 2kp ∈ Z,

then, for the incident pressure wave uin = exp(ikpx · θ̂j) (j = 1, 2), the total fields

u
(j)
1 and u

(j)
2 (j = 1, 2) corresponding to Λ1 and Λ2 take the form (48) with θ = θj

(j = 1, 2); and for uin = θ̂3 exp(ikpx·θ̂3), the total fields u(3)1 and u
(3)
2 can be expressed

by (49) with θ = θ3. Note that πp 6= ∅ for the incident angle θ3 = 2θ1 − π
2 .

Let the grating profiles Λi|(0,2π) (i = 1, 2) be defined by the following functions:

Λ1 : x2 =

{

− 3
4 (x1 − 2π) x1 ∈ [T1, 2π),

4
3x1 x1 ∈ [0, T1)

with T1 =
18

25
π,(57)

Λ2 : x2 =

{

4
3 (x1 − 2π) x1 ∈ [T2, 2π),
− 3

4x1 x1 ∈ [0, T2)
with T2 =

32

25
π,(58)

and let Λi be the 2π-periodic extensions of Λi|(0,2π) (i = 1, 2). Take kp = 25
2 , choose

θj satisfying

sin θ1 =
4

5
, sin θ2 = −3

5
and sin θ3 =

7

25
.

It can be verified that Λ1 and Λ2 lie on the grid generated by the lines x2 = x1 tan θj+
π

kp cos θj
n for n ∈ Z, j = 1, 2. Thus we have Λ1,Λ2 ∈ N2(θ1, kp)∩N2(θ2, kp)∩D2(θ3, kp)

with θj (j = 1, 2, 3) and kp chosen above. Set

u(1)(x) =

(

4/5
−3/5

)

ei(10x1− 15
2
x2) +

(

−4/5
3/5

)

ei(−10x1+
15
2
x2),

u(2)(x) =

(

−3/5
−4/5

)

ei(−
15
2
x1−10x2) +

(

3/5
4/5

)

ei(
15
2
x1+10x2),

u(3)(x) =

(

7/25
−24/25

)

ei(
7
2
x1−12x2) +

(

−7/25
24/25

)

ei(−
7
2
x1+12x2) +

(

1
0

)

ei
25
2
x1 +

(

−1
0

)

e−i 25
2
x1 .
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Then each vector function u(j) (j = 1, 2, 3) satisfies the Navier equation in the whole
plane, the quasi-periodicity condition and the boundary conditions of the third kind
on both Λ1 and Λ2.

Corollary 6. Suppose that the assumptions of Theorem 5 are satisfied. Then
we have
(i) If (44) holds for three incident pressure waves with distinct incident angles, then

either Λ1 = Λ2, or

Λ1,Λ2 ∈ N2(θ, kp) ∩ N2(θ −
π

2
, kp) ∩D2(2θ −

π

2
, kp),

where θ ∈ (0, π2 ) is one of the three incident angles. Moreover, 2kp sin θ ∈
Z, 2kp cos θ ∈ Z, 4kp(cos

2 θ − 1) ∈ Z and 2kp ∈ Z. In addition, a Rayleigh
frequency of the compressional part occurs for the incident angle 2θ − π

2 .
(ii) If (44) holds for four incident pressure waves with distinct incident angles, then

Λ1 and Λ2 must be identical, while three incident waves are always enough
to imply Λ1 = Λ2 if Rayleigh frequencies of the compressional part for each
incident angle are excluded.

(iii) Given the a priori information that Λ ∈ A has one corner point at the origin
and is not an element of N2(θ, kp)∪D2(θ, kp)∪N3(θ, kp)∪N4(0, kp), the near
field data u(x1, b; θ), x1 ∈ (0, 2π), from one incident pressure wave with the
incident angle θ are enough to identify Λ uniquely.

We refer to [14, Corollary 5] for additional conditions on the incident angles θj
and the compressional wave number kp guaranteeing that each grating profile Λ ∈ A
can be uniquely determined by three incident pressure waves under the third kind
boundary conditions.

7. Inverse scattering of incident shear waves. In this section, we consider
uniqueness for the inverse scattering of the incident shear wave uin := θ̂⊥ exp(iksx ·
θ̂) defined in (2). Recalling the representation (35) in Section 6, we introduce the
following notations:
(α,−γ) := (α0,−γ0) = (ks sin θ,−ks cos θ) = ksθ̂

⊤.
P := {n ∈ Z : |αn| ≤ kp, Ap,n 6= 0}, S := {n ∈ Z : |αn| ≤ ks, As,n 6= 0} ∪ {κ}.
Pn = (αn, βn)

⊤ for n ∈ P , Sn = (αn, γn)
⊤ for n ∈ S\{κ}, Sκ = (α,−γ)⊤ = ksθ̂,

As,κ = 1
ks
.

In this case, S consists of finitely many upward propagating directions of the shear
part of u, {Sn : n ∈ S\{κ}}, as well as the incident direction Sκ, while P consists
of the directions of the compressional part, {Pn : n ∈ P}. Since the plane shear
wave of the form (2) is taken as an incident wave, all elements in P and S but Sκ

have a non-negative second component. There are at most two elements in S, (ks, 0)
and (−ks, 0), that have vanishing x2-components if πs 6= ∅, while (kp, 0) or (−kp, 0)
belongs to P if πp 6= ∅. Based on these facts and the reflection principle, the set D,
which consists of the third or fourth kind lines that pass through the origin, also forms
an equi-angular system of lines in R

2, and the rotational invariance of P and S can
be proved by an argument similar to that used in Section 6. In addition, the relation
P = ∅ can be derived from the rotational invariance and the geometric assumption
that Λ ∈ A is given by the graph of a function. Thus, with necessary modifications
related to the incident shear wave, all the arguments in Section 6 can be carried over
to the case of inverse scattering of incident shear waves. This leads to the following
lemma, which can be used to determine the propagating directions of the shear part
as well as the structure of the grating profile around a corner point.
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Lemma 12. Let the incident wave be the incident shear wave defined in (2), and
suppose the assumptions (A2) and (A3) at the beginning of Section 6 hold. We have

(i) Under the boundary conditions of the third kind,

D# = 2, πs 6= ∅, D = {L θ
2
+π

4
, L θ

2
−π

4
}, S = {(α,−γ), (−α, γ), (ks, 0), (−ks, 0)}.

(ii) Under the boundary conditions of the fourth kind, 2 ≤ D# ≤ 4. Furthermore,
if D# = 2 and πs = ∅, then

D = {Lθ, Lθ+π
2
}, S = {(α,−γ), (−α, γ)};

if D# = 2 and πs 6= ∅, then

D = {L θ
2
+π

4
, L θ

2
−π

4
}, S = {(α,−γ), (−α, γ), (ks, 0), (−ks, 0)};

if D# = 3, then

D = {Lθ−π
2
, Lθ+π

6
, Lθ+ 5π

6
}, S = {Sκ,Rot 2π

3
(Sκ),Rot 4π

3
(Sκ)};

if D# = 4, then

θ = 0, D = {L0, L π
4
, L−π

4
, L π

2
}, S = {(0, ks), (−ks, 0), (ks, 0), (0,−ks)}.

We finally summarize the uniqueness results in the following theorems.

Theorem 7. Let Λ1,Λ2 ∈ A such that one corner point of Λ1 or Λ2 is located at
the origin. Assume the boundary conditions of the third kind are imposed on Λj, j =
1, 2. If the relation (44) holds for one incident shear wave with incident angle θ ∈
(−π

2 ,
π
2 ), then one of the following cases must occur:

(i) Λ1 = Λ2.
(ii) Λ1,Λ2 ∈ D2(θ, ks), πs = ∅, and the total field takes the form

u(x) = θ̂⊥ exp(iksx · θ̂)− θ̂⊥ exp(−iksx · θ̂)
+e2 exp(iksx1)− e2 exp(−iksx1) in R

2,

where u = uj (j = 1, 2), e2 = (0, 1)⊤.

Theorem 8. Let Λ1,Λ2 ∈ A be such that one of the profiles Λ1,Λ2 has a corner
point at the origin. Assume the fourth kind boundary conditions are imposed on
Λj , j = 1, 2. If the relation (44) holds for one incident shear wave with incident angle
θ ∈ (−π

2 ,
π
2 ), then one of the following cases must occur:

(i) Λ1 = Λ2.
(ii) (a) Λ1,Λ2 ∈ N2(θ, ks), πs = ∅, and the total field takes the form

u(x) = θ̂⊥ exp(iksx · θ̂)− θ̂⊥ exp(−iksx · θ̂) in R
2.

(b) Λ1,Λ2 ∈ D2(θ, ks), πs 6= ∅, and the total field takes the form

u(x) = θ̂⊥ exp(iksx · θ̂)− θ̂⊥ exp(−iksx · θ̂)
−e2 exp(iksx1) + e2 exp(−iksx1) in R

2.
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(iii) Λ1,Λ2 ∈ N3(θ, ks) with θ ∈ [−π
6 ,

π
6 ]. In this case, πs 6= ∅ if θ = π

6 or θ = −π
6 ,

and the total field takes the following form in R2:

u(x) =θ̂⊥ exp(iksx · θ̂) + (Rot 2π
3
(θ̂))⊥ exp(iksx ·Rot 2π

3
(θ̂))

+(Rot 4π
3
(θ̂))⊥ exp(iksx · Rot 4π

3
(θ̂)).

(iv) Λ1,Λ2 ∈ N4(0, ks), θ = 0, πs 6= ∅, and the total field takes the form

u(x) = e1 exp(−iksx2)− e1 exp(iksx2)

+e2 exp(iksx1)− e2 exp(−ikpx1) in R
2.

Here u = uj (j = 1, 2), e1 = (1, 0)⊤ and e2 = (0, 1)⊤.

Note that the two basic results presented in the introduction follow from Remark 7
(ii) and (iii), Corollary 6 (ii) and the above Theorems 7 and 8. The counterexamples
in the case of the incident shear wave can be constructed similarly as those in Sections
6.2 and 6.3.
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