
J Elast
DOI 10.1007/s10659-017-9624-7

Two-Dimensional Elastic Scattering Coefficients and
Enhancement of Nearly Elastic Cloaking

Tasawar Abbas1 · Habib Ammari2 · Guanghui Hu3 ·
Abdul Wahab4 · Jong Chul Ye4

Received: 27 June 2016
© Springer Science+Business Media Dordrecht 2017

Abstract The concept of scattering coefficients has played a pivotal role in a broad range of
inverse scattering and imaging problems in acoustic, and electromagnetic media. In view of
their promising applications in inverse problems related to mathematical imaging and elastic
cloaking, the notion of elastic scattering coefficients of an inclusion is presented from the
perspective of boundary layer potentials and a few properties are discussed. A reconstruction
algorithm is developed and analyzed for extracting the elastic scattering coefficients from
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multi-static response measurements of the scattered field in order to cater to inverse scat-
tering problems. The decay rate, stability and error analyses, and the estimate of maximal
resolving order in terms of the signal-to-noise ratio are discussed. Moreover, scattering-
coefficients-vanishing structures are designed and their utility for enhancement of nearly
elastic cloaking is elucidated.

Keywords Elastic scattering · Scattering coefficients · Elastic cloaking · Inverse scattering

Mathematics Subject Classification Primary 35L05 · 35R30 · 74B05 · 74J20 · 78A46

1 Introduction

The matrix theory for scattering of waves by obstacles of various geometric nature (e.g.,
crack, inclusions, cavities, etc.) has been the subject of numerous investigations since
1960’s. The transformation matrix (or so-called T-matrix) approach has been of particu-
lar interest. It was introduced by Waterman [47] in 1965 in order to study the scattering
of electromagnetic waves and later on to discuss the scattering of acoustic [48] and elastic
waves [49]. The method is based on the fact that incident and scattered fields both admit
multipolar expansions in terms of wave functions thanks to the Jacobi-Anger decomposition
and wave addition theorems. The coefficients of the expansion of the field scattered by a
given obstacle are connected to those of the incident field by an infinite matrix, coined as
T-matrix. Such a matrix is independent of the choice of incident field, and dependents only
on the morphology of the obstacles and the frequency of incidence. Therefore, the same ma-
trix can be used to connect any incident field to the corresponding scattered field for a given
obstacle and frequency of incidence. Since its inception, this concept has received great at-
tention by researchers for various applications of wave scattering. It is especially the case
when numerical computations become necessary because it is computationally efficient to
use T-matrices for numerical simulations of scattering phenomena [20, 30]. In addition, this
approach has been of great advantage in dealing with multiple scattering since the T-matrices
corresponding to different obstacles can be combined easily using translation-addition the-
orems. The interested readers are referred to the monographs [16, 31, 44] and to the survey
articles [33, 34, 43] for detailed accounts of related work.

In T-matrix approach, the series expansions of the incident and the scattered fields are
obtained in relevant complete orthogonal bases. Then, the series coefficients of the scattered
field are linked to those of the incident field by T-matrix using Lippmann-Schwinger rep-
resentation of the scattered field based on the conditions imposed on the boundary of the
obstacle [47, 48]. Most often, especially in elasticity, the incident field is expanded using
a real basis of cylindrical or spherical wave functions (composed of real surface harmonics
and Bessel functions). This renders a symmetric T-matrix and a unitary scattering matrix (or
simply S-matrix, defined in terms of T-matrix) thanks to the principles of reciprocity and the
conservation of energy in loss-less media [46, 49].

In this article, we deal with the elastic scattering by an inclusion using a complex basis
of eigenvectors of the Lamé equation (defined in terms of complex vector harmonics) for
incident field and a rigorous integral representation of the scattered field in terms of layer
potentials, unlike the standard T-matrix approach presented in [46, 49]. The elements of the
resulting matrix connecting the coefficients of the scattered and incident fields are coined as
elastic scattering coefficients (ESC). The impetus behind this study is the enhancement of



Two-Dimensional Elastic Scattering Coefficients and Enhancement. . .

nearly elastic cloaking and promising applications of the ESC in mathematical imaging and
inverse scattering.

The ESC can be perceived as a natural extension of the concept of elastic moment ten-
sor [1] with respect to frequency dependence. Thanks to the integral representation of the
scattered field in terms of layer potentials, the ESC can be explicitly defined using bound-
ary densities solving a system of boundary integral equations. In addition, these frequency-
dependent geometric objects contain rich information about the contrast of material parame-
ters, high-order shape oscillations, frequency profile, and the maximal resolving power of an
imaging setup. The concept of scattering coefficients in acoustic and electromagnetic media
has been effectively used for inverse medium scattering and mathematical understanding of
super-resolution phenomena in imaging [3, 8].

The scattering coefficients were proved to be felicitous to design enhanced near invis-
ibility cloaks in acoustic and electromagnetic media [6, 7]. The invisibility cloaking is an
exciting area of interest nowadays. The idea of invisibility cloaking has been proved to be
scientifically realizable in many investigations (see, for instance, [22–25, 28, 32, 41]). Sig-
nificant progress has been made recently on the control of conductivity equations [5, 24, 25],
acoustic [6, 9, 13], electromagnetic [7, 10] and elastic waves [17–19, 26] using curvilinear
transformations of coordinates. In fact, an invisibility cloak is perceived as a meta-material
that maps a concealment region into a surrounding shell by virtue of a transformation and
thereby making the material parameters strongly heterogeneous and anisotropic, however
fulfilling impedance matching with the surrounding vacuum.

The aim of this article is three-fold: (a) to present the ESC and discuss some of their
properties indispensable for this investigation, (b) to propose and analyze a reconstruction
framework for the recovery of the ESC to cater to direct and inverse scattering problems,
(c) to design scattering coefficients vanishing elastic structures for the enhancement of the
nearly elastic cloaking devices. We restrict ourselves to a two-dimensional case, however,
the three-dimensional case is amenable to the same treatment with slight changes. First, we
consider elastic wave scattering from an inclusion embedded in an otherwise homogeneous
medium and define the associated ESC using the cylindrical eigenfunctions of the Lamé
equation and the integral representation of the scattered field in terms of layer potentials.
Then, a least-squares optimization algorithm is designed for the reconstruction of the sig-
nificant ESC from the full aperture Multi-Static Response (MSR) data collected using a
circular acquisition system. Multistatic imaging involves two steps. The first step consists
in recording the waves generated by point sources on an array of receivers. The second
step consists in processing the recorded matrix data in order to estimate some features of
the medium [2, 4]. The stability, truncation error and maximal resolving order of the re-
construction procedure are analytically quantified. The results contained in this article can
cater to many inverse scattering problems, especially for shape identification and classifica-
tion in elastic media. The interested readers are referred to [29] and articles cited therein for
comprehensive details on shape identification in elastic media. Finally, we design mathemat-
ical structures with vanishing scattering coefficients (S-vanishing structures) and elaborate
a framework for the enhancement of nearly elastic cloaking.

The contents of this article are organized in the following manner. Some notation and a
few preliminary results on layer potential theory of elastic scattering are collected in Sect. 2.
In Sect. 3, the ESC are defined and their important features are discussed. Section 4 is ded-
icated to the reconstruction framework for the ESC. The enhancement procedure for elastic
cloaking is elaborated in Sect. 5. Finally, in Sect. 6, we sum up the important contributions of
this investigation and discuss interesting applications of the ESC in mathematical imaging.
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2 Elements of Layer Potential Theory

Since this article is concerned with elastic scattering and the integral formulation of the
scattered field is the key component to define the ESC, we feel it best to pause and introduce
some background material from layer potential theory for linear time-harmonic elasticity.
For details beyond those we provide in this section, please refer to the monographs [1, 27].

2.1 Preliminaries and Notation

To simplify matters, we confine ourselves to the two-dimensional case throughout this arti-
cle. However, the three-dimensional case is amenable to the same treatment with appropriate
changes.

For any sufficiently smooth, open and bounded domain Ω ⊂ R
2 with C2-boundary ∂Ω ,

we define L2(Ω) in the usual way with norm

‖u‖L2(Ω) :=
(∫

Ω

|u|2dx
)1/2

,

and the Hilbert space H 1(Ω) by

H 1(Ω) := {
u ∈ L2(Ω) |∇u ∈ L2(Ω)

}
,

with norm

‖u‖H 1(Ω) := (‖u‖2
L2(Ω)

+ ‖∇u‖2
L2(Ω)

)1/2
.

We define H 2(Ω) as the space of functions u ∈ H 1(Ω) such that ∂iju ∈ L2(Ω) for all
i, j = 1,2, and H 3/2(Ω) as the interpolation space [H 1(Ω),H 2(Ω)]1/2. Let t be the tangent
vector to ∂Ω at point x and let ∂/∂t denote the tangential derivative. Then, we say that
u ∈ H 1(∂Ω) if u ∈ L2(∂Ω) and ∂u/∂t ∈ L2(∂Ω). Refer to [12] for further details.

Consider a homogeneous isotropic elastic material, occupying a bounded domain
D ⊂R

2 with connected C2-boundary ∂D, compressional and shear moduli λ1 ∈ R+ and
μ1 ∈R+ respectively, and density ρ1 ∈R+. Let the exterior domain R

2 \ D be loaded with
different elastic material having parameters ρ0, λ0,μ0 ∈ R+ such that

(λ0 − λ1)
2 + (μ0 − μ1)

2 �= 0 and (λ0 − λ1)(μ0 − μ1) ≥ 0. (2.1)

To facilitate latter analysis, we introduce piecewise defined parameters

λ(x) := λ0χ(R2\D)(x) + λ1χ(D)(x),

μ(x) := μ0χ(R2\D)(x) + μ1χ(D)(x),

ρ(x) := ρ0χ(R2\D)(x) + ρ1χ(D)(x),

where χΩ represents the characteristic function of a domain Ω . We also define the linear
elasticity operator Lλ0,μ0 and the surface traction operator (or conormal derivative) ∂/∂ν,
associated with parameters (λ0,μ0) by

Lλ0,μ0 [w] := [
μ0�w + (λ0 + μ0)∇∇ · w

]
,
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and

∂w
∂ν

:= λ0(∇ · w)n + 2μ0

(∇sw
)
n,

for all sufficiently smooth vector fields w : R2 → R
2, where n ∈ R

2 represents the outward
unit normal to ∂D, ∇sw = (∇w + (∇w)	)/2 is the linear elastic strain and the superscript
	 reflects a transpose operation.

Let ω > 0 be the angular frequency of the mechanical oscillations. We denote the out-
going fundamental solution of the time-harmonic elasticity equation in R

2 with parameters
(λ0,μ0, ρ0) by �ω , i.e., for all x ∈R

2,

(
Lλ0,μ0 + ρ0ω

2I
)
�ω(x) = −δ0(x)I2, ∀x ∈ R

2,

subject to the Kupradze’s outgoing radiation conditions. Here δy is the Dirac mass at y, I
is the identity operator, and I2 ∈ R

2×2 is the identity matrix. Let κα := ω/cα for α = P,S,
where the constants cS = √

μ0/ρ0 and cP = √
λ0 + 2μ0/ρ0 refer to background shear and

pressure wave speeds respectively. It is well known that (see, for instance, [35])

�ω(x) = 1

μ0

[(
I2 + 1

κ2
S

∇∇	
)

g(x, κS) − 1

κ2
S

∇∇	g(x, κP )

]
, x ∈R

2 \ {0}. (2.2)

The function g(·, κα) is the fundamental solution to the Helmholtz operator −(� + κ2
αI) in

R
2 with wave-number κα ∈R+ (κα = κP or κα), i.e.,

(
� + κ2

αI
)
g(x, κα) = −δ0(x), x ∈R

2,

subject to the Sommerfeld’s outgoing radiation condition

lim|x|→+∞ |x|1/2

[
∂g(x, κα)

∂n
− iκαg(x, κα)

]
= 0, x ∈R

2,

where ∂/∂n represents the normal derivative. In two dimensions,

g(x, κα) = i

4
H

(1)

0 (κα|x|), ∀x ∈R
2 \ {0}, (2.3)

where H
(1)

0 is the Hankel function of first kind of order zero (see, for instance, [36]).
Throughout this article, we use the convention �ω(x,y) = �ω(x − y), i.e.,

(
Lλ0,μ0 + ρ0ω

2I
)
�ω(x,y) = −δy(x)I2, ∀x,y ∈R

2.

We also reserve the notation α and β to represent pressure (P) and shear (S) wave-modes,
i.e., α,β ∈ {P,S}.

2.2 Scattered Field and Integral Representation

Let us begin this subsection by introducing the elastic single layer potential

Sω
D[ϕ](x) :=

∫
∂D

�ω(x,y)ϕ(y)dσ (y), x ∈ R
2 \ ∂D,
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for all densities ϕ ∈ L2(∂D)2. Here and throughout this article dσ denotes the infinitesimal
boundary differential element. We also need the boundary integral operator

(
Kω

D

)∗[ϕ](x) = p.v.
∫

∂D

∂

∂νx
�ω(x,y)ϕ(y)dσ (y), a.e. x ∈ ∂D,

for all ϕ ∈ L2(∂D)2. Here p.v. stands for Cauchy principle value of the integral and the
surface traction of matrix �ω is defined column-wise, i.e., for all constant vectors p ∈ R

2

[
∂�ω

∂ν

]
p = ∂[�ωp]

∂ν
.

We recall that the traces Sω
D[ϕ]|± and ∂(Sω

D[ϕ])/∂ν|± are well-defined and satisfy the jump
conditions (see, for instance, [14])

⎧⎪⎨
⎪⎩
Sω

D[ϕ]|+(x) = Sω
D[ϕ]|−(x),

∂(Sω
D[ϕ])
∂ν

∣∣∣∣±(x) =
(

±1

2
I + (Kω

D)∗
)

ϕ(x), a.e. x ∈ ∂D.
(2.4)

Here and throughout this investigation subscripts + and − indicate the limiting values across
the boundary ∂D from outside and from inside domain D respectively, i.e., for any func-
tion ψ

ψ |±(x) = lim
ε→0+ ψ(x ± εn), x ∈ ∂D.

Consider a time harmonic incident elastic field uinc satisfying
(
Lλ0,μ0 + ρ0ω

2I
)
uinc(x) = 0, ∀x ∈R

2. (2.5)

Then, the total displacement field utot = usc + uinc in the presence of inclusion D satisfies
the transmission problem

{(
Lλ,μ + ρω2I

)
utot(x) = 0, ∀x ∈R

2,(
utot − uinc

)
(x) =: usc(x) satisfies Kupradze’s radiation condition as |x| → +∞,

(2.6)
where usc denotes the scattered field. It is recalled that the total field utot admits the integral
representation (see [1, Theorem 1.8])

utot(x,ω) =
{

uinc(x,ω) + Sω
D[ψ](x,ω), x ∈ R

2 \ D,

S̃ω
D[ϕ](x,ω), x ∈ D,

(2.7)

in terms of single layer potentials Sω
D and S̃ω

D , where the densities ϕ,ψ ∈ L2(∂D)2 satisfy
the system of integral equations

⎛
⎝ S̃ω

D −Sω
D

∂

∂ν̃
S̃ω

D

∣∣∣− − ∂

∂ν
Sω

D

∣∣∣+

⎞
⎠
(

ϕ

ψ

)
=
⎛
⎝ uinc

∂uinc

∂ν

⎞
⎠
∣∣∣∣∣
∂D

. (2.8)

Here a superposed ∼ is used to distinguish the single layer potential and the surface traction
defined using interior Lamé parameters (λ1,μ1, ρ1). To simply matters, the dependence of
uinc, usc, utot, ϕ and ψ on frequency ω is suppressed unless it is necessary.



Two-Dimensional Elastic Scattering Coefficients and Enhancement. . .

The following result from [1, Theorem 1.7] guarantees the unique solvability of the sys-
tem (2.8) and consequently that of problems (2.6) and (2.7).

Theorem 2.1 Let D be a Lipschitz bounded domain in R
2 with parameters 0 < λ1,μ1,

ρ1 < ∞ satisfying condition (2.1) and let ω2ρ1 be different from Dirichlet eigenvalues of
the operator −Lλ1,μ1 on D. For any function uinc ∈ H 1(∂D)2 there exists a unique solution
(ϕ,ψ) ∈ L2(∂D)2 × L2(∂D)2 to the integral system (2.8). Moreover, there exists a constant
C > 0 such that

‖ϕ‖L2(∂D)2 + ‖ψ‖L2(∂D)2 ≤ C

(
‖uinc‖H 1(∂D)2 +

∥∥∥∥∂uinc

∂ν

∥∥∥∥
L2(∂D)2

)
. (2.9)

3 Elastic Scattering Coefficients

This section is dedicated to defining ESC in two dimensions. To facilitate the definition of
ESC, we first recall some background material on cylindrical eigenfunctions of the Lamé
equation, and present the multipolar expansions of the exterior scattered elastic field and the
Kupradze fundamental solution �ω in the next subsection.

3.1 Cylindrical Elastic Waves and Multipolar Expansions

In the sequel, x̂ := x/|x| for all x ∈ R
2 \ {0} and S := {x ∈R

2 |x ·x = 1}. Any position vector
x := (x1, x2) ∈R

2 is equivalently expressed as x = (|x| cosϕx, |x| sinϕx), where ϕx ∈ [0,2π)

denotes the polar angle of x. Denote by {êr , êθ } the orthonormal basis vectors for the polar
coordinate system in two dimensions, i.e.,

êr = (cosϕx, sinϕx)
	 and êθ = (− sinϕx, cosϕx)

	.

We will also require the following curl operators in R
2

�∇⊥ × f := (∂2f,−∂1f )	 and ∇⊥ × w := ∂1w2 − ∂2w1,

for any smooth scalar function f and vector w := (w1,w2)
	.

Consider the complex surface vector harmonics in two-dimensions defined by

Pm(x̂) := eimϕx êr and Sm(x̂) := eimϕx êθ , ∀m ∈ Z.

It is known, see [35] for instance, that these cylindrical surface vector potentials enjoy the
orthogonality properties

∫
S

Pn(x̂) · Pm(x̂)dσ (x̂) = 2πδnm, (3.1)

∫
S

Sn(x̂) · Sm(x̂)dσ (x̂) = 2πδnm, (3.2)

∫
S

Pm(x̂) · Sm(x̂)dσ (x̂) = 0, ∀n,m ∈ Z, (3.3)

where δnm is the Kronecker’s delta function and the superposed bar indicates complex con-
jugation.



T. Abbas et al.

Let H(1)
m and Jm be the cylindrical Hankel and Bessel functions of first kind of order

m ∈ Z, respectively. For each κ > 0, κ ∈ {κP , κS}, the wave functions vm(·, κ) and wm(·, κ)

are constructed by

vm(x, κ) := H(1)
m (κ|x|)eimϕx and wm(x, κ) := Jm(κ|x|)eimϕx .

It is easy to verify that vm is an outgoing radiating solution to the Helmholtz equation

�v + κ2v = 0, in R
2 \ {0},

and that wm is an entire solution to

�v + κ2v = 0, in R
2.

Using surface vector harmonics Pm, Sm and functions vm, wm, we define

HP
m(x, κP ) := ∇vm(x, κP ) = κP

(
H(1)

m (κP |x|))′Pm(x̂) + im

|x| H
(1)
m (κP |x|)Sm(x̂), (3.4)

HS
m(x, κS) := �∇⊥ × (

vm(x, κS)
)= im

|x| H
(1)
m (κS |x|)Pm(x̂) − κS

(
H(1)

m (κS |x|))′Sm(x̂), (3.5)

and

JP
m(x, κP ) := ∇wm(x, κP ) = κP

(
Jm(κP |x|))′Pm(x̂) + im

|x| Jm(κP |x|)Sm(x̂), (3.6)

JS
m(x, κS) := �∇⊥ × (

wm(x, κS)
)= im

|x| Jm(κS |x|)Pm(x̂) − κS

(
Jm(κS |x|))′Sm(x̂), (3.7)

for all κα > 0 and m ∈ Z. Here

(
H(1)

m

)′
(t) := d

dt

[
H(1)

m (t)
]

and (Jm)′(t) := d

dt

[
Jm(t)

]
.

For simplicity, the dependence of Jα
m and Hα

m on wave-numbers κα is suppressed henceforth.
The functions JP

m and JS
m are the longitudinal and transverse interior eigenvectors of the

Lamé system in R
2. Similarly, HP

m and HS
m are the exterior eigenvectors of the Lamé system

in R
2 \ {0}. Following result on the completeness and linear independence of the interior

eigenvectors (JP
m,JS

m) and exterior eigenvectors (HP
m,HS

m) with respect to L2(∂D)2-norm
holds. The interested readers are referred to [42, Lemmas 1–3] for further details.

Lemma 3.1 If D ⊂ R
2 is a bounded simply connected domain containing origin and ∂D is

a closed Lyapunov curve then the set {HP
m,HS

m : m ∈ Z} is complete and linearly indepen-
dent in L2(∂D)2. Moreover, if ρ1ω

2 is not a Dirichlet eigenvalue of the Lamé equation on D

then the set {JP
m,JS

m : m ∈ Z} is also complete and linearly independent in L2(∂D)2.

As a direct consequence of Lemma 3.1, corresponding to every incident field uinc satis-
fying (2.5), there exist constants aP

m, aS
m ∈C, for all m ∈ Z, such that

uinc(x) =
∑
m∈Z

(
aS

mJS
m(x) + aP

mJP
m(x)

)
, x ∈R

2. (3.8)
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In particular, a general plane incident wave of the form

uinc(x) = 1

ρ0c
2
S

eiκSx·d d⊥ + 1

ρ0c
2
P

eiκP x·d d

= −
(

i

ρ0c
2
SκS

[ �∇⊥ × eiκSx·d]+ i

ρ0c
2
P κP

[∇eiκP x·d]), (3.9)

can be written in the form (3.8) with

aβ
m := aβ

m

(
uinc

)= − i

ρ0c
2
βκβ

eim(π/2−θd), β ∈ {P,S}, (3.10)

where d = (cos θd, sin θd) ∈ S is the direction of incidence and d⊥ is a vector perpendicular
to d. In fact, this decomposition is a simple consequence of Jacobi-Anger decomposition of
the scalar plane wave, i.e.,

eiκx·d =
∑
m∈Z

eim(π/2−θd)Jm(κ|x|)eimϕx .

Moreover, for all x,y ∈ R
2 such that |x| > |y| and for any vector p ∈ R

2 independent of x,

�ω(x,y)p = i

4ρ0ω2

∑
n∈Z

(
HP

n (x)
[
JP

n (y) · p
]+ HS

n(x)
[
JS

n(y) · p
])

. (3.11)

The interested readers are referred to Appendix A for the derivation of this expansion. Here
�ω(x,y)p is a general elastic field generated by a point source at y in the direction p and
observed at point x away from y.

3.2 Scattering Coefficients of Elastic Inclusions

The multipolar expansion (3.11) enables us to derive such an expansion for the single layer
potential Sω

D[ψ] for all x ∈R
2 \ D sufficiently far from the boundary ∂D. Consequently, by

virtue of the integral representation (2.7), the scattered field can be expanded as

usc(x) = − i

4ρ0ω2

∑
n∈Z

(
HP

n (x)

∫
∂D

[
JP

n (y) · ψ(y)
]
dσ(y)

+ HS
n(x)

∫
∂D

[
JS

n(y) · ψ(y)
]
dσ(y)

)
. (3.12)

Let us define the elastic scattering coefficients as follows.

Definition 3.2 Let (ϕβ
m,ψβ

m), for m ∈ Z, be the solution of (2.8) corresponding to uinc = Jβ
m.

Then, the elastic scattering coefficients, Wα,β
m,n , of D �R

2 are defined by

Wα,β
m,n = Wα,β

m,n[D,λ0, λ1,μ0,μ1, ρ0, ρ1,ω] :=
∫

∂D

[
Jα

n(y) · ψβ
m(y)

]
dσ(y), ∀m,n ∈ Z,

(3.13)

where α and β indicate wave-modes P or S.
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Following result on the decay rate of the ESC holds.

Lemma 3.3 There exist constants Cα,β > 0 for each wave-mode α,β = P,S such that

|Wα,β
m,n[D,λ0, λ1,μ0,μ1, ρ0, ρ1,ω]| ≤ C

|n|+|m|−2
α,β

|n||n|−1|m||m|−1
, (3.14)

for all m,n ∈ Z and |m|, |n| → +∞.

Proof The proof of the estimate (3.14) is very similar to Lemma 2.1 in [6] for the acoustic
scattering coefficients. For the sake of completeness, we fix the ideas of the proof in the
sequel. Recall the asymptotic behavior

Jm(t) �
√

1

2π |m|
(

et

2|m|
)|m|

,

of Bessel functions of first kind with respect to the order |m| → +∞ when the argument t is
fixed [38, Formula 10.19.1]. Then, by using the recurrence formulae (see, for instance, [38,
Formula 10.6.2])

J ′
m(t) = −Jm+1(t) + m

t
Jm(t) and J ′

m(t) = Jm−1(t) − m

t
Jm(t),

one obtains

|J ′
m(t)| ≤

√
1

2π(|m| + 1)

(
et

2(|m| + 1)

)|m|+1

+ |m|
t

√
1

2π |m|
(

et

2|m|
)|m|

.

Consequently, by the definitions (3.6)–(3.7) of Jα
n(x) and Theorem 2.1, we have

∥∥Jα
n

∥∥
L2(∂D)2 ≤

(
Cα

1

|n|
)|n|−1

,

and

∥∥ψβ
m

∥∥
L2(∂D)2 ≤ C

(∥∥Jβ
m

∥∥
L2(∂D)2 +

∥∥∥∥∂Jβ
m

∂ν

∥∥∥∥
L2(∂D)2

)
≤
(

C
β

2

|m|
)|m|−1

,

for some constants Cα
1 and C

β

2 . Finally, the result follows by substituting the estimates for
the norms of ψβ

m and Jα
n in the definition of the scattering coefficients and choosing Cα,β

appropriately in terms of Cα
1 and C

β

2 . �

3.3 Connections with Scattered Field and Far Field Amplitudes

Consider a general incident field uinc of the form (3.8). By the superposition principle, the
solution (ϕ,ψ) of (2.8) is given by

ψ(x) =
∑
m∈Z

[
aP

mψP
m + aS

mψS
m

]
and ϕ(x) =

∑
m∈Z

[
aP

mϕP
m + aS

mϕS
m

]
.
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This, together with Definition 3.2 of the scattering coefficients and the expansion (3.12),
furnishes the asymptotic expansion

usc(x) =
∑
n∈Z

[
γ P

n HP
n (x) + γ S

n HS
n(x)

]
, (3.15)

of the scattered field for all x ∈R
2 \ D sufficiently far from ∂D. Here

γ β
n =

∑
m∈Z

(
dP

mWβ,P
m,n + dS

mWβ,S
m,n

)
, β ∈ {P,S}, (3.16)

with dβ
m := iaβ

m/4ρ0ω
2. Notice that for the plane incident wave given by (3.9) the coefficients

aβ
m are given by (3.10). In that case

dβ
m := i

4ρ0ω2
aβ

m = 1

(2ρ0ωcβ)2κβ

eim(π/2−θd). (3.17)

In order to substantiate the connection between ESC and far field scattering amplitudes,
we recall that the cylindrical Hankel function H(1)

n admits the far field behavior

H(1)
n (κ|x|) ∼ eiκ|x|

√|x|

√
2

πκ
e−iπ(n/2+1/4) + O

(|x|−3/2
)
, (3.18)

(
H(1)

n (κ|x|))′ ∼ i
eiκ|x|
√|x|

√
2

πκ
e−iπ(n/2+1/4) + O

(|x|−3/2
)
, (3.19)

as |x| → +∞ (see, for instance, [38, Formulae 10.17.5 and 10.17.11]). Here, the notation ∼
indicates that only leading order terms are retained. Consequently, the far field behavior of
the functions HP

n and HS
n is predicted as

HP
n (x) ∼ eiκP |x|

√|x| A∞,P
n Pn(x̂) and HS

n(x) ∼ eiκS |x|
√|x| A∞,S

n Sn(x̂), as |x| → +∞,

where

A∞,P
n := (i + 1)κP e−inπ/2

√
1

πκP

and A∞,S
n := −(i + 1)κSe

−inπ/2

√
1

πκS

.

Thus, for all x ∈ R
2 \ D such that |x| → +∞, the scattered field usc in (3.15) admits the

asymptotic expansion

usc(x) = eiκP |x|
√|x|

∑
n∈Z

[
γ P

n A∞,P
n Pn(x̂)

]+ eiκS |x|
√|x|

∑
n∈Z

[
γ S

n A∞,S
n Sn(x̂)

]
. (3.20)

On the other hand, the Kupradze radiation condition guarantees the existence of two analytic
functions u∞

P : S →C
2 and u∞

S : S →C
2 such that

usc(x) = eiκP |x|
√|x| u∞

P (x̂) + eiκS |x|
√|x| u∞

S (x̂) + O

(
1

|x|3/2

)
, as |x| → +∞. (3.21)
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The functions u∞
P and u∞

S are respectively known as the longitudinal and transverse far-
field patterns or the scattering amplitudes. Comparing (3.20) and (3.21) the following result
is readily proved, which substantiates that the far-field scattering amplitudes admit natural
expansions in terms of scattering coefficients.

Theorem 3.4 If uinc is the incident field given by (3.8) then the corresponding longitudinal
and transverse scattering amplitudes are given by

u∞
P [D,λ0, λ1,μ0,μ1, ρ0, ρ1,ω](x̂) =

∑
n∈Z

γ P
n A∞,P

n Pn(x̂),

u∞
S [D,λ0, λ1,μ0,μ1, ρ0, ρ1,ω](x̂) =

∑
n∈Z

γ S
n A∞,S

n Sn(x̂),

where the coefficients γ P
n and γ S

n are defined in (3.16).

3.4 Reciprocity and Conservation of Energy

In this section, we discuss some properties of the elastic scattering coefficients resulting
from the principles of reciprocity and conservation of energy in elastic media. These prop-
erties can be very useful as accuracy checks or as constraints for the numerical recovery
procedures for the reconstruction of the elastic scattering coefficients from measured fields
discussed in Sect. 4.

3.4.1 Reciprocity

Reciprocity refers to the link between the far-field amplitudes of the scattered field in two
reciprocal configurations: (a) when the scattered field is radiated by a source with a specific
incidence direction and is received along another direction, (b) when the positions of source
and receiver are swapped and the orientation of all momenta is reversed. More precisely,
if u∞

α (x̂; d̂, β) is the far field amplitude of the α-scattered field along x̂ when a β-wave
is incident along d̂ then the reciprocity in elastic media refers to the properties (see, for
instance, [46, Eqs. 51–53], [15, 45])

u∞
α (x̂; d̂, α) = u∞

α (−d̂;−x̂, α), α = P,S,

1√
κS

u∞
S (x̂; d̂,P ) · êθ = − 1√

κP

u∞
P (−d̂;−x̂, S) · êr .

In particular, these properties dictate that the infinite matrix containing the ESC of an inclu-
sion, defined by

W∞ :=
(

WP,P∞ WS,P∞
WP,S∞ WS,S∞

)
with

(
Wα,β

∞
)
mn

:= Wα,β
m,n, ∀m,n ∈ Z,

should be Hermitian [46, 49]. In fact, we have the following result.

Lemma 3.5 The global matrix of scattering coefficients W∞ is Hermitian, i.e., for all
n,m ∈ Z and α,β ∈ {P,S}

Wα,β
m,n[D,λ0, λ1,μ0,μ1, ρ0, ρ1,ω] = W

β,α
n,m [D,λ0, λ1,μ0,μ1, ρ0, ρ1,ω].



Two-Dimensional Elastic Scattering Coefficients and Enhancement. . .

Proof Refer to Appendix B. �

In addition to the above reciprocity induced symmetry of W∞, the following result also
holds.

Lemma 3.6 For all m,n ∈ Z and α,β ∈ {P,S},

W
α,β
−m,−n[D,λ0, λ1,μ0,μ1, ρ0, ρ1,ω] = (−1)m+nW

α,β
m,n[D,λ0, λ1,μ0,μ1, ρ0, ρ1,ω].

Proof Let ψ
β
−m be the unique solution of the integral system (2.8) with uinc(x) := Jβ

−m(x).
Then, by definition

W
α,β
−m,−n[D] :=

∫
∂D

[
Jα−n(y) · ψβ

−m(y)
]
dσ(y).

On the other hand, recall that the cylindrical Bessel functions possess the connection prop-
erty (see, for instance, [38, Formula 10.4.1])

J−m(x) = (−1)mJm(x).

Therefore, for all m ∈ Z and x ∈R
2,

Jβ
−m(x) := (−1)mJβ

m(x).

Consequently, by uniqueness of the solution of (2.8), one obtains the relation ψ
β
−m =

(−1)mψβ
m and thus

W
α,β
−m,−n[D] =(−1)m+n

∫
∂D

[
Jα

n(y, κα) · ψβ
m(y)

]
dσ(y) = (−1)m+nW

α,β
m,n[D],

which is the required result. �

3.4.2 Conservation of Energy

The conservation of energy within any bounded elastic domain, say Ω , without energy dissi-
pation and compactly containing the inclusion D states that the rate of the energy flux across
the boundary of Ω must be zero. This renders the so-called optical theorem of scattering or
forward scattering amplitude theorem that links the scattering cross section or the rate at
which the energy is scattered by D to the far field amplitude of its scattering signature. Con-
sider for instance that the domain Ω is a disk with a very large radius R → +∞. Then, by
virtue of the far-field expansion of the scattered elastic field, the optical theorem states that
(see, for instance, [15, 45])

∫ 2π

0

(
1

κP

∣∣u∞
P (x̂; d̂, α)

∣∣2 + 1

κS

∣∣u∞
S (x̂; d̂, α)

∣∣2)dθ

=
⎧⎨
⎩

−2
√

2π
κP

�m{√iu∞
P (d̂; d̂,P ).êr}, α = P ,

2
√

2π
κS

�m{√iu∞
S (d̂; d̂, S).êθ }, α = S.

(3.22)

This leads to the following statement of the optical theorem in terms of W∞.
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Theorem 3.7

1

4ρ0ω2
W∞W∞ = −�mW∞ = i

2
(W∞ − W∞). (3.23)

Proof Refer to Appendix C. �

It is worthwhile mentioning that the identity (3.23) is slightly different from the one
proved by [46, Eq. 100] for T-matrices. This is simply due to the choice of bases functions
Jα and Hα and the corresponding multipolar expansion of the fundamental solution. The
matrix W∞ is not unitary, however, the corresponding scattering matrix can be proved to
be unitary by invoking relation (3.23). The interested readers are referred to [49] for related
discussion. The relation (3.23) provides a natural constraint on W∞ which can be efficiently
used to reduce the ill-posedness of the reconstruction procedure for ESC of an inclusion
from scattering data (see, for instance, [39]).

4 Reconstruction of Scattering Coefficients

The matrix approach has been proved to be very efficient and powerful for direct and inverse
scattering simulations and to study the effect of material contrast, shape and orientation of an
obstacle with respect to the incident field. For acoustic and electromagnetic wave scattering
different techniques have been devised to recover truncated T-matrices from the scattered
wave in the far field regime (see, for instance, [11, 20, 21, 30, 31, 33, 34] and references
therein). On the other hand, up to the best of knowledge of the authors, no attempt has been
made to recover T-matrices for elastic wave scattering. Unlike T-matrix computation for
forward scattering, ESC admit explicit expressions in terms of boundary densities ψm which
satisfy the integral system (2.8). In order to solve (2.8), there are several efficient multipole
methods available at hand. Therefore, the ESC corresponding to a given inclusion can be
directly computed. Our interest in the ESC lies in their applications in inverse scattering
problems wherein one only has a limited information of the scattered field in the exterior
domain whereas the location and the morphology of the inclusion are usually unknown.
Towards this end, we design a mathematical procedure based on least-squares minimization
using MSR data and provide theoretical details of the stability, truncation error, and maximal
resolving order in this section. To simplify the matters, we consider the full aperture case
with a circular acquisition system.

4.1 MSR Data Acquisition

Let {xs}s=1,...,Ns and {xr}r=1,...,Nr be the sets of locations of the point sources and point
receivers, and {ds ,d⊥

s }s=1,...,Ns and {dr ,d⊥
r }r=1,...,Nr (such that ds · d⊥

s = 0 = dr · d⊥
r ) be the

corresponding unit directions of incidence and reception respectively for some Nr,Ns ∈ N.
Let the points {xs} and {xr} be uniformly distributed over the circle ∂BR(0) with radius R

centered at origin such that |xr | = R = |xs | and θr = θxr = 2πr/Nr and θs = θxs = 2πs/Ns .
We consider a regime in which R is large enough so that the terms of order O(R−3/2) are
negligible. For simplicity, it is assumed that D contains the origin which is reasonable since
we are in sufficiently far field regime and the inclusion D can be envisioned as sufficiently
centered in BR(0). This assumption can be easily removed by invoking transformation rules
for the scattering coefficients corresponding to coordinate translation.
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Let Fs and Gs , for all s = 1, . . . ,Ns , be the pressure and shear type incident waves
emitted from point xs with direction of incidence ds , i.e.,

Fs(x) := 1

ρ0c
2
P

dse
iκP x·ds and Gs(x) := 1

ρ0c
2
S

d⊥
s eiκSx·ds .

Let utot
Fs

(x) and utot
Gs

(x) (resp. usc
Fs

(x) and usc
Gs

(x)) be the corresponding total (resp. scattered)
fields. For all incident fields Fs and Gs the scattered fields are recorded at all points xr

along the directions dr and d⊥
r so that four MSR matrices A�,�′ = (A�,�′

sr )s=1,...Ns , r=1,...,Nr , for
�, �′ ∈ {‖,⊥}, are obtained with elements

A‖,‖
sr = ([

usc
Fs

(xr )
] · dr

)
sr

,

A‖,⊥
sr = ([

usc
Fs

(xr )
] · d⊥

r

)
sr

,

A⊥,‖
sr = ([

usc
Gs

(xr )
] · dr

)
sr

,

A⊥,⊥
sr = ([

usc
Gs

(xr )
] · d⊥

r

)
sr

,

at a given frequency ω. Note that, by virtue of expansions (3.8), (3.15) and (3.16), the ele-
ments of the MSR matrices admit the expansions

A‖,‖
sr =

∑
n,m∈Z

dP
m(s)

(
WP,P

m,n

[
HP

n (xr ) · dr

]+ WS,P
m,n

[
HS

n(xr ) · dr

])
, (4.1)

A‖,⊥
sr =

∑
n,m∈Z

dP
m(s)

(
WP,P

m,n

[
HP

n (xr ) · d⊥
r

]+ WS,P
m,n

[
HS

n(xr ) · d⊥
r

])
, (4.2)

A⊥,‖
sr =

∑
n,m∈Z

dS
m(s)

(
WP,S

m,n

[
HP

n (xr ) · dr

]+ WS,S
m,n

[
HS

n(xr ) · dr

])
, (4.3)

A⊥,⊥
sr =

∑
n,m∈Z

dS
m(s)

(
WP,S

m,n

[
HP

n (xr ) · d⊥
r

]+ WS,S
m,n

[
HS

n(xr ) · d⊥
r

])
, (4.4)

where dP
m(s) = dP

m(Fs) and dS
m(s) = dS

m(Gs) are the coefficients given by (3.17) correspond-
ing to incident fields Fs and Gs respectively. Here the parameter s in the argument of dβ

m

reflects its connection with s-th incident field.
Let us now introduce a cut-off parameter K such that the terms with |n| > K or

|m| > K are truncated in the expansions (4.1)–(4.4) and let E�,�′ = (E�,�′
sr ) ∈ C

Ns×Nr , for
�, �′ ∈ {‖,⊥}, be the corresponding matrices of truncation errors thus induced. Let us
also introduce the matrices Wα,β ∈ C

(2K+1)×(2K+1), Xα ∈ C
Ns×(2K+1), Yα

‖ ∈ C
Nr×(2K+1) and

Yα
⊥ ∈C

Nr×(2K+1) by
(
Wα,β

)
mn

:= Wα,β
m,n,(

Xβ
)
sm

:= dβ
m(s),

(
Yα

‖
)
rn

:= Hα
n(xr ) · dr ,(

Yα
⊥
)
rn

:= Hα
n(xr ) · d⊥

r ,

and the block matrices

A =
(

A‖,‖ A‖,⊥
A⊥,‖ A⊥,⊥

)
∈C

2Ns×2Nr ,
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W =
(

WP,P WS,P

WP,S WS,S

)
∈C

(4K+2)×(4K+2),

E =
(

EPP ESP

EPS ESS

)
∈C

2Ns×2Nr ,

X =
(

XP O2K+1

O2K+1 XS

)
∈ C

2Ns×(4K+2),

Y =
(

YP
‖ YS

‖
YP

⊥ YS
⊥

)
∈C

2Nr×(4K+2),

where O2K+1 ∈ R
Ns×(2K+1) is the zero matrix. It can be seen after fairly easy manipulations

that the global MSR matrix can be expressed as

A = XWY∗ + E,

where ∗ reflects the Hermitian transpose of a matrix, i.e., A∗ = A
	

.
The following result is readily proved thanks to Lemma 3.5.

Lemma 4.1 The global block matrix W is Hermitian, i.e., W = W∗.

4.2 Least-Squares Minimization Algorithm

Let us define the linear transformation L :C(4K+2)×(4K+2) →C
2Ns×2Nr by

L(M) := XMY∗,

and let Nnoise ∈ C
2Ns×2Nr denote the measurement noise. For simplicity, we assume that

each entry (Nnoise)sr is an independent and identically distributed complex random noise
with mean zero and variance σ 2

noise such that

Nnoise = σnoiseN0 with (N0)sr ∼ N (0,1).

In this subsection, we consider the noisy measurements

A = XWY∗ + E + Nnoise = L(W) + E + Nnoise, (4.5)

and design a procedure to retrieve the solution W. Let us reconstruct a least-squares mini-
mization solution for the linear system (4.5) in ker L⊥ by

Ŵ := arg min
M∈ker L⊥

‖L(M) − A‖F , (4.6)

where ‖ · ‖F denotes the Frobenius norm of matrices and ker L denotes the kernel of the
linear operator L. Note that if the cut-off parameter K is such that (2K + 1) < Nr,Ns and
both matrices X and Y are full rank then L is rank preserving and ker L is trivial. Conse-
quently, the admissible set for the least-squares minimization turns out to be R

(4K+2)×(4K+2)

and Ŵ can be explicitly calculated in the absence of measurement noise. In this case, Xα is
a Fourier matrix by virtue of (3.4), (3.5) and (3.10) and

(
Xα

)∗
Xα = Ns

|bα|2 I2K+1 with bα = (2ρ0ωcβ)2κβ, (4.7)
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where I2K+1 ∈R
(2K+1)×(2K+1) is the identity matrix. Consequently,

X∗X =
(

(XP )∗XP O2K+1

O2K+1 (XS)∗XS

)
= NsZX, (4.8)

with

ZX :=
(

|bP |−2I2K+1 O2K+1

O2K+1 |bS |−2I2K+1

)
.

Note also that

(
Yα

‖
)∗

Yβ

‖ = NrCα,β and
(
Yα

⊥
)∗

Yβ

⊥ = NrDα,β,

where Cα,β,Dα,β ∈ R
(2K+1)×(2K+1) are diagonal matrices

Cα,β := diag
(
gα

−Kg
β

−K, . . . , gα
Kg

β

K,

)
,

Dα,β := diag
(
hα

−Kh
β

−K, . . . , hα
Kh

β

K

)
,

with

gP
m := κP

(
H(1)

m (κP R)
)′

and gS
m := im

R
H(1)

m (κSR), (4.9)

hP
m := im

R
H(1)

m (κP R) and hS
m := −κS

(
H(1)

m (κSR)
)′
. (4.10)

Therefore,

(Y)∗Y =
(

(YP
‖ )∗YP

‖ + (YP
⊥)∗YP

⊥ (YP
‖ )∗YS

‖ + (YP
⊥)∗YS

⊥
(YS

‖ )
∗YP

‖ + (YS
⊥)∗YP

⊥ (YS
‖ )

∗YS
‖ + (YS

⊥)∗YS
⊥

)

= Nr

(
CP,P + DP,P CP,S + DP,S

CS,P + DS,P CS,S + DS,S

)
.

It can be easily proved that Y∗Y becomes diagonal when the radius R of the imaging
domain ∂BR(0) is sufficiently large. Precisely, the following result holds.

Lemma 4.2 For the radius R of the ball BR(0) approaching to infinity the matrix Y∗Y
admits a decomposition

Y∗Y = NrZY + Q with ZY :=
(

CP,P O2K+1

O2K+1 DS,S

)
,

where Q = (q��′)�,�′=1...,4K+2 is such that |q��′ | ≤ CR−2 for some constant C ∈ R+ indepen-
dent of R.
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Proof Let C denote a generic constant that may vary at each step. Note that the matrix Y∗Y
can be decomposed as

Y∗Y := Nr

(
CP,P O2K+1

O2K+1 DS,S

)
+ Nr

(
DP,P CP,S + DP,S

CS,P + DS,P CS,S

)
. (4.11)

Recall that Cα,β and Dα,β are diagonal matrices and in particular

(
CS,S

)
mm

= m2

R2

∣∣H(1)
m (κSR)

∣∣2 and
(
DP,P

)
mm

= m2

R2

∣∣H(1)
m (κP R)

∣∣2.
By virtue of the decay property (3.18) of H(1)

m , as R → +∞, we have

∣∣(CS,S
)
mn

∣∣≤ C

R3
and

∣∣(DP,P
)
mn

∣∣≤ C

R3
.

Similarly, the decay properties (3.18)–(3.19) furnish

∣∣(CP,S
)
mn

∣∣≤ C

R2
and

∣∣(CS,P
)
mn

∣∣≤ C

R2
,

∣∣(DP,S
)
mn

∣∣≤ C

R2
and

∣∣(DS,P
)
mn

∣∣≤ C

R2
,

as R → +∞. This shows the decay of the elements of second matrix on right hand side
(RHS) of (4.11), which leads to the required form of Y∗Y for R → +∞. �

An important consequence of Lemma 4.2 and the orthogonality relation (4.8) is the fol-
lowing result substantiating that the linear operator L possesses a left pseudo-inverse when
R → +∞.

Theorem 4.3 If 2K + 1 ≤ Nr,Ns and matrices X and Y are full-rank then the linear oper-
ator L :C(4K+2)×(4K+2) → C

2Ns×2Nr possesses a left pseudo-inverse

L†(A) := 1

NsNr

Z−1
X X∗AYZ−1

Y ,

when R → +∞.

Proof Since (2K + 1) ≤ Ns,Nr , X and Y are full-rank, and R → +∞, it is easy to see that
both X and Y possess left pseudo-inverses, denoted by X† and Y† respectively, thanks to the
orthogonality property (4.8) and Lemma 4.2. Precisely,

X† := (
X∗X

)−1
X∗ = 1

Ns

Z−1
X X∗ and Y† := (

Y∗Y
)−1

Y∗ = 1

Nr

Z−1
Y Y∗,

as R → +∞. Consequently, we have

1

NsNr

Z−1
X X∗AYZ−1

Y = 1

Nr

(
X∗X

)−1
X∗(XŴY∗)YZ−1

Y

= 1

Nr

Ŵ
(
Y∗Y

)
Z−1

Y = Ŵ.

This completes the proof. �
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4.3 Stability Analysis

In this section, we perform a stability analysis for the linear operator L. We substantiate
that the operator L is ill-conditioned for K → +∞. It simply means that only a certain
number of lower order scattering coefficients can be recovered stably which in turn con-
tain only lower order information of the shape oscillations of boundary ∂D. The limit on
the information about the shape and morphology of the inclusion D that can be obtained
stably is determined by the maximal resolving order and the stability estimate for the oper-
ator L thereby defining the resolution limit of the imaging paradigm. Towards this end, the
following result characterizes the singular values and the singular vectors of the operator L.

Theorem 4.4 If Ns,Nr ≥ 2K + 1 and R → +∞ then the right singular vectors of L are
coincident with the canonical basis of R(4K+2)×(4K+2) and the (p, q)-th singular value of the
operator L is given by

σpq :=
⎧⎨
⎩

√
NsNr

4ρ2
0 ω2c2

P
κP

|(H (1)

q−1−K(κP R))′|, 1 ≤ p,q ≤ 2K + 1,

√
NsNr

4ρ2
0 ω2c2

S
κS

|(H (1)

q−2−3K(κSR))′|, 2K + 2 ≤ p,q ≤ 4K + 2.
(4.12)

Proof Let us define the inner product of two complex matrices N and M by

〈N,M〉 :=
∑
�,�′

(
N∗)

��′(M)��′ .

Let Vpq ∈R
(4K+2)×(4K+2), for each p,q = 1,2, . . . ,4K + 2, be such that

(Vpq)��′ = δp�δq�′ , ∀�, �′ = 1,2, . . . ,4K + 2.

It is easy to verify that for R → +∞, thanks to diagonality result (4.8) and Lemma 4.2,
〈
L(Vpq),L(Vp′q ′)

〉= 〈
XVpqY∗,XVp′q ′Y∗〉

= NsNr〈Vpq,ZXVp′q ′ZY〉
= δpp′δqq ′NsNr |fq |2,

where

|fq | :=

⎧⎪⎨
⎪⎩

|gP
q−1−K

|
|bP | , 1 ≤ p,q ≤ 2K + 1,

|hS
q−2−3K

|
|bS | , 2K + 2 ≤ p,q ≤ 4K + 2.

On substituting the values of gP
q−1−K , hS

q−2−3K and bα from (4.9), (4.10) and (4.7), we arrive
at

|fq | :=
⎧⎨
⎩

1
4ρ2

0ω2c2
P

κP
|(H (1)

q−1−K(κP R))′|, 1 ≤ p,q ≤ 2K + 1,

1
4ρ2

0ω2c2
S
κS

|(H (1)

q−2−3K(κSR))′|, 2K + 2 ≤ p,q ≤ 4K + 2.

This shows that the canonical basis {Vpq}p,q=1,...,4K+2 forms the set of right singular vectors
of L and the (p, q)-th singular value of the operator L is thus rendered by ‖L(Vpq)‖F and
is given by (4.12). Moreover, the left singular vectors of L are furnished by the relation
Ṽpq := L(Vpq)/σpq . �
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It should be observed that the quantities |gP
2K+1| and |hS

2K+1| diverge when K → +∞.
Consequently, the operator L is unbounded. Indeed, we have the following estimate for the
condition number of L thanks to Theorem 4.4.

Corollary 4.5 Under the assumptions of Theorem 4.4,

cond(L) �
(
CP

R K
)(K+1)

, as K → +∞,

where Cα
R := 2/eκαR.

Proof Let σmax and σmin be the largest and the smallest singular values of the operator L.
Recall the asymptotic behavior of the Bessel functions of first and second kind

Jm(t) �
√

1

2π |m|
(

et

2|m|
)|m|

and Ym(t) � −
√

2

π |m|
(

et

2|m|
)−|m|

,

with respect to the order |m| → +∞ at a fixed argument t (see, for instance, [38, Formulae
10.19.1 and 10.19.2]). Consequently, an easy computation shows that

∣∣H(1)
m (καR)

∣∣� (
Cα

R|m|)|m| + (
Cα

R|m|)−|m|
, as |m| → +∞.

Moreover, invoking the recurrence relation (see, for instance, [38, Formula 10.6.2])

(
H(1)

m (t)
)′ = H

(1)

m−1(t) − m

t
H(1)

m (t),

it is easy to get that

∣∣(H(1)
m (καR)

)′∣∣� (
Cα

R(m − 1)
)(m−1) + (

Cα
R(m − 1)

)−(m−1) + e

2
Cα

Rm
((

Cα
Rm

)m + (
Cα

Rm
)−m)

�
(
Cα

Rm
)m+1

,

when |m| → +∞. Consequently,

σ(2K+1)(2K+1) �
(
CP

R K
)K+1

and σ(4K+2)(4K+2) �
(
CS

RK
)K+1

.

Finally, note that the relation σmax � σ(2K+1)(2K+1) holds when K is large enough, which
follows from the fact that CP

R > CS
R (this is due to the inequality cP > cS , since μ0, λ0 > 0).

Moreover, the smallest singular value σmin is bounded. Therefore,

cond(L) = σmax

σmin
�
(
CP

R K
)K+1

. �

It view of the aforementioned result, the least squares minimization problem (4.6) turns
out to be highly ill-conditioned. However, this ill-posedness can be reduced by considering
the constrained optimization problem subject to the energy conservation constraint (3.23).

4.4 Error Analysis

Let us now analyze the error committed by truncating the infinite series in the MSR data.
But before further discussion, we recall the following result from [8, Appendix A].
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Lemma 4.6 For c > 0 and N ∈ N such that N > c/e

∑
n>N

(
c

n

)n

≤
(

c

N

)N( 1

1 + ln(N/c)

)
.

The following is the main result of this section.

Theorem 4.7 Let Cα
R and Cα,β > 1 be the constants defined in Corollary 4.5 and Lemma 3.3

respectively. Let the radius R of the measurement domain BR(0) be such that h :=
maxα,β{2C2

α,βCα
R} < 1. Then there exists a sufficiently large truncation order K satisfying

K > max
α,β

{Cα,β/(Cα
Re)} such that

|Eα,β
sr | = O

(
hK−1

)
.

Proof The result for the truncation error EP,P
sr is proved only. The rest of the estimates can

be obtained following the same procedure. First, split the summations into three different
contributions as

EP,P
sr =

( ∑
|m|≤K
|n|>K

+
∑

|m|>K
|n|≤K

+
∑

|m|>K
|n|>K

)
dP

m(s)
(
WP,P

m,n

[
HP

n (xr ) · dr

]+ WS,P
m,n

[
HS

n(xr ) · dr

])

= I1 + I2 + I3.

Then, thanks to Lemma 3.3 and invoking the definitions (3.17) and (3.4)–(3.5) of dP
m and

Hα
n respectively, we have

|I1| ≤ 1

4ρ2
0ω

2c2
P κP

( ∑
|m|≤K

C
|m|−1
P,P

|m||m|−1

∑
|n|>K

C
|n|−1
P,P

|n||n|−1

∣∣κP

(
H(1)

n (κP R)
)′∣∣

+
∑

|m|≤K

C
|m|−1
S,P

|m||m|−1

∑
|n|>K

C
|n|−1
S,P

|n||n|−1

|n|
R

∣∣H(1)
n (κSR)

∣∣).

Recall the estimates
∣∣H(1)

n (καR)
∣∣� (

Cα
R|n|)|n| + (

Cα
R|n|)−|n|

,

∣∣(H(1)
n (καR)

)′∣∣� e

2

(
Cα

R|n|)|n|+1 + (
Cα

R(|n| − 1)
)|n|−1 + e

2

(
Cα

R|n|)1−|n|

+ (
Cα

R(|n| − 1)
)1−|n|

,

as |n| → +∞ and note that, up to some factors independent of K ,

∑
|m|≤K

C
|m|−1
P,P

|m||m|−1
� CK−1

P,P and
∑

|m|≤K

C
|m|−1
S,P

|m||m|−1
� CK−1

S,P .

Therefore,

|I1| �
CK−1

P,P

4ρ2
0ω

2c2
P

∑
|n|>K

[
e

2

(
CP

R |n|)2(
CP,P CP

R

)|n|−1 +
(

1 − 1

|n|
)|n|−1(

CP,P CP
R

)|n|−1
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+ e

2

(
CP,P /CP

R

|n|2
)|n|−1

+
(

CP,P /CP
R

|n|(|n| − 1)

)|n|−1]

+ eκSC
K−1
S,P

8ρ2
0ω

2c2
P κP

∑
|n|>K

[(
CS

R|n|)2(
CS,P CS

R

)|n|−1 +
(

CS,P /CS
R

|n|2
)|n|−1]

. (4.13)

Thanks to Lemma 4.6, the third, fourth and sixth terms on RHS of (4.13) are negligible for
all K > maxα,β{Cα,β/Cα

Re}. Moreover, it can be easily verified that

n2

2n+2
≤ 1 and

1

2n−1

(
1 − 1

n

)n−1

≤ 1, ∀ n ∈ N, n > 1, (4.14)

and

(
Cα

R

)2
< Cα

R < Cα,βCα
R < C2

α,βCα
R < max

α,β

{
C2

α,βCα
R

}
<

1

2
. (4.15)

Therefore, we have

eCK−1
P,P

8

∑
|n|>K

(
CP

R |n|)2(
CP,P CP

R

)|n|−1

� eCK−1
P,P

∑
|n|>K

|n|2
2|n|+2

(
2CP,P CP

R

)|n|−1 � eCK−1
P,P

(
2CP,P CP

R

)K−1 ≤ ehK−1, (4.16)

CK−1
P,P

4

∑
|n|>K

(
1 − 1

|n|
)|n|−1(

CP,P CP
R

)|n|−1

� CK−1
P,P

∑
|n|>K

1

2|n|−1

(
1 − 1

|n|
)|n|−1(

2CP,P CP
R

)|n|−1 � CK−1
P,P

(
2CP,P CP

R

)K−1 ≤ hK−1,

(4.17)

eκSC
K−1
S,P

8κP

∑
|n|>K

(
CS

R|n|)2(
CS,P CS

R

)|n|−1

�
cP CK−1

S,P

cS

∑
|n|>K

|n|2
2|n|+2

(
2CS,P CS

R

)|n|−1 �
cP CK−1

S,P

cS

(
2CS,P CS

R

)K−1 ≤ cP

cS

hK−1. (4.18)

Substituting the estimates (4.16)–(4.18) in (4.13) one arrives at

|I1| � 1

ρ0ω2c2
P

(
e + 1 + cP

cS

)
hK−1.

The estimate for |I2| follows by changing the role of m and n. Moreover, by proceeding in
a similar fashion, it can be easily established that

|I3| �
(

h

K

)K−1

.

Combining the estimates for |I1|, |I2| and |I3|, one obtains |EP,P
sr | � hK−1. This completes

the proof. �
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4.5 Maximal Resolving Order

In this subsection, we determine the maximal resolving order K for the reconstruction
framework. In order to do so, we first estimate the strength of the recorded signals in terms
of the geometry of inclusion D and the radius of the recording circle. Then we define the
signal-to-noise ratio (SNR) in terms of signal strength and noise standard deviation σnoise.
Towards this end, it is easy to see from the integral representation (2.7) that

A‖,‖
sr = Sω

D[ψFs
](xr ) · dr = Sω

D[ψFs
](R dr ) · dr ,

where ψFs
is the solution of (2.8) corresponding to uinc = Fs . By virtue of the far field

behavior,

�ω(x,y) � eiκP |x|
√|x|

(
i + 1

4ρ0c
2
P

√
πκP

x̂ ⊗ x̂e−iκP x̂·y
)

+ eiκS |x|
√|x|

(
i + 1

4ρ0c
2
S

√
πκS

(I2 − x̂ ⊗ x̂)e−iκS x̂·y
)

,

of the fundamental solution for a bounded y ∈R
2 and x ∈R

2 such that |x| → +∞, one has

A‖,‖ � 1√
R

(i + 1)eiκP R

4ρ0c
2
P

√
πκP

∫
∂D

[
(dr ⊗ dr )ψFs

(y)
] · dr e−iκP |y| cos(θr−θy) dσ (y)

+ 1√
R

(i + 1)eiκSR

4ρ0c
2
S

√
πκS

∫
∂D

[
d⊥

r ⊗ d⊥
r )ψFs

(y)
] · dr e−iκS |y| cos(θr−θy) dσ (y)

� 1√
R

(i + 1)eiκP R

4ρ0c
2
P

√
πκP

∫
∂D

[
ψFs

(y) · dr

]
e−iκP |y| cos(θr−θy) dσ (y)

+ 1√
R

(i + 1)eiκSR

4ρ0c
2
S

√
πκS

∫
∂D

[
ψFs

(y) · d⊥
r

]
e−iκS |y| cos(θr−θy) dσ (y). (4.19)

On the other hand, by (2.9)

‖ψFs
‖L2(∂D)2 ≤ ‖Fs‖H 1(∂D)2 +

∥∥∥∥∂Fs

∂ν

∥∥∥∥
L2(∂D)2

≤ C
√|∂D|,

for some constant independent of R and |∂D|. Thus, by taking the modulus on both sides of
(4.19), substituting the above estimate for ‖ψFs

‖, and using the Cauchy-Schwartz inequality,
one obtains the estimate

|A‖,‖| ≤ C
|∂D|√

R
.

The constant C above depends only on the material parameters of the background domain,
inclusion D, and the frequency ω of the incident field, but is independent of R and ∂D.
Similarly, the terms of other MSR matrices can be also bounded by |∂D|/√R. This endorses
that the measured signals are of order |∂D|/√R. Therefore, we define SNR by

SNR := |∂D|/√R

σnoise
.
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Now we are ready to estimate the maximal resolving order K . In the sequel, E denotes
the expectation with respect to the statistics of the noise Nnoise. Moreover, we work in the
regime when R → +∞ (or O(R−3/2) terms are negligible) and the truncation error is much
smaller than the noise standard deviation, which in turn is much smaller than the order of
the signal (or simply SNR is much larger than 1), that is,

hK−1 � σnoise � |∂D|/√R. (4.20)

From the injectivity of operator L for R → +∞ and the relation (4.5), we have

E
(∣∣(Ŵ − W)mn

∣∣2)1/2 = E(|(L†(E + Nnoise)mn|2
)1/2

≤ |L†(E)mn| + |L†(Nnoise)mn|
� σ−1

mn

(‖E‖F + ‖Nnoise‖F

)
� σ−1

mn

(
hK−1 + σnoise

√
NsNr

)
, (4.21)

where Cauchy-Schwartz inequality has been invoked to arrive at the last identity. By as-
sumption (4.20), the first term on RHS of (4.21) is negligible. Thus,

E
(∣∣(Ŵ − W)mn

∣∣2)1/2 � σ−1
mn σnoise

√
NsNr. (4.22)

This indicates that the discrepancy between the estimated and the measured scattering co-
efficients approaches zero very rapidly for all m,n > K when K → +∞ thanks to the
estimation of the magnitude of σmn. It simply means that the scattering coefficients of an
inclusion D can be approximated arbitrarily closely and up to any order by the elements
of Ŵ in the sense of mean-squared error when the noise regime is characterized by (4.20).
However, in view of the decay rate (3.14) of Wα,β

mn , it is reasonable to determine an adoptive
resolving order K by restricting the reconstruction error to be smaller than the signal level.
In particular, for any threshold reconstruction error ε > 0, one can see from (4.22) and (3.14)
that

E
(∣∣(Ŵ − W)mn

∣∣2)1/2 �σ−1
mn σnoise

√
NsNr � ε

(
Cmax

K

)2K−2

,

where Cmax := maxα,β{Cα,β}. After simple manipulations analogous to those in the proof of
Corollary 4.5 and using the behavior of (H (1)

n (καR))′ for large n, one can show that σ−1
mn =

O((CS
RK)1−K) for all m,n > K . Therefore, under noise regime characterized by (4.20),

(
CS

RK
)1−K

K2K−2 � ε
C2K−2

max

σnoise
,

or equivalently

KK−1 � ε
(C2

maxC
S
R)K−1

σnoise
� ε

hK−1

σnoise
≤ εSNR,

and the maximal resolving order is defined by

K = max
{
N ∈ N |NN−1 ≤ εSNR

}
.
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5 Nearly Elastic Cloaking

In this section, we consider the elastic cloaking problem as an application of the elastic scat-
tering coefficients. The aim here is to construct an effective nearly elastic cloaking structure
at a fixed frequency for making the objects inside the unit disk invisible. We extend the
approach of Ammari et al. [5–7] for conductivity, Helmholtz and Maxwell equations to the
Lamé system. Towards this end, we first design S-vanishing structures in the next subsection
by canceling the first ESCs.

5.1 S-Vanishing Structures

For positive numbers rj (j = 1,2, . . . ,L + 1) with 2 = r1 > r2 > · · · > rL+1 = 1, construct
a multi-layered structure by defining

A0 := {
x ∈R

2 | |x| > 2
}
,

Aj := {
x ∈R

2 | rj+1 ≤ |x| < rj

}
, j = 1, . . . ,L,

AL+1 := {
x ∈R

2 | |x| < 1
}
.

Let (λj ,μj , ρj ) be the Lamé parameters and density of Aj , for j = 0, . . . ,L + 1. In par-
ticular, λ0, μ0 and ρ0 are the parameters of the background medium. In the sequel, the
piece-wise constant parameters λ, μ and ρ are redefined as

λ(x) =
L+1∑
j=0

λj χ(Aj )(x), μ(x) =
L+1∑
j=0

μj χ(Aj )(x), and ρ(x) =
L+1∑
j=0

ρj χ(Aj )(x),

(5.1)

in accordance with the aforementioned multi-layered structure. The scattering coefficients
Wα,β

m,n = Wα,β
m,n(λ,μ,ρ,ω) are defined analogously as in (3.13) and utot = (utot

1 , utot
2 )	 solves

the equation

Lλ,μutot + ρω2utot = 0, in R
2. (5.2)

Since the aforementioned multi-layered structure is circularly symmetric, it is easy to
check that the scattered field corresponding to uinc = Jβ

m in |x| > 2 is a linear combination
of the modes HP

m and HS
m. By uniqueness of the direct scattering problems, it implies that

Wα,β
m,n = 0, for all α,β ∈ {P,S} and n �= m.

Therefore, we have the following definition of the S-vanishing structures.

Definition 5.1 (S-Vanishing structure). The medium (λ,μ,ρ) defined by (5.1) is called an
S-vanishing structure of order N at frequency ω if Wα,β

n,n = 0 for all |n| ≤ N and α,β ∈
{P,S}.

In the rest of this subsection, we aim to construct an S-vanishing structure for general
elastic waves. To facilitate the later analysis, the notation Tλ,μ is adopted for the surface
traction operator ∂/∂ν associated with elastic moduli λ and μ. In order to design en-
visioned structure, it suffices to construct (λ,μ,ρ) such that Wα,β

n := Wα,β
n,n = 0 for all
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0 ≤ n ≤ N and α,β ∈ {P,S} thanks to Lemma 3.6. We assume that the cloaked region
{|x| < 1} is a cavity, so that the total field utot satisfies the traction-free boundary condition
TλL+1,μL+1 utot := ∂utot/∂ν = 0 on |x| = 1. Note that the two-dimensional surface traction
admits the expression

Tλ,μw = 2μ(n · ∇w1,n · ∇w2)
	 + λn div w + μ t∇⊥ × w, w = (w1,w2)

	,

in terms of the surface normal and tangent vectors n = (n1, n2)
	 and t = (−n1, n2)

	 respec-
tively. The solutions utot

n to (5.2) of the form

utot
n (x) = â

n,P
j JP

n (x) + â
n,S
j JS

n(x) + a
n,P
j HP

n (x) + a
n,S
j HS

n(x), x ∈ Aj , j = 0, . . . ,L,

are sought with unknown coefficients â
n,α
j , a

n,α
j ∈ C, to be determined later. Intuitively, one

should look for solutions utot
n whose coefficients fulfill the relations

â
n,P
0 â

n,S
0 �= 0 and a

n,P
0 = a

n,S
0 = 0 for all n = 0, . . . ,N.

By comparison with the multipolar expansion (3.12) of the scattered field, the scattering
coefficients in this case turn out to be

{
Wα,P

n = i4ρ0ω
2a

n,α
0 = 0 when â

n,P
0 = 1 and â

n,S
0 = 0,

Wα,S
n = i4ρ0ω

2a
n,α
0 = 0 when â

n,P
0 = 0 and â

n,S
0 = 1,

α = P,S. (5.3)

The solution utot
n satisfies the transmission conditions

utot
n |+ = utot

n |− and Tλj−1,μj−1 utot
n |+ = Tλj ,μj

utot
n |−, on |x| = rj , j = 1, . . . ,L. (5.4)

Fairly easily calculations indicate that on |x| = r ,

êr · [Tλ,μHP
n (x)

]= 2μ êr · ∂

∂r

[
êr

∂vn(x, κP )

∂r
+ 1

r
êθ

∂vn(x, κP )

∂ϕx

]
+ λ�vn(x, κP )

= 2μ
∂2vn(x, κP )

∂r2
+ λ�vn(x, κP )

= 2μκ2
P

(
H(1)

n

)′′
(rκP )einϕx − λκ2

P H (1)
n (rκP )einϕx

= 1

r2

(−2μrκp

(
H(1)

n

)′
(rκP ) + (

2μn2 − (λ + 2μ)r2κ2
p

)
H(1)

n (rκP )
)
einϕx

=: 1

r2
BP

n (rκP ,λ,μ)einϕx ,

êθ · [Tλ,μHP
n (x)

]= 2μ êθ · ∂

∂r

[
êr

∂vn(x, κP )

∂r
+ 1

r
êθ

∂vn(x, κP )

∂ϕx

]

= 2μ

(
− 1

r2

∂vn(x, κP )

∂ϕx
+ 1

r

∂2vn(x, κP )

∂r∂ϕx

)

= (2iμn)

r2

(−H(1)
n (rκP ) + rκP

(
H(1)

n

)′
(rκP )

)
einϕx

=: 1

r2
CP

n (rκP ,λ,μ)einϕx ,
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where

BP
n (t, λ,μ) := −2μt

(
H(1)

n

)′
(t) + (

2μn2 − (λ + 2μ)t2
)
H(1)

n (t),

CP
n (t,μ) := (2iμn)

(−H(1)
n (t) + t

(
H(1)

n

)′
(t)

)
.

In the sequel, the shorthand notation

BP
n,j (r) = BP

n (rκP ,λj ,μj ) and CP
n,j (r) = CP

n (rκP ,μj ),

is used for simplicity. It holds that

Tλj ,μj
HP

n (x) = 1

r2
j

(
BP

n,j (rj )Pn(x̂) + CP
n,j (rj )Sn(x̂)

)
, on |x| = rj .

By arguing as for HP
n , we obtain on |x| = rj that

êr · HS
n(x) = 2μ̂er · ∂

∂r

[
−̂eθ

∂vn(x, ks)

∂r
+ 1

r
êr

∂vn(x, ks)

∂ϕx

]
= 1

r2
j

BS
n,j (rj ) einϕx ,

êθ · HS
n(x) = 2μ̂eθ · ∂

∂r

[
−̂eθ

∂vn(x, ks)

∂r
+ 1

r
êr

∂vn(x, ks)

∂ϕx

]
+ μ�vn(x, ks)

= 1

r2
j

CS
n,j (rj ) einϕx ,

where

BS
n,j (t) := (2iμjn)

(−H(1)
n (t) + t

(
H(1)

n

)′
(t)

)
,

CS
n,j (t,μ) := 2μj t

(
H(1)

n

)′
(t) + (−2μj n2 + μj t2

)
H(1)

n (t).

Note that BS
n,j (t) = CP

n,j (t). Therefore,

Tλj ,μj
HS

n(x) = êr

[̂
er · HS

n(x)
]+ êθ

[̂
eθ · HS

n(x)
]= 1

r2
j

(
BS

n,j (rj )Pn(x̂) + CS
n,j (rj )Sn(x̂)

)
,

with

BS
n,j (r) := BS

n (rκS,μj ) and CS
n,j (r) := CS

n (rκS,μj ).

Analogously, we obtain

Tλj ,μj
Jα

n(x) = 1

r2
j

(
B̂α

n,j (rj )Pn(x̂) + Ĉα
n,j (rj )Sn(x̂)

)
, α = P,S,

where B̂α
n,j (t) and Ĉα

n,j (t) are defined in the same way as Bα
n,j (t) and Cα

n,j (t) with H(1)
n

replaced by Jn. Hence, the transmission conditions in (5.4) can be written as (cf. (3.4)–(3.7))

Mn,j−1(rj )
(̂
a

n,P
j−1, â

n,S
j−1, a

n,P
j−1, a

n,S
j−1

)	 = Mn,j (rj )
(̂
a

n,P
j , â

n,S
j , a

n,P
j , a

n,S
j

)	
, (5.5)
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for j = 1, . . . ,L. Here Mn,j , j = 0, . . . ,L, n = 0, . . . ,N , is the 4 × 4 matrix defined by

Mn,j (r) :=

⎛
⎜⎜⎜⎜⎝

tP J
′
n(tP ) inJn(tS) tP (H (1)

n )′(tP ) inH (1)
n (tS)

inJn(tP ) −tSJ
′
n(tS) inH (1)

n (tP ) −tS(H
(1)
n )′(tS)

B̂P
n,j (tP ) B̂S

n,j (tS) BP
n,j (tP ) BS

n,j (tS)

ĈP
n,j (tP ) ĈS

n,j (tS) CP
n,j (tP ) CS

n,j (tS)

⎞
⎟⎟⎟⎟⎠ ,

where tα := rκα . The traction-free boundary condition on |x| = rL+1 = 1 amounts to

Mn,L+1
(̂
a

n,P
L , â

n,S
L , a

n,P
L , a

n,S
L

)	 = (0,0,0,0)	, n = 0, . . . ,N, (5.6)

with

Mn,L+1 :=

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0

B̂P
n,L(rL+1κP ) B̂S

n,L(rL+1κS) BP
n,L(rL+1κP ) BS

n,L(rL+1κS)

ĈP
n,L(rL+1κP ) ĈS

n,L(rL+1κS) CP
n,L(rL+1κP ) CS

n,L(rL+1κS)

⎞
⎟⎟⎠ .

Combining (5.5) and (5.6), one obtains
⎧⎪⎪⎨
⎪⎪⎩

Q(n)
(̂
a

n,P
0 , â

n,S
0 , a

n,P
0 , a

n,S
0

)	 = (0,0,0,0)	,

Q(n) = Q(n)
(
λ,μ,ρω2

) := Mn,L+1

L∏
j=1

M−1
n,j (rj ) Mn,j−1(rj ) =

(
0 0

Q(n)

21 Q(n)

22

)
,

(5.7)

where Q(n)

21 ,Q(n)

22 are 2 × 2 matrix functions of λ, μ and ρω2.
Exactly as in the acoustic case [6], one can show that the determinant of Q(n)

22 is non-
vanishing. In fact, if det(Q(n)

22 ) = 0 then one can derive a contradiction to the uniqueness of
our forward scattering problems. Therefore, it suffices to look for the parameters λj ,μj , ρj

(j = 1,2, . . . ,L) from the nonlinear algebraic equations
(
Q(n)

21

)
i,k

(
λ,μ,ρω2

)= 0, i, k = 1,2, n ∈N.

We are interested in a nearly S-vanishing structure of order N at low frequencies, i.e., a
structure (λ,μ,ρ) such that

Wα,β
n (λ,μ,ρ,ω) = o

(
ω2N+2

)
, for all α,β ∈ {P,S}, |n| ≤ N, as ω → 0.

Towards this end, one needs to study the asymptotic behavior of Wα,β
n (λ,μ,ρ,ω) as ω tends

to zero. In view of (5.3) and (5.7), it is found that

(
Wα,P

n ,Wα,S
n

)	 = i4ρ0ω
2
(
a

n,P
0 , a

n,S
0

)	 = −i4ρ0ω
2
(
Q(n)

22

)−1
Q(n)

21

(̂
a

n,P
0 , â

n,S
0

)	
, (5.8)

where â
n,P
0 and â

n,S
0 are selected depending on (5.3).

Let Wn denote the 2 × 2 matrix

Wn =
(

WP,P
n WS,P

n

WP,S
n WS,S

n

)
.

Then, the following result based on relation (5.8) elucidates the low frequency asymptotic
behavior of Wn.
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Theorem 5.2 For all n ∈N, we have

Wn(λ,μ,ρ,ω) = ω2n+2

(
Vn,0(λ,μ,ρ) +

N−n∑
l=0

(L+1)l∑
j=0

ω2l (lnω)j Vn,l,j (λ,μ,ρ)

)
+ ϒn,

(5.9)

as ω → 0. Here matrices Vn,0 and Vn,l,j are defined by

Vn,0 =
(

V
P,P
n,0 V

S,P
n,0

V
P,S
n,0 V

S,S
n,0

)
and Vn,l,j =

(
V

P,P
n,l,j V

S,P
n,l,j

V
P,S
n,l,j V

S,S
n,l,j

)
,

in terms of some V
α,β

n,0 and V
α,β

n,l,j dependent on λ,μ,ρ but independent of ω. The residual
matrix ϒn = (Υ n

ik)i,k=1,2 is such that |Υ n
ik| ≤ Cω2N+2, for all i, k = 1,2, where constant

C ∈ R+ is independent of ω.

The analytic expressions of the quantities V
α,β

n,0 and V
α,β

n,l,j in terms of λj , μj and ρj are
very complicated, but can be extracted, for example, by using the symbolic toolbox of MAT-
LAB. Theorem 5.2 follows from (5.8) and the low-frequency asymptotics of Q(n)

22 (λ,μ,ρω2)

and Q(n)

21 (λ,μ,ρω2) as ω → 0. The latter can be derived based on the definition given in
(5.7) in combination with the expansion formula of Bessel and Neumann functions, and
their derivatives for small arguments. For the sake of completeness, we sketch the proof of
Theorem 5.2 in the Appendix D.

In order to construct a nearly S-vanishing structure of order N at low frequencies, thanks
to Theorem 5.2, one needs to determine the parameters λj ,μj and ρj from the equations

V
α,β

n,0 (λ,μ,ρ) = V
α,β

n,l,j (λ,μ,ρ) = 0,

for all 0 ≤ n ≤ N , 1 ≤ l ≤ (N − n), 1 ≤ j ≤ (L + 1)l and α,β ∈ {P,S}. It should be
emphasized that one does not know if a solution does exist for any order N . Numerically,
this can be achieved by applying, e.g., the gradient descent method to the minimization
problem

min
λj ,μj ,ρj

∑
α,β∈{P,S}

{∣∣V α,β

n,0

∣∣2 +
N−n∑
l=0

(L+1)l∑
j=0

∣∣V α,β

n,l,j

∣∣2
}

. (5.10)

5.2 Enhancement of Near-Cloaking in Elasticity

The aim of this section is to show that the nearly S-vanishing structures constructed in
Sect. 5.1 can be used to enhance cloaking effect in elasticity. The enhancement of near-
cloaking is based on the idea of transformation optics (also called the scheme of changing
variables) used in [24, 25, 40, 41]. Let (λ,μ,ρ) be a nearly S-vanishing structure of order
N of the form of (5.1) at low frequencies. It implies that for some fixed ω > 0 there exists
ε0 > 0 such that

∣∣Wα,β
m,n[λ,μ,ρ, εω]∣∣= o

(
ε2N+2

)
, |n| ≤ N, ε ≤ ε0.

On the other hand, using the asymptotic behavior of Jβ
n(x, κα) as ω → 0 for α,β = P,S,

one can derive from the proof of Lemma 3.3 that
∣∣Wα,β

n [λ,μ,ρ, εω]∣∣≤ C ε2N, ∀ |n| ≥ N, ε ≤ ε0.
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Hence, by Theorem 3.4, the far-field elastic scattering amplitudes can be estimated by

u∞
α [λ,μ,ρ, εω](x̂, x̂′)= o

(
ε2N−1

)
, α = P,S, as ε → 0,

uniformly in all observation directions x̂ and incident directions x̂′, noting that

γ α
n ∼ O

(
ε2N−2

)
, A∞,α

n ∼ O(ε), as ε → 0, α = P,S.

Introduce the transformation Ψε :R2 →R
2 by

Ψε(x) := 1

ε
x, x ∈ R

2.

Then, by arguing as in the acoustic and electromagnetic case [6, 7], we have

u∞
α [λ ◦ Ψε,μ ◦ Ψε,ρ ◦ Ψε,ω] = u∞

α [λ,μ,ρ, εω] = o
(
ε2N−1

)
, for all ε ≤ ε0.

Note that the medium (λ ◦ Ψε,μ ◦ Ψε,ρ ◦ Ψε) is a homogeneous multi-coated structure of
radius 2ε.

We now apply the transformation invariance of the Lamé system to the medium (λ ◦
Ψε,μ◦Ψε,ρ ◦Ψε). Recall that the elastic wave propagation in such a homogeneous isotropic
medium can be restated as

∇ · (C : ∇utot
)+ ω2(ρ ◦ Ψε)utot = 0, in R

2, (5.11)

where C= (Cijkl)i,j,k,l=1,...,N is the rank-four stiffness tensor defined by

Cijkl(x) = (λ ◦ Ψε) δi,j δk,l + (μ ◦ Ψε) (δi,kδj,l + δi,lδj,k), (5.12)

and the action of C on a matrix A = (aij )i,j=1,2 is defined as

C : A = (C : A)i,j=1,2 =
( ∑

k,l=1,2

Cijkl akl

)
i,j=1,2

.

In the case of a generic anisotropic elastic material, the stiffness tensor satisfies the symme-
tries

Cijkl = Cklij (major symmetry) and Cijkl = Cjikl = Cijlk (minor symmetry),

for all i, j, k, l = 1,2. Let x̃ = (x̃1, x̃2) = Fε(x) : R2 → R
2 be a bi-Lipschitz and orientation-

preserving transformation such that Fε({|x| < ε}) = {|x̃| < 1} and that the region |x| ≥ 2
remains invariant under the transformation. This implies that we have blown up a small
traction-free disk of radius ε < 1 to the unit disk centered at the origin. The push-forwards
of C and ρ are defined respectively by

(Fε)∗C := Ĉ= (
Ĉiqkp(x̃)

)
i,q,k,p=1,2

=
(

1

det(M)

{ ∑
l,j=1,2

Cijkl

∂x̃p

∂xl

∂x̃q

∂xj

}
|
x=F−1

ε (x̃)

)
i,q,k,p=1,2

,

(Fε)∗ρ := ρ̂ =
(

ρ

det(M)

)∣∣∣∣
x=F−1

ε (x̃)

, M =
(

∂x̃i

∂xj

)
i,j=1,2

.

We need the following lemma (see, for instance, [26, 32]).
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Lemma 5.3 The function utot is a solution to

∇ · (C : ∇utot
)+ ω2ρutot = 0, in R

2,

if and only if ûtot = utot ◦ (Fε)
−1 satisfies

∇̂ · (̂C : ∇̂ûtot
)+ ω2ρ̂ûtot = 0, in R

2,

where ∇̂ denotes the gradient operator with respect to transformed variable x̃.

Applying the above lemma to the Lamé system (5.11), one obtains the following result.

Theorem 5.4 If (λ,μ,ρ) is a nearly S-vanishing structure of order N at low frequencies
then there exists ε0 > 0 such that

u∞
α

[
(Fε)∗C, (Fε)∗(ρ ◦ Ψε),ω

](
x,x′)= o

(
ε2N−1

)
, α = P,S,

for all ε < ε0, uniformly in all x and x′. Here the stiffness tensor C is defined by (5.12).
Moreover, the elastic medium ((Fε)∗C, (Fε)∗(ρ ◦ Ψε)) in 1 < |x| < 2 is a nearly cloaking
device for the hidden region |x| < 1.

Theorem 5.4 implies that for any frequency ω and any integer number N there exists
ε0 = ε0(ω,N) > 0 and the elastic medium ((Fε)∗C, (Fε)∗(ρ ◦ Ψε)) with ε < ε0 such that the
nearly cloaking enhancement can be achieved at the order o(ε2N−1).

We finish this section with the following remarks.

Remark 5.5 Unlike the acoustic and electromagnetic case, the transformed elastic tensor
(Fε)∗C is not anisotropic since it possesses the major symmetry only. Note that the trans-
formed mass density (Fε)∗(ρ ◦Ψε) is still isotropic. In fact, it has been pointed out by Milton,
Briane, and Willis [32] that the invariance of the Lamé system can be achieved only if one
relaxes the assumption of the minor symmetry of the transformed elastic tensor. This has led
Norris and Shuvalov [37] and Parnell [40] to explore the elastic cloaking by using Cosserat
material or by employing non-linear pre-stress in a neo-Hookean elastomeric material.

In this section, we have designed an enhanced nearly cloaking device for general in-
coming elastic plane waves. A device for cloaking only compression or shear waves can be
analogously constructed by using the corresponding elastic scattering coefficients. Note that
the medium (λ,μ,ρ) defined by (5.1) is called an S-vanishing structure of order N for com-
pression (resp. shear) waves if Wα,P

n,n = 0 (resp. Wα,S
n,n = 0 ) for all |n| ≤ N and α ∈ {P,S}. In

this case, one needs to seek parameters λj ,μj and ρj for solving the minimization problem
(5.10) with β = P (resp. β = S). The estimate in Theorem 5.4 can be analogously achieved
for nearly cloaking compression or shear waves.

6 Discussion

In this article, the elastic scattering coefficients (ESC) of characteristically small inclusions
are discussed using surface vector harmonics based cylindrical solutions to Lamé equations
and the multipolar expansions of elastic fields based on them. An integral equations based
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approach is used. It is established that the scattered field and the far field scattering ampli-
tudes admit natural expansions in terms of ESC. This connection substantiates their utility
in direct and inverse elastic scattering. The scattering coefficients of a three-dimensional
elastic inclusion can be analogously defined using three-dimensional vector spherical har-
monics and specially constructed vector wave functions. An added complication in three
dimensions is that there are three wave-modes (P, SV and SH modes) which cannot be com-
pletely decoupled. It can be easily proved that the ESC possess similar properties in three
dimensions.

The decay rates and the symmetry properties of the ESC are also discussed. The symme-
try of the ESC can be traced back to reciprocity property of scattered waves in elastic media.
These properties also indicate that only first few coefficients are significant and sufficient to
cater to a variety of scattering problems. The high-order ESC contain fine details of shape
oscillations and geometric features of the inclusion. Thus, the largest order of stably recov-
erable ESC determines the maximal resolving power of the imaging setup and determines
the resolution limit in feature extraction frameworks.

For reconstructing significant ESC from multi-static response data, we have formulated a
truncated linear system of equations where the truncation parameter can be tuned depending
on the requirements of the actual physical problem, stability constraints, truncation error,
and the measurement noise. This truncated system is converted to a matrix system wherein
all the ESC up to truncation order are arranged into a matrix that happens to be Hermitian.
The system is shown to be ill-conditioned, however, the additional constraints dictated by the
reciprocity principle and conservation of energy can be effectively used to gain stability. The
Hermitian property is pertinent to designing subspace migration type shape identification
frameworks in elastic media. Moreover, shape descriptors and invariant features of elastic
objects can also be discussed using ESC. This will be further discussed in a forthcoming
article.

As an application of ESC, we constructed the scattering coefficients vanishing structures
and elucidated that such structures can be used to enhance the performance of nearly elastic
cloaking devices. The designed nearly cloaking scheme can be used for cloaking only com-
pression or shear waves by using the corresponding ESC. This suggests that ESC proposed
in this article play more important role than the acoustic scattering coefficients. The results
presented in the article are not restricted to only two dimensions and can be easily extended
to three dimensions.

In future studies, the role of ESC in mathematical imaging, especially from the per-
spectives of designing shape invariant and descriptors in elastic media, will be investigated.
Moreover, in order to handle inverse elastic medium scattering problems and to understand-
ing the super-resolution phenomena in elastic media, the concept of heterogeneous ESC will
be discussed.

Appendix A: Multipolar Expansion of Elastodynamic Fundamental
Solution

Note that, by Helmholtz decomposition, �ω(x,y)p can be decomposed for any constant
vector p ∈ R

2 and x �= y as (see, for instance, [1, 27])

�ω(x,y)p = ∇xGP (x,y) + �∇⊥,x × GS(x,y), (A.1)
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with

GP (x,y) := − 1

κ2
P

∇x · (�ω(x,y)p
)

and GS(x,y) := 1

κ2
S

∇⊥,x × (
�ω(x,y)p

)
.

By (2.2), one can easily show that

GP (x,y) = − 1

ρ0ω2
∇xg(x − y, κP ) · p = 1

ρ0ω2
∇yg(x − y, κP ) · p, (A.2)

GS(x,y) = − 1

ρ0ω2
�∇⊥,x × g(x − y, κS) · p = 1

ρ0ω2
�∇⊥,y × g(x − y, κS) · p, (A.3)

where the reciprocity relations

g(x − y, κα) = g(y − x, κα) and ∇xg(x − y, κα) = −∇yg(x − y, κα),

have been used. Recall that, by Graf’s addition formula (see, for example, [38, Formula
10.23.7]), we have

H
(1)

0 (κ|x − y|) =
∑
n∈

H(1)
n (κ|x|)einθxJn(κ|y|)einθy .

Consequently, it follows from (A.2), (A.3), and (2.3) that

GP (x,y) = i

4ρ0ω2

∑
n∈

H(1)
n (κP |x|)einθx ∇[

Jn(κP |y|)einθy
] · p,

GS(x,y) = i

4ρ0ω2

∑
n∈

H(1)
n (κS |x|)einθx �∇⊥ × [

Jn(κS |y|)einθy
] · p.

The identity (3.11) follows by substituting the values of Gα in the decomposition (A.1) and
using the definition of Jα and Hα .

Appendix B: Proof of Lemma 3.5

Proof Since our formulation here is based on an integral representation in terms of the
densities ϕ and ψ satisfying (2.8), we take a different route than those already discussed in
[46, 49] without directly invoking the argument of reciprocity.

Let us first fix some notation. For any v,w ∈ H 3/2(D)2 and a, b ∈ R+, define the
quadratic form

〈v,w〉a,b
D :=

∫
D

[
a(∇ · v)(∇ · w) + b

2

(∇v + ∇v	) : (∇w + ∇w	)]dx,

where double dot ‘ : ’ denotes the matrix contraction operator defined for two matrices
A = (aij ) and B = (bij ) by A : B :=

∑
i,j

aij bij . It is easy to get from the definition of 〈·,·〉a,b
D

that ∫
∂D

v · ∂w
∂ν

dσ(x) =
∫

D

v ·La,b[w]dx + 〈v,w〉a,b
D . (B.1)
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Note that if w is a solution of the Lamé equation La,b[w] + cω2w = 0 then

∫
∂D

v · ∂w
∂ν

dσ(x) = −cω2
∫

D

v · wdx + 〈v,w〉a,b
D ,

and consequently from (B.1)

∫
∂D

v · ∂w
∂ν

dσ(x) =
∫

∂D

∂v
∂ν

· wdσ(x) − cω2
∫

D

v · wdx −
∫

D

La,b[v] · wdx. (B.2)

Moreover, if v solves La,b[v] + cω2v = 0 then

∫
∂D

v · ∂w
∂ν

dσ(x) =
∫

∂D

∂v
∂ν

· wdσ(x). (B.3)

We will also require the constants

ηP := μ0

μ1 − μ0
,

η̃P := μ1

μ1 − μ0
,

ηS := λ0 + μ0

(λ1 − λ0) + (μ1 − μ0)
,

η̃S := λ1 + μ1

(λ1 − λ0) + (μ1 − μ0)
.

Let (ϕα
n,ψ

α
n) and (ϕβ

n ,ψβ
m) be the solutions of (2.8) with uinc = Jα and uinc = Jβ respec-

tively, i.e.

S̃ω
Dϕα

n − Sω
Dψα

n = Jα
n

∣∣
∂D

, (B.4)

∂

∂ν̃
S̃ω

Dϕα
n

∣∣∣∣− − ∂

∂ν
Sω

Dψα
n

∣∣∣∣+ = ∂Jα
n

∂ν

∣∣∣∣
∂D

, (B.5)

and

S̃ω
Dϕβ

m − Sω
Dψβ

m = Jβ
m

∣∣
∂D

, (B.6)

∂

∂ν̃
S̃ω

Dϕβ
m

∣∣∣∣− − ∂

∂ν
Sω

Dψβ
m

∣∣∣∣+ = ∂Jβ
m

∂ν

∣∣∣∣
∂D

. (B.7)

Then, by making use of the jump conditions (2.4), Wα,β
m,n can be expressed as

Wα,β
m,n =

∫
∂D

Jα
n · ψβ

mdσ(x) =
∫

∂D

Jα
n ·

[
∂

∂ν
Sω

D

[
ψβ

m

]∣∣+ − ∂

∂ν
Sω

D

[
ψβ

m

]∣∣−
]
dσ(x).

Further, by invoking (B.7) and subsequently using (B.2) and (B.3), one gets the expression

Wα,β
m,n = −

∫
∂D

Jα
n · ∂Jβ

m

∂ν
dσ(x) +

∫
∂D

Jα
n ·

[
∂

∂ν̃
S̃ω

D

[
ϕβ

m

]∣∣
− − ∂

∂ν
Sω

D

[
ψβ

m

]∣∣
−

]
dσ(x)



Two-Dimensional Elastic Scattering Coefficients and Enhancement. . .

= −
∫

∂D

Jα
n · ∂Jβ

m

∂ν
dσ(x) +

∫
∂D

[
∂Jα

n

∂ν̃
· S̃ω

D

[
ϕβ

m

]− ∂Jα
n

∂ν
· Sω

D

[
ψβ

m

]]
dσ(x)

− ρ1ω
2
∫

D

Jα
n · S̃ω

D

[
ϕβ

m

]
dx −

∫
D

Lλ1,μ1

[
Jα

n

] · S̃ω
D

[
ϕβ

m

]
dx.

This, together with (B.6), leads to

Wα,β
m,n = −

∫
∂D

Jα
n · ∂Jβ

m

∂ν
dσ(x) +

∫
∂D

∂Jα
n

∂ν̃
· S̃ω

D

[
ϕβ

m

]
dσ(x) −

∫
∂D

∂Jα
n

∂ν
· S̃ω

D

[
ϕβ

m

]
dσ(x)

+
∫

∂D

∂J
α

n

∂ν
· Jβ

m · dσ(x) − ρ1ω
2
∫

D

Jα
n · S̃ω

D

[
ϕβ

m

]
dx −

∫
D

Lλ1,μ1

[
Jα

n

] · S̃ω
D

[
ϕβ

m

]
dx.

It is easy to see that the first and the fourth terms cancel out each other thanks to (B.3).
Therefore,

Wα,β
m,n =

∫
∂D

[
∂Jα

n

∂ν̃
− ∂Jα

n

∂ν

]
· S̃ω

D

[
ϕβ

m

]
dσ(x) − ρ1ω

2
∫

D

Jα
n · S̃ω

D

[
ϕβ

m

]
dx

−
∫

D

Lλ1,μ1

[
Jα

n

] · S̃ω
D

[
ϕβ

m

]
dx. (B.8)

Remark that ∇ · JS
n = 0 = ∇ × JP

n . Therefore, it is easy to verify by definition of the
surface traction operator that

∂Jα
n

∂ν̃
− ∂Jα

n

∂ν
= 1

ηα

∂Jα
n

∂ν
= 1

η̃α

∂Jα
n

∂ν̃
. (B.9)

Thus, using right most quantity of (B.9) in (B.8) and subsequently invoking identity (B.2),
one gets

η̃αW
α,β
m,n =

∫
∂D

∂Jα
n

∂ν̃
· S̃ω

D

[
ϕβ

m

]
dσ(x) − η̃αρ1ω

2
∫

D

Jα
n · S̃ω

D

[
ϕβ

m

]
dx

− η̃α

∫
D

Lλ1,μ1

[
Jα

n

] · S̃ω
D

[
ϕβ

m

]
dx

=
∫

∂D

Jα
n · ∂

∂ν̃
S̃ω

D

[
ϕβ

m

]∣∣
−dσ(x) + (1 − η̃α)ρ1ω

2
∫

D

Jα
n · S̃ω

D

[
ϕβ

m

]
dx

+ (1 − η̃α)

∫
D

Lλ1,μ1

[
Jα

n

] · S̃ω
D

[
ϕβ

m

]
dx.

This, together with (B.4) and (B.7), provides

η̃αW
α,β
m,n =

∫
∂D

S̃ω
D

[
ϕα

n

] · ∂

∂ν̃
S̃ω

D

[
ϕβ

m

]∣∣
−dσ(x) −

∫
∂D

Sω
D

[
ψα

n

] · ∂

∂ν
Sω

D

[
ψβ

m

]∣∣
+dσ(x)

−
∫

∂D

Sω
D

[
ψα

n

] · ∂Jβ
m

∂ν
dσ(x) + (1 − η̃α)ρ1ω

2
∫

D

Jα
n · S̃ω

D

[
ϕβ

m

]
dx

+ (1 − η̃α)

∫
D

Lλ1,μ1

[
Jα

n

] · S̃ω
D

[
ϕβ

m

]
dx. (B.10)
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Similarly, substituting the first relation of (B.9) back in (B.8) and invoking (B.6), one obtains

ηαW
α,β
m,n =

∫
∂D

∂Jα
n

∂ν
· S̃ω

D

[
ϕβ

m

]
dσ(x) − ηαρ1ω

2
∫

D

Jα
n · S̃ω

D

[
ϕβ

m

]
dx

− ηα

∫
D

Lλ1,μ1

[
Jα

n

] · S̃ω
D

[
ϕβ

m

]
dx

=
∫

∂D

∂Jα
n

∂ν
· Sω

D

[
ψβ

m

]
dσ(x) +

∫
∂D

∂Jα
n

∂ν
· Jβ

mdσ(x)

− ηαρ1ω
2
∫

D

Jα
n · S̃ω

D

[
ϕβ

m

]
dx − ηα

∫
D

Lλ1,μ1

[
Jα

n

] · S̃ω
D

[
ϕβ

m

]
dx. (B.11)

Finally, subtracting (B.11) from (B.10) and noting that η̃α − ηα = 1, one finds out that

Wα,β
m,n =

∫
∂D

S̃ω
[
ϕα

n

] · ∂

∂ν̃
S̃ω

D

[
ϕβ

m

]∣∣
−dσ(x) −

∫
∂D

Sω
D

[
ψα

n

] · ∂

∂ν
Sω

D

[
ψβ

m

]∣∣
+dσ(x)

−
∫

∂D

Sω
D

[
ψα

n

] · ∂Jβ
m

∂ν
dσ(x) −

∫
∂D

∂Jα
n

∂ν
· Sω

D

[
ψβ

m

]
dσ(x) −

∫
∂D

∂Jα
n

∂ν
· Jβ

mdσ(x).

(B.12)

Similarly, we have

Wβ,α
n,m =

∫
∂D

S̃ω
[
ϕ

β
m

] · ∂

∂ν̃
S̃ω

D

[
ϕα

n

]∣∣−dσ(x) −
∫

∂D

Sω
D

[
ψβ

m

] · ∂

∂ν
Sω

D

[
ψα

n

]∣∣+dσ(x)

−
∫

∂D

Sω
D

[
ψβ

m

] · ∂Jα
n

∂ν
dσ(x) −

∫
∂D

∂Jβ
m

∂ν
· Sω

D

[
ψα

n

]
dσ(x) −

∫
∂D

∂Jβ
m

∂ν
· Jα

ndσ (x)

=
∫

∂D

∂

∂ν̃
S̃ω

[
ϕ

β
m

]∣∣
− · S̃ω

D

[
ϕα

n

]
dσ(x) −

∫
∂D

∂

∂ν
Sω

D

[
ψβ

m

]∣∣
+ · Sω

D

[
ψα

n

]
dσ(x)

−
∫

∂D

Sω
D

[
ψβ

m

] · ∂Jα
n

∂ν
dσ(x) −

∫
∂D

∂Jβ
m

∂ν
· Sω

D

[
ψα

n

]
dσ(x) −

∫
∂D

Jβ
m · ∂Jα

n

∂ν
dσ(x).

(B.13)

The proof is completed by taking complex conjugate of expression (B.13) and comparing
the result with equation (B.12). �

Appendix C: Proof of Theorem 3.7

In order to prove identity (3.23), we follow the approach taken by [46]. Since W∞ is inde-
pendent of the choice of incident field, we consider the case when the plane waves

uinc
P (x) := ∇eiκP x·d and uinc

S (x) := �∇⊥ × eiκSx·d,

are incident simultaneously and use the superposition principle for the optical theorem
thanks to the linearity of the RHS of identity (3.22). Note that the coefficients aα

m(uinc
α )
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and γ α
n in this case are given by

aα
m

(
uinc

)= eim(π/2−θd) and γ α
n = i

4ρ0ω2

∑
m∈Z

[
aP

mWα,P
m,n + aS

mWα,S
m,n

]
.

To facilitate ensuing discussion, let us define

A :=
(

AP

AS

)
and γ :=

(
γ P

γ S

)
, with (Aα)m := aα

m

(
uinc

)
and (γ α)m := γ α

m, ∀m ∈ Z.

It can be easily seen, by the definitions of A and γ , and the fact that W∞ is Hermitian, that

γ = i

4ρ0ω2
A	W∞ and γ · γ = 1

(4ρ0ω2)2
AT W∞W∞A.

On the other hand, using the orthogonality relations (3.1)–(3.2) of the cylindrical surface
vector potentials and fairly easy manipulations, we have

∫ 2π

0

(
1

κP

∣∣u∞
P (x̂; d̂)

∣∣2 + 1

κS

∣∣u∞
S (x̂; d̂)

∣∣2)dθ = 4γ · γ = 4

(4ρ0ω2)2
AT W∞W∞A. (C.1)

Similarly, by virtue of superposition principle, the RHS of the identity (3.22) can be written
as

2

[√
2π

κP

�m
{√

iu∞
P (d̂; d̂,P ) · êr

}−
√

2π

κS

�m
{√

iu∞
S (d̂; d̂, S) · êθ

}]

= 4

4ρ0ω2
�m

{
A	W∞A

}
. (C.2)

Substituting (C.1) and (C.2) in (3.22), one gets

1

4ρ0ω2
AT W∞W∞A = �m

{
A	W∞A

}
. (C.3)

Finally, note that

�m
{
A	W∞A

}= �e
{
A	}�m{W∞}�e{A} − �e

{
A	}�e{W∞}�m{A}

+ �m
{
A	}�e{W∞}�e{A} + �m

{
A	}�m{W∞}�m{A}.

Recall that each term on the RHS of the above equation is a scalar and the matrix W∞ is
Hermitian. Thus, the second term cancels out the third one on transposition. Finally, the first
and the fourth terms can be combined to yield

�m
{
A	W∞A

}= A	�m{W∞}A. (C.4)

The relation (3.23) follows by substituting (C.4) back in (C.3). This completes the proof.



T. Abbas et al.

Appendix D: Proof of Theorem 5.2

Recall that, for t → 0,

Jn(t) = tn

2nΓ (n + 1)
+ O

(
tn+1

)
,

J ′
n(t) = ntn−1

2nΓ (n + 1)
+ O

(
tn
)
,

H (1)
n (t) = −i

2nΓ (n)

πtn
+ O

(
t−n+1

)
,

(
H(1)

n

)′
(t) = i

2nΓ (n + 1)

πtn+1
+ O

(
t−n

)
.

Hence, by the definition of Bα
n (t, λ,μ), Cα

n (t, λ,μ), B̂α
n (t, λ,μ) and Ĉα

n (t, λ,μ), we have

BP
n (t, λ,μ) = − iμ2n+1Γ (n + 1)

πtn
+ O

(
t−n+1

)
,

CS
n (t,μ) = iμ2n+1Γ (n + 1)

πtn
+ O

(
t−n+1

)
,

CP
n (t,μ) = −BS

n (t, λ,μ) = −μ2n+1Γ (n + 1) (n + 1)

πtn
+ O

(
t−n+1

)
,

B̂P
n (t, λ,μ) = − μtn

2n−1Γ (n)
+ O

(
tn+1

)
,

ĈS
n (t, λ,μ) = μtn

2n−1Γ (n)
+ O

(
tn+1

)
,

ĈP
n (t, λ,μ) = −B̂S

n (t, λ,μ) = i
μ(n − 1)tn

2n−1Γ (n)
+ O

(
tn+1

)
,

as t → 0. Inserting the previous asymptotic behavior into the expression of Mn,j , we get

Mn,j =
(

A11 A12

A21 A22

)
,

where

A11 = n

2nΓ (n + 1)

(
tnj,P itnj,S

itnj,P −tnj,S

)
+ O

(
ωn+1

)
,

A12 = 2nΓ (n + 1)

π

(
it−n

j,P t−n
j,S

t−n
j,P −it−n

j,S

)
+ O

(
ω−n+1

)
,

A21 = − μ

2n−1Γ (n)

( −tnj,P −i(n − 1)tnj,S

i(n − 1)tnj,P tnj,S

)
+ O

(
ωn+1

)
,

A22 = −2n+1μΓ (n + 1)

π

(
it−n

j,P −(n + 1)t−n
j,S

(n + 1)t−n
j,P −it−n

j,S

)
+ O

(
ω−n+1

)
.
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It implies that

Mn,j =
(

O(ωn+1) O(ω−n+1)

O(ωn) O(ω−n)

)
, j = 1, . . . ,L, (D.1)

Mn,L =
(

0 0
O(ωn) O(ω−n)

)
, as ω → 0. (D.2)

Moreover, the inverse of Mn,j can be expressed as

M−1
n,j =

(
A−1

11 + A−1
11 A12B−1A21A−1

11 −A−1
11 A12B−1

−B−1A21A−1
11 B−1

)
,

where B is the Schur’s complement of A22, that is,

B := A22 − A21A−1
11 A12.

Since

A−1
11 = O

(
ω−n−1

)
, A−1

11 A12 = O
(
ω−2n

)
, A21A−1

11 = O
(
ω−1

)
, and B−1 = O

(
ωn

)
,

it follows that

M−1
n,j =

(
O(ω−n−1) O(ω−n)

O(ωn−1) O(ωn)

)
, as ω → 0. (D.3)

Inserting (D.1), (D.2) and (D.3) into the expression (5.7) of Q(n) and then making use of the
series expansions of Jn, Yn, J ′

n and Y ′
n, we find out that

Q(n)

21

(
λ,μ,ρω2

)= ωn

(
Gn,0(λ,μ,ρ) +

N−n∑
l=1

L+1∑
j=0

G(j)

n,l (λ,μ,ρ)ω2l(lnω)j + o
(
ω2(N−n)

))
,

Q(n)

22

(
λ,μ,ρω2

)= ω−n

(
Hn,0(λ,μ,ρ) +

N−n∑
l=1

L+1∑
j=0

H(j)

n,l (λ,μ,ρ)ω2l (lnω)j + o
(
ω2(N−n)

))
,

for some functions Gn,0, G(j)

n,l , Hn,0, H(j)

n,l . This together with (5.8) yields (5.9). Here, the
remaining terms o(ω2(N−n)) are understood element-wise for the matrices.
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