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In this article we present some uniqueness results on inverse wave scattering
by unbounded obstacles for the two-dimensional Helmholtz equation. We
prove that an impenetrable one-dimensional rough surface can be uniquely
determined by the values of the scattered field taken on a line segment
above the surface that correspond to the incident waves generated by a
countable number of point sources. For penetrable rough layers in a
piecewise constant medium, the refractive indices together with the rough
interfaces (on which the TM transmission conditions are imposed) can be
uniquely identified using the same measurements and the same incident
point source waves. Moreover, a Dirichlet polygonal rough surface can be
uniquely determined by a single incident point source wave provided a
certain condition is imposed on it.

Keywords: inverse scattering; uniqueness; rough surface; Helmholtz
equation; point sources

AMS Subject Classifications: 35R30; 78A46

1. Introduction

Inverse rough surface scattering problems have many applications in micro-optics,
radar imaging and non-destruction testing. For instance, the determination of the
elevation of the ground, sea surface or sea bed are basic problems in remote sensing
by sonar or radar. This article is concerned with the uniqueness in inverse wave
scattering problems for penetrable or impenetrable unbounded obstacles which can
be modelled by the two-dimensional Helmholtz equation.

There have been several uniqueness results on inverse diffraction problems for
both penetrable and impenetrable periodic structures, which can be viewed as a
special case of unbounded rough surfaces. For the inverse Dirichlet problem with a
C2-smooth periodic boundary, we refer to Bao [1] in the case of a lossy medium
(i.e. Im k40), Kirsch [2] for using all quasi-periodic incident waves, and Hettlich and
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Kirsch [3] for sufficiently small wave number or grating height and one incident
plane wave. In the case of electromagnetic scattering in the TE mode by one periodic
interface, Elschner and Yamamoto [4] proved that measurements corresponding to a
finite number of refractive indices above or below the grating profile uniquely
determine the periodic interface. This extends the uniqueness result by Hettlich and
Kirsch based on Schiffer’s theorem [3] to the inverse transmission problem. For two
periodic interfaces with an inhomogeneity between them, it was proved in [5] that the
interfaces and transmission coefficients can be uniquely identified from the scattered
fields for all quasi-periodic incident waves, and so can the refractive index of the
inhomogeneity if it only depends on x1 and the interfaces are parallel to the x1-axis.
Note that the measurements in [4,5] must be taken both above and below the
structure.

The mathematical theory of forward scattering by an unbounded rough surface
was mainly established by Chandler-Wilde and his collaborators over the last
15 years, using integral equation methods (see, e.g. [6–8]) or variational methods
[9,10]. We also refer to [11] for the uniqueness issue that occured in the direct
problem for exterior acoustics. Concerning uniqueness in inverse rough surface
scattering problem, as far as we know, the only reference is due to Chandler-Wilde
and Ross [12] who proved that a Dirichlet rough surface in a lossy medium can be
uniquely determined by the near-field data above the surface corresponding to only
one incident plane wave, which generalizes Bao’s result [1] on periodic structures to
rough surface scattering.

If the wave number k is a real number, it is well known that global uniqueness in
determining a Dirichlet surface is impossible in general with only one incident plane
wave [1,3]. Moreover, it is shown in [13] that, for each incident plane wave, there
exist two classes of polygonal periodic structures which cannot be uniquely
determined, one of which is the set of straight lines parallel to the x1-axis. Non-
uniqueness examples can be readily constructed from these two unidentifiable classes
provided the incident angle and the wave number satisfy certain relations.

In this article we present new uniqueness results using the incident waves
generated by point sources. In Section 2.1, we prove that a Dirichlet rough surface
can be uniquely determined by near-field data on a line segment above the surface
corresponding to a countable number of incident point source waves, following the
approach of Kirsch and Kress [14] for bounded obstacles and that of Kirsch [2] for
periodic structures. However, when rough surfaces are confined to polygonal
periodic structures, the measurements for one incident point source wave are
sufficient to ensure uniqueness. The proof in the latter case is based on the reflection
principle for the Helmholtz equation and the reduction argument from [15]. Such a
uniqueness result also applies to non-periodic rough polygonal surfaces satisfying
certain conditions; see Section 2.3. Finally, in Section 3 we extend the argument of
Section 2.1 to the TM transmission problem for penetrable rough layers in a
piecewise constant medium. This is motivated by our recent work [16] on inverse
scattering by multilayered bounded obstacles and periodic structures.

In Sections 2.1 and 3 we always assume that the non-periodic rough surface or
interface is given by the graph of a C1,1 function. This regularity assumption can be
relaxed in Section 2.1 (see, e.g. [9,10] for the direct problem), while it is very
necessary in Section 3 for the inverse transmission problem in order to tackle the
singularity of the fundamental solution in a half-space.

704 G. Hu



2. Uniqueness for the Dirichlet problem

In this section, we consider uniqueness in inverse wave scattering by an impenetrable

rough surface on which the Dirichlet boundary condition is satisfied. Such a

uniqueness issue arises in acoustic wave scattering by sound-soft unbounded

obstacles and electromagnetic scattering in the TE mode by an unbounded perfect

conductor.

2.1. Uniqueness for general rough surfaces

We begin with some mathematical formulations and solvability results on the

forward scattering problem, and then precisely formulate the inverse Dirichlet

problem. For H2R, let UH¼ {x24H} and �H¼ {x2¼H}. Let C1,1(R) denote the set

of functions f: R!R which are bounded and continuously differentiable, with

Lipschitz continuous derivative. Given a function f2C1,1(R), which satisfies, for

some constants fþ4f�40,

f�5 f ðx1Þ5 fþ, x1 2R,

we define the two-dimensional region D by

D :¼ fx ¼ ðx1, x2Þ 2R
2 : x2 4 f ðx1Þg: ð1Þ

Assume that the one-dimensional scattering rough surface � is given by

� :¼ @D ¼ fðx1, f ðx1ÞÞ : x1 2Rg, ð2Þ

and that an incident wave uin(x; z) generated by point source z2D,

uinðx; zÞ :¼ ði=4ÞHð1Þ0 ðkjx� zjÞ, ð3Þ

is incident on � from the top region D, with H
ð1Þ
0 ðtÞ being the Hankel function of the

first kind of order zero. The above defined incident wave uin(x; z) is nothing else but

the fundamental solution to the Helmholtz equation (Dþ k2)u¼ 0 in the whole two-

dimensional space, and is also referred to as the incident point source wave

throughout this article. It is supposed that the wave number k is a positive constant,

and that the total field u(x; z), which is the sum of the incident field uin(x; z) and the

corresponding scattered field usc(x; z), vanishes on the boundary � of D.
Since the region D is unbounded in x2, a radiation condition as x2!þ1 has to

be imposed on the scattered field. We adopt the upward propagating radiation

condition (UPRC), first proposed by Chandler-Wilde and Zhang [8], to represent usc

explicitly in the upper half-space UH for someH4fþ via its Dirichlet value uscj�H
, i.e.

uscðxÞ ¼
1ffiffiffiffiffiffi
2�
p

Z
R

exp
�
i½ðx2 �HÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � �2

p
þ x1��

�
F̂Hð�Þd�, x2UH, ð4Þ

where
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � �2

p
¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � k2

p
when j�j4k, and F̂H denotes the Fourier transforma-

tion of usc(x1,H) with respect to x1 defined by

F̂Hð�Þ :¼ Fðuscðx1,HÞÞð�Þ ¼
1ffiffiffiffiffiffi
2�
p

Z
R

expð�ix1�Þu
scðx1,HÞdx1, �2R:
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The integral in (4) exists in the Lebesgue sense provided usc(x1,H) belongs to L2(R)

so that F̂H belongs to L2(R). The above UPRC is also referred to as the angular

spectrum representation in the literature, and is equivalent to the pole condition

based on the Laplace transform of the solution in the radial direction. We refer to

Arens and Hohage [17] for the details about this equivalence, and the interpretation

of the integral (4) if usc(x1,H) is a bounded continuous function. In addition, we

remark that the UPRC does not depend on the choice of H4fþ [10, Remark 2.1],

and generalizes the standard Rayleigh expansion condition for periodic structures [6].

From (4), we observe that usc is the linear superposition of the upward propagating

plane waves expðiðx2 �HÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � �2

p
þ ix1�Þ for j�j � k, and the evanescent surface

waves expð�ðx2 �HÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � k2

p
þ ix1��Þ for j�j4k.

Now, we can formulate the direct and inverse scattering problems as follows.

(DP) Given � and the incident wave uin(x; z) for some z2D, determine the total

field u¼ uinþ usc such that

ðDþ k2Þu ¼ ��ðx� zÞ in D, u ¼ 0 on �,

and such that uscðx; zÞ 2C2ðDÞ \ CðDÞ satisfies the UPRC and

supx2D x�2 ju
scðxÞj5þ1 for some �2R.

Using the integral equation method, it is shown in Chandler-Wilde et al.

[7, Theorem 5.3] that the problem (DP) is uniquely solvable provided f2C1,1,

with the estimate

juscðxÞj � Cx1=22 ku
inkL1ð�Þ

for some constant C40 independent of the incident field. Recently, Elschner and

Chandler-Wilde [9] were able to prove the well-posedness of (DP) using the

variational method in weighted Sobolev spaces for much more general boundaries.

Since surface waves of the scattered field can be hardly detected far away from the

rough surface, the inverse problem always involves in near-field measurements.

Given b4fþ and b�40, define the line segment ��b by

��b :¼ fðx1, bÞ : jx1j5 b�g:

We proceed with the inverse problem (IP):

(IP) Given one incident point source wave uin(x; y) for some y2Ufþ , determine the

rough surface � from the knowledge of the near-field data fuðx; yÞ : x2��bg.

Remark 1 If the incident point source wave is replaced with a plane wave, then the

uniqueness to (IP) does not hold if k40. It is proved in [13] that two incident plane

waves are always sufficient to uniquely determine a non-flat polygonal periodic

structure under the Dirichlet boundary condition, while a straight line parallel to the

x1-axis cannot be uniquely determined by a finite number of incident plane waves in

general. Nevertheless, if the medium in D is lossy, i.e. Im k40, Chandler-Wilde and

Ross [6] proved that uniqueness to (IP) holds true with one incident plane wave.

As far as we know, the uniqueness to (IP) using one incident point source wave

is an open problem. For numerical inversion in the time-domain, Lines and

Chandler-Wilde [18] have explored a time domain point source method and Burkard
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and Potthast [19] have developed a time domain probe method, based on the singular

point source method of Potthast and the probe method of Ikehata et al. for bounded

obstacle scattering problems in the frequency-domain, respectively. An alternative

algorithm for (IP) is presented in [20], following the Kirsch–Kress optimization

scheme developed first for acoustic obstacle scattering.
Next, we establish a uniqueness theorem with a countable number of incident

point source waves, extending the idea of Kirsch and Kress [14] for bounded

obstacles and that of Kirsch [2] for periodic structures to rough surface scattering

problems.

THEOREM 2.1 The near-field data fuðx; zmÞ : x2��bg corresponding to a countable

number of incident point source waves uin(x; zm) with zm 2��c , m¼ 1,2, . . . , can

determine the rough surface � uniquely. Here, ��c is another line segment above �

satisfying ��b \ ��c ¼ ;.

Proof Let ~� be another rough surface lying below �b and �c, and denote by ~u(x; z),
~usc(x; z) the total and scattered fields corresponding to the incident field uin(x; z) and
~�, and denote by ~D the region above ~�. Assuming that

uðx; zmÞ ¼ ~uðx; zmÞ for all x2��b, x 6¼ zm m ¼ 1, 2, . . . , ð5Þ

we shall prove � ¼ ~� by contradiction.
We first claim that u(x; z)¼ ~u(x; z) for all x 6¼ z, x, z2�, where � denotes the

unbounded connected component of D \ ~D. Since u and ~u are both analytic

functions in � and �b��, the identity (5) holds true for all x2�b. It follows from

the uniqueness of the forward Dirichlet scattering problem over the half-space Ub

that the identity (5) remains valid for all x2Ub, and from the unique continuation of

solutions to the Helmholtz equation that

uðx; zmÞ ¼ ~uðx; zmÞ for all x2�, x 6¼ zm m ¼ 1, 2, . . . : ð6Þ

Recall [21, Theorem 3.1.4] that the solution u(x; z) fulfils the reciprocity relation

u(x; z)¼ u(z; x) for all x, z2D, x 6¼ z, and analogously that ~u(x; z)¼ ~u(z; x) for all

x, z2 ~D, x 6¼ z. Hence, by (6) we see that u(zm; x)¼ ~u(zm; x) for all x2�, m2N.

Setting w(z) :¼ u(z; x)� ~u(z; x) for some fixed x2�, we may conclude that w is

analytic on �c, with infinitely many zeros at z¼ zm, m2N on the finite line segment

��c . This implies that w(z)¼ 0 for all z2�c, i.e. u(z; x)¼ ~u(z; x) for all x2�, z2�c,

x 6¼ z. Repeating the arguments used in the proof of (6), we finally obtain the relation

u(x; z)¼ ~u(x; z) for all x, z2�, x 6¼ z. Since the scattered fields are continuous up to

the boundary, there holds

uscðx; zÞ ¼ ~uscðx; zÞ for all x, z2�: ð7Þ

If � 6¼ ~�, without loss of generality, we may assume that there exists

y0 2� \ ~D \ @�. Define a sequence yn :¼ y0þ (1/n)n(y0), n2N, such that yn2� for

all sufficiently large n2N, where n(y0) denotes the unit normal to � at y0 pointing

into D. On one hand, it follows from the smoothness of ~usc(x; y0) in ~D that

lim
n!þ1

j ~uscð yn; y0Þj ¼ j ~u
scð y0; y0Þj5þ1: ð8Þ
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On the other hand, recalling the Dirichlet boundary condition uin(y0; yn)þ
usc(y0; yn)¼ 0 for all n2N, we have

lim
n!þ1

juscð yn; y0Þj ¼ lim
n!þ1

juscð y0; ynÞj ¼ lim
n!þ1

juinð y0; ynÞj ¼ þ1,

which contradicts (7) and (8). Thus � ¼ ~�. g

Remark 2 The above approach does not depend on the kind of boundary
conditions on �, but requires infinitely many incident point source waves. If the
Dirichlet boundary condition is replaced with the impedance boundary condition,
Theorem 2.1 still holds true; note that the well-posedness of (DP) under the
impedance boundary condition is established in [22, Chapter 3] using the variational
method.

2.2. Uniqueness for polygonal periodic structures

If rough surfaces are confined to periodic structures, the problem (DP) is always
referred to as the grating diffraction problem. In this case, we can prove uniqueness
to (IP) within polygonal periodic structures using only a single incident point
source wave.

Assume that � is given by the graph of some 2�-periodic continuous piecewise
linear function x2¼ f(x1), x12R. A function u :R2

!C is said to be quasi-periodic in
x1 with the phase-shift �2R if u(x)exp(�i�x1) is 2�-periodic with respect to x1, or
equivalently,

uðx1 þ 2�, x2Þ ¼ uðx1, x2Þ expði2��Þ, x1 2R:

An �-quasiperiodic incident wave uin(x; y) due to the point source y2D is defined by

uinðx; yÞ ¼
X
n2Z

i

4��n
ei½�nðx1�y1Þþ�njx2�y2j�, ð9Þ

where �n¼ nþ � and

�n :¼
ðk2 � �2nÞ

1
2 if j�nj � k,

ið�2n � k2Þ
1
2 if j�nj4 k,

with i ¼
ffiffiffiffiffiffiffi
�1
p

:

8<
:

We assume that �n 6¼ 0 for all n2Z, i.e. the Rayleigh frequencies are excluded. If the
incident wave uin is �-quasiperiodic in x1 and f(x1) is periodic, it is proved in [9] that
the scattered field must be also �-quasiperiodic and is uniquely solvable for either a
plane wave incidence or a point source wave incidence. Under the �-quasiperiodicity
assumption on usc, Chandler-Wilde [6] has shown that the UPRC can be rewritten
more explicitly as the well-known Rayleigh expansion of the form

usc ¼
X
n2Z

An expði�nx1 þ i�nx2Þ for x2 4 fþ :¼ max
x12R

f ðx1Þ, ð10Þ

where An2C are called the Rayleigh coefficients. The well-posedness of the
plane wave scattering in the diffraction grating case is proved by Kirsch [23] for
a C2-smooth boundary @D, by Elschner and Yamamoto [24] for a Lipschitz
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boundary @D, and by Elschner and Chandler-Wilde [9] for more general domains D
fulfilling the condition

x ¼ ðx1, x2Þ 2D¼)ðx1,x2 þ sÞ 2D for all s4 0:

Our main result on uniqueness in determining polygonal periodic structures is as
follows.

THEOREM 2.2 A polygonal periodic structure � can be uniquely determined from the
near-field data {u(x; y): 05x152�, x2¼ b}, b4fþ, corresponding to one incident point
source wave uin(x; y) with y¼ (y1, y2) y24fþ, y2 6¼ b.

Let ~� be another 2�-periodic polygonal graph given by some function ~f satisfying
y2, b4 ~fþ, and let ~u, ~usc, ~D and � be given as in Section 2.1. We need to prove that
the relation

uðx1, b; yÞ ¼ ~uðx1, b; yÞ x1 2 ð0, 2�Þ ð11Þ

implies that � ¼ ~�.

Definition 2.3 A straight line l�D starting from one point and leading to infinity in
{x24b} is called a Dirichlet ray of u if ujl¼ 0.

From the identity (11), one can easily see that u(x; y)¼ ~u(x; y) for all x2�\{y}.
According to the standard elliptic regularity theory, the total field u(x; y) ( ~u(x; y)) is
infinitely smooth up to � ( ~�) except for the corner points, and is analytic in �\{y}.
Relying on the analyticity and the fact that both � and ~� are piecewise linear, one
can verify the following lemma.

LEMMA 2.4
(i) If the relation (11) holds and � 6¼ ~�, then there always exists a Dirichlet ray

l�� of both u and ~u such that l is not parallel to the coordinate axes.
(ii) For non-periodic polygonal graphs � and ~�, the first assertion still holds true

under one of the following additional assumptions

(A1) For each angle � formed by the x1-axis and a line segment of � [ ~� not parallel
to the x1-axis, we have jtan(�)j4� for some positive constant �.
(A2) For each angle � formed by the x1-axis and a line segment of � [ ~�, we have
jtan(�)j5M for some M40.

The key tool for proving Lemma 2.4 is the reflection principle for the Helmholtz
equation under the Dirichlet boundary condition [15,25–27], which has been used to
investigate uniqueness in inverse scattering by polygonal or polyhedral bounded
obstacles with a single incident plane wave [25,26]. The reflection principle is stated
as follows and will also be used in Section 2.3.

LEMMA 2.5 (Reflection principle) Assume that ��R
2 is a symmetric domain with

respect to the line l, and that u satisfies the Helmholtz equation (Dþ k2) u¼ 0 in � with
u¼ 0 on l. Then u(x)¼� u(Refl(x)) in �, where Refl(�) denotes the reflection with
respect to the line l. In particular, if l 0 �� is another line (or line segment) such that
ujl 0 ¼ 0, then u also vanishes on Refl(l

0)\�.

We refer to [15, Lemma 2] for a detailed proof of Lemma 2.4(i) in periodic case,
where the existence of the positive lower bound in (A1) is always guaranteed.
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With necessary modifications, the proof can be readily carried over to general

non-periodic polygonal structures which fulfil condition (A2). Note that (A2) implies

that both � and ~� are given by piecewise linear functions with uniformly

bounded Lipschitz constants. Based on Lemma 2.4 and the reduction argument in

[15, Lemma 3], we next prove Theorem 2.2 using a single incident point source wave.

Proof of Theorem 2.2 We begin with decomposing the incident point source wave

uin(x; y) into upward modes and downward modes by

uinðx; yÞ ¼

X
n2Z

Bþn ð yÞ expðið�nx1 þ �nx2ÞÞ in x2 � y2,

X
n2Z

B�n ð yÞ expðið�nx1 � �nx2ÞÞ in x2 5 y2,

8>><
>>:

x 6¼ y,

where B	n ð yÞ :¼ expðið��ny1 
 �ny2ÞÞi=ð4��nÞ. If (11) holds but � 6¼ ~�, by Lemma 2.4

we may assume without loss of generality that there exists a Dirichlet ray

l :¼ {(t, at) : t40} for some a40. Hence, for t2T :¼ {t40 : at4y2}, there holds

0 ¼ UðtÞ :¼ uðt, at; yÞ ¼ uinðt, at; yÞ þ uscðt, at; yÞ

¼
X
n2Z

Bþn ð yÞ expðið�ntþ �natÞÞ þ
X
n2Z

Anð yÞ expðið�ntþ �natÞÞ

¼
X
j�nj�k

ðBþn ð yÞ þ Anð yÞÞ expðið�ntþ �natÞÞ

þ
X
j�nj4k

ðBþn ð yÞ þ Anð yÞÞ expði�nt� j�njatÞ

¼: VðtÞ þWðtÞ: ð12Þ

One can observe that W(t) consists of exponentially decaying functions as t!þ1.

Thus, for any �40, there exists t02T sufficiently large such that jW(t)j5� for all

t4t0. Together with (12), this leads to jV(t)j5� for t4t0. However, since V(t) is an

almost periodic function on R, it holds that

max
t2R
jVðtÞj ¼ lim sup

t!þ1
jVðtÞj5 �:

Thus, by the arbitrariness of �, we arrive at V(t)¼ 0 for all t2R, which implies that

W(t)¼ 0 for all t2T. Now, using the argument employed in [15, Lemma 3], we can

conclude that Bþn ð yÞ þ Anð yÞ ¼ 0 for j�nj4k. Therefore, the total field can be

reduced to a finite number of propagating modes

uðx; yÞ ¼ uinðx; yÞ þ uscðx; yÞ ¼
X
j�nj�k

ðBþn ð yÞ þ Anð yÞÞ expðið�nx1 þ �nx2ÞÞ

in x24y2, which is an analytic function in the region x24y2. Moreover, the solution

u(x; y) remains bounded as x tends to y in the half-space Uy2 . However, since usc(x; y)

is smooth in a neighbourhood of y and uin(x; y) has the same singularity as

the free-space fundamental solution of the two-dimensional Helmholtz equation [23],

the limit of u(x; y) as x! y must be unbounded. This contradiction implies

that � ¼ ~�. g
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Remark 3 Theorem 2.2 remains valid for the Neumann boundary condition.
Analogously, one can prove that one incident quasi-periodic point source wave is
sufficient to determine a bi-periodic polyhedral grating profile under the perfect
conductor boundary condition (the tangential components of electric field vanish)
and under the third or fourth kind boundary conditions of linear elasticity. Note that
in all these cases, one incident plane wave is not enough in general to determine a
grating profile uniquely; see [13,15,28,29]. However, such a reduction argument relies
heavily on the Rayleigh expansion of the scattered fields, and it seems impossible to
extend this argument to non-periodic polygonal structures where the UPRC is used.

In the next section, we adopt another approach to prove uniqueness for rough
polygonal surfaces, providing a new proof of Theorem 2.2.

2.3. Uniqueness for non-periodic polygonal surfaces

THEOREM 2.6 Let ��c (c40) and ��b (b40) be two different line segments parallel to
the x1-axis satisfying ��b \ ��c ¼ ;, and define the incident point source waves uin(x; y)
for some y2��c as in (3). Suppose that the scattering surface � is the graph given by
some continuous piecewise linear function f(x1), satisfying j f(x1)j5min{b, c} for all
x12R and one of the conditions (A1) and (A2) in Lemma 2.5(ii). Then, the near-field
data fuðx; yÞ : x2��bg determine the rough surface � uniquely.

Proof Assume that ~� is another one-dimensional scattering surface satisfying all
the conditions imposed on � in Theorem 2.6. Denote by ~u(x; y) the total field
corresponding to uin and ~�. If u(x; y)¼ ~u(x; y) on ��b, then similarly to the proof
of (6), one arrives at u(x; y)¼ ~u(x; y) for all x2�\{y}, where � denotes again the
unbounded connected component of D \ ~D.

Assume that � 6¼ ~�. It follows from Lemma 2.4(ii) that there exists at least one
Dirichlet ray l which is not parallel to the coordinate axes. Since u¼ uinþ usc vanishes
on l and the incident field is singular at x¼ y, we see that l cannot pass through the
point source y. If y lies below the Dirichlet ray l, then the point Refl(y) must lie
above l, which implies that Refl(y)2Uc :¼ {x24c}��. Then, applying the reflection
principle of Lemma 2.5 yields the relation uðx; yÞjx¼y ¼ �uðx; yÞjx¼Refl ð yÞ, which is
impossible since u(x; y) is singular at x¼ y, while u(x; y) remains bounded as
x!Refl(y). Thus it remains to consider the case when y lies above l, where the point
Refl(y) may lie in R

2\ �. However, we claim that in this case there exists another ray
l 0 �� such that ujl 0 ¼ 0 and Refl 0(y)2�, which would analogously lead to the same
contradiction.

Without loss of generality we denote by l¼ {(t, at) : t40} for some a40. The case
a50 can be treated similarly. Since @� is the graph of some continuous piecewise
linear function, we can always choose two neighbouring line segments A1O,OA22 @�
with the end points A1,O,A22R

2 such that

minfx1 : x ¼ ðx1,x2Þ 2A1O [OA2g4 n

for some n40. Since @� is bounded in the x2-direction, the Huasdorff distance
between A1O[OA2 and l tends to infinity as n!þ1. Thus we have
Refl(A1O[OA2)�Uc provided n40 is sufficiently large. Then we extend the line
segments Refl(A1O), Refl(OA2) to the rays l 01, l

0
2 in �, respectively. By the
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reflection principle, we see that u vanishes on both l 01 and l 02, and thus also vanishes
on an equi-angular system � formed by l 01 and l 02, where the set ��� consists of a
finite number of rays passing through the same point O 0 :¼ l 01 \ l

0
2 2Uc; see

[13, Lemma 6]. Now, we see that there exists at least one ray l 0 �� such that
ujl 0 ¼ 0 and Refl 0(y)2�. The proof is thus complete. g

3. Uniqueness for the transmission problem

In this section, we consider the scattering of a time-harmonic electromagnetic wave
by several isotropic rough layers. Suppose that the medium varies only in x1-
direction and is constant in x3-direction. We restrict ourselves to the case of two
rough interfaces, and consider the TM mode (transverse magnetic polarization)
where the time-harmonic Maxwell equations can be reduced to a two-dimensional
scalar Helmholtz equation with the TM transmission conditions imposed on each
rough interface.

Let the cross-sections �j of the rough interfaces in the (x1, x2)-plane be given by
graphs of disjoint C1,1 functions �j :¼ {x2¼ fj (x1), x12R}, j¼ 1,2, satisfying

f1ð ~xÞ4 f2ð ~xÞ, j fj ð ~xÞ � fj ð ~yÞj � Lj j ~x� ~yj, for all ~x, ~y2R
n�1, ð13Þ

with Lj40, j¼ 1, 2. Denote the region above �1 by D0, the one below �2 by D2, and
that between �1 and �2 by D1; see Figure 1. The three distinct constant refractive
indices corresponding to Dj are denoted by kj (i¼ 0,1,2), respectively, satisfying
kj40, and k0 6¼ k1, k1 6¼ k2. Let

�þ1 :¼ max
x12R
ff1ðx1Þg, ��2 :¼ min

x12R
ff2ðx1Þg:

Suppose that from the top region D0 we have an incident wave uin(x; y) due to the
point source y2D0 defined by (3) with k replaced by k0. Then, the total field
u¼ u(x; y) satisfies

Duþ k2j u ¼ 0 in Djnfyg, j ¼ 0, 1, 2, ð14Þ

uþ ¼ u�,
1

k2j�1

@uþ

@n
¼

1

k2j

@u�

@n
on �j, j ¼ 1, 2, ð15Þ

u ¼ uinðx; yÞ þ uscðx; yÞ in D0, ð16Þ

Figure 1. The geometric figure of the background medium.
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where n denotes the unit normal to �j pointing into Dj�1, and uþ, @u
þ

@	 (resp. u�, @u
�

@	 )

denote the limits of u on �j from above (resp. below). The scattered field usc is

required to satisfy the UPRC (4) in D0 for some H4�þ1 with k replaced with k0,

while the field u in D2 is required to satisfy the downward propagating radiation

condition (DPRC):

uðxÞ ¼
1

2�

Z
R

expði½�ðx2 � hÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k22 � �

2

q
þ x1��ÞF̂hð�Þd�, x2R

2
nUh, ð17Þ

where Fh :¼ uj�h
2L2ð�hÞ for some h5��2 , and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k22 � �

2

q
¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � k22

q
when j�j4k2.

For y2R
2\(�1[�2), the function G(x; y) is called the fundamental solution to

the above scattering problem if there holds

LxGðx; yÞ :¼ r � ðarGðx; yÞÞ þ Gðx; yÞ ¼ ��ðx� yÞ, in R
2,

Gþ ¼ G�, aþ @G
þ

@n ¼ a� @G
�

@n , on �j, j ¼ 1, 2,

Gðx; yÞ satisfies the UPRC ð4Þ with k ¼ k0 and the DPRC ð17Þ ,

9>=
>; ð18Þ

where aðxÞ ¼ 1=ðk2j Þ for x2Dj, j¼ 0, 1, 2. One can further observe that the

fundamental solution G(x; y) coincides with the function k20uðx; yÞ if the point

source y2D0. We next prove that the fundamental solution exists and is unique

under some monotonicity conditions imposed on kj, from which the well-posedness

of our transmission problem (14)–(17) also follows. We assume that, for y =2�1[�2,

the function

x� ð1� 
ðkx� yk��1ÞÞGðx; yÞ

belongs to H1ðUhnUHÞ for each �40. Here 
(t) is a smooth function on [0,þ1)

satisfying 
(t)¼ 1 for t� 1/2 and 
(t)¼ 0 for t� 1.

LEMMA 3.1 For y =2�1[�2, the Green function G(x; y) exists and is unique if one of

the following conditions is satisfied:

ðiÞ k0 4 k1 4 k2; ðiiÞ k0 4 k1, k1 5 k2; ðiiiÞ k0 5 k1 5 k2: ð19Þ

Proof Without loss of generality, we may assume that y2DN for some N2 {0, 1, 2}

is a fixed point source. Let �40 denote the Hausdorff distance between y and

�1[�2, and choose a smooth function ~
ðtÞ 2C1ðRþÞ satisfying ~
ðtÞ ¼ 1 for t5�/4,
and ~
ðtÞ ¼ 0 for t4�/2. Setting V(x; y)¼G(x; y)�U(x; y), where Uðx; yÞ :¼ ði=4ÞHð1Þ0
ðkNjx� yjÞ
ðjx� yjÞk2N, we see that

DxVðx; yÞ þ k2j Vðx; yÞ ¼ g, in Dj, j ¼ 0, 1, 2,

where g(x) is some C1 smooth function on R
2 compactly supported in DN.

Moreover, V(x) satisfies the TM transmission conditions (18) on �j, the UPRC (4)

with k¼ k0 and the DPRC (17). Thus, under one of the conditions in (19) it follows

from [30, Corollary 2.3] that VðxÞ 2H1ðUhnUHÞ is the unique solution to this

transmission problem and satisfies the estimate kVkH1ðUhnUHÞ
� Ck gkL2ðDNÞ

for some

constant C40 depending on H, h, kj ( j¼ 0, 1, 2) and �j ( j¼ 1, 2). Thus,

G(x; y)¼V(x; y)þU(x; y) is the unique fundamental solution to the transmission

problem (14)–(17). g
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We remark that the Green function G(x; y) satisfies the reciprocity relation

G(x; y)¼G(y; x) for all x, y =2�1[�2, x 6¼ y. This property simply follows from the

fact that the variational formulation corresponding to (18) is symmetric, since the

leading coefficient a(x) of the differential equation in (18) is real and positive definite.

One can also prove this using Green’s formula combined with the transmission

conditions on �j and the radiation conditions UPRC and DPRC; we refer to [21,

Theorem 3.1.4] for the proof in a half plane under the Dirichlet boundary condition.
Our inverse problem in this section is as follows.

(IP0) Given k040 and the infinitely many incident waves uin(x; zm) generated by

point sources zm 2��c (m¼ 1, 2, . . .), determine the rough interfaces �j and the

refractive indices kj ( j¼ 1, 2) from the knowledge of the near-field data

fuðx; zmÞ : x2��b,m2Ng, where ��b \ ��c ¼ ;.

We next extend the arguments from Section 2.1 to prove uniqueness in (IP0).

THEOREM 3.2 Under one of the conditions in (19), the rough interfaces �j with

j¼ 1, 2, and the constant refractive indices kj, j¼ 1, 2, can be uniquely determined from

the near-field data fuðx; zmÞ : x2��b,m2Ng corresponding to the infinitely many

incident point source waves uin(x; zm), m2N.

Note that the approach of Kirsch and Kress for proving uniqueness using point

sources has already applied to penetrable obstacles (see, e.g. [5,14] ). In this article,

we adopt the idea from [16] of the leading singularity of the fundamental solution

G(x; y), which allows us to prove Theorem 3.2 in a more straightforward way. This

section also extends the results of [16] to the case of non-periodic unbounded

penetrable obstacles.
Given two functions f(x) and g(x), we say that f(x)� g(x) as x!x0 if

limx!x0 f ðxÞ=gðxÞ ¼ 1. Obviously, if f(x), g(x)!1 as x!x0 and f(x)� g(x) is

bounded in a neighbourhood of x0, then f(x)� g(x) as x! x0. Analogously, given

two sequences fn and gn, we say that fn� gn as n!þ1 if limn!1 fn/gn¼ 1. If y02Dj

for some j2 {0, 1, 2}, it can be readily deduced from the fundamental solution to the

two-dimensional Laplace equation that

Gðx; y0Þ � �
k2j
2�

ln kx� y0k as x! y0: ð20Þ

Note that the relation (20) only depends on the wave numbers kj corresponding

to Dj. However, we do not know the existence of the Green function G(x; y) in the

case that y belongs to the interfaces �j ( j¼ 1, 2). Given y02�j, j2 {1, 2}, define a

sequence yn by

yn ¼ y0 þ
1

n
nð y0Þ, n ¼ 1, 2, . . . : ð21Þ

The reciprocity relation for G(x; y) allows us to define G(yn; y0) for fixed n by

Gð yn; y0Þ :¼ Gð y0; ynÞ ¼ lim
m!þ1

G

�
y0 þ

1

m
nð y0Þ; yn

�
;

note that the limit exists because �j is C1,1-smooth and the function G(�; yn) is

continuous up to �j. We recall the following lemma on the limit of G(yn; y0) for
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y02�1[�2 as n!þ1, which is proved in [16, Lemma 2.5] by employing Fourier

transform under the condition that �j are C
2-smooth. The result remains valid if �j

are given by C1,1-smooth functions.

LEMMA 3.3 For fixed y02�j, j2 {1,2}, we have

Gð yn; y0Þ � �
k2j k

2
j�1

�ðk2j�1 þ k2j Þ
ln k yn � y0k as n!þ1,

where the sequence yn is defined by (21).

Now, based on Lemma 3.3 and the relation (20) we sketch the proof of

Theorem 3.2, following the steps in the proof of [16, Theorem 2.1 ] for multilayered

bounded obstacles.

Proof of Theorem 3.2 Let ~�j ( j¼ 1, 2) be another two disjoint rough interfaces

separating the regions ~Dj ( j¼ 0, 1, 2), with the wave number ~kj in ~Dj ( j¼ 1, 2)

satisfying k0 6¼ ~k1, ~k1 6¼ ~k2. Analogously, we use ~u, ~usc and ~Gðx; yÞ to denote the

corresponding fields and fundamental solution related to the rough layers charac-

terized by ~�1, ~�2 and ~k1, ~k2. Supposing that the identity (5) holds, we shall prove that

�j ¼ ~�j and kj ¼ ~kj for j¼ 1,2.
Assume that �1 6¼ ~�1. Without loss of generality, we may assume that there

exists y0 2 ~�1 \D0 \ @�, where � denotes the unbounded connected component of

D0 \ ~D0. Let yn be defined as in (21), and let the functions FðxÞ, ~FðxÞ be given by

FðxÞ :¼ �2�Gðx; y0Þ= ln kx� y0k, ~FðxÞ :¼ �2� ~Gðx; y0Þ= ln kx� y0k: ð22Þ

Since yn2D0\� for sufficiently large n, it follows from (20) and Lemma 3.3 with

�j¼�1 that

lim
n!þ1

Fð ynÞ ¼ k20, lim
n!þ1

~Fð ynÞ ¼ 2k20
~k21=ðk

2
0 þ

~k21Þ,

leading to

lim
n!þ1

½Fð ynÞ � ~Fð ynÞ� ¼ k20ðk
2
0 �

~k21Þ=ðk
2
0 þ

~k21Þ: ð23Þ

However, using the same argument as in the proof of Theorem 2.1, one can derive

from the equality (5) that Gðx; yÞ ¼ ~Gðx; yÞ for all x, y2�, and thus that
~Fð ynÞ ¼ Fð ynÞ for all sufficiently large n2N, which contradicts (23) because

k0 6¼ ~k1. Hence �1 ¼ ~�1.
We next prove that k1 ¼ ~k1. Choose y0 2�1 ¼ ~�1, and define yn, F(x), ~FðxÞ in the

same way as in (21) and (22). Applying Lemma 3.3 again yields the identity

0 ¼ lim
n!þ1

½Fð ynÞ � ~Fð ynÞ� ¼
2k20k

2
1

k20 þ k21
�

2k20
~k21

k20 þ
~k21
¼

2k40ðk
2
1 �

~k21Þ

ðk20 þ k21Þðk
2
0 þ

~k21Þ
,

from which k1 ¼ ~k1 follows.
Finally, applying Holmgren’s uniqueness theorem gives Gðx; yÞ ¼ ~Gðx; yÞ

for all x 6¼ y, x, y2�0, where �0 denotes the unbounded connected component

of ðR2
nD2Þ \ ðR

2
n ~D2Þ. Proceeding in a similar way, we can prove that �2 ¼ ~�2

and k2 ¼ ~k2. g
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Inverse Problems, L. Pävärinta and E. Somersalo, eds., Springer, Berlin, 1993, pp. 87–102.

[24] J. Elschner and M. Yamamoto, An inverse problem in periodic diffractive optics:
Reconstruction of Lipschitz grating profiles, Appl. Anal. 81 (2002), pp. 1307–1328.

[25] G. Alessandrini and L. Rondi, Determining a sound-soft polyhedral scatterer by a single

far-field measurement, Proc. Am. Math. Soc. 133 (2005), pp. 1685–1691.
[26] J. Cheng and M. Yamamoto, Uniqueness in an inverse scattering problem within non-

trapping polygonal obstacles with at most two incoming waves, Inverse Probl. 19 (2003),

pp. 1361–1384.
[27] H. Liu and J. Zou, Uniqueness in an inverse obstacle scattering problem for both sound-hard

and sound-soft polyhedral scatterers, Inverse Probl. 22 (2006), pp. 515–524.

[28] G. Bao, H. Zhang, and J. Zou, Unique determination of periodic polyhedral structures by
scattered electromagnetic fields, Trans. Am. Math. Soc. 363 (2011), pp. 4527–4551.

[29] J. Elschner and G. Hu, Uniqueness in Inverse Scattering of Elastic Waves by Three-
dimensional Polyhedral Diffraction Gratings, No. 1591, WIAS, 2011 (preprint).

[30] J. Elschner, G. Hu, and B. Zhang, Variational approach to scattering by penetrable
inhomogeneous layers with non-smooth rough interfaces, in preparation.

Applicable Analysis 717


