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Abstract
Consider a time-harmonic acoustic point source incident on a bounded iso-
tropic linearly elastic body immersed in a homogeneous compressible
inviscid fluid. This paper is concerned with the inverse fluid–solid interaction
problem of recovering the elastic body from near-field data generated by
infinitely many incident point source waves at a fixed energy. The incident
point sources and the receivers for recording scattered signals are both located
on a non-spherical closed surface, on which an outgoing-to-incoming
operator is appropriately defined. We provide a theoretical justification of the
factorization method for precisely characterizing the scatterer by utilizing the
spectrum of the near-field operator. This generalizes the imaging scheme
developed in (Hu et al 2014 Inverse Problems 30 095005) to the case when
near-field data are measured on non-spherical surfaces. Numerical examples
in 2D are demonstrated to show the validity and accuracy of the inversion
algorithm, even if limited aperture data are available on one or several line
segments.
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(Some figures may appear in colour only in the online journal)

1. Introduction

Consider a time-harmonic acoustic point source wave incident on a bounded elastic solid
immersed in a homogeneous fluid (see figure 1, right). The wavelength of incidence is
supposed to be comparable with the diameter of the elastic scatterer. Due to the external
incident acoustic field, an elastic wave is generated inside the solid, while the incident
acoustic wave is scattered back into the fluid and propagate into the infinity. This leads to the
fluid–solid interaction (FSI) problem with the scattering interface separating the domains of
acoustic and elastic waves. This paper is concerned with the inverse scattering problem of
determining the shape and position of the elastic obstacle from near-field measurement data.
Such inverse problem has many applications in underwater acoustics and ultrasonic non-
destructive evaluation (see, e.g. [17] and references therein). For instance, in immersion
testing, objects are always put in a tank of water in order to minimize the energy loss of the
ultrasound beam transmitting from a transducer into a medium and vice versa. In ocean
acoustics, sonar is a commonly used tool for tracking and detecting objects under the sea
surface (see figure 1, left).

In this paper, the unknown obstacle is detected by sending infinitely many time-harmonic
acoustic point sources at a fixed energy. The sources and receivers are supposed to be located
on a non-spherical closed surface. We shall establish the factorization method of Kirsch
[9, 10] for precisely characterizing the region occupied by the scatterer in terms of the
spectrum of the near-field operator. As a sampling-type inversion scheme, the factorization
method requires neither computation of direct solutions nor initial guesses. It provides a
sufficient and necessary condition for recovering the shape and location of an obstacle (see
theorem 3.14), which can also be used as an efficient computational criterion. The original
version of the factorization method was designed for inverse scattering of plane waves with
infinitely many incident directions. We refer to the monograph [10] and references therein for
a detailed discussion of the various versions of inverse acoustic scattering from impenetrable
and penetrable scatterers. However, it is an open problem how to analyze the near-field
operator within the same functional framework as in the far-field case until the recent study of
the outgoing-to-incoming (OtI) operator carried out in [5]. The factorization scheme for
treating the far-field operator does not extend to the near-field case since the resulting adjoint
would be defined via a bilinear other than sesquilinear form, leading to essential difficulties in
the characterization of the scatterer (see [10, ch 1.7] for details). A few approaches have been
proposed so far, e.g., converting the near-field data to far-field patterns [10] (see also
section 4.2), constructing non-physical auxiliary operators [16] for connecting outgoing and
incoming waves, or making use of non-physical incident point sources [12]. In [5], an OtI
operator for the Helmholtz equation was constructed on a sphere for facilitating the factor-
ization of the near-field operator, which can be more efficiently implemented than the earlier
approaches. The scheme proposed in [5] seems promising for spherical measurement surfaces
since the OtI mapping takes a simple form and is capable of recovering both impenetrable and
penetrable acoustic scatterers.

The aim of this paper is to generalize the idea of [5] to the case of non-spherical
measurement surfaces. In contrast to the simple form given in [5], the OtI mapping considered
in this paper cannot be represented explicitly. Hence, difficulties arise from how to appro-
priately define and then discretize the OtI mapping when the measurement surface is not
spherical; see sections 3.3 and 4.1 for details. Our arguments have generalized the concept of
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the OtI operator defined on spheres. We also illustrate properties of the OtI mapping and its
adjoint operator, which turns out to be an incoming-to-outgoing (ItO) mapping. We believe
that one can mathematically justify a modified linear sampling method (LSM) [15] with near-
field data in a rigorous way, as done in the far-field case shown in [11, theorem 2.7]. As an
application of the OtI operator, we investigate the inverse FSI problem by analyzing the
product of the OtI and near-field operators. This product operator plays the analogous role of
the far-field operator (see the discussions at the end of section 3.3), and has been used recently
in [6] for determining the Dirichlet eigenvalues of the region occupied by a sound-soft
obstacle from near-field measurements. Numerics show that our inversion scheme is more
stable and efficient than the approach of converting near-field data to far-field patterns.
Particularly, it is numerically applicable even if limited aperture data are available only. In our
numerical experiments, the measurement curve in 2D is allowed to be a (finite) line segment,
which might have important applications in non-destruction testing with line-array
transducers.

Figure 1. Right: the interaction problem between acoustic and elastic waves. Left:
underwater research with a sonar submarine (source: http://freedigitalphotos.net/).

Figure 2. The geometric setting of our scattering problem: W denotes the elastic body,
D x x x x:3≔ { ˆ ( ˆ)} g¶ Î = is the (non-spherical) surface where incident point

sources are located and near-field data are measured.
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Other imaging schemes for inverse FSI interaction can be found in [2, 3] where an
optimization-based technique is applied and in [14, 15] using the reciprocity gap (RG) and
LSMs. The factorization method established in [11] involves far-field patterns corresponding
to infinitely many incident plane waves, but without numerical tests. In this paper, the
definition of the middle operator slightly differs from that of [11], but shows convenience
in simplifying our arguments (see lemma 3.11 and [11]). The proof of the denseness
and compactness of the near-field solution operator is more involved than [11]; see
section 3.2.

In the subsequent section 2, we rigorously formulate the direct and inverse FSI
interaction problems. section 3 is devoted to the theoretical justification of the factorization
method using near-field measurement data. The OtI mapping and its adjoint will be
introduced and investigated in section 3.3, and the inversion scheme will be stated in
section 3.5. Discretization schemes and a number of numerical experiments are reported in
section 4.

2. Direct and inverse interaction problems

We formulate the FSI problem following [4, 13]. Let 3W Ì be a bounded domain with the
C2-smooth boundary Γ and denote by ν the unit normal vector to G directed into the exterior
of .W We assume that W is occupied by an isotropic linearly elastic solid characterized by the
real-valued constant mass density 0r > and the Lamé constants , l m Î satisfying

0, 3 2 0.m l m> + > The exterior ,c 3≔ ⧹W W which is assumed to be connected, is filled
with a homogeneous compressible inviscid fluid with the constant mass density 0.fr > Let
k c 0w= > be the wave number in the fluid, where 0w > denotes the frequency of the
time harmonic incoming wave and c 0> the sound speed. Let p i be a point source of the
form

p x p x z x z x z x z, , , , , , 2.1i i
k

3 3( ) ( ) ( ) ⧹ ( ) = = F Î Î W ¹

where x z,k ( )F is the free space fundamental solution of the Helmholtz equation in 3 with
wave number k, that is

x z
x z

x z x z,
e

4
, , , . 2.2k

k x zi
3( )

∣ ∣
( )

∣ ∣


p
F =

-
Î ¹

-

Due to the external incidence, an outgoing acoustic wave p s is scattered back into the fluid
propagating into the infinity, while an elastic wave u u u u, ,1 2 3( )= is incited inside Ω. Under
the hypothesis of small amplitude oscillations in both the solid and the fluid, the direct or
forward scattering problem can be formulated as the following boundary value problem (see,
e.g., [4, 13, 17]): determine u H1 3( )Î W and the total acoustic field p H zc

loc
1 ( ⧹{ })Î W such

that

u u 0 in , , 2.32 ≔ ( ) · ( )* *rw m l mD + = W D D + + 

p k p z0 in , 2.4c2 ⧹{ } ( )D + = W

u p on , 0, 2.5f
2· ( )h n h r w= ¶ G = >n

u pT on . 2.6( )n= - G

Here, p p·n¶ = n denotes the normal derivative of p on G and T stands for the standard
stress operator defined by
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u u u uT 2 on . 2.7( · ) ( ) ( )m ln m n= ¶ +  + ´  ´ Gn

Furthermore, the scattered field p p ps i= - satisfies the Sommerfeld radiation condition

r
p

r
kp r xlim i 0, , 2.8

r

s
s ∣ ∣ ( )

⎛
⎝⎜

⎞
⎠⎟

¶
¶

- = =
¥

which holds uniformly in x x x : 1 .2 3ˆ ≔ {ˆ ˆ } q q= Î Î = From this radiation
condition it follows that the scattered field p s has the asymptotic behavior of an outgoing
spherical wave

p x
x

p x O
x

x
e

4

1
as 2.9s

k xi

( )( )
∣ ∣

ˆ
∣ ∣

∣ ∣ ( )
∣ ∣ ⎧⎨⎩

⎛
⎝⎜

⎞
⎠⎟

⎫⎬⎭p
= +  ¥¥

uniformly in all directions x,ˆ where p x( ˆ)¥ defined on the unit sphere 2 is known as the far
field pattern of the scattered field with the argument x̂ denoting the observation direction.

Throughout the paper it is supposed that ω is not a Jones frequency, so that the problem
(2.3)–(2.6) and (2.8) is always uniquely solvable (see, e.g., [7, 8]). Notice that w Î is called
a Jones frequency if the boundary value problem

u u u uT0 in , 0, 0 on ,0
2

0 0 0 ·* rw nD + = W = = G

admits a nontrivial solution. Furthermore, the transmission problem

u u

p k p

u p f
u p hT

0 in ,

0 in ,
on ,
on ,

s s c

s

s

2

2

·

* rw

h n
n

D + = W
D + = W

- ¶ = G
+ = G

n

with p s satisfying the Sommerfeld radiation condition (2.8), has a unique solution
p u H H,s c

loc
1 1 3( ) ( ) ( )Î W ´ W for all f H 1 2 ( )Î G- , h H 1 2 3( )Î G- provided that w is not a

Jones frequency [14, theorem 3.3]. Given an incident wave p z,i ( · ) with z ,cÎ W we use
p z p z, , ,s ( · ) ( · )¥ to indicate the dependence of the scattered field and far-field pattern on
the source position z.

Set B y x x y R: ,R
3( ) ≔ { }Î - < and for simplicity write B B OR R ( )= with the

boundary x x R: .R { }G = = In this paper we assume for simplicity that the incident point
sources are located on the boundary of a star-shaped domain D containing Ω, that is, the
boundary of D can be represented as

D x x x x: 2.103{ }( )ˆ ˆ ( ) g¶ = Î =

where : 2 g  is a positive and continuous function. See figure 2. Moreover, we assume
that the scattered data are also measured on D,¶ that B DRW Ì Ì for some R 0,> and that
k2 is not the Dirichlet eigenvalue of -D over D. The inverse scattering problem under
consideration is to determine the shape and location of the obstacle W from the near-field data
p x z x z D, : ,s{ ( ) }Î ¶ due to the point sources p z,i ( · ) with z D.Î ¶ The scattered fields

p x z,s ( ) for all x z D, Î ¶ define the near-field operator N L D L D: 2 2( ) ( )¶  ¶ by

N x p x z z s z x D, d for . 2.11
D

s( )( ) ( ) ( ) ( ) ( )òj j= Î ¶
¶

Clearly, Nj is the restriction to D¶ of the scattered field generated by the incident wave

p x z z s z x D, d , .
D

i ( ) ( ) ( )ò j Î
¶
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Remark 2.1. In this paper, the measurement surface D¶ is assumed to be a star-shaped
surface taking the form (2.10) and lying in x R> for some R 0.> With these assumptions
we can readily define and efficiently implement the OtI operator (see section 3.3). A detailed
description of the discretization schemes will be stated in section 4.1. For non-star-shaped
measurement surfaces, the OtI operator is still well-defined and can be computed, for
instance, by solving second kind integral equations defined on D.¶ The reader is referred to
(3.38) for the expression of the OtI operator in terms of the doubly-layer potential and its
adjoint.

3. Factorization of near-field operator

In this section, we will establish a suitable factorization of the near-field operator N
corresponding to incident point sources p z x z, ,i

k( · ) ( )= F for all z D.Î ¶ Compared to the
far-field case, the essential ingredient in our analysis is to define the OtI operator T so that the
factorization form TN TG J TG( ) ( )* *= holds, where J and G are referred to as the middle
operator and solution operator to be defined later. Since the measurement surface is not
necessarily spherical, our augment generalizes the approach developed in [5] which was valid
only when D¶ is a sphere.

3.1. Auxiliary boundary value problems

We introduce several auxiliary boundary value problems for establishing the factorization
method. For h H ,1 2 ( )Î G consider the boundary value problem of finding w H1( )Î W such
that

w k w w h0 in , on . 3.122 ( )D + = W = G

Suppose k2 is not a Dirichlet eigenvalue of -D in Ω. Then, the above problem (3.12) is
uniquely solvable and the normal derivative of w on Γ defines the interior Dirichlet-to-
Neumann (DtN) map H H: 1 2 1 2( ) ( )L G  G- by h w .¶n G Further, we have

Lemma 3.1. Assume that k2 is not a Dirichlet eigenvalue of -D in Ω. Then it holds that

h g s g h s h H g Hd d for all , . 3.131 2 1 2( ) ( ) ( ) ( ) ( )ò òL = L Î G Î G
G G

Proof. Let w and v be the unique solution to the problem (3.12) with the Dirichlet data h and
g, respectively. Applying Greenʼs formula yields

h g s g h s w v v w s w v v w xd d d d 0.( )( ) ( ) ( )ò ò ò òL - L = ¶ - ¶ = D - D =n n
G G G W

,

Lemma 3.1 will be used to derive the adjoint of the solution operator in section 3.2
below. With the definition of Λ, we introduce the second auxiliary boundary value problem as
follows: Given h H ,1 2 ( )Î G find u H1 3( )Î W and p Hs c

loc
1 ( )Î W such that

u u 0 in , 3.142 ( )* rwD + = W
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p k p 0 in , 3.15s s c2 ( )D + = W

u p h on , 3.16s· ( )h n - ¶ = L Gn

u p hT on , 3.17s ( )n n+ = - G

and that p s satisfies the Sommerfeld radiation condition (2.8). Since w is not a Jones
frequency, there is a unique solution u p, s( ) to the problem (3.14)–(3.17). Clearly, our
forward scattering problem can be equivalently formulated as the problem (3.14)–(3.17) with
h p z, ,i ( · )= G since p z p z, ,i i( ( · ) ) ( · )L = ¶nG G for all z .cÎ W

To justify the factorization method, we need to consider the following interior boundary
value problem: Find u H1 3( )Î W and w H1( )Î W such that

u u 0 in , 3.182 ( )* rwD + = W

w k w 0 in , 3.192 ( )D + = W

u w f on , 3.20· ( )h n - ¶ = Gn

u w gT on 3.21( )n+ = G

with f H 1 2 ( )Î G- and g H .1 2 3( )Î G- We call w an interior transmission eigenvalue if there
exists a non-trivial solution pair w u H H, 1 1 3( ) ( ) ( )Î W ´ W to the homogeneous system
(3.18)–(3.21) with f g 0.= = In [11], it was shown that the set of such eigenvalues is at most
discrete with the only possible accumulating point at infinity if k3 3 2 2( )h l m¹ + and there
exists 0d > such that .fr r d+ This leads to the existence and uniqueness of solutions to
the problem (3.18)–(3.21) for all ⧹w Î + with some discrete set . In particular, the
mapping f g w u, ,( ) ( ) in problem(3.18)–(3.21) is bounded from H H1 2 1 2 3( ) ( )G ´ G- -

to H H .1 1 3( ) ( )W ´ W Further, one can observe that, if v is a solution to (3.12) with
h H ,1 2 ( )Î G then the solution w u v, , 0( ) ( )= uniquely solves the problem (3.18)–(3.21)
with f v( )= - ¶n G and g v .( )n= G

In the subsequent sections the problems (3.12), (3.14)–(3.17) and (3.18)–(3.21) are
always supposed to be uniquely solvable with the incidence frequency under question.

3.2. Solution operator

The solution operator G H L D: 1 2 2( ) ( )G  ¶ is defined as

G h p , 3.22s
D∣ ( )= ¶

where p Hs c
loc
1 ( )Î W is the unique solution to the problem (3.14)–(3.17). An explicit

expression of the adjoint of G is shown as below.

Lemma 3.2. The explicit expression of G L D H: 2 1 2( ) ( )* ¶  G- is given by

TG g u u for g L D , 3.23f
2 2( )˜ · ˜ · ( ) ( )⎡⎣ ⎤⎦* r w n n= - + L Î ¶

where u,˜ together with some p ,s˜ is the unique solution to (3.14)–(3.17) with

h y q y q y x y g x s x y, , d for . 3.24
D

k
3( ) ( )∣ ( ) ≔ ( ) ( ) ( ) ( )ò= F ÎG

¶
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Remark 3.3. Since g L D ,2 ( )Î ¶ we know h H H3 2 1 2( ) ( )Î G Ì G and thus by (3.17),
u h p HT s 1 2˜ · ( ˜ ) ( )n = - + Î G on .G Hence, the operator G L D H: 2 1 2( ) ( )* ¶  G-

defined by (3.23) is well-defined.

Proof. For h H ,1 2 ( )Î G let u p, s( ) be the solution of the problem (3.14)–(3.17). By the
definition of G, we see

G h g p g s, d , 3.25L D
D

s2 ( )( ) ò=¶
¶

where , L D2· · ( )¶ denotes the inner product in L D .2 ( )¶ Recalling Greenʼs second formula, we
can represent p s as

p x x y p y x y p y s y x, , d for .s
k

s
k

s 3[ ]( ) ( ) ( ) ( ) ( ) ( ) ⧹ò= ¶ F - F ¶ Î Wn n
G

Inserting the above expression into (3.25) and changing the order of integration yield

G h g q p q p s, d , 3.26L D
s s2 [ ] ( )( ) ò= ¶ - ¶n n¶

G

where q is defined in (3.24). Let u p,( ˜ ˜ ) be defined in lemma 3.3. Then using the boundary
conditions

q u p q u pT, ,( )( ˜ · ) ˜ ˜ ˜h n n nL = - ¶ = - +n

it follows from (3.26) that

G h g u p p p s u p p sT, d d . 3.27L D
s s s s s2 [ ] ( )( ˜ · ) ˜ · ˜ ˜ ( )( ) ò òh n n n= - ¶ + + ¶n n¶

G G

Since ps˜ and p s are both radiating solutions in ,cW we have that for any R R¢ >

p p p p s p p p p sd d 0s s s s s s s s

R

[ ] [ ]˜ ˜ ˜ ˜ò ò¶ - ¶ = ¶ - ¶ n n n n
G G ¢

as R .¢  ¥ Hence, by (3.27)

G h g u p u p sT, d .L D
s s2 ( )˜ · ( ˜ · )( ) ⎡⎣ ⎤⎦ò n h n= ¶ +n¶

G

Recalling the coupling conditions

p u h p u hT,s s· ( )h n n n¶ = - L = - +n

we arrive at the identity

G h g h u u sT, d , 3.28L D2 ( )˜ · ˜ · ( )( ) ⎡⎣ ⎤⎦ò h n n= - + L¶
G

where we have used lemma 3.1 and the relation

u u u u sT T d 0( )˜ · · ˜ò - =
G

which can be proved by Bettiʼs formula. The expression of G* then follows directly from
(3.28). ,

The representation ofG* can be used to verify the denseness of Range(G) in L D ;2 ( )¶ see
lemma 3.4 below. We refer to [14] for the proof of the compactness and denseness of the far-
field solution operator corresponding to incident plane waves.
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Lemma 3.4. The solution operator G H L D: 1 2 2( ) ( )G  ¶ is compact with a dense range
in L D .2 ( )¶

Proof. For h H ,1 2 ( )Î G let u p, s( ) be the unique solution to problem (3.14)–(3.17). Then

G h p p c h c, 0,L D
s

L D
s

H D H2 2 1 2 1 2( ) ( ) ( ) ( ) = >¶ ¶ ¶ G       

where the last inequality is a consequence of the stability estimate for the auxiliary boundary
value problem (3.14)–(3.17). The compactness of G then follows immediately from the
decomposition G G G ,2 1= where G1, defined as G h p ,s

D1 = ¶ is a bounded map from
H1 2 ( )G to H D1 2 ( )¶ and G H D L D:2

1 2 2( ) ( )¶  ¶ is compact.
To prove the denseness of G, it suffices to verify the injectivity of

G L D H: .2 1 2( ) ( )* ¶  G- Suppose now G g 0* = and let u p, s˜ ˜ and q be specified as in
lemma 3.2. By lemma 3.2, the relation u uT 0˜ · ( ˜ · )h n n+ L = holds on .G This, together
with the coupling boundary conditions between ũ and p ,s˜ implies that

p u q p u qT T, on . 3.29s s( ) ( )˜ ˜ · ∣ ˜ ˜ · ∣ ( )n n¶ = -L + = - + Gn G G

Let Q̃ be the solution of problem (3.12) with h u q HT .1 2( ˜ · ) ( )n= - + Î GG Define

Q Q Q pin , in .s 3≔ ˜ ≔ ˜ ⧹W W

The relation (3.29) and the definition of Λ imply that

Q Q Q Q, on ,= ¶ = ¶ Gn n
- + - +

where the superscripts ‘−’ and ‘+’ denote respectively the limits from inside and outside Ω.
Thus Q is an entire radiating solution of the Helmholtz equation in the whole space, implying
that Q=0 in .3 In particular, p Q 0s˜ = º in 3⧹ W and thus p p 0s s˜ ˜= ¶ =n on .G
Consequently, by (3.29)

q u u q uT T, on .( )˜ · ( ˜ · ) ˜ ·n h n n¶ = -L = = - Gn

This suggests that the solution pair u q,( ˜ ) is the unique solution to the homogeneous problem
(3.18)–(3.21) with f g 0.= = By uniqueness it holds that q=0 in Ω, and by the unique
continuation q=0 in D. Hence we get q=0 on D¶ and q=0 in D3⧹ due to the
uniqueness of solutions to the exterior boundary value problem of the Helmholtz equation in

D .3⧹ Finally, we obtain g=0 on D¶ as a consequence of the jump relation
g q q= ¶ - ¶n n

- + on D.¶ This completes the proof. ,

3.3. OtI mapping

In this subsection we give a precise definition of the OtI operator on non-spherical surfaces.
Let Yn

m be the normalized spherical harmonic functions of order n

Y
n n m

n m
P n m n n,

2 1

4
cos e , 0, 1, 2, , , , ,n

m
n
m mi( ) ∣ ∣

∣ ∣
( )∣ ∣q f

p
q=

+ -
+

= = -f  

where ,( )q f represents the spherical coordinates on the unit sphere and Pn
m are the associated

Legendre functions. Let jn and hn
1( ) be the spherical Bessel functions and spherical Hankel

functions of order n, respectively.

Definition 3.5. Let G be the solution operator and assume that f GRange ,( )Î that is,
f p ,s

D= ¶ where p Hs c
loc
1 ( )Î W is the unique radiation solution to the problem (3.14)–(3.17)

with some h H .1 2 ( )Î G Suppose p s admits the expansion
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p x p h k x Y x p x R, , in .s

n m n

n

n m n n
m

n m
0

,
1

,( )( ) ( ∣ ∣) ˆ ∣ ∣( )  å å= Î
=

¥

=-

Then the OtI mapping T G L D: Range 2( ) ( ) ¶ is defined as Tf p ,s
D˜= ¶ with

p x p h k x Y x x, . 3.30s

n m n

n

n m n n
m c

0
,

1 ( )˜ ( ) ( ∣ ∣) ˆ ( )( )å å= - Î W
=

¥

=-

By definition, the mapping T H D L D: 1 2 2( ) ( )¶  ¶ is linear, bounded and one-to-one.
Since the domain GRange( ) of T is dense in L D2 ( )¶ (see lemma 3.4), T can be extended to a
linear, bounded and one-to-one operator mapping L D2 ( )¶ into itself, which, for simplicity, is
denoted again by T. The next result summarizes some properties of T L D L D: .2 2( ) ( )¶  ¶

Lemma 3.6.

(i) T z z, ,k D k D( ( · ) ) ( · )F = F¶ ¶ for z .Î W
(ii) T has a dense range in L D .2 ( )¶
(iii) Assume that T p p ,s

D
s

D( ) ˜=¶ ¶ where ps and ps˜ are outgoing and incoming
solutions to the Helmholtz equation in ,cW respectively. Then ps˜ has the asymptotic
behavior

p x
x

p x O
x

x
e

4

1
as . 3.31s

k xi

( )˜ ( )
∣ ∣

ˆ
∣ ∣

∣ ∣ ( )
∣ ∣ ⎧⎨⎩

⎛
⎝⎜

⎞
⎠⎟

⎫⎬⎭p
= - +  ¥

-
¥

Here p¥ denotes the far-field pattern of the outgoing radiating solution ps.

Proof. (i) Let f z,k D≔ ( · )F ¶ and assume that p Hs c
loc
1 ( )Î W is the radiating solution to

the problem (3.14)–(3.17) such that p f .s
D =¶ By uniqueness, p z,s

k ( · )= F in cW for any
fixed z .Î W Recall the addition theorem for the fundamental solution

x z k h k x Y x j k z Y z x R z, i for , . 3.32k
n m n

n

n n
m

n n
m

0

1 ( ) ( )( ) ( ∣ ∣) ˆ ( ∣ ∣) ˆ ∣ ∣ ( )( )å åF = > Î W
=

¥

=-

Using the relation Y Y ,n
m

n
m= - we obtain

x z k h k x Y x j k z Y z

k h k x Y x j k z Y z

, i

i . 3.33

k
n m n

n

n n
m

n n
m

n m n

n

n n
m

n n
m

0

1

0

1

( ) ( )

( ) ( )

( ) ( ∣ ∣) ˆ ( ∣ ∣) ˆ

( ∣ ∣) ˆ ( ∣ ∣) ˆ ( )

( )

( )

å å

å å

F =-

=-

=

¥

=-

=

¥

=-

The first assertion then follows from (3.32), (3.33) and the definition of T.
(ii) Since k2 is not a Dirichlet eigenvalue of-D in D, one can readily prove that the set

z z, :k D{ ( · ) }F Î W¶ is dense in L D .2 ( )¶ Therefore, the denseness of GRange( ) follows
directly from the first assertion.

(iii) Suppose p s and ps˜ are expanded as those in definition 3.5. From the asymptotic
behavior of the Hankel functions with a large argument we know

p x
k i

p Y x
1 1

.
n

n
m n

n

n m n
m

0
1 ,( ) ( )ˆ ˆå å=¥

=

¥

+
=-
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On the other hand, the incoming solution ps˜ has the asymptotic behavior

p x
x

p x O
x

x
e

4

1
as ,s

k xi

( )˜ ( )
∣ ∣

˜ ˆ
∣ ∣

∣ ∣
∣ ∣ ⎧⎨⎩

⎛
⎝⎜

⎞
⎠⎟

⎫⎬⎭p
= +  ¥

-
¥

with

p x
k i

p Y x
1 1

.
n

n

n
m n

n

n m n
m

0

1

1 ,( ) ( )˜ ˆ ( ) ˆå å= -
-¥

=

¥ +

+
=-

Making use of the relation

Y x Y x1 ,n
m n

n
m( ) ( )ˆ ( ) ˆ= - -

we obtain p x p x ,˜ ( ˆ) ( ˆ)= -¥ ¥ which completes the proof of the third assertion. ,

If the measurement surface D x x R: 1{ }¶ = = is a sphere with the radius R R,1 > the
OtI mapping T takes the following explicit form (see [5]):

Tg x K x y g y s y g L, d for 3.34R
2

R1

1( )( )( ) ( ) ( ) ( ) ( )ò= Î G
G

with the kernel

K x y
R

h kR

h kR
n P,

1

4
2 1 cos . 3.35

n

n

n
n

1
2

0

1
1

1
1

( )
( )

( ) ≔ ( ) ( ) ( )
( )

( )

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟å

p
q- +

=

¥

In (3.35), Pn are the Legendre polynomials and θ denotes the angle between x y, .R1Î G The
derivation of (3.34) was based on the expansion of g in terms of its Fourier coefficients on
x R .1= The analogous form of (3.34) for non-spherical D¶ will be derived in section 4.1. In
the following we propose another numerical scheme to implement T.

Given f GRange ,( )Î we assume that f p L D ,s
D

2 ( )= Î ¶¶ where p Hs c
loc
1 ( )Î W is

some radiating solution to the problem (3.14)–(3.17). We make an ansatz on the solution as
follows:

p x
x y

y
y s y x D D

,
d , , 3.36s

D

k
c 3( ) ( )

( )
( ) ( ) ≔ ⧹ ( )

( )
ò n

j=
¶F

¶
Î

¶

where L D2 ( )j Î ¶ is the unique solution of the second kind integral equation

p f DI
1

2
on ,s

D∣⎜ ⎟⎛
⎝

⎞
⎠ j+ = = ¶¶

with

x
x y

y
y s y x D

,
d , .

D

k

( )( ) ≔ ( )
( )

( ) ( )
( )

 òj
n

j
¶F

¶
Î ¶

¶

Clearly, the adjoint operator of  in L D2 ( )¶ is given by

x
x y

y
y s y x D

,
d , .

D

k

( )( ) ≔ ( )
( )

( ) ( )
( )

* òj
n

j
¶F

¶
Î ¶

¶
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By lemma 3.6 (i), the incoming solution ps˜ corresponding to p s should be of the form

p x
x y

y
y s y x D D

,
d , . 3.37s

D

k
c 3˜ ( ) ( )

( )
( ) ( ) ≔ ⧹ ( )

( )
ò n

j=
¶F

¶
Î

¶

The definition of T together with the jump relation of the double-layer potential gives

Tf f f GI I I
1

2

1

2

1

2
for all Range .

1

( )⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠* *  j= + = + + Î
-

By the denseness of GRange( ) in L D ,2 ( )¶ we obtain

T L D L DI I
1

2

1

2
: . 3.38

1
2 2( ) ( ) ( )⎜ ⎟ ⎜ ⎟⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠* = + + ¶  ¶
-

Hence, the adjoint operator T* takes the form

T L D L DI I
1

2

1

2
: . 3.39

1
2 2( ) ( ) ( )⎜ ⎟ ⎜ ⎟⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠* * = + + ¶  ¶

-

Remark 3.7.

(i) Obviously, the implementation of the OtI mapping T depends on the surface D¶ only.

The computation of I1

2

1( )+
-

in (3.38) is amount to solving an exterior boundary
value problem in Dc. Alternatively, we may express the solution p s as a single-layer
potential, leading to the relation

T x y y s y

x y y s y x D

, d

, d , . 3.40

k

k

( )( ) ( ) ( )

( ) ( ) ( ) ( )

( )

( )

ò

ò

j

j

F

= F Î ¶

G

G

In our numerical implementations, we shall employ a scheme of the form (3.34), which is
derived based on (3.40), to discretize T.

(ii) The adjoint T* is exactly the ItO operator, that is, T p ps
D

s
D( ˜ )* =¶ ¶ where p s and ps˜

are given in (3.36) and (3.37), respectively. In fact, by (3.39) we have

T p I I I
1

2

1

2

1

2
.s

D

1

( )˜ ∣ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠* * *   j= + + +¶

-

Applying the commutative property ,* *  = we find

T p

p

I I I

I

1

2

1

2

1

2
1

2
.

s
D

s
D

1

( )˜ ∣

∣

⎜ ⎟ ⎜ ⎟⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

* * *  



j

j

= + + +

= + =

¶

-

¶

Notice that this implies that T is unitary, i.e., TT T T I.* *= =

For notation clarity, we denote by Tx and Ty the OtI operator T acting on functions of
variables x and y, respectively. Below we show the symmetry of T p x y,x

s
D( ) ¶ when the

measurement surface is a sphere.
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Lemma 3.8. Assume that D x x R:R
3

11 ≔ { }¶ = G Î = for some R 0.1 > Then

T p x y T p y x x y, , for all , . 3.41x
s

y
s

R1( ) ( ) ( )= Î G

Proof. Noting that p x y,s ( ) fulfills the outgoing Sommerfeld radiation condition (2.8) with
respect to both x and y, we can expand p x y,s ( ) into the convergent series

p x y h k x Y x h k y Y y C C, ,s

n m n

n

n n
m

n m n

n

n n
m

n m n m n m n m
0

1

0

1
, , , , , ,( ) ( )( ) ( ∣ ∣) ˆ ( ∣ ∣) ˆ( ) ( ) å å å å= Î

¢ ¢
¢ ¢

¢
¢ ¢ ¢ ¢

=

¥

=- =

¥

=- ¢

¢

for all x y R, .1 Since p x y p y x, ,s s( ) ( )= (see lemma A.1 in the appendix), there holds
the relationC Cn m n m n m n m, , , , , ,=¢ ¢ ¢ ¢ for all n n, 0¢ Î , m n n, ,= -  and m n n, , .¢ = - ¢ ¢ By
the definition of Tx and Ty, it is easy to deduce that

T p x y h kR Y x h kR Y y C

T p x y h kR Y x h kR Y y C

, ,

, .

x
s

x y
n m n

n

n n
m

n m n

n

n n
m

n m n m

y
s

x y
n m n

n

n n
m

n m n

n

n n
m

n m n m

,
0

1

0

1
, , ,

,
0

1

0

1
, , ,

R

R

1

1

( ) ( )

( ) ( )

( )∣ ( ) ˆ ( ) ˆ

( )∣ ( ) ˆ ( ) ˆ

( ) ( )

( ) ( )

⎡⎣ ⎤⎦

⎡⎣ ⎤⎦

å å å å

å å å å

=

=

¢ ¢ ¢
¢ ¢

¢
¢ ¢

¢ ¢ ¢

¢

¢ ¢
¢

¢ ¢

ÎG
=

¥

=- =

¥

=-

¢

ÎG
=

¥

=- =

¥

=-

Changing x and y in the form of T p x y,y
s

x y, R1

[ ( ) ]
ÎG

and using the relation

C C ,n m n m n m n m, , , , , ,=¢ ¢ ¢ ¢ we obtain T p x y T p y x, ,x
s

y
s( ) ( )= for all x y x x R, : .1{ }Î = ,

Kirsch and Ruiz have shown in [11] that the far-field operator F (incited by plane waves)
is normal and the scattering operator I Fki

8 2≔ +
p

is unitary. This gives rise to the coin-

cidence of the ranges of F F 1 4( )* and the corresponding far-field solution operator. Unfor-
tunately, we do not know whether or not analogous properties could apply to TN and the near-
field scattering operator I c TNi ( )+ for some c .Î A further investigation of these
operators could help mathematically justify the near-field version of the LSM [15] in a
rigorous way. Our numerics show that the eigenvalues of TN all lie on the upper half of the
complex plane; see figures 3 and 4. In particular, the eigenvalues are located on a circle with
the radius possibly depending on R1, if the measurement curve D R1¶ = G is circular; see
figure 3. We hope that lemma 3.8, which is valid for spherical measurement surfaces only,
could be useful in evaluating TN and the scattering operator in the near-field case. Recently,
the product operator TN has been used in [6] for determining the Dirichlet eigenvalues of the
region occupied by a sound-soft obstacle from near-field measurements.

3.4. Factorization of TN

We multiply the near-field operator N with the OtI operator T and then derive a factorization
of the product operator TN. Our scheme relies on a refinement of the argument in the far-field
case [11] in combination with the concept of the OtI operator introduced in section 3.3 above.

We first introduce the incidence operator H L D H: 2 1 2( ) ( )¶  G as

Hg x x y g y s y x, d for . 3.42
D

k( )( ) ( ) ( ) ( ) ( )ò= F Î G
¶

The operator H is the restriction to G of a superposition of incident point source waves. It
easily follows that N GH,= since Hg Hg( ) ( )L = ¶n on G for any g L D .2 ( )Î ¶ For

H ,1 2 ( )j Î G- recall the single-layer potential defined by
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S x x y y s y x, d , .k k
3( )( ) ( ) ( ) ( ) òj j= F Î

G

Let u v,( ) be the unique solution of the problem (3.18)–(3.21) with f Sk( )j= ¶n + and
g S ,k( )n j= - + that is

u u 0 in , 3.432 ( )* rwD + = W

v k v 0 in , 3.442 ( )D + = W

Figure 3. The distribution of eigenvalues of TN for different obstacles (red: apple-
shaped; blue: peanut-shaped) in D2 . The measurement curve D R1¶ = G is circular.

Figure 4. The distribution of eigenvalues of TN for peanut-shaped and rounded-
triangle-shaped obstacles with non-circular measurement curves. The near-field data
are measured on an ellipse (Left) and a square (Right), respectively.
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u v S on , 3.45k( )· ( )h n j- ¶ = ¶ Gn n
+

u v ST on . 3.46k( ) ( )n n j+ = - G+

The operator J H H: 1 2 1 2( ) ( )G  G- is defined as J v≔j G for H .1 2 ( )j Î G- Since the
function Sk( )( · )j satisfies the Helmholtz equation and the Sommerfeld radiation condition
in ,cW rearranging the terms in (3.43)–(3.46) yields

u u 0 in , 3.472 ( )* rwD + = W

k S 0 in , 3.48k
c2( ) ( ) ( )jD + = W

u S v on , 3.49k( )· ( )h n j- ¶ = L Gn
+

u S vT on . 3.50k( ) ( )n j n+ = - G+

This implies that u S, k( )j is the unique solution to the problem (3.14)–(3.17) with h v .= G
Therefore, we deduce from the definition of G and J that

GJ x S x y y s y x D, d , . 3.51k D k( )( )( ) ∣ ( ) ( ) ( ) ( )òj j j= = F Î ¶¶
G

On the other hand, the adjoint operator H H L D: 1 2 2( ) ( )* G  ¶- is given by

H x x y y s y x D, d for . 3.52k( )( ) ( ) ( ) ( ) ( )* òj j= F Î ¶
G

Comparing the previous two identities and applying the OtI operator yield the relation
H TGJ* = (see (3.40)), implying that H J G T .* * *= Hence, we get a factorization of the
near-field operator multiplied by T as follows:

TN TGH J TG, . 3.53≔ ( )* *  = =

The form (3.53) will be used in the next section for the purpose of finding Ω from the data.

3.5. Inversion algorithm

In this subsection, we construct the characteristic function of the scatterer W in term of the
spectral system of TN relying on the factorization form (3.53). We first show properties of the
modified solution operator .

Lemma 3.9. The operator H L D: 1 2 2( ) ( ) G  ¶ is compact with a dense range
in L D .2 ( )¶

Proof. The operator TG = is compact since G is compact from H1 2 ( )G into L D2 ( )¶ and
T is bounded from L D2 ( )¶ into L D .2 ( )¶ The denseness of Range( ) follows from the
denseness of G H L D: 1 2 2( ) ( )G  ¶ and that of T L D L D: ;2 2( ) ( )¶  ¶ see lemma 3.4 and
lemma 3.6 (ii). ,

Below we show that Range( ) can be utilized to characterize the domain Ω.

Lemma 3.10. Let z,z k D( · ) ( · )f = F ¶ for z B .RÎ Then z Î W if and only
if Range .z ( )f Î
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Proof. We first assume that z .Î W Let u w,( ) be the solution of the problem (3.18)–(3.21)
with

f z H g z H, , , .k k
1 2 1 2 3( )( · ) ∣ ( ) ( · ) ( )n= ¶ F Î G = - F Î Gn G

-

Then by the definition of Λ we see w w .( ) ( )L = ¶nG G Hence the solution u z, ,k( ( · ))F
solves problem (3.14)–(3.17) with h w .= G From the definition of  and lemma 3.6 (i) it
follows that

h T G h T z z, , .D D( )( ) ( · )∣ ( · )∣ = = F = F¶ ¶

This implies that Range .z ( )f Î
On the other hand, let z BRÎ and assume that h z f= for some h H ,1 2 ( )Î G that is,

T Gh z, .k D( ) ( · )= F ¶ This implies that Gh z, .k D( · )= F ¶ Let p s be the unique solution of
the problem (3.14)–(3.17) with the same h. By uniqueness of outgoing solutions to the
Dirichlet boundary value problem in D Dc 3≔ ⧹ and the analytic continuation, we get
p z,s

k ( · )= F in z .c⧹{ }W If z B ,R⧹Î W the boundedness of p xlimx z
s ( ) contradicts the

singularity of x z,k ( )F at x=z. If z ,Î G the trace regularity p Hs 1 2 ( )Î GG is a
contradiction to the fact that z H, .k

1 2( · ) ( )F Ï GG Hence, we have z ,Î W which proves the
lemma. ,

Next we briefly review properties of the middle operator J in lemma 3.11 below. The
proof of lemma 3.11 (ii) and (iii) is exactly the same with that contained in [11] but modified
to be applicable to the new definition of J used in this paper.

Lemma 3.11. Assume that k2 is not a Dirichlet eigenvalue of-D in Ω and that w is neither
a Jones frequency nor an interior transmission eigenvalue. Then

(i) The operator J H H: 1 2 1 2( ) ( )G  G- is injective.
(ii) There exists a self-adjoint and coercive operator J H H:0

1 2 1 2( ) ( )G  G- such that
J J H H:0

1 2 1 2( ) ( )- G  G- is compact.
(iii) Im J, 0j j > for all H 1 2 ( )j Î G- with 0.j ¹

Proof. (i) Assume that J v 0,j = =G where u v,( ) is the solution of the problem (3.43)–
(3.46). Since k2 is not a Dirichlet eigenvalue of-D in Ω, v vanishes identically in Ω and, in
particular, v 0n¶ ¶ = on Γ. Therefore, the solution pair u S, k c( )j W solves the homogeneous
problem (3.14)–(3.17) with h=0, implying that u 0º in Ω and S 0kj º in .cW In particular,
we get S 0k( )j =+ on Γ. Again using the assumption on k2, we get 0j = on Γ since the
single-layer boundary operator is an isomorphism from H 1 2 ( )G- onto H .1 2 ( )G Hence J is
injective.

(ii) Define J H H:0
1 2 1 2( ) ( )G  G- by J v ,0 1j = G where v1 is the unique solution of

the Neumann problem

v v v S0 in , on .i1 1 1 ( )jD - = W ¶ = -¶ Gn n
+

Setting p S vi0 1j= +W and applying the jump relation for single-layer potentials, we have

p p p0 in , on .0 0 0 jD - = W ¶ = Gn
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By definition, J p S .i0 0( )j j= -
G

We refer to [11, theorem 2.4] for the proof of the
coercivity of J0. To investigate the compactness of J J ,0- we simplify the arguments
employed in the proof of [11, theorem 2.4]. Setting v v v ,2 1= - we have J J v ,0 2( )j- = G
where u v H H, 2

1 3 1( ) ( ) ( )Î W ´ W satisfies the inhomogeneous boundary value problem

u u v k v f

u v g u v hT
0, in ,

, on , 3.54

2
2

2
2

2 2· ( )
* rw

h n n
D + = D + = W

- ¶ = + = Gn

with f g h k v S S S p S H

L H

, , 1 , ,k i k i
2

1 0
1

2 1 2 3

( ) ≔ ( ( ) [( ) ] (( ) ( ) )) ( )

( ) ( )

j n j j- + ¶ - - + - Î W

´ G ´ G

n
+ + -

compactly embedding into L H H2 1 2 1 2 2( ) ( ) ( )W ´ G ´ G- - for all H .1 2 ( )j Î G- Since w
is not an interior transmission eigenvalue, the problem (3.54) is well-posed with the data
f g h L H H, , .2 1 2 1 2 2( ) ( ) ( ) ( )Î W ´ G ´ G- - This implies that J J0- is compact from

H 1 2 ( )G- into H .1 2 ( )G
(iii) Letting w v S ,kj= + W we have J v w S .k( )j j= = -G G Moreover, u w,( )

satisfies the problem

u u w k w

u w u wT
0, 0 in ,

, 0 on .

2 2

·
* rw

h n j n
D + = D + = W

- ¶ = - + = Gn

The coercivity of J then follows from [11, theorem 2.3]. ,

Thanks to the properties of the solution operator  and the operator J (see lemmas 3.10
and 3.11), we may directly apply the following range identity (see [10, theorem 2.15]) to the
factorization form established in (3.53). Recall that the real and imaginary parts of an operator
H over a Hilbert space are given by

H H H H H HRe 2, Im 2i .( ) ( )≔ ≔ ( )* *+ -

Obviously, both HRe and HIm are self-adjoint operators.

Lemma 3.12. [(Range Identity)] Let X Y X*Ì Ì be a Gelfand triple with Hilbert space Y
and reflexive Banach space X such that the embedding is dense. Furthermore, let Y be a
second Hilbert space and let F Y Y:  , G X Y:  and T X X: *  be linear and
bounded operators with F GTG .*= Assume further that

(a) G is compact with dense range.
(b) There exists t 0, 2[ ]pÎ such that t TRe exp i[ ( ) ] has the form t T T TRe exp i 0 1[ ( ) ] = +

with some compact operator T1 and some coercive operator T X X: ,0 *  that is, there
exists c 0> with

T c X, for all . 3.550
2 ( )*j j j j Î 

(c) Im T is non-negative on Range G X ,( )* *Ì that is, Im T, 0( ) j j for
all Range G .( )*j Î

(d) Re t Texp i[ ( ) ] is one-to-one or Im T is strictly positive on the closure Range G( )* of
Range G ,( )* that is, for all GRange( )*j Î with 0j ¹ it holds that T, Im 0.( )j j >

Then the operator F t F FRe exp i Im≔ [ ( ) ] + is positive definite and the ranges of

G X Y:  and F Y Y:1 2
  coincide.
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To apply lemma 3.12, we set

t F TN G T J T J T J J

Y L D X H

0, , , , , Re ,

, .

0 0 1 0

2 1 2

( )
( ) ( )

*= = = = = = -

= ¶ = G

In our settings, all the conditions in lemma 3.12 are satisfied. In fact, conditions (a) and (b)
follow from lemma 3.9 and lemma 3.11 (ii), respectively. Conditions (c) and (d) are
guaranteed by lemma 3.11 (iii). Combining lemmas 3.12 and 3.10, we have the following
result.

Theorem 3.13. Let z BRÎ and zf be defined in lemma 3.10. Then xz ( )f belongs to the range
of TN( ) if and only if z .Î W Consequently, the near-field data p x z,s ( ) for all x z D, Î ¶
uniquely determine the interface .G

As a consequence of Picardʼs range criterion we obtain the following sufficient and
necessary computational criterion for precisely characterizing W through the eigensystem
of TN.

Theorem 3.14. Let z BRÎ and let zf be defined in lemma 3.10. Denote by j l Î the
eigenvalues of the operator TN with the corresponding normalized eigenfunctions

L D .j
2 ( )y Î ¶ Then

z W z
,

0. 3.56
j

z j L D

j1

2
1

2

⟺ ( ) ≔
∣

( )( )
⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

å
f y

l
Î W >

=

¥
¶

-

Thus, the function W z( ) on the right hand side of (3.56) can be regarded as the char-
acteristic function for the domain occupied by the unknown scatterer .W By theorem 3.14, the
values of the indicator function W z( ) are positive for z Î W and zero for z B .R⧹Î W
Numerically, the values of the indicator function inside the scatterer should be relatively
larger than those outside. This will be confirmed in our 2D numerical examples presented in
section 4, where a rectangular domain containing Ω has been used in place of a circular
domain of radius R 0.> However, it can be observed that the large values of the indicator
function are at different scales. For example, they are oscillating in figures 6 and 7. This may
be due to the co-existence of compressional and shear waves incited insider the elastic body in
comparison with earlier studies for pure compressional waves [5].

Remark 3.15. The indicator function (3.56) can be implemented even if limited aperture
data are available on a sub-domain S D,D Ì ¶ i.e., the receivers and incident point sources are
both located on SD rather than the entire closed surface D.¶ In particular, SD is allowed to be
part of a plane in three dimensions or a line segment in two dimensions. We refer to
section 4.3 for the numerical examples.

4. Numerical experiments

In this section, we present numerical examples in two dimensions for testing accuracy and
validity of the developed inversion scheme.
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4.1. Discretization schemes

We first discuss how to discretize the OtI mapping T in two dimensions, based on (3.40) and
Fourier analysis. Employing the polar coordinates enables us to write

D x x x: cos , sin , 0, 2 .x x x x0{ }( ) ( )ˆ ˆ [ )g q q q q p¶ = = = Î

For g L D2 ( )Î ¶ and L ,2 1( )j Î define

g x g x x L x x x L D, .0
2 1 2( ) ( )( ) ( )˜ ˆ ≔ ˆ ˆ ( ) ≔ ˜ ( ∣ ∣) ( )g j jÎ Î ¶

Then g L D2 ( )Î ¶ if and only if g L .2 1˜ ( )Î For each g L D2 ( )Î ¶ we have the expansion

g x g x De ,
n

n
n

0

i x( ) å= Î ¶q

=

¥

with

g g x s x g x s xe d e d . 4.57n
n

D

n
x x

i i
0

2
0

2
x x

1
( ) ( ) ( ) ( )≔ ˜ ˆ ˆ ( ) ( ) ( )⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

ò ò g q g q= + ¢q q-

¶

-

Introduce the operator F L D l:D
2 2( )¶  by

F g g n lg g, : . 4.58D n 0
2{ }≔ ( )= Î Î

Conversely, for lg 2Î define the operator F l L D:D
1 2 2 ( ) ¶- by

F x g x g x Dg e , . 4.59D
n

n
n1

0

i x( )( ) ≔ ( ) ( )å= Î ¶q-

=

¥

Further, it can be readily deduced from (4.58) and (4.59) that

F F I F F I, . 4.60D D l D D L D
1 1

2 2 ( )( )= =- -
¶

Now we define the operators G H l:D
1 2 2( )G  , H l H:D

2 1 2 ( ) G and T l l:D
2 2 by

G F G H HF T F TF, , ,D D D D D D D
1≔ ≔ * = -

respectively. Then the relation TGJ H*= implies that T G J H .D D D*= Recall the two-
dimensional fundamental solution to the Helmholtz equation

x y H k x y x y,
i

4
, .k 0

1( ) ( ∣ ∣)( )F = - ¹

For x y> there holds the addition theorem (see [1, ch 3.4]):

x y H k x J k y,
i

4
e .k

n
n n

n1 i x y( )( ) ( ∣ ∣) ( ∣ ∣)( )åF = q q

=-¥

+¥
-

Here Jn are known as Bessel functions of order n and Hn
1( ) Hankel functions of the first kind of

order n. Hence, for x DÎ ¶
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H x F H x F x y y s y

A n

G J x F GJ x F x y y s y

B n

, d

: ,

, d

: ,

D D D

m
n m m

D D D

m
n m m

,

,

( )

( )

( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

⎧⎨⎩
⎫⎬⎭

⎧⎨⎩
⎫⎬⎭

* *





ò

ò

å

å

y y y

y y y

= = F

= Y Î

= = F

= Y Î

G

=-¥

¥

G

=-¥

¥

where

J k y y s

A H k

B H k

e d ,

i

4
e d ,

i

4
e d . 4.61

m m
m

y

n m m x
m n

x

n m m x
m n

x

i

,
0

2
1

0
i

,
0

2
1

0
i

y

x

x

( )
( )

( )

( )

( ∣ ∣) ( )

( )

( ) ( )

( ) ( )

ò

ò

ò

y

g q q

g q q

Y =

=-

=

q

p
q

p
q

G

-

-

-

Now we truncate the series in each entry of HD*y and G JD y to get an approximation of TD :
T ABD

1» - where for some M 01 >

A A A

A A A

A A A

B B B

B B B

B B B

A

B

,

.

M M M M M M

M M M M M M

M M M M M M

M M M M M M

M M M M M M

M M M M M M

, , 1 ,

1, 1, 1 ,

, , 1 ,

, , 1 ,

1, 1, 1 ,

, , 1 ,

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥
⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥

=

=

- - - - + -

- + - - + - + -

- - +

- - - - + -

- + - - + - + -

- - +




   





   


Here i j,[ · ] represent the rectangular Cartesian components of a square matrix. Note that we
have assumed that the matrix B is invertible for the chosen M 0.1 > For g L D ,2 ( )Î ¶ the OtI
operator T can be discretized by (see (4.57))

Tg x F T F g x F T

g y s y m Me d :

D D D D D

D

m
y y

1 1

i
0

2
0

2
1y{ }

( )
( ) ( )

( )( ) ( )

( ) ( ) ∣ ∣⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ò g q g q

= »

´ + ¢ <q

- -

¶

-

Applying T ABD
1» - and using the definition of FD, we obtain

Tg x T g x K x y g y s, d ,M
D

M y1 1( )( )( ) ( ) ≔ ( ) ( )ò»
¶

where the truncated kernel KM1
is defined by

K x y AB, e .M
n M

M

m M

M

n M m M
n m

y y
1

1, 1
i

0
2

0
2

x y
1

1

1

1

1

1 1
( ) ( )( )( ) ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦å å g q g q= + ¢q q

=- =-

-
+ + + +

-
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Remark 4.1. In the special case that D¶ is a sphere of radius R1, i.e., Rx0 1( )g q º is
independent of ,xq only the diagonal elements of A and B remain, while the other off-diagonal
terms vanish identically. The kernel KM1

then reduces to the following simple form (see [5,
section 6]):

K x y
R

H kR

H kR
,

1
e .M

n M

M
n

n

n

1

1
1

1
1

i x y
1

1

1 ( )
( )

( )( )
( )

( )

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟å= - q q

=-

-

To discretize the near-field operator N, we take the scattered field at a uniformly dis-
tributed grid over D¶ with the step size M2x y 2q q pD = D = for some M ,2 Î that is

j j j j j1 , 1 , ,x x x y y y( ) ( ) ( ) ( ) q q q q q q= = - D = = - D Î

where j j M: 1 .2≔ { }   Î Then we have the near-field matrix

p p r p p r pN , ; , ,M M
s

x x x x
p q,2 2 ( )( ) ( )( ) ( ) ( ) ( )⎡⎣ ⎤⎦


q q q q=´

Î

and the finite-dimensional matrix K p r p p r pT , ; ,M M M x x x x p q,2 2 1[ ]( ( ) ( ( )) ( ) ( ( )))


q q q q=´ Î
for

T .M2
Letting N T N ,M M

T
M M M M2 2 2 2 2 2=´ ´ ´ we can approximate the characteristic function of W

defined in theorem 3.14 by the finite series

W z z B
,

for , 4.62
j

M z j l

j
R

1

2
1

2 2( )
( ) ≔

∣
( )

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

å
f y

l
Î

~

=

-

where z,z D( · )f = F ¶ and ,j j j
M

1
2{ }y l = is an eigensystem of the matrix NM M

T
,2 2

≔´ #

N NRe Im .M M
T

M M
T

2 2 2 2
( ) ( )+´ ´

4.2. Inversion scheme by converting near-field data to far-field patterns

In contrast to the ‘indirect’ factorization of the near-field operator, the far-field operator
F L L: ,2 2 2 2( ) ( )  defined by

Fg x v x d g d s d x, d , ,2
2

( ) ( )( ) ˆ ˆ ( ) ( ) ˆ 
ò= Î¥

can be factorized in a straightforward way (see [11]). Denote by v x d,( ˆ )¥ , v x d,s ( ˆ ) and
v x d,( ) the far-field pattern, scattered and total fields associated with the incident plane wave
p ein kx di ·= of direction d ,2Î respectively. Hence, it is very natural to apply Kirschʼs idea
[10, ch 2.4] of converting the near-field data p x z x z D, : ,s{ ( ) }Î ¶ into the far-field patterns
v x d x d, : , .2{ ( ˆ ) ˆ }Î¥ To achieve this, it is necessary to establish the mixed reciprocity
relation p x z v z x, , ,sc( ˆ ) ( ˆ)= -¥ and then generalize [16, theorem 4.15] for a sound-soft
obstacle to the case of the FSI model. Since such an argument is standard, we omit the details
and state the resulting scheme in the following.

Given f H D ,1 2 ( )Î ¶ consider the boundary value problem of finding an outgoing
Sommerfeld radiating wave w H Dloc

1 3( ⧹ )Î such that

w k w D w f D0 in , on . 4.632 3⧹ ( )D + = = ¶

The far-field pattern w¥ of w defines the far-field solution operator G H D L:D
1 2 2 2( ) ( )¶ +

by G f w .D =+ ¥ Introduce the operator B L L D: 2 2 2( ) ( )  ¶ by
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Bg w d g d s d D, e d , , 4.64k di
2

( )( ) ( ) ( ) ( ) ( )·⎡⎣ ⎤⎦
òx x x= ¶ + Î ¶n

x

where w d,( )x is the solution of (4.63) with f e .kx d
D

i ·= - ¶ We have

Lemma 4.2.

(i) The far-field operator F can be factorized as F G NB.D= +

(ii) Let z BRÎ and x e .z
kx zi( ˆ) ˆ·j = - Denote by j l Î the eigenvalues of the operator

F G NBgD( )=#
+

# with the corresponding normalized eigenfunctions L .j
2 2( )f Î Then

z W z
,

0. 4.65
j

z j L

j
0

1

2
1

2 2( )⟺ ( ) ≔
∣

( )

⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥


å
j y

l
Î W >

=

¥

-

Implementing the above scheme requires an efficient forward solver for the boundary
value problem (4.63). An analytical solution can be constructed only if D R1¶ = G is a circle.
In our numerical examples below, we apply such scheme to spherical measurement surfaces
in 2D only. The truncated far-field matrix FM M2 2´ can be obtained following the process
discussed in [16]. Consequently, the series in (4.65) can be approximated by

W z z B
,

for , 4.66
j

M z j l

j
R0

1

2
1

2 2( )
( ) ≔

˜ ˜ ∣

˜ ( )

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

å
j y

l
Î

~

=

-

where x ez
kzi cos ,sinx x˜ ( ˆ) ·( )f = q q- and ,j j j

M
1

2{ ˜ ˜ }y l = is an eigensystem of the matrix F .M M2 2( )´ # It is
expected that if M2 is taken large enough, the series in (4.62) and (4.66) approximate the true
values of W and W0, respectively. Thus, W z( )~

and W z0 ( )~
should be very small in BR⧹W and

considerably large in .W

4.3. Numerical examples

In the following experiments,we use (A1) and (A2) to represent the algorithms using the
criteria (3.56) and (4.65), respectively. The direct problem is solved by using a finite element
method in conjunction with a DtN map on an artificial boundary, and the near-field data is
measured at 64 points with 64 source points equivalently distributed on D,¶ that is, M 64.2 =
In figure 5 we show the four configurations of underlying elastic bodies to be reconstructed.
We employ dotted lines to represent D,¶ i.e., the position where the near-field data are
collected and where the incident sources are located. Unless otherwise stated, we always set

3w = , 2m = , 1l = , 1fr = , 2r = , M 50,1 = and plot the map W z W zand 0( ) ( )~ ~
against the

sampling point z. We choose k 7, 5, 5, 2= for peanut-shaped, kite-shaped, mix-shaped and
rounded-triangle-shaped obstacles, respectively.

Example 1. We choose D R1¶ = G to be a circle of radius R1, and set R 51 = for the kite-
shaped obstacle (see figure 5(a)) and R 61 = for the mix-shaped obstacle (see figure 5(b)). The
reconstructions from unpolluted and polluted data using the algorithms (A1) and (A2) are
presented in figures 6 and 7, respectively. The near-field acoustic data are perturbed by the
multiplication of 1( )dx+ with the noise level %,d where ξ is an independent and uniformly
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distributed random variable generated between −1 and 1. We set 0%d = in figures 6 and 7(a)
and (e), 1%d = in figures 6 and 7(b) and (f), 2%d = in figures 6 and 7(c) and (g) and

5%d = in figures 6 and 7 (d) and (h), respectively. It turns out that the proposed inversion
scheme using the OtI operator is more stable than the scheme (A2) described in section 4.2,
especially at the low noise levels.

Example 2. In the second example, the measurement curve D¶ is chosen to be an ellipse
with the semi-major axis a=4 and semi-minor axis b=3. The focal points are located at x-
axis; see figure 5(c). We apply the algorithm (A1) proposed in this paper to reconstruct the
peanut-shaped obstacle from unpolluted and polluted data; see figures 8(c)–(f).

In figures 8(a) and (b), we use limited aperture near-field data (unpolluted) to recover the
boundary of the elastic body. The incident point sources and receivers are supposed to be
uniformly located at

Figure 5. The four configurations to be reconstructed. Solid line: ;G dotted lines: D.¶ In
Example 3, D¶ is allowed to be the line segments illustrated in (d).
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a b

a b

: cos , sin : 0, 2 in figure 8 a ,

: cos , sin : 0, 3 4 in figure 8 b .

1

2

{( ) ( )} ( )
{( ) ( )} ( )

( )

( )
q q q p
q q q p

G = Î
G = Î

That is, the elastic body is illuminated by 32 and 48 point source waves, respectively. The
positions where the near-field data are recorded coincide with the incident point sources, that
is, the transmitters and receivers are placed on the same part of the near field measurement
surface. In this case, the matrices A and B are still calculated using the geometry of the entire
closed curve D¶ see (4.61), whereas the OtI operator T is approximated only on the sub-
domain j( )G of D.¶ Clearly, the reconstruction from the limited data is less reliable and precise
compared to the full-data case.

Example 3. In the third example, we apply the algorithm (A1) to recover the rounded-
triangle-shaped obstacle from limited data collected on a line segment l. We assume that l lies

3

3

2

2

1

1

0

0
-3
-3

-2

-2

-1

-1 3210-3 -2 -1 3210-3 -2 -1 3210-3 -2 -1

3210-3 -2 -13210-3 -2 -13210-3 -2 -13210-3 -2 -1

3

2

1

0

-3

-2

-1

3

2

1

0

-3

-2

-1

3

2

1

0

-3

-2

-1

3

2

1

0

-3

-2

-1

3

2

1

0

-3

-2

-1

3

2

1

0

-3

-2

-1

3

2

1

0

-3

-2

-1

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

Figure 6. Reconstruction of the kite-shaped obstacle with D x x: 5 .2{ }¶ = Î =
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Figure 7. Reconstruction of the mix-shaped obstacle with D x x: 6 .2{ }¶ = Î =
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on the boundary of the square centered at the origin with side length R 6.0 = We will show
the reconstruction results associated with the following different line segments:

l R R

l R R

l R R

l R R

: tan 2 , : 4, 3 4 ,

: , tan : 3 4, 5 4 ,

: tan 3 2 , : 5 4, 7 4 ,

: , tan : 0, 4 7 4, 2 .

1 0 0 1

2 0 0 2

3 0 0 3

4 0 0 4

{ }
{ }
{ }
{ }

( )
( )
( )
( )

( ) [ ] ≕

( ) [ ] ≕

( ) [ ] ≕

[ ] [ ) ≕

⎤⎦
È

p q q p p

p q q p p

q p q p p

q q p p p

= - Î Q

= - - Î Q

= - - Î Q

= Î Q

Since limited near-field data are available only, we can approximate the OtI operator T on lj
by computing each entry of the matrix AB 1- on a closed curve Slj containing lj, as done in
Example 2. From numerical point of view it is natural and convenient to use circular curves as
the extended part. Hence, we define the piecewise smooth curves

Sl l R2 cos , sin : 0, 2 .j j j0{ }≔ ( ) [ )⧹È q q q pÎ Q

We take M 128.2 = The reconstruction results from the near-field measurement on Slj and lj
are presented in figures 9(a)–(d) and (e)–(h), respectively. It is concluded from figures 9(a)–
(d) that the near-field imaging does not rely too much on the choice of the closed
measurement curve, but varies with the directions of the measurement line segments.
Obviously, the extension from lj to Slj is not unique. However, our numerics show that the
reconstruction is independent of the way of extending lj to a closed curve. To see this point,
we reconstruct the elastic body from near-field measurement taken on l l ,2 3È with the matrix
AB 1- calculated on different closed curves S l lj

2 3{ }ÈÊ , j 1, 2, 3, 4,= given by
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Figure 8.Reconstruction of the peanut-shaped obstacle with D 4 cos , 3 sin :{( )q q q¶ = Î
0, 2[ )}p in (c)–(f). Limited aperture data from part of the ellipse are used in (a) and (b).
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It is seen from figure 10 that the imaging results indeed do not depend on the choice
of S j. Finally, we illustrate in figure 11 the reconstruction of the peanut-shaped obstacle from
the near-field data measured on one or several line segments. Again the matrix AB 1- is
computed by extending the measurement line segments with circular curves. Clearly,
increasing observation line segments with different directions leads to a better imaging
quality.
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Figure 9. Reconstruction of the rounded-triangle-shaped obstacle from limited aperture
data collected on the line segment lj in (e)–(h), and from the full data measured on the
closed curve Slj in (a)–(d).

3

2

1

0

-3

-2

-1

3

2

1

0

-3

-2

-1

3

2

1

0

-3

-2

-1

3

2

1

0

-3

-2

-1

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

3210-3 -2 -1 3210-3 -2 -1 3210-3 -2 -1 3210-3 -2 -1

Figure 10. Reconstruction of the rounded-triangle-shaped obstacle from limited
aperture data collected on l l .2 3È To compute the operator T, we calculate the matrix
AB 1- using different closed curves S j containing l l .2 3È

Inverse Problems 32 (2016) 015003 T Yin et al

26



Acknowledgments

The work of T Yin is partially supported by the China Scholarship Council and the NNSFC
grants 11371385 and 11201506. The work of G Hu is financed by the German Research
Foundation (DFG) under grant No. HU 2111/1-2. The work of L Xu is partially supported by
the NNSFC grant 11371385, the Start-up fund of Youth 1000 plan of China and that of Youth
100 plan of Chongqing University. The work of B Zhang is partially supported by the
NNSFC grants 61379093 and 91430102. The authors would like to thank A Lechleiter and S
Peters from Bremen University and X Liu and H Zhang from Chinese Academy of Sciences
for stimulating discussions.

Appendix

Denote by p z,s ( · ) the scattering solution to the problem (2.3)–(2.8) with the incident point
source wave z,k ( · )F for z .3⧹Î W We show the symmetry of p x z,s ( ) with respect to x and
z, which has been used in the proof of lemma 3.8.

Lemma A.1. The scattering solution to the problem (2.3)–(2.8) with an incident point
source satisfies

p y z p z y y z, , , , . A.1s s 3( ) ( ) ⧹ ( )= Î W

Proof. Choose 0 > sufficiently small and R 0> sufficiently large such that

B B z B B y B B y B z, , , .R R R( ) ⧹ ( ) ⧹ ( ) ( )   ÇW Ì Ì W Ì W = Æ

Applying Greenʼs second formula to the total fields p x y,( ) and p x z,( ) in the region
B B y B z ,R⧹{ ( ) ( )} È ÈW we find
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Figure 11. Reconstruction of the peanut-shaped obstacle from the near-field data
measured on one or several line segments.
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p x y p x z p x y p x z s x0 , , , , d . A.2
B B z B zR

[ ]( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

⎛
⎝⎜

⎞
⎠⎟ 

ò ò ò ò= - - - ¶ - ¶n n
¶ ¶ ¶ G

In view of the coupling conditions between p and u, we derive from Bettiʼs formula that

p x y p x z p x y p x z s x, , , , d 0.[ ]( ) ( ) ( ) ( ) ( )ò ¶ - ¶ =n n
G

Letting R  ¥ in (A.2) we get

p x y p x z p x y p x z s x, , , , d 0, A.3
B z B y

[ ]( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

⎛
⎝⎜

⎞
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ò ò+ ¶ - ¶ =n n
¶ ¶

since p x y,( ) and p x z,( ) are both outgoing radiating solutions. Applying Greenʼs second
theorem to p x z,( ) and p x y,s ( ) in the ball B y( ) yields

p x y p x z p x y p x z s x0 , , , , d . A.4
B y

s s[ ]( ) ( ) ( ) ( ) ( ) ( )
( )

ò= ¶ - ¶n n
¶

Analogously, there holds that

p x z p x y p x z p x y s x0 , , , , d . A.5
B z

s s[ ]( ) ( ) ( ) ( ) ( ) ( )
( )

ò= ¶ - ¶n n
¶

Inserting (A.4) and (A.5) into (A.3) and again applying Greenʼs second theorem yield
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Since z y y z, , ,k k( ) ( )F = F we obtain p z y p y z, , .s s( ) ( )= ,
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