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Abstract
In this paper we establish a factorization method for recovering the location
and shape of an acoustic bounded obstacle with using the near-field data,
corresponding to infinitely many incident point sources. The obstacle is
allowed to be an impenetrable scatterer of sound-soft, sound-hard or impe-
dance type or a penetrable scatterer. An outgoing-to-incoming operator is
constructed for facilitating the factorization of the near-field operator, which
can be easily implemented numerically. Numerical examples are presented to
demonstrate the feasibility and effectiveness of our inversion algorithm,
including the case where limited aperture near-field data are available only.

Keywords: factorization method, inverse scattering, near-field data, Helmholtz
equation, point sources

(Some figures may appear in colour only in the online journal)

1. Introduction

This paper is concerned with the inverse problem of scattering of time-harmonic acoustic
waves from a bounded obstacle at a fixed frequency. Denoted by D the bounded obstacle in
3 with the boundary ∂ ∈D 2 . Then the scattering problem is modeled by
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where >k 0 is the wave number and ℬ denotes the boundary condition imposed on ∂D. For a
sound-soft obstacle, the scattered field u satisfies the Dirichlet boundary condition

ℬ = = ∂u u f D: on , (1.2)

whereas for an imperfect or partially coated obstacle, u satisfies the impedance boundary
condition

ν
ρℬ = ∂

∂
+ = ∂u

u
x u f D: ( ) on . (1.3)

In (1.3), the normal ν to the boundary ∂D is assumed to be outward and ρ ∈ ∂∞x L D( ) ( ) is the
given (complex-valued) impedance function with ρ ⩾Im ( ) 0. In the case ρ ≡x( ) 0 on ∂D, the
impedance boundary condition (1.3) reduces to the classical Neumann boundary condition

ν
ℬ = ∂

∂
= ∂u

u
f D: on .

In this paper, we consider the point source wave as the incident wave u x y( , )i which is
generated at the source position ∈ y 3:

Φ= =
−

∈ ⧹ ≠
−

u x y x y
e

π x y
y D x y( , ) ( , )

4
, , ,i

ik x y
3

and the corresponding scattered field is denoted by u x y( , ) which depends on the point source
position y. It is well-known that Φ x y( , ) is the free-space fundamental solution to the
Helmholtz equation Δ + =k v( ) 02 in 3. Then the boundary data f in (1.1) is given
as = − ℬf u y: ( · , )i .

The last condition in (1.1) is known as the the Sommerfeld radiation condition, allowing
the scattered field u x y( , ) to have the asymptotic behavior

⎧⎨⎩
⎛
⎝⎜

⎞
⎠⎟

⎫⎬⎭= + → ∞∞( )u x y
e

π x
u x y O

x
x( , )

4
ˆ,

1
as

ik x

uniformly in all directions =x x xˆ | |. The function → ∞x u x yˆ ( ˆ, ) is called the far-field pattern
of u x y( , ), which is an analytic function defined on the unit sphere = = x x: { : | | 1}2 . Here,
we have emphasized the dependance of ∞u x y( ˆ, ) on the point source position y. Since the
function Φ x( , · ) is also a radiating solution, it behaves like

⎧⎨⎩
⎛
⎝⎜

⎞
⎠⎟

⎫⎬⎭Φ = + → ∞ = − ∈ x y
e

π y
e O

y
y d y( , )

4

1
as , : ˆ . (1.4)

ik y
ikx d· 2

Hence, as a function of ∈ x 3, the far-field pattern eikx d· of the point source Φ x y( , ) is
exactly the plane wave propagating at the direction = −d ŷ .

Set = <B x x R: { : | | }R , = =S x x R: { : | | }R and assume that there is a priori information that
⊂D BR for some large >R 0. Our concern in this paper is to recover ∂D from the near-field

data ∈u x y x y S{ ( , ): , }R by sending incident point sources u x y( , )i with ∈y SR. It is well-
known that D can be uniquely determined from the far-field pattern ∞u x d( ˆ; ) of all incident
plane waves =u x e( )i ikx d· with ∈ x dˆ, 2 (see, e.g. [6]). Such a uniqueness result could be
easily extended to the case with near-field data by using Rellichʼs lemma and the mixed
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reciprocity relation (see, e.g. [2]). Hence, the obstacle D is uniquely determined by the
scattered near-field u y( · ; ) |SR for all ∈y SR. In this paper, we will also present a short proof
based on the symmetric relation of the fundamental solution to the scattering problem by
utilizing limited aperture near-field data only (see theorem 3.9).

The factorization method in inverse scattering was first introduced by Kirsch [4] in 1998
and has been extended and improved continuously since then; see the monograph [7] and the
survey paper [3]. It provides a necessary and sufficient criterion for precisely characterizing
the shape and location of the scattering obstacle, utilizing the spectral system of the so-called
far-field operator defined by the far-field pattern. Recently we have generalized the factor-
ization method to the case of penetrable obstacles with unknown buried objects [11] and the
case of complex impenetrable obstacles with generalized impedance boundary condi-
tions [12].

In the case of incident plane waves, to apply the factorization method one needs to
investigate the far-field operator → F L L: ( ) ( )2 2 2 2 defined by

∫= ∈∞ 


( ) ( )Fg x u x d g d ds d x( ) ˆ ˆ; ( ) ( ) for ˆ . (1.5)2
2

In a framework of functional analysis, the above operator F can be factorized into the form
LTL*, where the adjoint operator L* is defined via a sesquilinear form in the sense of the
extension of L2-inner product. Then a connection between the operators F and L is established
by a range identity (see, e.g. [7]) and the characteristic function of the scatterer can be
constructed in term of the spectral system of the far-field operator.

In many applications, the measurement data are taken not very far away from the scat-
terer (compared to the wavelength), and point source waves are usually used as incident
fields. We then need to consider the near-field operator →N L S L S: ( ) ( )R R

2 2 defined by

∫= ∈Ng x u x y g y ds y x S( )( ) ( , ) ( ) ( ) for . (1.6)
S

R
R

However, as far as we know, it is still an open problem how to develop a factorization method
with near-field data which is efficient in computation, through establishing an appropriate
factorization of N directly (as for the far-field operator F). The functional framework for
factorizing the far-field operator F does not extend to the near-field operator N since the
resulting adjoint for N would be defined via a bilinear other than sesquilinear form giving
arise to essential difficulties in the characterization of D (see [7, chapter 1.7] for details). To
overcome such a difficulty, three main approaches have been proposed so far. One is to
convert the near-field operator N into the far-field operator F, based on the mixed reciprocity
relation, so our inverse problem can then be reduced to the visualization problem from the far-
field operator =F PNP1 2 with certain auxiliary operators P1 and P2; see [7] and [10] for
details. It should be remarked that this approach cannot apply to the case where limited
aperture near-field data are available since the full data on SR is needed in order to compute
the far-field pattern. Further, this approach seems not efficient in computation. Another
approach was also proposed in [10]. The idea is to connect outgoing and incoming waves by
constructing non-physical auxiliary operators which seem difficult to implement numerically.
The third approach is to use non-physical incident point sources (i.e., Φ x y( ; )) to generate a
non-physical near-field operator Nnp. One can first develop a factorization method for Nnp and
then prove that the non-physical near-field operator can be approximated by regularized
physical ones in the sense that →δNP Nnp in some sense as δ → 0 for certain operator δP .
Thus the non-physical near-field operator Nnp can be regarded as a regularized physical one
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δNP for a very small δ. This approach was first proposed in [8] and then improved in [1]; see
[1, 8] for details.

In this paper we will develop a framework for establishing the factorization method for
recovering ∂D from the near-field data, which is computationally efficient and easy to
implement. Our approach is to construct an unitary operator T1 on L S( )R

2 , which is an
outgoing-to-incoming operator in the sense of remark 3.3 below and has a very simple form
so that it can be easily implemented numerically. Then a factorization of T N1 can be derived
in the standard way, so the range identity from [7] is still applicable. We will prove that our
imaging scheme is independent of the boundary conditions on ∂D since it applies to sound-
soft, sound-hard and impedance-type impenetrable obstacles as well as penetrable obstacles.
Moreover, the case of limited aperture near-field data can be treated as well; see the dis-
cussion at the end of section 3.2. The developed factorization method with the near-field data
is comparable with that using the far-field data. For simplicity we only consider the three-
dimensional case and the case where the measurement is taken at the sphere SR. However, our
analysis extends easily to the two-dimensional case and the case where the measurement
surface is taken as a star-shaped continuous surface M which encloses the obstacle D and is
given by the form ϕ=x x| | ( ˆ), that is, ϕ= ∈ =M x x x x{ : ( ˆ) ˆ}3 (see remark 3.4 below for
details).

The remaining part of the paper is organized as follows. In section 2, we derive the
Fourier coefficients of the near-field operator with respect to the spherical harmonics. Section
3 is devoted to a justification of the factorization method for identifying sound-soft obstacles.
The definition of the outgoing-to-incoming operator T1 is given in section 3.1, and an explicit
example for recovering the sound-soft unit ball is presented in section 3.3. In the subsequent
sections 4 and 5, the factorization method is extended to the case of other boundary condi-
tions such as the impedance and Neumann conditions and the inverse medium scattering case,
respectively. In section 6, numerical examples are presented to illustrate the feasibility and
effectiveness of the inversion algorithm.

2. Fourier coefficients of near-field operator

We begin with the normalized spherical harmonic functions of order n, given by

θ φ θ= + −
+

= ⋯ = − ⋯φY
n

π

n m

n m
P e n m n n( , ):

2 1

4

( )

( )
(cos ) , 0, 1, 2, , , , ,n

m
n
m im

where θ φ( , ) represents the spherical coordinates on the unit sphere 2 and Pn
m are the

associated Legendre functions. By definition it holds that =−Y Yn
m

n
m. It is well-known that

∈ = − ⋯Y n m n n{ : , , , }n
m forms a complete orthonormal system in L ( )2 2 . Thus, for

each ∈ ( )g L SR
2 we have the expansion

∫∑ ∑= =
=

∞

=−
( ) ( )g x g Y x g

R
g x Y x ds( ) ˆ with :

1
( ) ˆ , (2.1)

n m n

n

n m n
m

n m
S

n
m

0
, , 2

R

where the coefficients ∈ gn m, are referred to as the Fourier coefficients of g with respect to
the spherical harmonics. Throughout the paper the Fourier coefficients of an L2 function on SR
are understood in this sense. Observing that

∑ ∑=
=

∞

=−
( )g R g ,

L S
n m n

n

n m
2 2

0
,

2

R
2
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we define the operator →L S: ( ) ℓR R
2 2 by

= = ∈ = − ⋯ ∈{ }g g n m n ng g( ) , : : , , , ℓ . (2.2)R n m,
2

Conversely, for = ∈ = − ⋯ ∈g n m n ng { : , , , } ℓn m,
2 we can define the operator

→− L S: ℓ ( )R R
1 2 2 by

∑ ∑= =−

=

∞

=−
( )g Y x x Rg( ) ˆ on . (2.3)R

n m n

n

n m n
m1

0
,

Further, it can be readily deduced from (2.2) and (2.3) that

= = = =− − − −( )I I
R

R, ,
1

, * , (2.4)( )R R R R L S R R R R
1

ℓ
1 *

2
1 1 2

R
2 2       

where Iℓ2 and I ( )L SR
2 denote the identity operator on ℓ

2 and ( )L SR
2 , respectively.

Let jn and hn
(1) be the spherical Bessel functions and spherical Hankel functions of order

n, respectively. Set

= ∈ ∈ = − ⋯ ( ( )u x j k x Y x x n m n n( ) ) ˆ , , , , , .n m
i

n n
m

,
3

It is well known that un m
i
, are entire solutions to the Helmholtz equation △ + =u k u 02

in 3. Denote by un m, the unique radiating solution to the problem (1.1) with
= − ℬ ∂f u: ( )|n m

i
D, , which can be regarded as the scattered field corresponding to the

incident wave un m
i
, . It is shown in [2, Theorem 215] that un m, has the expansion

∑ ∑= ∈
=

∞

=−

( )u x a h k x Y x a( ) ( ) ˆ , , (2.5)n m

p q p

p

p q
n m

p p
q

p q
n m

,

0
,
, (1)

,
,

which converges absolutely and uniformly on compact subsets of >x R| | . Therefore,

⎛
⎝⎜

⎞
⎠⎟ = ∈ = − ⋯ ∈{ }u a h kR p q p p( ): , , , ℓR n m

S
p q
n m

p, ,
, (1) 2

R


for all ∈ = − ⋯n m n n, , , . Instead of the near-field operator N, we will consider the
operator

N = →−N: : ℓ ℓ , (2.6)R R
1 2 2 

defined by using the Fourier coefficients of g and Ng on SR. An explicit expression of N is
given as follows.

Lemma 2.1. Let g, gn m, , g and ap q
n m
,
, be given as in (2.1), (2.2) and (2.5), respectively. Then

it holds that

N
⎪ ⎪

⎪ ⎪

⎧
⎨
⎩

⎫
⎬
⎭∑ ∑= ∈ = − ⋯

=

∞

=−

ikR h kR a h kR g p q p pg ( ) ( ) : , , , . (2.7)p
n m n

n

p q
n m

n n m
2 (1)

0
,
, (1)

,

Proof. By definition,N = Ngg R . Thus we only need to derive the Fourier coefficients of
the near-field data Ng with respect to the spherical harmonics. Set

∫=U x u x y g y ds y( ): ( , ) ( ) ( )
SR

for ∈ ⧹x D3 . Clearly, Ng is the restriction to SR of U with
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U being the scattered field corresponding to the incident field ∫ Φ=U x x y g y ds y( ): ( , ) ( ) ( )i
SR

for <x R| | . Recall (see [2, Theorem 211]) that the fundamental solution Φ has the expansion

∑ ∑Φ =
=

∞

=−
( ) ( )x y ik h k y Y y j k x Y x( , ) ( ) ˆ ( ) ˆ , (2.8)

n m n

n

n n
m

n n
m

0

(1)

which converges absolutely and uniformly on compact subsets of <x y| | | |. Since = −Y Yn
m

n
m,

one can rewrite the previous identity as

∑ ∑Φ = <
=

∞

=−
( ) ( )x y ik h k y Y y j k x Y x x y( , ) ( ) ˆ ( ) ˆ for .

n m n

n

n n
m

n n
m

0

(1)

This implies that for <x R| | ,

⎡⎣ ⎤⎦∑ ∑

∑ ∑

=

=

=

∞

=−

=

∞

=−

( ( )U x ikR h kR g j k x Y x

ikR h kR g u x

( ) ( ) ) ˆ

( ) ( ), (2.9)

i

n m n

n

n n m n n
m

n m n

n

n n m n m
i

2

0

(1)
,

2

0

(1)
, ,

with gn m, defined by (2.1). Then, by linear superposition we conclude from (2.5) and (2.9) that

⎛
⎝
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⎞
⎠
⎟⎟

⎛
⎝
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⎞
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∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

=

=

=

=

∞

=−

=

∞

=− =

∞

=−

=

∞

=− =

∞

=−

( )

( )

U x ikR h kR g u x

ikR h kR g a h k x Y x

ikR h k x a h kR g Y x

( ) ( ) ( )

( ) ( ) ˆ

( ) ( ) ˆ , (2.10)

n m n

n

n n m n m

n m n

n

n n m
p q p

p

p q
n m

p p
q

p q p

p

p
n m n

n

p q
n m

n n m p
q

2

0

(1)
, ,

2

0

(1)
,

0
,
, (1)

2

0

(1)

0
,
, (1)

,

for >x R| | . Here, interchanging the order of summation is allowed since the two series
converge absolutely and uniformly on compact subsets of >x R| | . The Fourier coefficients of
U x( )|SR in (2.10) finally yield the expression (2.7). □

3. Dirichlet boundary condition

In this section, we will establish the factorization method for reconstructing a sound-soft
obstacle from near-field data corresponding to incident point source waves. The key ingre-
dients in our analysis consist of the construction of an outgoing-to-incoming mapping T1 and
an appropriate factorization of the operator T N1 .

3.1. Factorization of near-field operator

Similarly to the Herglotz wave function for plane waves, we define the incidence operator
→ ∂H H D: ℓ ( )Dir

2 1 2 for the Dirichlet boundary value problem by (see (2.9)):

∑ ∑= = ∈ ∂
∂

=

∞

=−

H U ikR h kR g u x x Dg( ) ( ) ( ), .Dir
i

D
n m n

n

n n m n m
i2

0

(1)
, ,

The operator HDir maps a superposition of the incident waves un m
i
, with the weight gn m,

into its trace on ∂D. Since jn is real-valued, the adjoint operator ∂ →−H H D: ( ) ℓDir
* 1 2 2 is

given by
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∫ψ ψ= − ∈ = − ⋯
∂

{ }( )H ikR h kR y j k y Y y ds y n m n n( ) ( ) ( ) ˆ ( ): , , , . (3.1)Dir n
D

n n
m* 2 (1)

Denote by u the unique outgoing radiating solution to the problem (1.1) with the
boundary value ∈ ∂f H D( )1 2 . Suppose that on =x R| | ,

∑ ∑= ∈
=

∞

=−

( )u x b h kR Y x b( ) ( ) ˆ , .S

n m n

n

n
m

n n
m

n
m

0

(1)
R

Then the Fourier coefficients of u|SR define the solution operator ∂ →G H D: ( ) ℓDir
1 2 2 as

= ∈ = − ⋯{ }G f b h kR n m n n( ) : ( ): , , , . (3.2)Dir n
m

n
(1)

From the definition of N, GDir and HDir the following relation follows:

N = −G H . (3.3)Dir Dir

As for the incident plane wave case, we introduce the single-layer operator and single-
layer potential

∫
∫

ψ Φ ψ

ψ Φ ψ

= ∈ ∂

= ∈

∂

∂


S x x y y ds y x D

V x x y y ds y x

( )( ) ( , ) ( ) ( ), ,

( )( ) ( , ) ( ) ( ),

D

D

3

for ψ ∈ ∂−H D( )1 2 . It follows from the expansion (2) that for ⩾x R| | ,

⎡
⎣⎢

⎤
⎦⎥∫∑ ∑ψ ψ=

=

∞

=−
∂

( ) ( )V x ik h k x y j k y Y y ds Y x( )( ) ( ) ( ) ( ) ˆ ˆ .
n m n

n

n
D

n n
m

n
m

0

(1)

This, together with the definition of GDir and the jump relations for single-layer potentials,
implies that

∫
ψ ψ

ψ

=

= ∈ = − ⋯

∂

∂
{ }( )

( )G V G S

ikh kR y j k y Y y ds n m n n

( )

( ) ( ) ( ) ˆ : , , , . (3.4)

Dir D Dir

n
D

n n
m(1)

Remark 3.1. Comparing (3.1) and (3.4), it is observed that the relation =G S HDir Dir
* , which

is true for the far-field operator, does not hold in the present case. It is the reason why the
operator N (also the near-field operator N) cannot be factorized in a straightforward way.

To find out an appropriate factorization of N, we observe further from (3.1) and (3.4)
that

= =R T G S H R S G T Hor equivalently , (3.5)Dir Dir Dir Dir
2

0 * 2 * *
0
*

where the operator →T : ℓ ℓ0
2 2 is defined as

⎪ ⎪

⎪ ⎪

⎧
⎨
⎩

⎫
⎬
⎭

= − ∈ = − ⋯T
h kR

h kR
g n m n ng( )

( )

( )
: , , , , (3.6)n

n
n m0

(1)

(1) ,

for = ∈ = − ⋯ ∈g n m n ng { : , , , } ℓn m,
2. Note that T0 is well-defined in ℓ

2 since
≠h kR( ) 0n

(1) for all ∈ n . Moreover, it is seen from (3.6) that T0 is an unitary operator
on ℓ2, that is, = =T T T T I0 0

*
0
*

0 ℓ2. From (3.3) and the second relation in (3.5) it follows that
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N = − = − ( ) ( )T T G H R T G S T G* *. (3.7)Dir Dir Dir Dir0 0
2

0 0

Accordingly, a factorization of the near-field operator can be obtained as follows.

Theorem 3.2. We have the factorization

= − = −  T N S T G* , : , (3.8)Dir Dir Dir R Dir1 * 1
0

where = →−T T L S L S: : ( ) ( )R R R R1
1

0
2 2  takes the form

∫= ∈( ) ( )T g x K x y g y ds y g L S( ) ( , ) ( ) ( ) for , (3.9)
S

R1
2

R

with the kernel

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑ θ= − +

=

∞

K x y
πR

h kR

h kR
n P( , ) :

1

4

( )

( )
(2 1) (cos ). (3.10)

n

n

n
n2

0

(1)

(1)

In (3.10), Pn are the Legendre polynomials and θ denotes the angle between ∈x SR

and ∈y SR.

Proof. From the definition of R , N and N it follows that N= −N R R
1  . In view of the

factorization of NT0 (see (3.7)) and the definition of T1, it is derived that

N= = −

= −

− −

− −( ) ( )
( ) ( ) ( )T N T R T G S T G

T G S T G

* *

* *, (3.11)

R R R Dir Dir R

R Dir R Dir

1
1

0
2 1

0 0

1
0

1
0

   
 

where the last equality follows from the last relation in (2.4). This gives the factorization (3.8)
with the operator Dir given as above.

By the definition of T1 and T0 it follows that for ∈g L S( )R
2 ,

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑ ∑= − ∈

=

∞

=−
( ) ( )T g x

h kR

h kR
g Y x x S( )

( )

( )
ˆ , (3.12)

n m n

n
n

n
n m n

m
R1

0

(1)

(1) ,

with ∫= −g R g x Y x ds x: ( ) ( ˆ) ( )n m S n
m

,
2

R
. Making use of the addition theorem (see, e.g., [2,

Theorem 2.8]), we can reformulate the previous identity as

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

∫

∫

∫

∑ ∑

∑ ∑

= −

= −

=

=

∞

=−

=

∞

=−

( ) ( ) ( )

( ) ( )

T g x
h kR

h kR
Y x

R
g y Y y ds y

R
g y

h kR

h kR
Y x Y y ds y

K x y g y ds y

( )
( )

( )
ˆ

1
( ) ˆ ( )

1
( )

( )

( )
ˆ ˆ ( )

( , ) ( ) ( )

n m n

n
n

n
n
m

S
n
m

S
n

n

n m n

n

n
m

n
m

S

1

0

(1)

(1) 2

2
0

(1)

(1)

R

R

R

with the kernel K x y( , ) given by (3.10). The proof is thus complete. □

Remark 3.3. The operator T1 is essentially an outgoing-to-incoming mapping in the
following sense. Let v be an outgoing solution to the Helmholtz equation which satisfies the
outgoing Sommerfeld radiation condition. Suppose v admits the expansion
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∑ ∑= > >
=

∞

=−
( )v x v h k x Y x x R( ) ( ) ˆ for all 0.

n m n

n

n m n n
m

0

,
(1)

0

Define the incoming wave

∑ ∑= − >
=

∞

=−
( ) ( )v x v h k x Y x x R˜( ) ˆ for all .

n m n

n

n m n n
m

0

,
(1)

0

Then the function ṽ satisfies the Helmholtz equation and the incoming condition

⎜ ⎟⎛
⎝

⎞
⎠

∂
∂

+ = =
→∞

r
v

r
ikv r xlim

˜
˜ 0, .

r

Then, by (3.12) it can be readily verified that

= >( )T v v R R˜ for all .
S S

1 0
R R

In particular, we have (see (3.16) in section 3.2 below)

Φ Φ= >( )T z z R z( · , ) ( · , ) for all .
S S1

R R

Remark 3.4. As mentioned in the introduction, our method also works for the case
where the measurement is taken at a star-shaped continuous surface M enclosing the
obstacle D and taking the form ϕ=x x| | ( ˆ), that is, ϕ= ∈ =M x x x x{ : ( ˆ) ˆ}3 with ϕ a
positive and continuous function on the unit sphere 2. However, in this case, the
operator →T L M L M: ( ) ( )1

2 2 has a complicated expression, so T N1 is not so easy to
discretize.

3.2. Inversion algorithm and a uniqueness result

We first show the properties of the solution operator GDir defined by (3.2) and the modified
solution operator Dir (see (3.8)).

Lemma 3.5.

(i) The solution operator ∂ →G H D: ( ) ℓDir
1 2 2 is compact, one-to-one with a dense range

in ℓ2.
(ii) The operator ∂ → H D L S: ( ) ( )Dir R

1 2 2 is compact, one-to-one with a dense range
in L S( )R

2 .

Proof. (i) The injectivity of GDir simply follows from the uniqueness of the exterior
Dirichlet problem and the analytic continuation argument. The compactness is a consequence
of the well-posedness of the scattering problem (1.1) in ⧹H D( )loc

1 3 and the compact
embedding property of H S( )R

1 2 into L S( )R
2 .

To prove that the range of GDir is dense in ℓ2, define the sequence ∈g ℓM( ) 2 with some
∈ □M by

⎧⎨⎩= ∈ = − ⋯ =
⩽
>

{ }n m n n
g n M

n M
g g g: , , , , :

,

0,
M

n m
M

n m
M n m( )

,
( )

,
( ) ,

for every = ∈ = − ⋯ ∈g n m n ng { : , , , } ℓn m,
2. Then, for any ϵ > 0 there exists

a >ϵM 0 such that ϵ∥ − ∥ <ϵg gM( )
ℓ2 . Choose the origin inside of D and define the
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function v by

⎛
⎝⎜

⎞
⎠⎟∑ ∑= ≠

= =−

ϵ

( )v x
h kR

g h k x Y x x( )
1

( )
( ) ˆ for 0.

n

M

m n

n

n
n m n n

m

0
(1) ,

(1)

Clearly, v is an outgoing radiating solution to the Helmholtz equation △ + =u k u 02 in
⧹ {0}3 . Recalling the definition of the solution operator GDir, we obtain that

=∂ ϵG v g( | )Dir D
M( ), so ϵ∥ − ∥ <∂G v g( | )Dir D ℓ2 . This completes the denseness proof of the

range of GDir in ℓ2.
(ii) The required properties of Dir follow from those of GDir and the fact that T0 is an

unitary operator in ℓ
2 and R is an isomorphism. □

Lemma 3.6. Let Dir be given as in (3.8) and set = ∈ <B x x R: { : | | }R
3 . For ∈z BR,

define the function ϕ Φ= ∈z L S( · ) ( · , )| ( )z S R
2

R . Then ∈z D if and only if ϕz belongs to the
range ( )Dir of Dir.

Proof. We first assume that ∈ ⊂z D BR. Obviously, Φ ⧹z( · , ) | D3 is the unique radiating
solution to the problem (1.1) with the Dirichlet data Φ= ∂f z: ( · , ) | D. From the definition of
GDir, Dir and T1, it follows that Φ=G f z( ) ( ( · , ) | )Dir R SR and

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟Φ Φ= = =− − f T G f T z T z( ) ( ) ( · , ) ( · , ) . (3.13)Dir R Dir R R

S S

1
0

1
0 1

R R

  
Recalling the expansion (2.8) for the fundamental solution Φ x z( , ) with >x z| | | |, we arrive at

∑ ∑

∑ ∑

Φ

Φ

= −

=

=

∈
=

∞

=−

=

∞

=−

− −

( ) ( )

( )

( )

( )

T x z ik h kR j k z Y z Y x

ik h kR j k z Y z Y x

x z

( , ) ( ) ( ) ˆ ˆ

( ) ( ) ˆ ˆ

( , ) . (3.14)

x S

n m n

n

n n n
m

n
m

n m n

n

n n n
m

n
m

S

1

0

(1)

0

(1)

R

R

Combining (3.15) and (3.16) yields ϕ Φ= ∈ z( · ) ( · , )| ( )z S DirR  .
On the other hand, let ∈ z 3 and assume that ϕ= f( )Dir z for some ∈ ∂f H D( )1 2 .

Since the operator T0 is unitary on ℓ
2, we have that = − G TDir R Dir0

1 and = − −T TR R1
* 1

0
1  .

This implies that

ϕ ϕ Φ= = = =− − − − − ( ) ( )G f T f T T z( ) ( ) ( · , ) ,R Dir R R Dir R R z z S

1 1
0

1 1
0

1
1
*

R

    
where the last equality follows from (3.16). Therefore, it holds that

Φ=G f z( ) ( ( · , ) | )Dir R SR . Let v be the solution of the Dirichlet problem (1.1) with the
boundary data f so that Φ= =G f v z( ) ( | ) ( ( · , ) | )Dir R S R SR R  . Consequently, we get

Φ=v z( · , ) in ∈ ⩾x x R{ : | | }3 due to the uniqueness of solutions to the exterior
Dirichlet problem, and therefore Φ=v z( · , ) in ∪⧹ D z( { })3 by analytic continuation. It is
impossible that ∈ ⧹z D3 since v is analytic in ⧹ D3 but Φ z( · , ) is singular at z. On the
other hand, the relation ∈ ∂z D would lead to a contraction that ∈ ∂∂v H D| ( )D

1 2 but
Φ ∉ ∂∂z H D( · , ) | ( )D

1 2 . Hence, we have that ∈z D, which proves the lemma. □

We now collect properties of the middle operator S from [7, lemma 1.14].

Lemma 3.7. Assume that k2 is not a Dirichlet eigenvalue of −△ in D.

Inverse Problems 30 (2014) 095005 G Hu et al

10



(i) The operator S is an isomorphism from the space ∂−H D( )1 2 into ∂H D( )1 2 .
(ii) Let Si be defined by (3.4) with k = i. Then Si is self-adjoint and coercive as an operator

from ∂−H D( )1 2 into ∂H D( )1 2 .
(iii) φ φ〈 〉 <SIm , 0 for all φ ∈ ∂−H D( )1 2 with φ ≠ 0. Here, 〈 〉· , · denotes the duality

between ∂H D( )1 2 and ∂−H D( )1 2 extending the L2-product in ∂L D( )2 .
(iv) The difference −S Si is compact from ∂−H D( )1 2 into ∂H D( )1 2 .

Relying on lemmas 3.5, 3.6 and 3.7, we now present a sufficient and necessary com-
putational criterion for precisely characterizing the region occupied by the scatterer, from
which a uniqueness result with the full near-field measurement data taken on SR also follows.

Theorem 3.8. Assume that k2 is not a Dirichlet eigenvalue of −△ in D. Let N be the near-
field operator defined in (1.6) and let ϕz be given as in lemma 3.6. Denote by λ ∈ j the
eigenvalues of the normal operator = +T N T N T N( ) : | Re ( )| | Im ( )|1 # 1 1 with the corresponding
normalized eigenfunctions ψ ∈ L S( )j R

2 . Then

⎡⎣ ⎤⎦ϕ∈ ⟺ ∈ ( )z D T N (3.15)z 1 #

1 2

⎡

⎣

⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥
∑

ϕ ψ

λ
⟺ = >

−

( ) ( )
W z( ) :

,

0. (3.16)
j

z j
L S

j

2 1

R
2

Proof. The properties of Dir and S shown in lemmas 3.5 (ii) and 3.7 enable us to apply the
range identity of [7, theorem 2.15] to the factorization = −  T N S*Dir Dir1

* . As a
consequence we get = TN[( ) ] [ ]Dir1 #

1 2  . This, together with lemma 3.6, yields (3.17).
The relation (3.18) follows from Picardʼs range criterion. □

We now state a uniqueness result by utilizing limited aperture near-field data only.

Theorem 3.9. Assume that the sound-soft obstacle D is contained in the ball
= <B x x R{ : | | }R . Let Γ ⊂ SR R be a sub-domain of SR and let u x y( , ) denote the unique

scattered field corresponding to the incident point source wave Φ y( · , ) with Γ∈y R. Then
∂D can be uniquely determined by the near-field data Γ∈u x y x y{ ( , ): , }R .

Proof. Suppose there is another sound-soft obstacle ⊂D B˜ R, and denote by u x y˜( , ) and
G x y˜ ( , ) the corresponding scattered and total fields with respect to D̃. Set

Φ= +G x y u x y x y( , ): ( , ) ( , ) for ∈ ⧹x D3 , which is the total field corresponding to the
incident point source Φ x y( , ) with respect to D.

Assume that =u x y u x y( , ) ˜( , ) for all Γ∈x y, R. Since both u and ũ are analytic in a
neighborhood of the sphere SR, we get =u x y u x y( , ) ˜( , ) and thus =G x y G x y( , ) ˜ ( , ) for all

∈x SR and Γ∈y R. Recalling the symmetric relation =G x y G y x( , ) ( , ) and
=G x y G y x˜ ( , ) ˜ ( , ), we find that =G y x G y x( , ) ˜ ( , ) for all ∈x SR and Γ∈y R. Again applying

the analytic continuation along the sphere SR gives that =G x y G x y( , ) ˜ ( , ) for all ∈x y S, R.
This implies that =u x y u x y( , ) ˜( , ) for all ∈x y S, R. Finally, we obtain ∂ = ∂D D̃ as a
consequence of theorem 3.8. □
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Numerically, one may still recover ∂D from Γ∈u x y x y{ ( , ): , }R with ΓR defined as in
theorem 3.9, based on the computational criterion presented in theorem 3.8. More precisely,
introduce the near-field operator Γ Γ→N L L˜ : ( ) ( )R R

2 2 by

∫ Γ Γ= ∈ ∈
Γ

( ) ( )Ng x u x y g y ds y x g L˜ ( ) ( ; ) ( ) ( ) for , ,R R
2

R

and define the operator Γ Γ→T L L˜ : ( ) ( )R R1
2 2 as

∫ Γ= ∈
Γ

( ) ( )T g x K x y g y ds y g L˜ ( ) ( , ) ( ) ( ) for R1
2

R

with the kernel K x y( , ) given by (3.10). Then one can design an inversion algorithm similarly
to theorem 3.8; see section 6 for the numerical examples.

3.3. An explicit example for the unit ball

Suppose = <D x x{ : | | 1} is a sound-soft ball. In this special case we can present explicit
eigenvalues of T N1 and compute the series appearing in (3.18). Since the fundamental
solution Φ x y( , ) with <x y| | | | admits the expansion (2.8), the scattered field u x y( , ), generated
by the incident point source wave Φ y( · , ) with = >y R| | 1, is of the form

∑ ∑= − >
=

∞

=−
( ) ( )u x y ik h k y Y y

j k

h k
h k x Y x x( , ) ( ) ˆ

( )

( )
( ) ˆ , 1.

n m n

n

n n
m n

n
n n

m

0

(1)
(1)

(1)

Let ∈g L S( )R
2 be given by (2.1) with the Fourier coefficients gn m, . By the definition of the

near-field operator N, we have that for ∈x SR,

∫ ∑ ∑= = −
=

∞

=−
( )Ng x u x y g y ds y ikR h kR

j k

h k
Y x g( )( ) ( , ) ( ) ( ) ( )

( )

( )
ˆ .

S
n m n

n

n
n

n
n
m

n m
2

0

(1) 2
(1) ,

R

Then, by (3.12) it holds that

∑ ∑=
=

∞

=−
( )T N g ikR h kR

j k

h k
Y x g( ) ( )

( )

( )
ˆ .

n m n

n

n
n

n
n
m

n m1
2

0

(1) 2
(1) ,

This implies that the eigenvalues λn and the corresponding eigenfunctions ψn m, are given,
respectively, by

λ ψ= =( ) ( )ikR h kR
j k

h k
x Y x( )

( )

( )
, ˆ ˆ ,n n

n

n
n m n

m2 (1) 2
(1) ,

for = ⋯n 0, 1, and = − ⋯m n n, , . Note that the multiplicity of λn is +n2 1. Using again
the expansion of Φ x z( , ) with ∈ <x S z R, | |R , it is seen that

∑ ∑ϕ Φ= = − <
∈

=

∞

=−
( ) ( ) ( )x x z ik h kR Y x j k z Y z z Rˆ ( , ) ( ) ˆ ( ) ˆ for .z x S

n m n

n

n n
m

n n
m

0

(1)

R

Therefore, by the additional theorem,

∑ ∑ϕ ψ =

= +
=− =−

( ) ( )kh kR j k z R Y z

kh kR j k z R
n

π

, ( ) ( ) ˆ

( ) ( )
2 1

4
.

( )
m n

n

z n m L S
n n

m n

n

n
m

n n

,

2
(1) 2

2 2

(1) 2
2

R
2
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This, together with the asymptotic behavior of Hankel functions, yields

⎜ ⎟
⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟

∑ ∑ ∑ ∑

∑

∑

ϕ ψ

λ λ
ϕ ψ=

= +

= +

=

∞

=− =

∞

=−

=

∞

=

∞

( )
( )

k n R

πR

j k z

j k
h k

R

π
z

n

,
1

,

(2 1)

4

( )

( )
( )

4
1

1
,

( )

( )
n m n

n z n m L S

n n n m n

n

z n m L S

n

n

n
n

n

n

0

,

2

0
,

2

0

4

2

2

(1)

2

0

2

R

R

2

2



which is convergent if and only if <z| | 1. This implies that the indicator function >W z( ) 0 if
and only if ∈z D.

4. Impedance boundary condition

In this section, we prove that the factorization of T N1 is applicable to the case of impedance
boundary conditions:

ν
ρℬ = ∂

∂
+ = ∂u

u
x u f D: ( ) on ,

where the impedance function ρ ∈ ∂∞x L D( ) ( ) is complex-valued and satisfies that
ρ ⩾Im ( ) 0 almost everywhere on ∂D. To this end, we introduce the incidence operator

→ ∂−H H D: ℓ ( )imp
2 1 2 by (see (3.1) in the case of Dirichlet boundary conditions)

⎛
⎝⎜

⎞
⎠⎟

⎡⎣ ⎤⎦∑ ∑
ν

ρ= ∂
∂

+ ∈ ∂
=

∞

=−
( ) ( ( )H x ikR h kR g

x
x j k x Y x x Dg ( ) : ( )

( )
( ) ) ˆ , (4.1)

n m n

n

n n m n n
m

imp
2

0

(1)
,

with ∈g ℓ2 given by (2.1). Further, we define the solution operator ∂ →−G H D: ( ) ℓimp
1 2 2 by

= = ⋯ = − ⋯{ }G f b h kR n m n n( ) ( ): 0, 1, , , , ,n
m

nimp
(1)

where b h kR( )n
m

n
(1) are the Fourier coefficients of u|SR with u the unique radiating solution to

the problem (1.1) under the impedance boundary condition.
Define the layer-potential operators K, ′K and J, respectively, by

∫

∫

∫

φ Φ
ν

φ

φ Φ
ν

φ

φ
ν

Φ
ν

φ

= ∂
∂

∈ ∂

′ = ∂
∂

∈ ∂

= ∂
∂

∂
∂

∈ ∂

∂

∂

∂

K x
x y

y
y ds y x D

K x
x y

x
y ds y x D

J x
x

x y

y
y ds y x D

( )
( , )

( )
( ) ( ) for ,

( )
( , )

( )
( ) ( ) for ,

( )
( )

( , )

( )
( ) ( ) for . (4.2)

D

D

D

It follows from [9] that the operators ∂ → ∂K H D H D: ( ) ( )1 2 1 2 ,
′ ∂ → ∂− −K H D H D: ( ) ( )1 2 1 2 and ∂ → ∂−J H D H D: ( ) ( )1 2 1 2 are all bounded.
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Theorem 4.1. Let T0, T1 and N be given by (3.6), (3.13) and (2.6), respectively. Then

N = − ( ) ( )T R T G T T G *, (4.3)0
2

0 imp imp
* 0 imp

= − = −  T N T T G, : , (4.4)R1 imp imp
*

imp
* imp

1
0 imp

where ∂ → ∂−T H D H D: ( ) ( )imp
1 2 1 2 is defined as ρ ρ ρ ρ ρ= + + ′ + +T J i I K K S(Im )imp .

Proof. From (3.1) and (4.1), it is deduced that the adjoint operator ∂ →H H D: ( ) ℓimp
* 1 2 2

takes the form

⎧⎨⎩
⎛
⎝⎜

⎞
⎠⎟

⎡⎣ ⎤⎦
⎫⎬⎭∫φ

ν
ρ φ= − ∂

∂
+

∂ ( ( )H ikR h kR
y

y j k y Y y y ds y( ) ( )
( )

( ) ) ˆ ( ) ( ) (4.5)n
D

n n
m

n m

imp
* 2 (1)

,

for all φ ∈ ∂H D( )1 2 . Define

⎡
⎣⎢

⎤
⎦⎥∫ Φ

ν
ρ Φ φ= ∂

∂
+ ∈ ⧹∂

∂
V x

x y

y
y x y y ds y x D( ) :

( , )

( )
( ) ( , ) ( ) ( ), .

D

3

It is seen from (2.8) that on =x R| | ,

⎛
⎝⎜

⎞
⎠⎟

⎡⎣ ⎤⎦∫∑ ∑
ν

ρ φ= ∂
∂

+
=

∞

=−
∂ (( ) ( )V x ik h kR Y x

y
y j k y Y y y ds y( ) ( ) ˆ

( )
( ) ) ˆ ( ) ( ).S

n m n

n

n n
m

D
n n

m

0

(1)
R

This, together with (4.5), implies that

φℬ =∂( )R T G V H . (4.6)D
2

0 imp imp
*

Using the jump relations of layer-potentials, we have

φ ρ φ ρ φ ρ φ ρ ρ φ φℬ = + + ′ + + =∂V J i K K S T( ) (Im ) ( ) ( ) .D imp

Then, by (4.6) we have

= =R T G T H R T G T Hor . (4.7)2
0 imp imp imp

* 2
imp
*

imp
*

0
* imp

Recalling the definition of the operator N in (2.7), we observe that N = − G Himp imp under
the impedance boundary condition, from which the relation

N = − ( ) ( )T R T G T T G *
0

2
0 imp imp

* 0 imp

follows. This completes the Proof of (4.3). Since N= −N R R
1  , the factorization (4.4) can be

justified in the same manner as in the case of Dirichlet boundary conditions. □

Theorem 4.2. Assume that k2 is not an eigenvalue of −△ in D with respect to the
impedance boundary condition.

(i) The operator imp is compact, one-to-one with a dense range in L S( ).R
2

(ii) The operator Timp is an isomorphism from the space ∂H D( )1 2 into ∂−H D( )1 2 .
(iii) Let Ji be defined by (4.2) with k = i. Then Ji is self-adjoint and coercive as an operator

from ∂H D( )1 2 into ∂−H D( )1 2 .
(iv) φ φ〈 〉 >TIm , 0imp for all φ ∈ ∂−H D( )1 2 with φ ≠ 0.
(v) The difference −T Jiimp is compact from ∂H D( )1 2 into ∂−H D( )1 2 .
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Proof. We only prove the first assertion (i). The Proof of the other assertions (ii)–(v) can be
seen in [7]. Since the operator R is an isomorphism, the operator imp can be rewritten as

= = =− − − ( )T G T G G G: , : .R R R Rimp
1

0
1

imp 1 2 2
1

imp   
By the definition of Gimp, the operator ∂ →−G H D L S: ( ) ( )R2

1 2 2 maps the boundary data f
into the restriction to SR of the solution of the problem (1.1). Therefore, it is sufficient to prove
that G2 is compact, one-to-one with a dense range in L S( )R

2 since T1 is an isomorphism.
Clearly, the compactness and injectivity follow easily from the well-posedness of the

scattering problem and analytic continuation arguments. To prove the denseness of the range
( )imp , we only need to show that the adjoint operator → ∂G L S H D: ( ) ( )R2

* 2 1 2 is injective.
To this end, let u and w be the solutions to the problem (1.1) with the impedance boundary
condition ℬ =u f and ℬ = − ℬw wi, respectively, where ∈ ∂−f H D( )1 2 and

∫ Φ φ φ= ∈ ⧹ ∈ ( )w x x y y ds y x S L S( ) 2 ( ; ) ( ) ( ) for , .i

S
R R

3 2

R

Since wi, u and w satisfy the Sommerfeld radiation condition, by applying Greenʼs second
theorem we see that

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥∫ ∫ν ν ν ν

∂
∂

− ∂
∂

= ∂
∂

− ∂
∂

=
∂

+

w
u w

u
ds

w
u w

u
ds0, 0. (4.8)

D S

i
i

R

Here, the subscripts ±| denote the limits taken from outside and inside of SR, respectively.
Again applying Greenʼs formula, recalling the jump relation for the single-layer potentials
and using (4.8) and the impedance boundary condition for = +w w w:t i, we obtain that

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

∫

∫

φ φ

ν ν

=

= ∂
∂

∂
∂−

+

( ) ( )G f u ds

u
w w

ds

,
L S S

S

i i

2
R R

R

2

⎜ ⎟

⎡

⎣
⎢⎢⎢

⎡
⎣⎢

⎤

⎦
⎥⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

⎡⎣ ⎤⎦

∫ ∫

∫

∫ ∫

∫

ν ν ν ν

ν ν

ν ν ν ν

= ∂
∂

− ∂
∂

+ ∂
∂

− ∂
∂

= ∂
∂

− ∂
∂

= ∂
∂

− ∂
∂

+ ∂
∂

− ∂
∂

= ℬ − ℬ

= −

− +

−

∂ ∂

∂

∂ × ∂−

( )

u
w u

w ds
u

w u
w

ds

u
w u

w ds

w
u w

u
ds

w
u w

u
ds

w u w u ds

f w

]

, .

S

i
i

S

i
i

S

i
i

D

i
i

D

D

t t

t
H D H D( ) ( )

R R

R

1 2 1 2

This implies that φ = − ∂G w | .t
D2

* Let φ =G 02
* . We then have =∂w | 0t

D so, by the
impedance boundary condition, ν∂ ∂ =∂w( )| 0t

D . Thus we get wt = 0 in ⧹B DR , which,
together with Holmgrenʼs uniqueness theorem and the uniqueness result for the exterior
Dirichlet problem, implies that wt = 0 in ⧹ BR

3 . Finally, using the jump relation of the layer
potentials gives
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ν ν ν ν
φ= ∂

∂
− ∂

∂
= ∂

∂
− ∂

∂
=

−
+ − +

w w w w
0 .

t t i i

Hence, G2
* is injective and G2 has a dense range in L S( )R

2 . □

Similarly to theorem 3.8 for the Dirichlet case, one can prove the following result.

Theorem 4.3. Assume that k2 is not an eigenvalue of −△ in D with respect to the
impedance boundary condition. For ∈z BR, define the function ϕ Φ= z( · ) ( · , )|z SR . Then

⎡⎣ ⎤⎦
⎡

⎣

⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥
∑

ϕ

ϕ ψ

λ

∈ ⟺ ∈

⟺ = >

−

( )

( )z D T N

W z( ) :

,

0,
( )

z

j

z j
L S

j

1 #

1 2

2 1

R
2



where λ ∈ j are the eigenvalues of the normal operator = +T N T N T N( ) : | Re ( )| | Im ( )|1 # 1 1

with the corresponding normalized eigenfunctions ψ ∈ L S( )j R
2 .

Remark 4.4. The factorization method with near-field data extends straightforwardly to the
case ρ =x( ) 0, that is, the Neumann boundary condition, provided k2 is not a Neumann
eigenvalue of −△ in D. Moreover, one can also apply theorem 4.3 to complex obstacles
with the generalized impedance boundary condition ν ρℬ = ∂ ∂ + +∂ ∂u u μ u udiv ( )D D on
∂D. To achieve this, one needs to combine the Proof of theorem 4.3 with the arguments from
[12], where the factorization method with far-field patterns of all incident plane waves was
justified.

5. Inverse medium scattering problem

In this section we assume that D is a penetrable obstacle with the refraction index n(x)
satisfying that ⩾nRe ( ) 0, ⩾nIm ( ) 0, ≠n 1 in D and ≡n 1 in ⧹ D3 . Then the scattering
solution u solves the equation

△ + = − u k n x u k n x f( ) (1 ( )) , in ,2 2 3

with = ∈f u L D| ( )i
D

2 , where Φ=u y( · ) ( · , )i is the incident point source at ∈y SR. For
medium scattering problems, the solution operator →G L D: ( ) ℓpen

2 2 and the incidence
operator →H L D: ℓ ( )pen

2 2 are defined as follows:

= ∈ = − ⋯{ }G f b h kR n m n n( ) ( ): , , , , (5.9)pen n
m

n
(1)

∑ ∑= ∈
=

∞

=−

H ikR h kR g u x x Dg( ) ( ) ( ), , (5.10)pen

n m n

n

n n m n m
i2

0

(1)
, ,

where b h kR( )n
m

n
(1) are the Fourier coefficients of u|SR , and un m

i
, , g are given as in section 2.
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From (5.10) it is easily seen that the adjoint operator →H L D: ( ) ℓpen
* 2 2 is given by

∫φ φ= − ∈ = − ⋯{ }( )H ikR h kR j k x Y x x dx n m n n( ) ( ) ˆ ( ) : , , , .pen n
D

n n
m* 2 (1)

This, together with the unitary operator T0 and the expansion (2.9), implies that

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∫φ Φ φ=( )T H x R x y y dy( ) ( , ) ( ) . (5.11)pen R

D S
0
* * 2

R



For penetrable obstacles, define the operator →T L D L D: ( ) ( )pen
2 2 by

∫φ φ Φ φ=
−

− ∈T
k n

x y y dy x D
1

( 1)
( , ) ( ) , .pen

D2

Then one can derive from (5.9) and (5.11) that =T H R G Tpen pen pen0
* * 2 or =H T R T Gpen pen pen0

2 * * .
Therefore, we have the factorization

N = −

= − = −  

( ) ( )T R T G T T G

T N T T G

*,

, : . (5.12)

pen pen pen

pen pen pen pen R pen

0
2

0 * 0

1 * * 1
0

Here, N and T1 are defined as in (2.6) and (3.10), respectively.
It is known from [5] that the middle operator Tpen of the factorization (5.12) satisfies all

the properties of the range identity [7, theorem 2.15] provided ≠n x( ) 1 for all ∈x D and k2

is not an interior transmission eigenvalue in D. We thus have the following result.

Theorem 5.1. Let ≠n x( ) 1 for all ∈x D and assume that k2 is not an interior transmission
eigenvalue in D. Define ϕ Φ= z( · ) ( · , )|z SR with ∈z BR. Then

⎡⎣ ⎤⎦
⎡

⎣

⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥
∑

ϕ

ϕ ψ

λ

∈ ⟺ ∈

⟺ = >

−

( )

( )

( )

z D T N

W z( ):

,

0,

z

j

z j
L S

j

1 #

1 2

2 1

R
2



where λ ∈ j are the eigenvalues of the normal operator
= +( ) ( ) ( )T N T N T N: | Re | | Im |1 # 1 1 with the corresponding normalized eigenfunc-

tions ψ ∈ L S( )j R
2 .

6. Numerical results

In this section, we present several numerical examples which are all done in 2 to illustrate
our inversion algorithm; as remarked in the introduction, the theoretical results are also valid
for the two-dimensional case.

We first discuss briefly how to discretize the outgoing-to-incoming operator T1 in two
dimensions. By employing the polar coordinates we write θ=x r( , )x for ∈ x 2. The two-
dimensional fundamental solution to the Helmholtz equation is of the form
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Φ = − ≠x y
i

H k x y x y( , )
4

( ), .0
(1)

In particular, for >x y| | | | there holds the expansion

∑Φ = θ θ

−∞

+∞
−( )x y

i
H k x j k y e( , )

4
( ) ( ) . (6.1)n n

in(1) x y

Note that Hn
(1) are Hankel functions of the first kind of order n. The two-dimensional

outgoing-to-incoming operator T1 can be represented as (see (3.12) for the 3D case)

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ∫∑φ θ φ φ φ= − =

θ θ

−∞

+∞ −
( )( )T R

H kR

H kR

e

π R
x

e

π
ds x,

( )

( ) 2
,

1
( )

2
( ). (6.2)x

n

n
n

in

n
S

in

1

(1)

(1)

x

R

x

where θ ∈ ∈ ∈θe π π n{ 2 , [0, 2 ]: }in
x

x forms a complete orthonormal system in L ( )2 1 .
By arguing similarly as in the proof of (3.9), we have

∫φ φ φ= ∈( ) ( )T x K x y y ds y L S( ) ( , ) ( ) ( ) for
S

R1
2

R

with the kernel given by

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑= − θ θ

−∞

∞
−( )K x y

πR

H kR

H kR
e( , ) :

1

2

( )

( )
.n

n

in
(1)

(1)
x y

In our numerical implementation, the operator T1 is approximated by the truncated operator

∫φ φ φ= ∈( ) ( )T x K x y y ds y L S( ) ( , ) ( ) ( ) for ,M
S

M R1,
2

R
1 1

with some ∈ □M1 and the kernel given by

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑= − θ θ

−

−( )K x y
πR

H kR

H kR
e( , ) :

1

2

( )

( )
.M

M

M
n

n

in
(1)

(1)
x y

1

1

1

Remark 6.1. It is pointed out that T NM1, 1 is indeed convergent to T N1 as → ∞M1 . Choose
< <R R0 0 such that ⊂D BR0 . For a given ∈g L S( )R

2 define ∫=U x u x y g y ds y( ) : ( , ) ( ) ( )
SR

for ∈ ⧹x D2 and φ = =Ng U: |SR . By the integral representation formula, we obtain that

⎛
⎝⎜

⎞
⎠⎟∫ Φ

ν ν
Φ= ∂

∂
− ∂

∂∂
U x U y

x y

y

U
y x y ds y( ) ( )

( , )

( )
( ) ( , ) ( )

BR0

Applying the expansion (6.1) gives

⎛
⎝⎜

⎞
⎠⎟∫φ

ν ν
= ∂

∂
− ∂

∂

θ
θ

∂

−
−( )i π

H kR J kR U y
e

y

U
y e ds y

2

4
( ) ( )

( )
( ) ( )n n n

B

in
in(1)

0
R

y
y

0

Using the asymptotic behavior of the Hankel and Bessel functions (see, e.g., [2, pp 73–74]), it
can be seen that
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Figure 1. Reconstruction of a peanut-shaped, sound-soft obstacle. Near-field data are
taken on =x x{ : | | 3}.

Table 1. Parametrization of the obstacles to be reconstructed, where the para-
meters ∈ cj .

Obstacle
type Parametrization:

Apple
shaped

= + ∈+ +
+x t c c t t t π( ) ( , ) (cos , sin ), [0, 2 ]t t

t1 2
0.5 0.4 cos 0.1 sin (2 )

1 0.7 cos

Kite shaped = + + − ∈x t c c t t t t π( ) ( , ) (cos 0.65 cos (2 ) 0.65, 1.5 sin ), [0, 2 ]1 2

Peanut
shaped

= + +x t c c t t t t( ) ( , ) cos 0.25 sin (cos , sin )1 2
2 2 , ∈t π[0, 2 ]

Rounded
triangle

= + + ∈x t c c t t t t π( ) ( , ) (2 0.3 cos (3 ))(cos , sin ), [0, 2 ]1 2
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⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

= + → ∞

= − + → ∞

( )H kR J kR
n πi

R

R
O

n
n

H kR

H kR
O

n
n

( )
1

1
1

,

( )

( )
1

1
, .

n n

n

n

n

(1)
0

0

(1)

(1)

This leads to the result that

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛
⎝⎜
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⎠⎟

∑

φ φ φ φ

ν

∥ − ∥ ⩽ ∥ − ∥

⩽ ∥ ∥ + ∂
∂

⩽ ∥ ∥

>
∂

∂
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C
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Figure 2. Reconstruction of a rounded triangle-shaped, sound-hard obstacle. Near-field
data are taken on =x x{ : | | 5}.
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This means that for any ∈g L B( )R
2 ,

⎛
⎝⎜

⎞
⎠⎟∥ − ∥ ⩽ ∥ ∥

+

( (T Ng T Ng C
R

R
g .M L B

M

L B1 1, )
0

1

)R R1
2

1

2

Thus, we conclude that T N1 rapidly converges to T NM1, 1 in L B( )R
2 as → ∞M1 . In this

section, we choose =M 1001 , which is large enough for all the numerical examples below.

To discretize the near-field operator N, we take the scattered field at a uniformly dis-
tributed grid over SR with the step size θ θ△ = △ = π Mx y for some ∈ □M , that is,

θ θ θ θ= = − = = − = ⋯j
j π

M
j

j π

M
j M( )

( 1)
, ( )

( 1)
, 1, 2, , 2 .x x y y

Define the set = ∈ ⩽ ⩽j j M: { : 1 2 } . Then we have the near-field matrix

⎡⎣ ⎤⎦θ θ=×
∈

( )u R p R qN , ( ); , ( ) , (6.3)M M x y
p q

2 2
, 
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Figure 3. Reconstruction of an apple-shaped, impenetrable obstacle of impedance-type.
Near-field data are taken on =x x{ : | | 3}.
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and the finite-dimensional matrix ⎡⎣ ⎤⎦θ θ=×
∈( )K R p R qT , ( ); , ( )M M M x y

p q
1,2 2

,
1  for the

discretization of T1. Let =× × ×N T N:M M
s

M M M M2 2
1,

1,2 2 2 2 and

⎡

⎣

⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥
∑

ϕ ψ

λ
= ∈

=

−

( )
W z z Ω( ) :

,

for , (6.4)M

j

M z j
L S

j
R

1

2
( )

2 1

R
2

where ϕ Φ= z( · , )|z SR and ψ λ =
={ , }j j p

p M
1
2 is an eigensystem of the matrix

= +× × ×( ) ( )N N N: | Re | | Im |M M
s

M M
s

M M
s

2 2 , #
1,

2 2
1,

2 2
1, . It is expected that if M is taken large

enough, the series in (6.4) approximates the true value of W(z) and thus, by theorem 3.8,
WM(z) should be very small in ⧹B DR and considerably large in D.

In what follows, we present the numerical results for recovering impenetrable obstacles
under the Dirichlet, Neumann or impedance boundary conditions as well as the shape and
location of a penetrable medium with a constant refractive index n ≡ n0 (that is, the material
in D is homogeneous with the wave number =k k n1

2 2
0). Unless otherwise stated, we always
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Figure 4. Reconstruction of a kite-shaped, penetrable obstacle. Near-field data are taken
on =x x{ : | | 5}.
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set M = 64, k = 10 and plot the function WM(z) against the sampling point z. The wavelength
is thus given as λ = =π k2 0.628. Recall that the sphere SR with >R 0 denotes the position
where the near-field is measured. The obstacles to be reconstructed are parameterized in
table 1.

Example 1. D is a peanut-shaped, sound-soft obstacle. The measurement position is set
to be on SR with R = 3. This implies that the Hausdorf distance between D and SR is less than
two times the wavelength. Hence we indeed utilize the near-field rather than far-field mea-
surements. Figure 1 presents the reconstruction results from the unpolluted data and polluted
data with noise levels at 2% and 5%, respectively.

Example 2. We consider a sound-hard scatterer of a rounded-triangle shape. Near-field
data are taken on =x x{ : | | 5}. The Hausdorf distance between D and SR is closed to four
times the wavelength. See figure 2 for the reconstruction results.
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Figure 5. Reconstruction of two sound-soft obstacles of different scales: a large-scale
kite-shaped one, and a small-scale circle-shaped one with radius 0.2 and centered at

−(1.4, 1.4). The wave number k = 5, so the wavelength is λ ≈ 1.257. The distance
between the two obstacles is approximately 0.8. Near-field data are taken
on =x x{ : | | 5}.
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Example 3.We consider the case when D is an apple-shaped obstacle with an impedance
boundary condition. The impedance function is set to be ρ = +x t i t( ( )) (10 5 sin ) with

∈t π[0, 2 ]. Figure 3 presents the reconstruction results from the data without noise, with 2%
noise and with 5% noise, respectively.

Example 4. D is a kite-shaped penetrable obstacle. The material inside D is supposed to
be homogeneous with the constant wave number =k 91 . Figure 4 presents the reconstruction
results from the data without noise, with 2% noise and with 5% noise, respectively.

Example 5. We consider the reconstruction of two sound-soft obstacles of different
scales: a large-scale kite-shaped one, and a small-scale circle-shaped one with radius 0.2 and
centered at −(1.4, 1.4). The wave number k = 5, so the wavelength is λ ≈ 1.257. The distance
between the two obstacles is approximately 0.8. The near-field is measured on =x x{ : | | 5}.
Figure 5 presents the reconstruction results from the data without noise, with 2% noise and
with 5% noise, respectively.
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Figure 6. Reconstruction of a rounded triangle-shaped, sound-soft obstacle from
limited and full near-field data at different noise levels. In (a)–(c), the obstacle is
illuminated by point sources from the upper half-space. In (d)–(f), the point sources are
uniformly distributed on θ θ θ ∈ π{5(cos , sin ): (0, 3 2)}, while in (g)–(i) we have
used point sources located on the full circle SR with R = 5. The measurement positions
of the scattered field coincide with the positions of the incident point sources.
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Example 6. We compare the reconstruction results from the full near-field data and
limited aperture near-field data at different noise levels. We set k = 1 and measure the near-
field data on the sphere SR with R = 5. This suggests that the Hausdorf distance between D
and SR is less than the wavelength λ = π2 . In figures 6(a–c), the incident acoustic point
sources are uniformly distributed on the half-circle Γ θ θ θ= ∈R π{ (cos , sin ): (0, )}R with
the step size π 64, that is, the sound-soft obstacle is illuminated by 64 point source waves
from above. In figures 6(d–f), 97 point source waves are generated from the three quarters of
the circle SR, that is, Γ θ θ θ= ∈ ⊂R π S{ (cos , sin ): (0, 3 2)}R R. In figures 6(g–i), we used
128 incident point source waves uniformly distributed on the full circle SR. In these tests, the
near-field data are measured at the same positions as the incident point sources. The numerical
reconstruction in figure 6 shows that using limited aperture near-field data provides only
partial information of the scatterer. In particular, the un-illuminated part of the obstacle is not
well-reconstructed.

From the above numerical experiments, it is seen that the factorization method with near-
field data can provide good reconstruction results with a high resolution, especially in ima-
ging impenetrable scatterers using the full near-field data. Moreover, we observe that the
inversion scheme is indeed independent of the physical properties of the underlying obstacles.
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