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Acoustic scattering from locally perturbed periodic surfaces
Guanghui Hu, Andreas Rathsfeld

Abstract

We prove well-posedness for the time-harmonic acoustic scattering of plane waves from lo-
cally perturbed periodic surfaces in two dimensions under homogeneous Dirichlet boundary con-
ditions. This covers sound-soft acoustic as well as perfectly conducting, TE polarized electromag-
netic boundary value problems. Our arguments are based on a variational method in a truncated
bounded domain coupled with a boundary integral representation. If the quasi-periodic Green’s
function to the unperturbed periodic scattering problem is calculated efficiently, then the varia-
tional approach can be used for a numerical scheme based on coupling finite elements with a
boundary element algorithm.

Even for a general 2D rough-surface problem, it turns out that the Green’s function defined
with the radiation condition ASR satisfies the Sommerfeld radiation condition over the half plane.
Based on this result, for a local perturbation of a periodic surface, the scattered wave of an
incoming plane wave is the sum of the scattered wave for the unperturbed periodic surface plus
an additional scattered wave satisfying Sommerfeld’s condition on the half plane. Whereas the
scattered wave for the unperturbed periodic surface has a far field consisting of a finite number
of propagating plane waves, the additional field contributes to the far field by a far-field pattern
defined in the half-plane directions similarly to the pattern known for bounded obstacles.

1 Introduction

The scattering theory in periodic structures has many applications in near-field optics, micro-electron-
ics, non-destructive testing, and the design of photonic crystals. We refer to [27] for an introduction
and historical remarks on the electromagnetic theory of gratings. Over the last twenty years, significant
progress has been made concerning the mathematical analysis and the numerical approximation of
grating diffraction problems for the case of incident acoustic or electromagnetic waves, using integral
equation methods (e.g. [25, 26, 28]) and variational methods (e.g. [5, 14, 15, 19]). This paper is con-
cerned with the analysis of plane waves scattered at a one-dimensional perfectly conducting grating
with local perturbation. Physically, the local perturbation of a perfectly periodic surface can be used to
model optical devices with localized defects, for instance, unmade or distorted grooves on the surface
of diffraction gratings.

The diffracted field for a plane wave incident onto a perfect grating is well-known to be quasi-periodic,
due to the periodicity of the scattering surface and the quasi-periodicity of the incoming wave. The
presence of defects will break down the quasi-periodicity property, leading to essential difficulties in
the reduction of the analysis and simulation to problems over bounded domains. A limited number of
approaches have been proposed so far for treating grating problems with local perturbations. To solve
transmission problems for periodic interfaces perturbed by compact aperiodic inclusions below the in-
terface, Ammari and Bao [1] propose an integral equation approach. This integral equation is defined
over R2 or R3 and includes a Fourier transform as well as a kernel function, which is defined by the
solution of a family of variational equations. The approach relies on strong a priori assumptions (for
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instance, absence of surface waves and the unique solvability of a periodic equation; see [1, (3.1)]),
and the mathematical analysis of the unique solvability and the decay behaviour of the unperturbed
fields seem still to be unclear in general. Bonnet-Bendhia and Ramdani [4] treat such compact inclu-
sions if the space beneath a planar interface is filled with media periodic in the interface direction. They
employ Floquet-Bloch transforms, variational formulations, and boundary integral techniques. Joly et
al. established an exact boundary condition with a map of Dirichlet-to-Neumann type for numerically
solving an inhomogeneous source problem in a closed periodic waveguide with a local junction [18]
and then extended the approach to an open waveguide, where the unperturbed medium was periodic
in two directions [16]. Here and in other publications, the Floquet-Bloch transform was employed to
handle scattering problems in a locally perturbed periodic medium; see [12] for a line defect, Haddar
and Nguyen [17] in periodic layered medium as well as Lechleiter and Zhang [21] for locally perturbed
sound-soft surfaces. The resulting numerical schemes of [17,21] require the calculation of inverse and
forward Floquet-Bloch transforms or variational equations for Floquet-Bloch transformed solutions.
Sun and Zheng [29] apply perfectly matched layers to reduce the boundary value problem over a pe-
riodic metallic interface with a local aperiodic perturbation, and the resulting wave-guide problem can
be solved by the methods of [18].

Motivated by recent studies on wave scattering from flat surfaces with local perturbations [2, 3, 30],
in this paper we prove that the total field can be uniquely decomposed into three parts (see Thm.
3.1): the incoming wave vin, the reflected field vsc corresponding to the unperturbed periodic scat-
tering interface, and the perturbed wave u0 caused by the presence of local perturbations. This, in
particular, implies that a local perturbation cannot give rise to any surface wave. Moreover, we verify
that u0 satisfies the half-space Sommerfeld radiation condition (see Definition 2.1). In the case of flat
surfaces with local perturbations, it is easy to prove that u0 fulfills the strong Sommerfeld radiation
condition uniformly for all outgoing directions in the upper half space. This follows straightforwardly
from the properties of the corresponding Green’s function in the half space. The characterization of
the asymptotic behavior of u0 in a periodic background medium seems to be missing in the literature
and turns out to be non-trivial. We shall prove that even the non-quasi-periodic Green’s function G to
perfectly conducting gratings with aperiodic Lipschitz interfaces fulfills this half-space Sommerfeld ra-
diation condition. For the locally perturbed periodic grating, this enables us to establish an equivalent
variational formulation over a bounded domain containing the defect. The formulation is based on a
boundary integral representation of u0 in terms of the quasi-periodic Green’s function G. Thanks to
solvability results for general rough surfaces [8], we show that u=vin+vsc+u0 is the unique solution
in certain weighted Sobolev spaces over a strip above the scattering surface. By the classical grating
theory, the reflected field vsc fulfills the Upward Rayleigh Expansion Radiation. Hence, the scattered
field vsc+u0 still satisfies the Upward Angular Spectral Representation ( [8, 9]) or, equivalently, the
Upward Propagating Radiation Condition of [11]. The estimates leading to Sommerfeld’s radiation
condition can be used as well to derive the far-field pattern of u0. Note that the notion of far-field pat-
terns can be used to model the inverse problems of finding the defect surface from measured far-field
data (compare the different notion of far-field measurement in e.g. [22]).

The decomposition of the scattered fields into reflected fields and Sommerfeld type outgoing fields
also applies to other cases of local perturbations, e.g., a bounded obstacle embedded in periodic
background media, including inhomogeneous periodic layered media. Hence, the proposed approach
can be used to handle general grating diffraction problems with defects. This requires the determina-
tion of the solution for the unperturbed periodic surface and an efficient forward solver for computing
the Green’s function G to the unperturbed grating diffraction problems, i.e., the computation of the
total fields incited by incoming point-source waves. Since such kind of incident waves are not quasi-
periodic, one can apply the Floquet-Bloch transform to the calculation of G; see e.g. [20].
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Figure 1: Geometry of unperturbed grating.

The remaining part of this paper is organized as follows. In the subsequent Sect. 2 we recall solvability
results for the scattering of plane and point-source waves from perfectly conducting gratings. The half-
plane Sommerfeld radiation condition will be given in Definition 2.1. Sect. 3 is devoted to the analysis
of a variational formulation over a bounded truncated domain, which is equivalent to the scattering
problem. Uniqueness and existence of weak solutions will be reported in Lem. 3.1 and Thm. 3.1. The
proof for the Sommerfeld radiation condition of the Green’s function to the unperturbed periodic and
to aperiodic scattering problems, respectively, will be postponed to the Appendix in Sect. 4.

2 Scattering from periodic surfaces

2.1 Plane-wave incidence

Assume a time-harmonic acoustic wave is incident onto a sound-soft periodic surface Γ⊂R2 of an
isotropic homogeneous background medium. Suppose that Γ is Lipschitz continuous, and that the
incident wave is a time-harmonic plane wave of the form vin(x) exp(−iωt), incited at the angular
frequency ω>0. The spatially dependent function vin takes the form

vin(x) = exp
(
ik (sin θ,− cos θ) · x

)
, (2.1)

where θ∈ [0, π/2) denotes the angle of incidence, where k :=ω/c0 is the wave number, and c0> 0
the speed of sound. We suppose that Γ is bounded in x2 and that, without loss of generality, the
scattering surface Γ is 2π-periodic in x1. The unbounded region above Γ, which we denote by ΩΓ (cf.
Fig. 1), is supposed to fulfill the following geometrical condition:

(x1, x2) ∈ ΩΓ ⇒ (x1, x2 + s) ∈ ΩΓ for all s>0. (2.2)

The wave propagation is then governed by the boundary value problem for the Helmholtz equation

∆v + k2v = 0 in ΩΓ, v = 0 on Γ, (2.3)
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where the total field v= vin+vsc is the sum of the incident field vin and a scattered field vsc, which
satisfies a radiation condition.

Let α :=k sin θ. Obviously, the incident field is α-quasi-periodic in the sense that vin(x) exp(−iαx1)
is 2π-periodic with respect to x1 in ΩΓ. The periodicity of the structure together with the form of the
incident wave implies that the total field v must also be α-quasi-periodic. This implies that

v(x1 + 2π n, x2) = exp(i2παn) v(x1, x2), for all n∈Z.

Since the domain ΩΓ is unbounded in the x2-direction, a radiation condition must be imposed at infinity
to ensure well-posedness of the scattering problem. In other words, setting Uh :={x∈R2 : x2>h},
we require the scattered acoustic field vsc to admit the upward Rayleigh expansion condition: There
exist coefficients vn∈C depending on vsc such that

vsc(x) =
∑
n∈Z2

vn exp(iαnx1 + iβnx2), x ∈ Uh, (2.4)

for any h > max{x2 : x∈Γ} and with the parameters αn :=n+ α ∈R and βn∈C defined by

βn = βn(k) :=

{
(k2 − |αn|2)

1
2 if |αn| ≤ k,

i(|αn|2 − k2)
1
2 if |αn| > k.

Uniqueness and existence of our scattering problem (2.1)-(2.4) are stated as follows.

Lemma 2.1. Assume Condition (2.2) is fulfilled. Then, for any fixed k > 0 and θ ∈ [0, π/2) and for
α=k sin θ, there exists a unique α-quasi-periodic variational solution v=vin+vsc∈H1

loc(ΩΓ) to the
scattering problem (2.1)-(2.4).

The above well-posedness result was first proved by Kirsch [19] for periodic surfaces given by a C2-
smooth function and then by Elschner and Yamamoto [15] for Lipschitz graphs. Chandler-Wilde and
Monk [9] proved uniqueness and existence for rough surface scattering problems if the incident wave
is generated by a compact source term and if condition (2.2) holds. The case of plane-wave incidence
was treated in [8] for sound-soft rough surfaces in two dimensions, from which Lem. 2.1 follows. The
uniqueness proofs in the above mentioned papers depend heavily on the use of Rellich’s identity under
the condition (2.2). Uniqueness to scattering problems in periodic structures cannot hold in the general
case. We refer to [5] for non-uniqueness examples in inhomogeneous periodic media.

2.2 Point-source incidence

We now fix a y∈ΩΓ and consider the case where the incident wave Gin is a non-quasiperiodic
cylindrical wave of the form:

Gin(x) = Gin(x; y) := Φ(x; y) :=
i

4
H

(1)
0 (k|x− y|), x 6= y, x ∈ ΩΓ. (2.5)

Here H(1)
0 (·) stands for the Hankel function of the first kind and of order zero. The function Φ(x; y) is

the free-space fundamental solution of the Helmholtz equation (∆ + k2)u = 0. Since the incoming
wave Gin is no longer quasi-periodic, the Rayleigh expansion condition (2.4) is not applicable to point
source incidence of the form (2.5). Instead we suppose that the scattered fieldGsc satisfies the upward
Angular Spectrum Representation (ASR) proposed in [9]:

Gsc(x) =
1√
2π

∫
R

exp
(
i[(x2 − h)

√
k2 − ξ2 + x1ξ]

)
Ĝsc
h (ξ) dξ, x ∈ Uh, (2.6)

DOI 10.20347/WIAS.PREPRINT.2522 Berlin 2018



Acoustic scattering 5

for all h>max{x2 : x∈Γ}. Here,
√
k2 − ξ2 = i

√
ξ2 − k2 when ξ2>k2, and Ĝsc

h (ξ) denotes the
Fourier transform of Gsc(x1, h) with respect to x1, i.e.,

Ĝsc
h (ξ) :=

1√
2π

∫
R

exp(−ix1ξ)G
sc(x1, h) dx1, ξ ∈ R.

The radiation condition (2.6) is equivalent to the UPRC of [9] and, if Γ is periodic and the solution is
α-quasi-periodic (see [7]), to the Rayleigh expansion condition (2.4).

Denote the infinite strip between Γ and the straight line Γh :={x∈R2 : x2 =h} by ΩΓ,h :={x∈ΩΓ :
x2<h} and, again, let Uh :={x∈R2 : x2>h} (cf. Fig. 1). For point-source incidence (2.5), we look
for the scattered field in the weighted Sobolev space Vh,% defined as the closure of all the u|ΩΓ,h

with
u∈C∞0 (ΩΓ) w.r.t. the norm

‖u‖Vh,% :=

[∫
ΩΓ,h

{∣∣(1+|x1|2)%/2u(x)
∣∣2 +

∣∣∇ [(1+|x1|2)%/2u(x)
]∣∣2} dx

]1/2

.

One can also employ the following norm equivalent to || · ||Vh,% :

||u|| :=

[∫
ΩΓ,h

(1+|x1|2)%
{∣∣u(x)

∣∣2 +
∣∣∇u(x)|2

}
dx

]1/2

, u ∈ Vh,%.

Moreover, we introduce Hs
%(R) :=(1 + x2

1)−%/2Hs(R) for %, s∈R endowed with the norm

||u||Hs
%(R) :=

∥∥(1 + x2
1)%/2u(x1)

∥∥
Hs(R)

.

We have the identity Vh,%=H1
%(ΩΓ,h)∩{u : u|Γ =0} and, if % = 0, the equality Hs

%(R)=Hs(R),
where the Hs(R) are the usual non-weighted Sobolev spaces.

Theorem 2.1. Under the condition (2.2), the scattering problem

∆G(· ; y)+k2G(· ; y)=δy on ΩΓ, G(· ; y)=0 on Γ, G(· ; y)−Gin(· ; y) satisfies ASR ,

due to the incident point-source wave Gin(x; y) with y ∈ ΩΓ, has exactly one variational solution
G=Gin+Gsc with the scattered field Gsc(x; y) such that

Gsc(· ; y) ∈ H1
%(ΩΓ,h) for all h>max{x2 : x∈Γ}, −1 < % < 0.

Clearly, the function G in Thm. 2.1 is the Green’s function of the boundary value problem (2.3) with
radiation condition ASR. The proof of Thm. 2.1 relies essentially on the decay property ofGin on Γ. Its
proof can be carried out following the arguments of [8, Thm. 4.1] by transforming the original boundary
value problem to an inhomogeneous Helmholtz equation with homogeneous Dirichlet boundary con-
dition on Γ and with an inhomogeneous source term in weighted Sobolev spaces (also cf. [22, Sect.
2.3]). For three dimensions, it was proved in [8] that Gsc(· ; y)∈H1

%(ΩΓ,h) with %∈(−1,−1/2). The
two-dimensional case can be treated analogously; see also the arguments presented in Sect. 4.

For any r>0, write SΓ
r := Sr := {x∈ΩΓ: |x|=r}. Below we shall prove that, for point-source inci-

dence, the upward ASR (2.6) is equivalent to the Sommerfeld outgoing radiation condition in a half
plane, which is defined as follows.
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Definition 2.1. Let v∈C∞(ΩΓ∩{x∈R2 : |x|>R}) for a sufficiently large R>0. Then we say that
v satisfies the half-plane Sommerfeld radiation condition (HPSRC) if, for any h>max{x2 : x∈ Γ},
the function v is in H1

%(ΩΓ,h∩{x∈R2 : |x1|>R}) with some %>−1 and if

sup
x∈Sr∩Uh

r1/2 |∂νv(x)−ikv(x)| → 0, r →∞, sup
x∈ΩΓ∩Uh:|x|≥R

|x|1/2 |v(x)| <∞. (2.7)

If v satisfies the HPSRC with (2.7) replaced by∫
Sr∩Uh

|∂νv − ikv|2 ds→ 0, r →∞, sup
0<r

∫
Sr∩Uh

|v|2 ds <∞, (2.8)

then we shall say that v fulfills the weak half-plane Sommerfeld radiation condition (wHPSRC).

The integrals in (2.8) are defined over Sr∩Uh rather than Sr, because the normal derivative ∂νv
on Sr ∩ ΩΓ,h might not exist in the L2-sense. The dependencies between the different radiation
conditions are shown in Fig. 2. Obviously, HPSRC implies wHPSRC. On the other hand, any function
v = u0 over the domain ΩΓ (or the perturbed domain ΩΛ in Sect. 3) satisfying the wHPSRC and
v|Γ = 0 (or v|Λ = 0) can be represented as (3.5), and the subsequent Lem. 2.4 implies the HPSRC.
Furthermore, note that the wHPSRC is stronger than the ASR (cf. (2.6)). Indeed, using (3.4) over a
half plane, a representation like (4.1) can be shown for v, and v satisfies the UPRC and, equivalently
(cf. [8]), the ASR. Vice versa, the ASR together with the decay condition v|Γh∩{x∈R2: |x|>R}∈L2

%, with
a % s.t. 1/2<%<1, implies the HPSRC (cf. the proof of Lem. 4.2). Hence in many cases, HPSRC,
wHPSRC, and ASR are equivalent.

The function x→Φ(x; y) with y∈R2\ΩΓ satisfies (2.7). For functions satisfying the HPSRC, we de-
fine the far-field pattern over the direction x̂=(cos θ, sin θ)∈S+ with S+ :={x∈R2 : x2>0, |x|=1}
and θ∈(0, π).

Definition 2.2. Let v∈C∞(ΩΓ∩{x∈R2 : |x|>R}) for a sufficiently large R>0. We shall call the
continuous function v∞∈C(S+) the far-field pattern of v if there is an h>0 s.t.

sup
x=rx̂∈Sr∩Uh

∣∣∣∣v(x)− exp(ikr)

r1/2
v∞(x̂)

∣∣∣∣ r1/2 −→ 0, r →∞. (2.9)

The lemma below shows that the scattered field caused by Gin also fulfills the stronger condition of
Def. 2.1 and admits an asymptotics like in (2.9).
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Lemma 2.2. For any fixed y∈ΩΓ, the Green’s function G(· ; y) of Thm. 2.1 satisfies the HPSRC and
has a far-field pattern in C(S+). Moreover, G(· ; y)∈H1

%(ΩΓ,h∩{x∈R2 : |x1|>R}) for any |%|<1
and R> |y1|.

The assertion of Lem. 2.2, for Γ the graph of a C1,1-smooth function and for an incident wave with
compactly supported source in ΩΓ at a positive distance from Γ, is contained already in [10, Thm. 5.1]
but without proofs. In the Appendix we shall present a proof valid for Lipschitz (non-periodic) rough
surfaces under the condition (2.2). In the special case Γ=Γ0 :={x∈R2 : x2 = 0}, Lem. 2.2 follows
straightforwardly from the explicit formula

G(x; y) = Φ(x; y)− Φ(x; y∗), y∗ := (y1,−y2).

Remark 2.1. Unfortunately, the assertion of Lem. 2.2 does not hold for the scattered field generated
by plane-wave incidence, due to the appearance of propagating wave modes, which do not decay at
infinity.

In the Appendix we shall prove the following lemmata.

Lemma 2.3. Suppose lj, j=1, 2 are non-negative integers. The assertion of Lem. 2.2 holds for
G(· ; y) replaced by the derivative ∂l1y1

∂l2y2
G(· ; y).

Lemma 2.4. Suppose that SR is a circular arc around the midpoint (0, 0) and of radius R in ΩΓ

with end points located at Γ. Further suppose f ∈Hs(SR), s∈R, and lj, j=1, 2 are non-negative
integers. Then the function v(x) :=

∫
SR
∂l1y1
∂l2y2
G(x; y)f(y) ds(y) for x∈ΩΓ with |x|>R fulfills the

HPSRC and has a far-field pattern in the space C(S+).

We shall use the Green’s function to define single and double layer potential operators over the circular
arc SR. The behaviour of the Green’s function close to the end points, however, is hard to predict. To
guarantee a degree of smoothness suitable for a numerical discretization, an additional condition on
Γ like the following (2.10) would be helpful. For fixed R and any of the two end points of the arc
ỹ∈SR∩Γ, we assume that in a neighbourhood of ỹ the curve Γ is a linear segment [ỹa, ỹb], i.e., there
are points ỹa, ỹb∈R2 and an εL>0

Γ ∩ {y ∈ R2 : |y − ỹ| ≤ εL} = {µỹa + (1− µ)ỹb : 0 ≤ µ ≤ 1}, ỹ · (ỹb − ỹa) 6= 0. (2.10)

Here the assumption on the non-vanishing scalar product is equivalent to the condition that the angle
between Γ and SR at ỹ is strictly in (0, π). With (2.10) the Green’s function G is locally the sum of
the Green’s function Ψ for the rotated half plane (cf. (4.2)) plus a function Gr such that the mapping
SR3y 7→Gr(.; y)∈H1

loc(ΩΓ) is continuous (cf. the proofs in the Appendix in Sect. 4).

3 Scattering from locally perturbed periodic surfaces

Now consider a one-dimensional Lipschitz curve Λ⊂R2 different from Γ and suppose (2.2) also for
Λ. The curve Λ is said to be a local perturbation of the periodic interface Γ if Λ coincides with Γ in
{x∈R2 : |x1|>R} for some fixed R> 0. In other words, Λ differs from Γ in a compact set which
may stand for a defect of Γ. The presence of the defect causes a perturbation u of the total wave field
v=vin+vsc that corresponds to the perfectly periodic interface Γ. In this section we study the relation
between the perturbed and unperturbed scattering problems. We derive a variational equation for the
solution u based on the solution v.
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Figure 3: Geometry of locally perturbed grating.

We keep the notation used in Sect. 2. Let ΩΛ be the region above Λ and set (cf. Fig. 3)

ΛR := {x ∈ Λ: |x| < R}, Ω−R := {x ∈ ΩΛ : |x| < R}, Ω+
R := {x ∈ ΩΛ : |x| > R}.

Assume a plane wave vin(x; θ) of the form (2.1) is incident onto Λ from ΩΛ. We seek the total field
u∈H1

loc(ΩΛ) in the form

u(x) = vin(x; θ) + vsc(x; θ) + u0(x; θ) = v(x) + u0(x), x ∈ ΩΛ ∩ ΩΓ,

where v=vin+vsc is the total field generated by the unperturbed surface Γ, and the unknown function
u0 incited by the defect is supposed to satisfy the HPSRC. Since both u and v vanish on Λ\ΛR, the
function u0 should also vanish on Λ\ΛR. Define the energy space XR over the truncated domain Ω−R
as XR :={u∈H1(Ω−R) : u=0 on ΛR}, which is equipped with the usual H1-norm

‖u‖XR
:=
(∫

Ω−R

{
|∇u|2 + |u|2

}
dx
)1/2

.

Let SΛ
R be defined in the same way as SΓ

R with Γ replaced by Λ. Obviously, for large R we have
SΛ
R =SΓ

R . Hence, for notational convenience, we drop the indices Γ and Λ and write SR =SΛ
R =SΓ

R .
Introduce the Sobolev spaces on the open arc (see, e.g., [24]):

H1/2(SR) := {u|SR
: u ∈ H1/2(∂Ω−R)},

H̃1/2(SR) := {u ∈ H1/2(∂Ω−R) : supp (u) ⊂ SR}.

Then we denote the dual space of H̃1/2(SR) by H−1/2(SR), and the dual space of H1/2(SR) by
H̃−1/2(SR). It is easy to derive the following variational formulation for u:∫

Ω−R

{
∇u · ∇φ− k2uφ

}
dx−

∫
SR

∂νuφ ds = 0 for all φ∈XR, (3.1)

where ν is the unit normal on SR pointing into Ω+
R. Choosing R1 >R and applying Green’s formula

to u0, we see

u0(x) =

(
−
∫
SR1

+

∫
SR

)[
u0(y)∂ν(y)G(x; y)− ∂ν(y)u0(y)G(x; y)

]
ds(y), (3.2)
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for x∈Ω−R1
∩ Ω+

R. Note that both, u0 and G=GΓ, vanish on Λ\ΛR.

Taking h>max{x2 : x∈Γ} and making use of the wHPSRC of u0 and G yield∫
SR1
∩Uh

[
u0(y)∂ν(y)G(x; y)− ∂ν(y)u0(y)G(x; y)

]
ds(y)= (3.3)∫

SR1
∩Uh

{
u0(y)[∂ν(y)G(y;x)− ikG(y;x)]− [∂ν(y)u0(y)− iku0(y)]G(y;x)

}
ds(y)→ 0

asR1→∞. Here we have used the symmetryG(x; y)=G(y;x) (cf. e.g. [22, Thm. 7]), which can be
proved following the lines in the proof of [23, Thm. 3.14] and using Lem. 2.2. Further, the integral over
the remaining part SR1,h :=SR1∩ ΩΓ,h of SR1 can be estimated by∫

SR1,h

[
u0(y)∂ν(y)G(x; y)− ∂ν(y)u0(y)G(x; y)

]
ds(y)

≤ ||u0(1 + |y1|%)||H1/2(SR1,h
) ||∂ν(y)G(x; ·)(1 + |y1|−%)||H̃−1/2(SR1,h

)

+||∂νu0(1 + |y1|%)||H̃−1/2(SR1,h
) ||G(x; ·)(1 + |y1|−%)||H1/2(SR1,h

)

≤ ||u0||H1/2
% (SR1,h

)
||∂ν(y)G(x; ·)||

H̃
−1/2
−% (SR1,h

)
+ ||∂νu0||H̃−1/2

% (SR1,h
)
||G(x; ·)||

H
1/2
−% (SR1,h

)

≤ C ||u0||H1
%(ΣR1,h

) ||G(x; ·)||H1
−%(ΣR1,h

).

Here, we choose %∈ (−1, 0) from the wHPSRC for u0 and take ΣR1,h⊂ΩΓ,h as a small region with
fixed area that contains SR1,h inside. In view of the wHPSRC relation u0 ∈H1

%({x ∈ ΩΓ,h : |x1|>
R}) and of the fact that G(x; ·)∈H1

−%({x∈ΩΓ,h : |x1|>R}), the right-hand side of the previous
inequality tends to zero as R1→∞. This together with (3.3) implies that∫

SR1

[
u0(y)∂ν(y)G(x; y)− ∂ν(y)u0(y)G(x; y)

]
ds(y)→ 0 as R1 →∞. (3.4)

Hence, letting R1→∞ in (3.2), we can represent the function u0 as

u0(x) =

∫
SR

[
u0(y)∂ν(y)G(x; y)− ∂ν(y)u0(y)G(x; y)

]
ds(y), x ∈ Ω+

R. (3.5)

Taking the limit x→ SR in (3.5) and setting p :=∂νu0|SR
∈H−1/2(SR) and q :=u0|SR

∈H̃1/2(SR)
we arrive at the integral equation

(
1

2
I −D)q + Sp = 0 on SR. (3.6)

Here D and S are the double and single layer potentials over SR, respectively, defined by

(Sp)(x) :=

∫
SR

G(x; y)p(y) ds(y), x ∈ SR,

(Dq)(x) :=

∫
SR

∂ν(y)G(x; y)q(y) ds(y), x ∈ SR.

Note that the classical jump relations apply for the special Green’s function. Indeed, on ΩΓ the function
G is locally the sum of the classical full-space Green’s function Φ plus an analytic function since the
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solution of the Helmholtz equation is analytic away from the boundary. The equations (3.1) and (3.6)
give the variational formulation for the unknown solution u∈XR and p∈H−1/2(SR):

A
(
(u, p), (ϕ, χ)

)
:=

(
a1

(
(u, p), (ϕ, χ)

)
a2

(
(u, p), (ϕ, χ)

)) =

( ∫
SR
∂νv ϕ ds∫

SR
(1

2
I −D)(v|SR

)χ ds

)
(3.7)

for all (ϕ, χ)∈XR×H−1/2(SR), where

a1

(
(u, p), (ϕ, χ)

)
:=

∫
Ω−R

{
∇u · ∇ϕ− k2uϕ

}
dx−

∫
SR

pϕ ds,

a2

(
(u, p), (ϕ, χ)

)
:=

∫
SR

[
(
1

2
I −D)(u|SR

) + Sp
]
χ ds.

Altogether, we have shown that (u, p) is a solution of (3.7). Recall that u∈XR is the restriction to Ω−R
of the solution u to the Helmholtz problem

∆[u− vin] + k2[u− vin] = 0 in ΩΛ, u = 0 on Λ, u− vin satisfies ASR (3.8)

in the variational sense of [8, Thm. 4.1]. The difference u0 :=u−vin−vsc satisfies the HPSRC by
assumption and the solution function p is the trace of the normal derivative of u0 on SR. On the other
hand, a solution u∈XR obtained from (3.7), can be extended from Ω−R to ΩΛ via u=vin+vsc+u0,
where u0 is expressed over {x∈R2 : |x|>R} by (3.5) with the traces u0|SR and ∂νu0|SR replaced by
(u−v)|SR and the solution p of (3.7), respectively. Moreover, the extension is a solution of the Helmholtz
equation and thus analytic at the points of SR (observe that the second variational equation in (3.7)
yields the continuity of the extension over SR and the first equation that of the normal derivatives), and
the difference of the extension and the solution v satisfies the HPSRC due to Lem. 2.4.

Denoting the domain enclosed between ΓR :={x∈Γ: |x|< R} and SR by Ω̃−R, we state the unique-
ness and existence of solutions to (3.7) as follows.

Lemma 3.1. Suppose the squared wavenumber k2 is not an eigenvalue for the negative Laplacian
over the domain Ω̃−R. Then there exists a unique solution (u, p)∈XR×H−1/2(SR) of the variational
equation (3.7).

Proof. By arguing the same way as in [3], one can prove that the sesqui-linear form (3.7) is strongly
elliptic over the space XR×H−1/2(SR). Let us prove that the null space is trivial. The condition
a1((u, p), (ϕ, χ))=0 yields that u satisfies the Helmholtz equation in Ω−R and that ∂νu=p over
SR. Introducing the function ũ :=

∫
SR
{∂νG(· ; y)u(y)−G(· ; y)p(y)} over ΩΓ \SR, the condition

a2((u, p), (ϕ, χ))=0 yields that the trace on SR of u from Ω−R coincides with the trace of ũ from
Ω+
R. Consequently, the jump relation for the integrals in the definition of ũ implies that the trace on SR

of ũ from Ω̃−R is zero. In other words, the restriction ũ|Ω̃−R is a solution of the homogeneous Dirichlet

problem for the Helmholtz equation over Ω̃−R. If there is no non-trivial solution of the Dirichlet prob-

lem, then ũ|Ω̃−R =0 and the trace on SR of ∂ν ũ from Ω̃−R vanishes. The jump relation for the integrals

in the definition of ũ implies that the trace of ∂ν ũ from Ω+
R is equal to p. If we define the function

w by w(x) :=u(x) for x∈Ω−R and w(x) := ũ(x) for x∈Ω+
R, then w and ∂νw are continuous over

SR. In other words, w is a solution of the homogeneous Dirichlet problem for the Helmholtz equa-
tion over ΩΛ =Ω+

R∪SR∪Ω−R, which satisfies the radiation condition. The uniqueness of the solution
to this boundary value problem (cf. [8, Thm. 4.1]) implies w=0 s.t. the solutions u and p=∂νu van-
ish. Hence, the null space of the operator defined by the left-hand side of (3.7) is trivial. Applying
Fredholm’s alternative, we obtain existence and uniqueness of weak solutions to (3.7). �
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For h>max{x2 : x∈Λ}, denote the strip between Λ and the straight line Γh :={x∈R2 : x2 =h}
by ΩΛ,h. The space defined as Vh,% with ΩΓ,h replaced by ΩΛ,h is denoted by V ′h,%. Well-posedness
of the perturbed scattering problem is stated below, where the incoming wave is allowed to be either
a plane wave or a point-source wave.

Theorem 3.1. The locally perturbed wave scattering problem (3.8) admits a unique solution u such
that u−vin∈H1

loc(ΩΛ) and that the difference u−vin−vsc fulfills the HPSRC and has a far-field
pattern in C(S+). Moreover, the restriction (u−vin)|ΩΛ,h

is the unique variational solution in the
weighted Sobolev space V ′h,%. Here −1<%<−1/2 for incident plane waves and −1<%<0 for inci-
dent point-source waves.

Proof. First we assume that the squared wavenumber is not an eigenvalue for the negative Laplacian
over Ω̃−R. It is easy to check that a plane wave belongs to H1

%(ΩΛ,h) for any h>max{x2 : x∈Λ}
and %∈(−1,−1/2), and that a point-source wave away from the source lies in the weighted Sobolev
space with the index %∈ (−1, 0). Under the condition (2.2), the locally perturbed scattering problem
admits a unique solution u such that u − vin satisfies the ASR (2.6) and belongs to the same space
as the incoming wave (cf. [8, Thm. 4.1]). On the other hand, for the unique solution u to the variational
problem (3.7) the difference u− vin = vsc + u0 can be extended to a solution over ΩΛ. In particular,
the extension of u0 for |x|>R is given by (3.5). In view of Lem. 2.4, u0 fulfills the HPSRC and has a
far-field pattern. Moreover, vsc +u0 is in H1

%(ΩΛ,h) and satisfies the ASR (2.6), since both vsc and u0

are in H1
%(ΩΛ,h) and fulfill the ASR. Thm. 3.1 then follows from the uniqueness result of [8, Thm. 4.1].

If k2 is a Dirichlet eigenvalue of −∆ over Ω̃−R, then by changing the artificial boundary SR we arrive
at a modified domain, for which k2 is not an eigenvalue, and the above proof goes through with
this modification. Indeed, we choose a smooth open curve S ′R intersecting Γ in the end points of
SR and located above Γ with a tiny vertical diameter. We denote the domain enclosed between S ′R
and Γ by Ω̃′R := Ω̃−R

′. Then it is easy to show that, for a small ε, we get ε
∫

Ω̃′R
|∇u|2>

∫
Ω̃′R
|u|2 for

all H1 functions vanishing on the boundary of Ω̃′R. The constant ε is less than a constant times the
square root of the tiny diameter. Consequently, the sesqui-linear form (u, v) 7→

∫
Ω̃′R
∇u · ∇u−k2u · v̄

is coercive for all k2<ε−1, and k2 cannot be an eigenvalue of the negative Laplacian.

Unfortunately, S ′R might intersect the curve Λ. For parameter values µ∈ [0, 1], we consider the curves

SR(µ) :=
{(
x1, µx

′
2 + (1−µ)x2

)
: (x1, x2) ∈ SR, (x1, x

′
2) ∈ S ′R

}
and the domains ΩR(µ) enclosed between SR(µ) and ΓR :={x∈Γ: |x|< R}. If µ is less than
a suitable ε>0, then SR(µ) is close to SR and does not intersect Λ. Transforming the Helmholtz
operator over ΩR(µ) to a reference domain and considering appropriate Sobolev spaces, we obtain
a family of operators, which depend analytically on µ and which are Fredholm with index zero. Since
the operator is invertible for µ= 1, we conclude that there is only a countable set of µ such that the
operator is not invertible. Consequently, there exist a µ<ε such that the operator is invertible and k2

is not a Dirichlet eigenvalue of −∆. The curve SR(µ) does not intersect Λ. �

4 Appendix: Proofs of Lemmata 2.2 – 2.4

In this section, we suppose that Γ is a 2D rough surface, which usually means a non-local perturbation
of an infinite planar boundary surface such that the surface lies within a finite distance of the boundary
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line of the half plane. A periodic surface is a special rough surface. Altogether, we suppose in two
dimensions that Γ is Lipschitz, fulfills the condition (2.2), lies above the straight line {x∈R2 : x2 =0},
and is bounded in the x2-direction. All other definitions from the previous sections are retained. We
prepare our proofs with two technical lemmata.

Lemma 4.1. Let x∈R2
+ and Γ0 = {z ∈R2 : z2 = 0}. Suppose that g ∈L2

%(Γ0) with 1/2<%< 1. If
n+%>1/2, then there is constant C>0 s.t.∫

{z∈Γ0: |z1|>1}

|g(z)|
|x− z|n

ds(z) ≤ C‖g‖L2
%(Γ0)

1

|x|n
.

Proof. It follows from g∈L2
%(Γ0) that∣∣∣ ∫

Γ0

|g(z)|
|x− z|n

ds(z)
∣∣∣2 ≤ ||g||2L2

%(Γ0)

∫
{z∈Γ0: |z1|>1}

1

|x− z|2n |z1|2%
ds(z) .

Hence, we only need to estimate the integral on the right-hand side. Without loss of generality, we
suppose that x=(0, x2) lying on the positive x2-axis, so that |x|=x2. Denote the angle formed by
x−z and the positive x2-axis by ϕ∈(0, π/2). Then it is easy to see that x2 = |x−z| cosϕ and
|z1|=x2 tanϕ. Changing variables, we find∫

{z∈Γ0: |z1|>1}

1

|x− z|2n |z1|2%
ds(z) ≤ C

|x2|2(n+%−1/2)

∫ π/2

arctan(1/x2)

(cosϕ)2(n−1)

(tanϕ)2%
dϕ

≤ C

|x2|2(n+%−1/2)

{
1 +

∫ π/2

arctan(1/x2)

ϕ−2% dϕ

}
≤ C

|x2|2(n+%−1/2)

{
1 + arctan(1/x2)−2%+1

}
≤ C

|x2|2n
.

This finishes the proof of Lem. 4.1. �

Lemma 4.2. Consider fixed numbers h, h′, and % s.t.h>h′>0 and 1/2<%<1. Choose a function
f ∈L1(SR) and suppose that gy∈L2

%(ΩΓ, h′), y∈SR, is a family of functions, which depend con-
tinuously on y. Extend gy to ΩΓ by gy(x) :=0 for x2>h

′. By w denote the y dependent solution
of the homogeneous Dirichlet problem (cf. [8, Thm. 4.1]) for ∆w(· ; y)+k2w(· ; y)=gy over the do-
main ΩΓ s.t.w(· ; y) satisfies the condition ASR. Then the functions w(· ; y), y∈SR and wI(·) :=∫
SR
w(· ; y)f(y)dy defined over ΩΓ satisfy the HPSRC and have a far-field pattern in C(S+).

Proof. We only prove the more involved case of wI . From [8, Thm. 4.1] we infer that the family of
solutions SR3y 7→w(· ; y)∈Vh,% is continuous for the fixed %. Hence,wI ∈Vh,%, and, for the HPSRC,
it remains to prove (2.7) with v=wI . We set Γh :={x∈R2 : x2 =h} and observe that the Dirichlet

data gh,y =w(· ; y)|Γh
is analytic as a Helmholtz solution and belongs to the space H1/2

% (Γh) for the

% with 1/2<%<1 and depends continuously on y∈SR. Hence, gh :=wI |Γh
∈L2

%(Γh)⊂H
1/2
% (Γh),

and gh is analytic. Moreover, since supp gy ⊆ ΩΓ, h′ , the function wI over the set Uh := {x ∈ R2 :
x2>h} can be written as

wI(x) =

∫
Γh

∂Φh(x; z)

∂z2

gh(z) ds(z), x ∈ Uh, (4.1)

Φh(x; z) := Φ(x; z)− Φ(x; z∗h) =
i

4
H

(1)
0 (k|x− z|)− i

4
H

(1)
0 (k|x− z∗h|), (4.2)

∂Φh(x; z)

∂z2

= 2
∂Φ(x; z)

∂z2

for z ∈ Γh,
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which is known as the Upward Propagating Radiation Condition (UPRC) (see [9]). Here, z∗h denotes
the image of z with respect to reflection by the line Γh, and the function Φh(x; z) is the Green’s
function to the Helmholtz equation with the Dirichlet boundary condition on Γh. The improper integral
in the above expression of wI can be understood as the duality betweenH1/2

% (Γh) and its dual space

H
−1/2
−% (Γh) for our %; we refer to [8] for the equivalence of the UPRC and ASR in weighted Sobolev

spaces.

Using a twice differentiable cut-off function, we can represent gh as the sum of two functions, the first
with compact support and the second with support in {z∈Γ0 : |z1|>1}. Correspondingly, wI is the
sum of the two integrals of the type (4.1) with gh replaced by the two functions adding up to gh. For
both integrals, we have to prove the HPSRC. The case of wI with compact support concerns a clas-
sical double layer potential with layer function from the trace space H1/2. The resulting wI fulfills the
classical full-space Sommerfeld condition and has the well-known far-field pattern for all directions θ
with |θ|=1. The boundedness of the norms in H1

%(ΩΓ,h∩{x∈R2 : |x1|>R}) with −1<%<1 fol-

lows from the estimate |∂z2Φ(x; z)|≤C(1+|x2|)|x|−3/2, valid for z in a bounded set and for |x|>R
with sufficiently large R (cf. the subsequent formulas (4.3) and (4.5)). Consequently, without loss of
generality we may suppose that the support of gh on Γh is contained in the set {z∈Γ0 : |z1|>1},
which allows us to apply Lem. 4.1.

Straightforward calculations show that for x∈Uh and z=(z1, z2)∈Γh,

∂Φh(x; z)

∂z2

∣∣∣
z2=h

=
ik(x2 − z2)H

(1)
1 (k|x− z|)

2|x− z|

∣∣∣
z2=h

. (4.3)

Write x= r(cos θ, sin θ), s(r, z) := k|x(r)−z| and x̂ := x/r= (cos θ, sin θ). Here and thereafter,

H
(1)
n denotes the Hankel function of the first kind of order n∈Z. Then we may rewrite the previous

identity as

∂Φh(x; z)

∂z2

∣∣∣
z2=h

=
ik2(r sin θ − h)

2

H
(1)
1 (s(r, z))

s(r, z)

∣∣∣
z2=h

. (4.4)

Below we shall write s=s(r, z) for notational simplicity and make use of the asymptotic behavior of
the Hankel functions for large argument as follows (cf. e.g. (3.59) in [13]):

H(1)
n (s) =

√
2

πs
ei(s−(2n+1)/4π) +O(|s|−3/2),

(4.5)

(H(1)
n )′(s) = i

√
2

πs
ei(s−(2n+1)/4π) +O(|s|−3/2).

We choose a h′′>h and consider x∈R2 with x2>h
′′. Thus s>k(h′′ − h)>0, and the identity (4.4)

implies that there exists a constant C>0 such that∣∣∣∣∂Φh(x; z)

∂z2

∣∣∣∣ ≤ C r

s3/2
for all x2 > h′′, z2 = h.

Hence, by Lem. 4.1 we obtain

|wI(x)| ≤
∫

Γh

C r

s(r, z)3/2
|gh(z)| ds(z) ≤ C ‖gh‖L2

%(Γh)r
−1/2,
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leading to the boundedness supr>1 supx∈Sr∩Uh
r1/2|wI(x)| <∞.

Further, through direct calculations we obtain

∂

∂r

∂Φh(x; z)

∂z2

=
ik2 sin θ

2

H
(1)
1 (s)

s
+
ik2(r sin θ − h)

2

d

ds

(
H

(1)
1 (s)

s

)
ds(r, z)

dr
. (4.6)

As s→∞, it holds that (cf. (4.5))

d

ds

(
H

(1)
1 (s)

s

)
=
H

(1)′

1 (s) s−H(1)
1 (s)

s2
= i

H
(1)
1 (s)

s
+O(s−5/2). (4.7)

It is easy to check that, for z2 =h,

ds(r)

dr
=

k(r − x̂ · z)

|x− z|
= k + k

|x| − x̂ · z − |x− z|
|x− z|

,

ds(r)

dr
− k = k

|x|2 − |x− z|2
|x|+ |x− z| − x̂ · z

|x− z|
= k

2|x|x̂ · z − |z|2
|x|+ |x− z| − x̂ · z

|x− z|

= k

−|z|2
|x|+ |x− z| +

2|x| − |x| − |x− z|
|x|+ |x− z| x̂ · z

|x− z|

= k

−|z|2
|x|+ |x− z| +

2|x|x̂ · z − |z|2
(|x|+ |x− z|)2 x̂ · z

|x− z|
,∣∣∣∣ds(r)dr

− k
∣∣∣∣ ≤ C

1+|z1|
s

. (4.8)

Here the constant C>0 is independent of z with z2 =h and of x∈Uh. Combining the relations (4.7)
and (4.8) yields that, for s→∞,

d

ds

(
H

(1)
1 (s)

s

)
ds(r)

dr
− ikH

(1)
1 (s)

s
= i

H
(1)
1 (s)

s

[
ds(r, z)

dr
− k
]

+O(s−5/2)

= i
H

(1)
1 (s)

s
O
(

1+|z1|
s

)
+O(s−5/2)

= (1 + |z1|)O(s−5/2). (4.9)

Now we deduce from (4.4),(4.6), and (4.9) that, for z ∈ Γh and a suitable constant C > 0,∣∣∣∣( ∂

∂r
− ik

)
∂Φh(x; z)

∂z2

∣∣∣∣ ≤ C

(
1

s3/2
+
r (1 + |z1|)

s5/2

)
(4.10)

≤ C

(
1

s3/2
+
r (1 + r)

s5/2
+

r

s3/2

)
(4.11)

as s→∞. Again using Lem. 4.1, we get as r →∞ that

|∂rwI(x)−ikwI(x)| ≤
∫
{z∈R2: z2=h}

∣∣∣∣(∂r−ik)
∂Φh(x; z)

∂z2

gh(z)

∣∣∣∣ ds(z)

≤ C‖gh‖L2
%(Γh)|x|−1/2 (4.12)
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We choose ε>0 and prove that there is a constant C independent of ε s.t. the supremum over x∈
Sr∩Uh of the expression r1/2|∂rwI(x)−ikwI(x)| is less thanCε whenever r is larger than a suitable
threshold. We choose an approximation g̃h of gh over Γh with compact support s.t.‖g̃h−gh‖L2

%(Γh)<ε
and define w̃I by the integral on the right-hand side of (4.1) with gh replaced by g̃h. Then the proof of
(4.12) implies

sup
x∈Sr∩Uh

r1/2 |∂ν [wI(x)− w̃I(x)]− ik[wI(x)− w̃I(x)]| ≤ Cε. (4.13)

On the other hand, the derivation of (4.12) implies

sup
x∈Sr∩Uh

r1/2 |∂νw̃I − ikw̃I |2 ≤ Cgh r
−1 ≤ ε (4.14)

if r is larger than a suitable threshold. Indeed, for the function g̃h with bounded support, we can
restrict the integration to {z∈Γh : |z1|<C} in the definition of w̃I (compare the right-hand side of
(4.1)). Instead of the bound (4.11), we can use (4.10) with |z1| replaced by C , which leads us to
(4.14). Combining (4.13) and (4.14), we get that the supremum over x ∈ Sr ∩ Uh of the expression
r1/2|∂rwI(x)−ikwI(x)| is less than (C + 1)ε if r is sufficiently large. The proof of (2.7) for v=wI
is completed.

Next we have to prove the existence of the far-field pattern. We prove it for the representation of wI by
the right-hand side of (4.1). The relations (4.3) and (4.5) lead to

wI(x) =

∫
Γh

{
c
eik|x−z|x2

|x− z|3/2
+O

(
|x− z|−3/2

)}
gh(z)ds(z)

= c

∫
Γh

eik|x−z|x2

|x− z|3/2
gL,h(z)ds(z) +O

(
‖gh − gL,h‖ |x|−1/2

)
+O

(
|x|−3/2

)
,

gL,h(z) :=

{
gh(z) if −L<z1<L
0 else

(cf. Lem. 4.1), where c is an appropriate constant. Using that, for fixed L and |x|>>L,

1

|x− z|3/2
=

1

|x|3/2
+OL(|x|−5/2),

|x− z| = |x|
√

1− 2[x/|x|] · z/|x|+ |z|2/|x|2

= |x|{1− [x/|x|] · z/|x|+OL(|x|−2)},
exp(ik|x− z|) = exp(ik|x|) exp(−ik[x/|x|] · z)

[
1 +OL(|x|−1)

]
,

and setting x=rx̂ with r := |x| and x̂∈SR, we arrive at

wI(x) = c
eikr

r1/2
x̂2 e

−ikhx̂2

∫ L

−L
e−ikz1x̂1gh(z1, h)dz1

+O
(
‖gh − gL,h‖L2

%(Γh) |x|−1/2
)

+OL
(
|x|−3/2

)
.

Here the OL terms denote usual O expressions defined with constants depending on L. Now we get
that gh∈L1(Γh)⊂L2

%(Γh) is valid for %∈(1/2, 1). So we obtain

wI(x) =
eikr

r1/2
c x̂2e

−ikhx̂2

∫
R
e−ikz1x̂1gh(z1, h)dz1

+O
(
‖gh − gL,h‖L2

%(Γh) r
−1/2

)
+OL

(
r−3/2

)
,
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Figure 4: Closed curve Θ having common part with periodic profile curve Γ.

where the second term on the right-hand side is smaller than ε/2 for sufficiently large L. Fixing such
an L, the third term is less than ε/2 if r is sufficiently large. All these estimates are uniform w.r.t. x̂ s.t.
the multiplicator of exp(ikr)r−1/2 in the first term on the right-hand side is the far-field pattern of the
function wI . �

Below we present a proof to Lem. 2.2 by adapting the arguments in [8, Rem. 5.6]. Our approach has
the merit that the constructed Green’s function depends continuously on the source position y and
does not rely on the distance between y and Γ.

Proof of Lemma 2.2. Without loss of generality we may fix R>0 and y∈ΩΓ such that |y| ≤R. For
a radius r > 0, we denote the circle {x∈R2 : |x|<r} by Br. We consider a simple, bounded, and
closed Lipschitz curve Θ⊂R2\ΩΓ s.t. Γ∩B2R⊆Θ∩B2R. By GΘ(x; y) we denote the Green’s func-
tion for the Dirichlet boundary problem with classical Sommerfeld radiation condition for the Helmholtz
equation over the domain ExtΘ exterior to Θ (cf. Fig. 4). Furthermore, we fix a cut-off function as

χ(x) =

{
0 if |x| < R/3
1 if |x| > 2R/3

; |∇|α|χ| < C, |α| = 0, 1, 2.

Recall that Γ is located between Γh and Γ0. Then we shall prove

G(x; y) = GΘ(x; y)−GΘ
(
x+(0, H); y

)
+ u(x; y) + w(x; y), (4.15)

u(x; y) := −χ(x− y)GΘ(x; y) +GΘ
(
x+(0, H); y

)
,

gy(x) := −
(
∆x + k2

)
u(x; y),

whereH is a fixed positive constant s.t. max{y, h}≤H/2 andw(· ; y) is the solution of the homoge-
neous Dirichlet problem for ∆w(· ; y)+k2w(· ; y)=gy under the condition ASR. Concerning the term
GΘ(x+(0, H); y), we observe that, for x0∈Θ, we get GΘ([x0−(0, H)]+(0, H); y)=GΘ(x0; y),
i.e., the boundary behaviour ofGΘ(x0; y), x0∈Θ is shifted byH into the negative x2 direction. More-
over, the weak singularity of the Green’s function at the source point appears for x+(0, H) = y, i.e.,
at x = y− (0, H). In other words, the function (x, y) 7→GΘ(x+(0, H); y) is the Green’s function
GΘ−(0,H)(x, y−(0, H)) of the domain ExtΘ−(0, H) at the source point y−(0, H). In particular,
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GΘ(x+(0, H); y) is an analytic function on ΩΓ. Clearly, the support of the right-hand side gy over ΩΓ

is contained in the the compact set supp [1−χ](·−y)⊆{x∈R2 : |x− y|≤2R/3} (cf. Fig. 4) and

gy = −
2∑
j=1

{
2∂xjχ(· − y) ∂xjG

Θ(· ; y)+∂2
xj
χ(· − y)GΘ(· ; y)

}
is in L2

%(ΩΓ). Therefore, the solution function w(· ; y) is the solution of the variational equation of [8,
Thm. 4.1].

Let us define G by the right-hand side of (4.15). Then the equation ∆G(· ; y) + k2G(· ; y) = δy
follows from the Green’s function property of GΘ(· ; y) and GΘ(·+(0, H); y) and from the definition
of w using gy. The boundary condition is fulfilled since w(· ; y)|Γ = 0 holds for the solution of a
homogeneous Dirichlet problem, since GΘ(x; y)−GΘ(x+(0, H); y)+u(x; y) vanishes for x with
χ(x−y) = 1, and since, for |y|≤R and for any x∈Γ with χ(x−y) 6=1, we get χ(x−y)GΘ(x; y)=
GΘ(x; y) = 0 by the Dirichlet condition for the Green’s function GΘ. The condition ASR is satisfied
as we shall prove the stronger HPSRC below. In other words, the right-hand side (4.15) is really the
Green’s function G(x; y) for the domain ΩΓ.

Let us prove the radiation condition and the existence of the far-field pattern for the terms on the right-
hand side of (4.15). Lem. 4.2 implies the HPSRC and the existence of the far-field pattern for w(· ; y).
The Green’s functions GΘ(· ; y) and GΘ(·+(0, H); y) satisfy the classical full-space Sommerfeld
condition implying (2.7) and have a far-field pattern even uniformly in all directions θ with |θ|=1.
The boundedness of the H1

%(ΩΓ,h∩{x∈R2 : |x1|>R})-norms of GΘ(· ; y)−GΘ(·+(0, H); y) for
−1<%<1 follows from Φ(x+(0, H); y)=Φ(x; y−(0, H)) (cf. (2.5) for the definition of Φ) and from
the estimate ∣∣∂l1y1

∂l2y2
Φ(x; y)− ∂l1y1

∂l2y2
Φ
(
x; y−(0, H)

)∣∣ ≤ C
1 + |x2|
|x|3/2

(4.16)

valid for fixed integers l1, l2≥0, for any y from a bounded set, and for any x>R with sufficiently large
R (see below and also [6, 7]). Indeed, we can represent GΘ(· ; y) by the representation formula as
the sum of a single and double layer operator over a bounded smooth curve Θ′ enclosing Θ. The
weight functions in these potentials are smooth. Consequently, GΘ(· ; y)−GΘ(·+(0, H); y) is equal
to the difference of the representation formula minus the same formula with the same weights but on
the curve Θ shifted by H in the direction of the negative x2 axis. Applying (4.16), we get the estimate
|GΘ(x; y)−GΘ(x+(0, H); y)|≤C|x|−3/2 for large values of |x| with x2<h. Similarly, we can prove
the estimate for the difference of the gradients |∇xGΘ(x; y)−∇xGΘ(x+(0, H); y)|≤C|x|−3/2 for
large values of |x| with x2 < h. It is easy to see that these estimates imply the boundedness of the
H1
%(ΩΓ,h∩{x∈R2 : |x1|>R})-norms of the functions GΘ(· ; y)−GΘ(·+(0, H); y).

For the proof of (4.16), we observe that ∂l1y1
∂l2y2

Φ(x; y) is a derivative of the function H(1)
0 (k|x−y|)

multiplied by a rational function depending on the arguments |x−y|1/2, x1, x2, y1, and y2. The
derivatives of order higher than one can be reduced to the zero and first order derivative using Bessel’s
differential equation. In view of (4.5), we can replace the derivatives of the Hankel functions by the ex-
pression exp(i(k|x−y|−(2n+1)/4π)). Simple estimates of the difference for the expressions with
y and that with y replaced by y−(0, H) gives the estimate on the right-hand side of (4.16). Indeed,
estimates like∣∣∣ |x− y|1/2 − ∣∣x− (y−(0, H)

)∣∣1/2∣∣∣
=

∣∣− 2x2H + |y|2 − |y−(0, H)|2
∣∣(

|x− y|1/2 +
∣∣x− (y−(0, H)

)∣∣1/2) (|x− y|+ ∣∣x− (y−(0, H)
)∣∣) ≤ C|x|−1/2
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and ∣∣∣exp
(
ik|x−y|

)
− exp

(
ik
∣∣x−(y − (0, H)

)∣∣)∣∣∣
=

∣∣∣ exp
(
ik
(
|x−y|+

∣∣x−(y − (0, H)
)∣∣ )/2)

× 2i sin
(
k
(
|x−y| −

∣∣x−(y − (0, H)
)∣∣ )/2)∣∣∣

=

∣∣∣∣ exp
(
ik
(
|x−y|+

∣∣x−(y − (0, H)
)∣∣ )/2)

× 2 sin

(
k

2

|y|2 − |y − (0, H)|2 + 2Hx2

|x−y|+
∣∣x−(y − (0, H)

)∣∣
)∣∣∣∣∣ ≤ C

1 + |x2|
|x|

,

lead us to the additional factor (1 + |x2|)|x|−1 in C(1 + |x2|)|x|−3/2 in comparison to an estimate
by C|x|−1/2 following directly from (4.5) applied to a single derivative of Φ. �

We note that, using the approach of approximating the boundary curve of [8], Lem. 2.2 even holds for
a larger class of non-smooth surfaces, namely, for graphs of arbitrary bounded continuous functions. It
follows from (4.16) that the function v=GΘ(· ; y)−GΘ(· ; y∗) decays faster thanGΘ(· ; y) in Uh. As a
consequence of the proof of Lem. 2.2, we obtain the following well-posedness result on rough surface
scattering problems.

Corollary 4.1. Suppose that Γ is Lipschitz continuous, the domain ΩΓ fulfills the condition (2.2) and
that fΓ∈H1/2

% (Γ) with %>1/2. Moreover, suppose there exists an extension w∈H1
%(ΩΓ) of fΓ

(i.e., w|Γ =fΓ) s.t., additionally, ∆w∈L2
%(ΩΓ). Then the boundary value problem v = fΓ on Γ for

∆v+k2v= 0 in ΩΓ under the condition ASR admits a unique solution v∈H1
loc(ΩΓ), which satisfies

the HPSRC and has a far-field pattern in C(S+).

We do not know whether the condition on the index of decay %>1/2 is sharp. For instance, the

function Φ(· ; y)|Γ for y∈R2\ΩΓ belongs to H1/2
% (Γ) with %<0, and Φ(· ; y) still fulfills the HPSRC.

Proof of Lemma 2.3. Replacing G(x; y) by ∂l1y1
∂l1y1
G(x; y) in the proof of Lem. 2.2, we conclude

that the modified right-hand side of (4.15) satisfies the properties of a differentiated Green’s function
together with the HPSRC. Applying the inverse operator [∂l1y1

∂l1y1
]−1, i.e. integrations w.r.t. the variables

y1 and y2, we define a new Green’s function satisfying the HPSRC. From the uniqueness of the
Green’s function, we obtain that the modified right-hand side of (4.15) is indeed the differentiated
Green’s function G(x; y). Hence, ∂l1y1

∂l1y1
G(x; y) is equal to the modified right-hand side of (4.15),

and the HPSRC is satisfied. The far-field pattern exists as well. �

Proof of Lemma 2.4. Applying integration by parts along the boundary SR, we get a new integral
representation with higher order derivatives on G but with smoother weight function f . Without loss of
generality we may suppose f ∈L1(Γ0). Now the proof of Lem. 2.2 implies Lem. 2.4 if we apply Lem.
4.2 with wI equal to the v of Lem. 2.4. �
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