
In-plane ferromagnetic instability
in a two-dimensional electron liquid
in the presence of Rashba spin-orbit
coupling

Stefano Chesi and Gabriele F. Giuliani

Abstract. We show that due to the peculiar structure of the non-interacting en-
ergy spectrum, the Coulomb interaction leads for all densities to an in-plane fer-
romagnetic instability in a two-dimensional electron liquid in the presence of suf-
ficiently strong Rashba spin-orbit coupling. This non perturbative phenomenon
is characterized by an interesting anisotropic momentum space repopulation and
is in nature quite different from the already identified out-of-plane ferromagnetic
instability.

The collection of articles in this volume will testify better than me
the exuberant and passionate character of Gabriele, as well as the broad
range of his interests and scientific contributions. Here I will reproduce
(in the next section) an older unpublished manuscript, which originated
from the research Prof. Giuliani and I carried out in Purdue in the period
from 2002 until 2007, when Gabriele was my PhD advisor and an in-
valuable example for both scientific and human aspects. The imaginative
title of the next Section is borrowed from one of his talks (see Figure 1).
The pervasive humor of Gabriele is still at work today: I was reminded
of it after searching online without success for the SCEM06 conference
cited in his slides. In the spirit of this volume, I hope my introduction
will further illustrate the unconventional personality and gifts of Gabri-
ele. Besides mentioning a few memories from when I was a PhD student,
I will review some of his scientific ideas from that period and try to con-
nect them with more recent literature, which is obviously missing in the
original manuscript.
As a student, as a matter of fact, I regularly approached his office with

a feeling of uncertainty. First of all, the electric lights could be seen
through the closed door but were generally turned on at any time of the
day and night, making it difficult to guess if the office was occupied or
not. The light shined through a semi-transparent glass mostly covered by
old newspaper clippings (among which a large headline: Could anyone
be worse than Koch? Try Giuliani). So the worries related to the ongoing
research were slightly amplified at the door. After a few moments try-
ing to detect any noise, I would hold on to my notes and knock. During



62 Stefano Chesi and Gabriele F. Giuliani

the meetings I would be dragged in a whirlpool of ideas intermixed with
a string of provocative remarks, anecdotes, and various considerations
on physics and a wide range of other subjects often including soccer (of
which Gabriele was a great lover). When I left the office, I was usually
quite puzzled on the outcome of the discussion and what to do next. The
views of Prof. Giuliani on our ongoing research seemed at first rather
paradoxical or far-fetched to my cautious and inexperienced attitude, but
they would reveal themselves in due time as useful and deeply true, such
that my PhD turned out in the end to be a very productive period of re-
search.

Figure 1. Gabriele loved to wrap physical concepts in colorful terms. In his
talks, the topic of this article was introduced as a ‘crescent moon’ instability (by
analogy to the left panel of Figure 4). Other noticeable slides from the same
presentation (SCEN06, Pisa) are the Four pere intermission (featuring a short
video of F. Totti) and How do we do our calculations? Buy the book! (obviously
referring to [14]).

Some of the ideas he formulated in our discussions have shown in my
opinion a remarkable foresight. For example, after we worked out the
phase diagram in Figure 3 [1] he liked to mention that the formation of
the thin sleeve of spin-polarized states along the dashed curve is very
analogous to what happens in the Peierls instability [2]. The dahsed
curve indicates when the Fermi energy is crossing what he called the
‘kissing point’ of the two spin bands (see the left panel of Figure 3). In
this case, the spontaneous polarization arises by the formation of a gap
which removes the degeneracy and leads to a lower total energy of the
occupied spin branch. Interestingly, this picture is related to more re-
cent studies of a spontaneous helical nuclear-electronic spin polarization
in quantum wires [3]. The formation of these helical states can also be
seen (after a gauge transformation generating a Rashba spin-orbit inter-
action of suitable strength) as due to a similar Peierls-type instability,
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where the coupled electron-nuclear spin polarization induces a finite gap
at the k = 0 band crossing of the one-dimensional electron states [4].
The formation of the gap could be detected in transport and experimental
evidence in this direction was recently reported [5].
Beside the FZ ferromagnetic phase shown in Figure 3, in-plane polar-

ized states appear in the complete phase diagram in the Hartree-Fock ap-
proximation [6]. Gabriele liked to contrast the ‘tilting instability’ of spin
directions, giving rise to the FZ polarized states, to the ‘repopulation in-
stability’, a general mechanism giving rise to the in-plane ferromagnetic
states. This type of instability is the main topic of the present article.
Following his suggestion, the instability could also be studied at large
spin-orbit coupling through linear response, from the divergence of the
in-plane Pauli spin susceptibility [6]. The instability eventually gives rise
to in-plane spin-polarized states with strongly deformed oblong or even
‘bean-shaped’ occupations, schematically illustrated in the right panel of
Figure 4. Recently, the occurrence of these states was proposed in a vari-
ety of systems: bilayer graphene [7], electron liquids with short-range
interactions [8], and spinor Bose gases [9].
Interestingly, the competition between the FZ phase and in-plane po-

larized states gives rise of another peculiar feature in the Hartree-Fock
phase diagram. When the spin-orbit coupling ↵ approaches zero (↵ =

0+), the boundary between PM and FZ still occurs at rs ' 2.01 as in
Figure 3 but a distinct phase boundary between FZ and the in-plane po-
larized states survives at rs = 2.211 [6]. This behavior is peculiar be-
cause at ↵ = 0 the magnetic phase is fully isotropic (i.e., there is a single
phase boundary at rs ' 2.01, the well known Bloch transition [10]) and
Gabriele liked particularly this curious ‘non-analytic’ phase transition in
↵, rs . Although in this case I am not able to point the reader to related
literature, I would not be surprised if a similar phenomenon could play
an important role in other contexts, given his perceptive intuition!
In a similar way as with physics, Gabriele was also a supportive advisor

from the personal point of view. While utterly defiant of his disease, he
was promptly ready to help us in case of difficulties with his characteristic
decisiveness. His sometimes challenging attitude was always directed to
stimulate students and co-workers to achieve the best outcomes. Also for
this he will be deeply missed.

1. The crescent moon instability
The problem of a two-dimensional electron liquid in the presence of spin-
orbit coupling of the Rashba type is not only of fundamental importance
but also of particular technological relevance in view of the considerable
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recent interest in the possibility of manipulating electronic spins by elec-
tric means in modern devices [11–13].
While the effect of the electron interaction in the clean two-dimen-

sional electron liquid is a classic problem studied now for decades [14],
the intriguing interplay of many body effects and spin-orbit coupling has
only recently began to receive serious attention. The simplest approaches,
still not completely characterized, are the random phase approximation
(RPA) and the Hartree-Fock (HF) theory. Within the RPA some of the
approximate quasiparticle properties were studied in Ref. [15], while the
corresponding diagrammatic expansion has been used to extract what
amounts to as the exact behavior of the system at high densities in
Ref. [16]. Albeit approximate, the HF mean field theory is at the mo-
ment the most promising framework to examine the phase diagram. In
this respect the behavior of and the observable effects [17] related to the
exchange energy in a quantum well were investigated in Ref. [18] for a
generalized form of spin-orbit coupling. Furthermore the structure of the
HF theory and the peculiar extension of the classic Bloch transition to a
homogeneous polarized phase scenario [14] was examined in Ref. [19].
Finally the relevance in this problem of spatially inhomogeneous, charge
and spin-density-wave distorted HF states was investigated in Ref. [20].
The purpose of the present paper is to point out the existence in this

system of an interesting in-plane ferromagnetic instability of the para-
magnetic state that occurs for sufficiently strong Rashba spin-orbit coup-
ling for all densities. The phenomenon acquires particular interest since it
is characterized by a peculiar breaking of the rotational symmetry of the
momentum space occupation. In this respect it can be seen to be quite dif-
ferent from the already identified out-of-plane ferromagnetic transition.
Although we will identify and prove the existence of this non perturb-
ative behavior within the HF theory, the physics underlining the phe-
nomenon is such that it is reasonable to expect that correlation effects
will enhance it.
The non interacting problem is defined by the following single-electron

Hamiltonian
Ĥ0 =

p̂2

2m
+ ↵ (�̂x p̂y � �̂y p̂x) , (1.1)

that describes motion limited to x-y plane and includes a (linear) spin-
orbit interaction of the Rashba type [21, 22], with ↵ assumed to be pos-
itive. The corresponding single-particle eigenfunctions and eigenvalues
are given by

'k,±(r) =

eik·r
p

2L2

✓
±1
iei�k

◆
, ✏k± =

h̄2k2

2m
⌥ ↵h̄ k , (1.2)
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where L is the linear size of the system and �k is the angle between the
direction of the wave vector and the x-axis. Plots of the non interacting
spectrum are provided in Figure 2. It is important to notice that the locus
of the points of minimum energy is a circle of radius given by m↵

h̄ , and that
the spinor in 'k,+(�)(r) is parallel (antiparallel) to the unit vector �̂k =

� sin�k x̂ + cos�k ŷ, and therefore can be assigned a positive (negative)
chirality.
The corresponding many-body problem is then obtained by accounting

for the electronic Coulomb interaction and a suitable homogeneous and
rigid neutralizing background [14]. While in the absence of the spin-orbit
terms the relevance of the interaction is solely determined by the dimen-
sionless density parameter r�1

s =

q
⇡a2Bn (n being the electron density),

here we must also include in our considerations a second dimensionless
parameter, i.e. ↵̄ =

h̄↵
e2 : the interplay of these two quantities is respons-

ible for a rich physical scenario.
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E
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E

Figure 2. Non interacting single particle spectrum in the presence of linear
Rashba spin-orbit interaction. Left: momentum space occupation for small spin-
orbit coupling, or large density, with generalized chirality less than one. Right:
case of large spin-orbit coupling, or small density, when only the bottom of the
lowest band is occupied, a situation in which the generalized chirality is larger
than one.

As described in Ref. [19], if one limits the analysis to spatially homogen-
eous states described by single Slater determinants of plane waves, one
finds that the only relevant degree of freedom is the orientation ŝk of the
spin quantization axis of each of the momentum states. As a consequence
the HF energy will be in general a functional of ŝk and the occupation
numbers nkµ. This quantity is readily obtained and is given by:

E[nkµ, ŝk] =

X
k;µ=±

✓
h̄2k2

2m
nkµ � h̄↵µ k �̂k · ŝk nkµ

◆

�

1
4L2

X
k,k0

;µ,µ0
=±

vk�k0 (1+ µµ0 ŝk · ŝk0) nkµnk0µ0 , (1.3)
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where the first line describes the one particle terms, kinetic plus spin-
orbit, and the second the exchange energy. For states constructed with
symmetric occupation in momentum space the already established phase
diagram is depicted in Figure 3 [19]. Neglecting low density phases that
are tantamount to a magnetized Wigner crystal, one can identify a para-
magnetic chiral phase (PM), that displays a reentrant behavior, and an
out-of-plane ferromagnetic chiral phase (FZ) that can be seen as an ex-
tension to finite ↵̄ of the classic Bloch instability. Here the latter owes its
existence at higher densities to the cusp characterizing the single particle
spectrum (see Figure 2), and displays a non trivial spin texture in mo-
mentum space [19]. Notice that the FZ phase can persist in a ever shrink-
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Figure 3. Mean field phase diagram limited to solutions with symmetric mo-
mentum space occupation. Within the shaded area the system finds itself in an
out-of-plane ferromagnetic chiral phase (FZ). The rest of the phase diagram is
occupied by the chiral paramagnetic state (PM). The instability discussed in the
text will lead to a modification of this scenario for all densities.

ing sliver of the plane also at high densities, being located close to the
line

↵̄ =

1
rs

+

⇡ � 1� 2K
2⇡

, (1.4)

where K ' 0.916 is the Catalan constant. As it turns out all these states
can be elegantly classified by means of one parameter, the generalized
chirality � which is defined in terms of the (dimensionless) radii 0± of
the circles delimiting the occupied regions in momentum space. When
both chiral bands are occupied 0+(�) corresponds to the Fermi radius of
the larger (smaller) circle, while when only the lower chiral band is occu-
pied 0+(�) represents the outer (inner) radius of the occupied annulus. In
the first case � coincides with the standard chirality �0 =

20+�20�
20++20�

while
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in the second it is larger than one, i.e.

� =

8>><
>>:

�0 , for 0 < �0 < 1

20+ + 20�

20+ � 20�
, for �0 = 1 ,

(1.5)

so that (in units of the Fermi wave vector kF =

p

2⇡n) 0± =

p

|1± � |.
The situation can be readily visualized by inspecting Figures 2 and 4.
Notice that both PM and FZ states have a renormalized momentum space
occupation.
Consider now the situation at high densities. In this case as ↵̄ exceeds

the value of Equation (1.4) the system appears to settle into a PM state in
which only the lower chiral band is occupied and � > 1. Here, at first
sight, it may appear safe to entertain the notion that by increasing the
spin-orbit coupling at constant density (and therefore the strength of the
non interacting part of the Hamiltonian) one would fall into the familiar
paradigm in which the interacting part of the Hamiltonian becomes even-
tually irrelevant and therefore amenable to perturbative treatment. This
is however not the case since, as we will presently show, for sufficiently
large ↵̄ the effects of the Coulomb interaction are not perturbative. To
demonstrate this effect we will construct a broken symmetry trial state
and will show that its energy can be made lower than the corresponding
interacting PM. In particular we will consider a state in which the mo-
mentum space occupation is repopulated in such a way as to break the
circular symmetry in the kx , ky space as depicted in Figure 4. To be spe-
cific we will construct a Slater determinant with occupation determined
by the following Ansatz for the momentum occupation geometry (see
Figure 4) [23]


±
(�) = 0± ± ⌘ cos� , (1.6)

with the azimuthal direction of the spin quantization axis ŝk = �̂k kept
unchanged [24]. Since the distortion is infinitesimal, to lowest order the
total energy change will depend on the value of the generalized chirality
only. The energy change associated with Equation 1.6 can be calculated
in the limit of large � . The kinetic plus spin-orbit energy change (in
Rydbergs) is given by:

�E0 '


2
r2s

�

↵̄
p

2rs

⇣p
� + 1�

p
� � 1

⌘�
⌘2 , (1.7)

while, in the same units, for the exchange energy we find

�Ex ' �

4� ln�

⇡rs
p

2�
⌘2 . (1.8)
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Now, since for large ↵̄ we have � '
(rs ↵̄)2

2 to leading order these compet-
ing energy contributions simplify to

�E0 '

1
r2s

⌘2 , �Ex ' �

4↵̄ ln(↵̄rs)
⇡

⌘2 . (1.9)

Thus for sufficiently large ↵̄ the differential instability is established.

Figure 4. Left: Schematic of the symmetric unperturbed momentum space oc-
cupation for the paramagnetic state (area within the dashed annulus) and the
asymmetric occupation corresponding to the in-plane ferromagnetic trial state
(shaded area). Right: Case of large distortion in the limit of large ↵̄ value.

Clearly by thickening one side of the annulus the repopulation of Equa-
tion (1.6) leads to both an in plane momentum along the x-axis and a po-
larization along the y-axis. In the same regime of large values of � and
↵̄ we find Px/N = h

P
i p̂x,i i/N ' h̄kF�⌘ and Sy/N = h

P
i �̂y,i i/N '

p

�⌘. On the other hand the two quantities are balanced in such a way as
to lead to a vanishing net velocity. In particular Vx = Px/mN�↵Sy/N =

0. This clearly minimizes the energy.
Although the resolution of the instability is to be explored we have

identified, by a consistency argument, the type of state that eventually
takes over in the limit of very large ↵̄ or lower densities. This state cor-
responds to a fully polarized droplet in momentum space, as illustrated
in the second panel of Figure 4. If one assumes that indeed the occupied
region is centered about the wave vector K =

m↵
h̄ x̂ (equal in magnitude

to the radius of the occupied annulus, see Figure 4) then in the rs ↵̄ ! 1

limit, using the fact that the spin quantization axes are asymptotically
along ŷ, the functional (1.3) simplifies to

E ' �↵̄2 +

1
⇡r2s

Z
D
k2x dk �

p

2
(2⇡)2rs

Z
D

dk dk0

|k � k0

|

, (1.10)

where we have used Rydberg units for the energy and the wave vectors
are in units of kF . Here the integrals are performed over the occupied
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region D of extension 2⇡ (which we have folded from K back to the
origin). Equation (1.10) describes confined classical charges interacting
via an hard core potential that forces them to occupy the domain D and
an attractive Coulomb potential in the presence of an additional external
parabolic potential along the x direction. The ensuing occupation con-
sists of an oblate region, elongated in the y direction. In the limit of large
↵̄ the actual shape becomes independent of this variable and is solely
determined by the density parameter rs . Since Equation (1.10) is valid
when the linear size (approximately kF ) of the occupied region is small
with respect to the radiusm↵/h̄, it can also be applied in the large rs limit
at constant ↵̄. In this case the 1/r2s contribution can be neglected so that
the consistent HF ground state corresponds to a fully polarized circular
droplet of radius

p

2kF centered in K. Also in this case the velocity van-
ishes. The energy of this state can be calculated exactly and it is given
by:

E (trial)
= �↵̄2 +

2
r2s

�

16
3⇡rs

. (1.11)

This result can be compared with the energy of the corresponding PM
state which is given by

E (PM)
� �↵̄2 �

1.203
rs

, (1.12)

where we used�↵̄2 as a lower bound for the kinetic and Rashba contribu-
tions, and the minimum unpolarized exchange energy [19], which occurs
when the generalized chirality is � ' 0.9147. Clearly E (PM)

� E (trial) for
rs � 4.044, thus establishing the instability of the PM phase also in the
low density limit.
It is important to realize that the physical underpinning of this sym-

metry breaking phenomenon can be attributed to the fact that as ↵̄ is in-
creased, the occupied region in momentum space becomes an annulus of
radius m↵

h̄ . Since the electron number is constant the annulus keeps get-
ting thinner and, what is important, the bandwidth, approximately given
(in Rydberg units) by 1

r4s ↵̄2
vanishes. This situation is depicted in the right

panel of Figure 2. It is quite clear that this phenomenon is quite robust so
that, while the description of the corresponding phase transition obtained
via mean field theory should be considered as a rough approximation,
correlation effects can only enhance the instability.
Although for any density the instability will occur for sufficiently large

spin-orbit coupling, on the other hand if ↵̄ is kept constant, the Fermi
liquid picture is recovered in the limit of high densities. We conclude by
commenting that having established an in-plane ferromagnetic instability
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does not establish the HF phase diagram of the system. This can only be
determined through a thoughtful numerical analysis.
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