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lutions at different values of ᾱ. Right: fractional polarization at χ = 1,
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density parameter rs (at ᾱ = 0.1). Dot-dashed curve: unpolarized ground
state; dashed curve: maximally polarized (χ = 1) ground state; dotted
curves: corresponding results for the familiar ᾱ = 0 case. Right: value
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at ᾱ→ 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

10.3 Left panel: instability of an isotropic paramagnetic state to an anisotropic
polarized state via repopulation. Right panel: qualitative sketch of the
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ABSTRACT

Chesi, Stefano Ph.D., Purdue University, May, 2007. Effects of structural spin-orbit
coupling in two dimensional electron and hole liquids. Major Professor: Gabriele F.
Giuliani.

The recent interest in spin-dependent phenomena in semiconductor heterostruc-

tures motivates our detailed study of the structural spin-orbit coupling present in

clean two-dimensional electron and hole liquids. Interesting polarization effects are

produced in a system out of equilibrium, as when a finite current flows in the sam-

ple. In particular, the consequences of a lateral confinement creating a quasi one-

dimensional wire are studied in detail, partially motivated by a recent experimental

investigation of the point-contact transmission for two-dimensional holes.

We also address the role of the electron-electron interaction in the presence of

spin-orbit coupling, which has received little attention in the literature. We discuss

the formulation of the Hartree-Fock approximation in the particular case of linear

Rashba spin-orbit. We establish the form of the mean-field phase diagram in the

homogeneous case, which shows a complex interplay between paramagnetic and fer-

romagnetic states. The latter can be polarized in the plane or in a transverse direction,

and are characterized by a complex spin structure and nontrivial occupation. The

generality of the Hartree-Fock method allows a simple treatment of the Pauli spin

susceptibility, and the application to different forms of spin-orbit coupling.

Correlation corrections can be obtained in an analytic form for particular asymp-

totic regimes. For linear Rashba spin-orbit we identified the relevance of the large

spin-orbit limit, dominated by many-body effects, and explicitly treated the high den-

sity limit, in which the system is asymptotically noninteracting. As a special case,

we derive a new exact formula for the polarization dependence of the ring-diagram

correlation energy.
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1. Introduction

The physics of two-dimensional electronic systems is a traditional subject of research,

which is still under active investigation [1, 2]. While a noninteracting description of

semiconductor heterostructures is well understood in the framework of the envelope-

function approximation [3], it is often useful to unitary transform the resulting com-

plicated multiband hamiltonians to effective models in which the effects of the band-

structure are included in the form of nonparbolic corrections and spin-orbit coupling

perturbations to the simple effective-mass parabolic dispersion.

The role of the spin-orbit interaction is especially important, since it leads to

qualitatively new polarization phenomena with possible technological implications.

Several realizations have been studied in the literature [4, 5], of which the recently

demonstrated spin-Hall effect is perhaps the best known example [6]. The promise

of realizing new devices exploiting the spin degree of freedom [7] has already been

realized in several applications and has given rise to the field denoted as Spintronics

[8–10]. The spin-orbit coupling is expected to play a central role in this context, since

it allows to control the spin via conventional electrical means. In fact, the spin-orbit

coupling is produced in the presence of nonuniform external fields, and therefore can

be practically modified with the use of external gates [11, 12].

It has also to be noted that the spin-orbit coupling produced in semiconductors by

smooth potentials is orders of magnitudes larger than in vacuum. This is due to the

fact that the coupling coefficient is determined by the band structure, and accounts

for the much larger electric fields of the crystalline field.

We devote our attention in this Thesis to structural spin-orbit coupling. This

is present in the ideally clean systems, and is distinct from the so-called extrinsic

spin-orbit, due to the inhomogeneous potential introduced by disorder. In the bulk

of standard III-V semiconductors the spin-orbit interaction is directly produced by
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the crystalline potential: it determines the structure of the highest valence bands

(light-holes, heavy-holes and split-off band) and it produces a finite Dresselhaus spin-

orbit splitting in the conduction band [13]. These properties are also reflected in the

two-dimensional system produced by an external confinement, on which we focus in

this Thesis.

In the two-dimensional case, an additional source of spin-orbit coupling is provided

by the gradient of the confining potential, which determines the so-called Rashba

spin-orbit coupling in the case of conduction electrons [14,15]. The detailed origin of

this term and the single-particle properties of the two-dimensional hamiltonian are

reviewed in Chapter 2. A parallel treatment for the case of holes has to account of

the intricacies of the valence band and is presented in Chapter 3.

Chapters 4 and 5 are also devoted to the properties of the noninteracting system.

Here the effect of a lateral confinement producing a quasi one-dimensional system is

treated for the case of electrons and holes respectively. In particular, we determine the

properties of the spectrum and of the eigenstates and we study the finite polarization

produced by the spin-orbit coupling in the presence of a finite current flowing in

the system. In Chapter 5 we discuss the experimentally relevant situation of holes

transmitted through a point contact [4].

The remaining part of this Thesis is devoted to many-body effects of the Coulomb

interactions, which are generally neglected in the literature. Some quasiparticle prop-

erties are discussed in the early and limited attempt of Ref. [16] and are also treated

in the more recent Ref. [17], for the case of high densities. A sound set of general theo-

retical notions about the effects of the electron-electron interactions in the presence of

spin-orbit coupling is not established and a systematic analysis of this problem would

be of great usefulness. In fact, interaction effects are very relevant in a wide range of

accessible densities of modern quasi two-dimensional electron liquid devices [18, 19].

The most interesting case is perhaps provided by two-dimensional holes, which dis-

play large spin-orbit effects. At the same time, it is easier for holes to attain a low

density regime characterized by strong many-body effects. Recent experiments [20]
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have shown the anomalous behavior of this particular system, with respect to the well

understood case when the spin-orbit is negligible.

Patterning the general approach on that followed for the familiar case of the elec-

tron liquid in the absence of spin-orbit coupling [1], the first step in tackling the

many-electron problem is to establish a meaningful mean-field theory. We present

in the following the detailed treatment of the Hartree-Fock approximation in the

presence of spin-orbit coupling, which we established in its general form for the ho-

mogeneous case [21].

As it turns out, the high density paramagnetic phase can be treated in this frame-

work by simply including the effect of the exchange energy, which is done in Chapter 6

for a generic form of spin-orbit coupling. In the following Chapters 7-10 the particular

case of Rashba spin-orbit is treated in detail. The general formulation is presented

in Chapter 7, while Chapter 8 discusses explicit mean-field solutions in the simplify-

ing assumption that the isotropy in the plane of motion is preserved. This includes

the paramagnetic phase and a low-density ferromagnetic phase, with polarization

perpendicular to the plane of motion. In Chapter 9 we calculate the many-body

enhancement of the linear spin response of the paramagnetic phase to an external

magnetic field. The analysis reveals the differential instability to in-plane polarized

solutions. Finally, Chapter 10 is devoted to the study of these anisotropic states with

in plane polarization, which have complex features that in general have to be com-

puted numerically. This concludes our study of the homogeneous phases, and allows

to complete the corresponding mean-field phase diagram. The treatment is easily

extended to other types of spin-orbit coupling, as briefly discussed in Chapter 11.

In Chapter 12 we consider the high-density limit in the presence of Rashba spin-

orbit, and correlation corrections to the exchange contribution are explicitly examined

in this regime. As a byproduct of the treatment, an interesting new result for the

the correlation energy of a traditional polarized liquid is obtained [22, 23]. The high

density limit of a polarized two-dimensional liquid without spin-orbit coupling is de-

scribed in Chapter 13.
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2. Noninteracting electrons with Rashba spin-orbit coupling

We consider in this Chapter the particular type of spin-orbit interaction called Rashba

spin-orbit [14,15], which is relevant for conduction electrons confined in two-dimensions:

R̂0 = α(σ̂xp̂y − σ̂yp̂x) . (2.1)

The origin of this term rests with the asymmetry of the confining potential, in the

z direction. A detailed derivation of this term in typical III-V semiconductors het-

erostrucures is presented in the following pages, and its magnitude is estimated with

reference to the experimental literature. Finally, the single-particle properties in the

presence of this particular form of spin-orbit coupling are also discussed.

Eq. (2.1) represents a useful model of spin-orbit coupling. However, a detailed

study of spin-orbit effects arising from the band structure is in general complicated,

and we refer to the literature for an extensive treatment (in particular, to reference

[3]). We will present more general expressions in the next Chapter, while discussing

the case of holes in two-dimensional heterostructures.

A type of spin-orbit equivalent to Eq. (2.1) originates directly from the bulk

conduction band spin-splitting in materials without inversion symmetry (the so-called

Dresselhaus spin-orbit [13]). In fact, in the particular case of confinement in the [001]

direction we obtain:

D̂0 = β(σ̂xp̂x − σ̂yp̂y) . (2.2)

We note that if only D̂0 is present, it can be easily transformed into R̂0 by means of a

unitary rotation in the spin space but we cannot transform R̂0 + D̂0 to R̂0 only. The

case of R̂0 + D̂0 with α = β proves trivial.



6

2.1 Envelope functions approximation

We consider the motion of a single electron in a crystal, in the presence of an

external potential:

Ĥ = Ĥcrystal + V (r̂) , (2.3)

where Ĥcrystal is the periodic crystalline hamiltonian, and V (r̂) is an external potential

which is not periodic (e.g. the confining potential of an heterostructure). Although

V (r̂) breaks the translational symmetry, we require it to be slowly varying on the

length scale of the lattice constant. More explicitly:

Ĥ =
[ p̂2

2m0
+ Vcrystal(r̂) +

~

4m2
0c

2
σ̂ · ~∇Vcrystal(r̂) × p̂

]

+ V (r̂) , (2.4)

where Vcrystal(r̂) is the crystalline potential. We have included the spin-orbit interac-

tion in Ĥcrystal while we have neglected the term from V (r̂) which is slowly varying. If

V (r̂) = 0 then we obtain the band structure of the crystal En(k) with corresponding

Bloch wave eigenfunctions ψn,k(r, σ) = eik run,k(r, σ) (where (r, σ) refer to the orbital

and spin coordinates respectively).

In the case of V (r) 6= 0 we try to find solutions of the form:

ψ(r, σ) =
∑

n

Fn(r)ψn,k0
(r, σ) . (2.5)

In the formula above k0 is a fixed wave vector inside the Brillouin zone. Usually

k0 is chosen at an extremum and in most cases at the Γ point. We therefore assume

k0 = 0 in the following. The functions Fn(r) are called envelope functions. Using the

Fourier expansion Fn(r) =
∑

k F̃n(k)eik r we have:

ψ(r, σ) =
∑

n,k

F̃n(k)eik run,0(r, σ) (2.6)

=
∑

n,k

F̃n(k)ϕn,k(r, σ) ,

a result that shows that the expansion (2.5) defining the envelope functions is quite

general. In fact, it is not difficult to prove that ϕn,k(r, σ) = eikrun,0(r, σ) constitutes

a complete set.
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In the approximation of very slowly varying external potential, the envelope func-

tions are slowly varying as well and in particular we can neglect the Fourier com-

ponents of Fn(r) outside the Brillouin zone. Following [24], the Shrödinger equation

Ĥψ = Eψ can be rewritten in the following approximate form, involving thr envelope

functions only:

∑

m

[Tn,m(−i~∇)Fm(r)] + V (r)Fn(r) = E Fn(r) . (2.7)

The first term has to be intended as
∑

km Tn,m(k) F̃m(k)eik r where

Tn,m(k) = 〈ϕn,k|Hcrystal|ϕm,k〉 . (2.8)

This is an infinite set of coupled differential equations to be solved. Here n and

m run over all the bands of the crystal. The motion of the electrons is determined by

the external potential V (r). The crystalline potential does not appear explicitly, but

its effect is reflected in the kinetic energy operator Tn,m.

The simplest case of the effective mass approximation is obtained when it is suf-

ficient to consider one band only. In fact, near a band maximum or minimum, the

kinetic energy operator takes the form:

Tn,n(k) ' 〈ψn,k(r)|Hcrystal|ψn,k(r)〉 = En(k) ' ±~
2k2

2m
, (2.9)

while in general a more complicated expression has to be considered.

2.2 Kane model

The Kane model considers only the top valence band and the lowest conduction

band of common direct gap semiconductors such as GaAs. If we neglect the spin-

orbit coupling, the upper valence band is six times degenerate. The orbital part

transforms as Γ5 and can be denoted as X, Y , Z, the remaining twofold degeneracy

stemming from the spin degeneracy. The lower conduction band has only the spin

degeneracy. The orbital part transforms as Γ1 and is denoted as S. It is also conve-

nient to construct combinations of valence band functions that diagonalize the spin
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Y,Z
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Figure 2.1. Bands considered in the Kane model, without and with spin-orbit.

orbit interaction. We have two irreducible representations: Γ5 ⊗ Γ6 = Γ7 ⊕ Γ8. The

states are obtained as respectively 1/2 and 3/2 angular momentum combinations of

the orbital functions with spin, i.e.

ψ8
±1/2 =

2Z|±〉 ∓ (X ± i Y )|∓〉√
6

ψ8
±3/2 =

∓(X ± i Y )|±〉√
2

(2.10)

ψ7
±1/2 = −(X ± i Y )|∓〉 ± Z|±〉√

3

The conduction band states transform as Γ6 and the states are simply ψ6
±1/2 = S|±〉.

The effective mass hamiltonian (Tn,m +V δn,m) can be obtained using the formula:

Tn,m(k) =

(

En(0) +
~

2k2

2m0

)

δn,m +
~

m0

k · πn,m , (2.11)

where π = p + ~

4m0c2
σ × ~∇Vcrystal. As a further simplifications we also take πn,m '

pn,m and the matrix elements of p between X, Y , Z and S can be all expressed in

terms of the single parameter P = ~

m0
〈S|pz|Z〉 (we use a phase choice such that S is

purely imaginary and P real). We can also neglect the term ~2k2

2m0
because the bare

electron mass is usually much larger compared to the effective mass in semiconductors.

The final result is expressed in Table 2.1.

There Eg and ∆0 are the fundamental energy gap and the spin-orbit splitting of

the valence band. We note that the only place where we did not neglect the spin-orbit
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Table 2.1
Explicit expression of T (k) for the Kane model.
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interaction are the diagonal terms of the above hamiltonian, where the parameter ∆0

appears. We used the notation k± = kx ± iky, where k = −i~∇. In the presence

of a magnetic field we have k = (−i~∇ + e
~
A) instead, from where the commutation

relations k × k = −ieB
~

follow.

The form of the matrix operator is simple enough that the valence band compo-

nents can be eliminated by substitution. The following hamiltonian is obtained for

conduction band electrons [3]:

Ĥ0 =

[

1

Eg + ∆0 + E − V
+

2

Eg + E − V

]

P 2

3
k2 + V (r ) +

+

[

1

Eg + ∆0 + E − V
− 1

Eg + E − V

]

P 2

3

e

~
σ · B + (2.12)

+

[

1

(Eg + ∆0 + E − V )2
− 1

(Eg + E − V )2

]

P 2

3
σ · ~∇V (r) × k +

+

[

1

(Eg + ∆0 + E − V )2
+

2

(Eg + E − V )2

]

P 2

3
(−i ~∇V (r) · k) ,

which contains the Zeeman term, the spin-orbit interaction and the Darwin term.

Using the fact that typically (E − V ) � Eg we obtain the following two important

formulas, estimating the effective mass and the effective g-factor:

1
2m

=
1

2m0
+

[

1

Eg + ∆0
+

2

Eg

]

P 2

3~2
, (2.13)

g = 2 +

[

1

Eg + ∆0
− 1

Eg

]

P 2

3~

2e

µB
, (2.14)

in which the bare values are taken in account. In a Quantum Well the term in the

third line of Eq. (2.12) gives rise to the so called Rashba spin-orbit, which we discuss

in more detail in the next section.

2.3 Rashba spin-orbit

We consider now electrons confined by an asymmetric potential V (z), of which

the gradient is in the ẑ direction. The Darwin term does not introduce any kind of
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spin-splitting and will be neglected in the following. In the absence of magnetic field

the (2.12) simplifies to the following form:

Ĥ0 =
p̂2

2m
+ α(σ̂xp̂y − σ̂yp̂x) , (2.15)

where σ̂i are Pauli matrices. We considered the external potential acting as an average

electric field 1 〈~∇V/e〉 ' Ez ẑ and the coupling constant of the Rashba spin orbit term

is approximately given by:

~α =

[

1

E2
g

− 1

(Eg + ∆0)2

]

P 2e

3
Ez . (2.16)

We notice that the strength of the spin-orbit coupling is proportional to Ez and

therefore can in principle be controlled from an external gate.

We estimated the spin-orbit coupling strength for common III-V semiconductors

using Eq. (2.16). The parameter P can be calculated using (2.13) from the directly

accessible quantities m, Eg and ∆0 and the results are collected in Table 2.2. The

maximum electric field can be estimated as Ez = 2πne/ε, where a typical value of the

electron density is n = 1012 cm−2 is used to obtain the values of Table 2.2. A sense of

the reliability of the results for ~α can be obtained by comparing the values for the

effective g-factor to the experimental measurements: for large gap semiconductors the

order of magnitude of the estimate is correct, but contributions from remote bands

are important while for small gap semiconductors the g-factor is fairly large and the

estimate is quite satisfactory. A similar situation is expected for ~α.

In the last part of the table we list other quantities that will be of special relevance

in the following Chapters. In particular, the density parameter is given by rs =

1/
√

πna2
B), where aB is the effective Bohr radius. We notice that, unfortunately, for

small gap III-V semiconductors it is difficult to achieve large values of the density

parameter rs, due to the small effective mass, and large effects from electron-electron

interactions are not expected.

1According to the Ando argument the electric field is vanishing small, due to the fact that 〈∇V 〉 = 0
for an eigenstate of p̂2/2m + V̂ . However, the potential entering the spin-orbit term is the one
relative to the valence band. Due to different band offsets in an heterostructure, this is in general
different from the confining potential for the electrons and a non-vanishing spin-orbit is obtained.
We refer to [3] for a more detailed discussion of this rather subtle point.
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Table 2.2
Estimates for several quantities of common III-V semiconductors.

GaAs AlAs InSb InAs AlSb

m/m0 0.0665 0.150 0.0139 0.0229 0.120

Eg (eV) 1.519 3.13 0.237 0.418 2.384

∆0 (eV) 0.341 0.300 0.810 0.380 0.673

ε (eV) 12.4 10.06 17.9 14.6 12.04

P (eV Å) 9.30 8.34 9.29 8.99 8.48

Ez (MV/m) 7.30 8.99 5.05 6.20 7.51

g 0.17 1.65 -47.3 -14.1 0.838

gexp -0.44 1.52 -51.56 -14.9 0.843

~α (meV Å) 3.04 0.36 245.7 69.3 1.24

rs 0.57 1.59 0.083 0.167 1.06

ᾱ 0.0026 0.0002 0.31 0.07 0.001

χ 0.0021 0.0006 0.036 0.017 0.0016
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A way to measure the spin orbit coupling is offered by the study of the Shubnkov-

de Haas oscillations [25–28]. A simple semiclassical argument gives that the frequency

of such magneto-oscillations due to electrons in a subband is proportional to its pop-

ulation. If the spin up/down subbands have the same population, only one frequency

is observed but the Rashba spin-orbit lifts the spin degeneracy, and a beating pat-

tern in the oscillations is observed due to the slightly different populations of the two

subbands. The control of α from an external gate was also experimentally demon-

strated [11, 12]. The measured values of ~α are consistent with Table 2.2.

2.4 Noninteracting ground state

We first discuss the eigenstates and eigenvalues of Ĥ0. These are easily obtained

by noticing that the eigenfunctions are plane waves with wave-vector k. Therefore the

Rashba term becomes of the form −~α k φ̂k · σ, where φ̂k = (−ky,kx)
k

is an azimuthal

unit vector perpendicular to k (in the counterclockwise direction). In the following we

will use ŝk to denote the spin quantization axis of plane wave states with wavevector

k. For the noninteracting case we simply have ŝk = φ̂k. In particular:

ϕk,±(r) =
eik·r
√

2L2





±1

ieiφk



 , (2.17)

where L is the linear size of the system and φk is the polar angle between k and the

x-axis. The corresponding eigenvalues are:

εk± =
~

2k2

2m
∓ ~α k . (2.18)

The energy surfaces and the spin quantization of these single particle eigenstates are

shown in Figure 2.2. We notice that there are two energy subbands with opposite

chirality: by definition, a state with positive chirality has the spin oriented counter-

clockwise. Without loss of generality we assume from now on α > 0, so that states

with positive chirality have lower energy.

We consider now many-body noninteracting states, which are Slater determinants

constructed with the single particle-states (2.17). The ground state is obtained by
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Px

Py

Figure 2.2. Noninteracting energies and states.
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Figure 2.3. Two different ways to occupy states in momentum space.
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occupying the lowest N states up to the Fermi energy εF , and two different cases

can occur, as depicted in Figure 2.3. When the electron density is small we have

that εF < 0. Only the lower branch is occupied and the occupied states form a ring

in the momentum space, where kin and kout are the inner and outer radii. Above

a certain density value we have that εF > 0 and the occupation of each of the two

branches is a circle with radius k±. The difference of the two radii is the constant

k+ − k− = 2mα/~.

2.5 The generalized chirality

It is natural to define the chiral polarization (or chirality) in terms of the occupa-

tions N± of each band:

χ0 =
N+ −N−
N+ +N− . (2.19)

This definition is useful for high density states, when two bands are occupied and

χ0 ≤ 1. On the other end, when εF < 0 only the lowest branch is occupied, and

χ0 = 1 irrespective of the density. Therefore it is useful to define the following

quantity, which we will refer to as the generalized chirality :

χ =







χ0 for 0 ≤ χ0 < 1

k2
out+k2

in

k2
out−k2

in
for χ0 = 1

, (2.20)

which together with the electron density n completely specifies the geometrical pa-

rameters that characterize the occupation in momentum space:

k± =
√

2πn(1 ± χ) for 0 ≤ χ < 1 , (2.21)

kout/in =
√

2πn(χ± 1) for χ ≥ 1 . (2.22)

The usefulness of the generalized chirality lies in the fact that, once the density n

is fixed, χ parameterizes a large class of Slater determinants with isotropic, compact

occupation of the type depicted in Figure 2.3. These isotropic, compact occupations

correspond in general to excited states, the ground state being determined by the

particular value of χ that minimizes the energy.
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Figure 2.4. Plot of χ (solid) and χ0 (dashed) as function of the density
for the noninteracting ground state at ᾱ = 0.1

When 0 ≤ χ < 1 total energy per particle in Ry units can be expressed as:

E0(ᾱ, rs, χ) =
(1 + χ2) − (χ− 1)2θ(χ− 1)

r2
s

+ ᾱ
2
√

2

rs

√

|1 − χ|3 −
√

|1 + χ|3
3

, (2.23)

where rs is the density parameter rs = 1/
√

πna2
B and we introduced the dimensionless

spin-orbit coupling ᾱ = ~α
e2 . The first term is the kinetic energy and the second the

Rashba contribution.

By imposing the minimum condition ∂E0/∂χ = 0, we obtain the desired value of

the generalized chirality for the noninteracting ground state:

χ
(0)
min(ᾱ, rs) =







ᾱrs

√

2 − (ᾱrs)2 for 0 ≤ ᾱrs < 1

1
2

[

(ᾱrs)
2 + 1

(ᾱrs)2

]

for ᾱrs ≥ 1
, (2.24)

We show in Figure 2.4 the plot of χ
(0)
min(ᾱ, rs) as function of the density, for a particular

value of the spin-orbit coupling ᾱ.

2.6 Effect of a Zeeman term

We consider now the effect of an external magnetic field. This is treated by adding

to the hamiltonian (2.15) a perturbing Zeeman term

ĤZ =
gµB

2
B · σ̂ , (2.25)
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Figure 2.5. Orientation of the spin quantization axis ŝk.

while smaller orbital magnetic effects are neglected. The eigenfunctions of the per-

turbed hamiltonian are plane waves, while the spin has to be quantized along a

direction ŝk which results from the combined effect of the Rashba spin-orbit and the

Zeeman term. The orientation of ŝk is determined by the polar and azimuthal angles

βk and γk, which are defined in Figure 2.5. Notice that the choice γk = φk + π
2

and

βk = π
2

leads to the eigenstates of Ĥ0 of Eq. (2.17).

More explicitly, if we consider a magnetic field B = Bẑ perpendicular to the

plane of motion we obtain γk = π
2

and βk is determined by tanβk = − 2~α k
gµBB

. The

corresponding eigenenergies are also easily obtained:

ε⊥k± =
~

2k2

2m
∓
√

(~α k)2 +

(

gµBB

2

)2

. (2.26)

For a magnetic field B = Bŷ in the plane of motion we obtain βk = π
2

and γk is

determined by tan (γk − φk) = gµBB cos φk−2~α k
gµBB sinφk

, while the eigenenergies are given by:

ε
‖
k± =

~
2k2

2m
∓
√

(

~α k − gµBB

2
cos φk

)2

+

(

gµBB

2
sinφk

)2

. (2.27)

An important difference between the two cases is that for a transverse magnetic

field the degeneracy at k = 0 is removed and the two bands are separated by a finite

gap. Instead, in the in plane case the degeneracy point is displaced from the origin in
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Figure 2.6. Noninteracting single particle bands in the presence of an
external magnetic field. Left: transverse magnetic field. Right: in
plane magnetic field along the x-axis.

a direction perpendicular to the magnetic field, and in particular at the wavevector

such that kx = gµBB
2~α

. Furthermore, because of the in plane anisotropy introduced by

the magnetic field, the circular symmetry of the bands is lost. We show in Figure 2.6

two examples illustrating these two different situations.

The spin susceptibility is obtained with a straightforward calculation from the

perturbed eigenfunctions, with spin oriented as discussed above, and the new occu-

pation numbers, as determined by (2.26) and (2.27) and the Fermi energy εF . The

final result is:

χ
‖(⊥)
S0 (ᾱ, rs) =







χP for 0 ≤ ᾱrs < 1

χP

(rsᾱ)2
for ᾱrs ≥ 1

, (2.28)

where χP = m
π~2

(

gµB

2

)2
is the usual Pauli susceptibility.

Another quantity of some interest is the adiabatic spin susceptibility χ̃S, which is

obtained by calculating the magnetization due to the perturbation of the wavefunc-

tions only, while using the unperturbed occupation numbers. In this case the result
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is different for the two orientations of the magnetic field and to linear order in B we

get:

χ̃⊥
S0 = χS , (2.29)

χ̃
‖
S0 = χS/2 . (2.30)
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3. Structural spin-orbit coupling for two-dimensional holes

We consider in this Chapter the form of the spin-orbit interaction for two-dimensional

heavy holes in a typical III-V semiconductor, and in particular for the case of GaAs.

The holes are described in the framework of the Luttinger hamiltonian [29], from

which the form of the spin-orbit coupling produced by an asymmetric confinement

can be derived. It is found that the spin-orbit coupling is approximately cubic in the

holes wavevector, as opposed to the Rashba spin-orbit of Eq. (2.1).

We also examine the effect of an in-plane magnetic field which, besides contribu-

tions independent of the hole momentum (analogous to the familiar Zeeman term),

introduces a peculiar form of quadratic spin-orbit. Finally, we discuss the noninter-

acting properties in the presence of a suitable generalized spin-orbit coupling, which

covers all the relevant spin-orbit terms discussed in this and in the previous Chapter.

3.1 Luttinger hamiltonian

The topmost valence bands of bulk GaAs are characterized by a fourfold degen-

eracy at the Γ point, due to the Γ8 cubic symmetry (see Figure 2.1). The holes can

be described as having an effective spin J = 3
2

and the hamiltonian is given by [29]:

HΓ8
=

~
2

2m0

{

γ1k
2 − 2γ2[(J

2
x − 1

3
J2)k2

x + c.p.] − γ3[{Jx, Jy}{kx, ky} + c.p.]

}

, (3.1)
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where m0 is the bare electron mass, {a, b} = ab + ba and c.p. refers to additional

terms obtained by cyclic permutations of (x, y, z). The explicit form of the spin-3/2

matrices is:

Jx =

















0
√

3
2

0 0
√

3
2

0 1 0

0 1 0
√

3
2

0 0
√

3
2

0

















, Jy =

















0 −
√

3
2
i 0 0

√
3

2
i 0 −i 0

0 i 0 −
√

3
2
i

0 0
√

3
2
i 0

















, Jz =

















3
2

0 0 0

0 1
2

0 0

0 0 −1
2

0

0 0 0 −3
2

















,

(3.2)

and the Luttinger parameters for GaAs have the following values [30]:

γ1 = 6.85 γ2 = 2.10 γ3 = 2.90 . (3.3)

Degenerate states at the Γ point with Jz = ±3
2

or Jz = ±1
2

are denoted as heavy

holes (HH) and light holes (LH). At finite wavevector the degeneracy between HH and

LH is removed and off-diagonal terms of (3.1) introduce HH-LH mixing. A common

approximation is to consider γ2 ' γ3 ' γ̃, which leads to a spherically symmetric

hamiltonian:

H ′
Γ8

=
~

2

2m0

[

(γ1 +
5

2
γ̃) k2 − 2γ̃(J · k)2

]

. (3.4)

We will use γ̃ = (γ2 + γ3)/2 = 2.5 in the case of GaAs.

3.2 Cubic spin-orbit coupling

We now consider a potential that confines the holes along a spatial direction.

The external potential removes the fourfold degeneracy at the Γ point, and the two-

dimensional subbands have a twofold degeneracy at k = 0. In the same way as in

the previous Chapter, the twofold degeneracy is removed at finite wavevectors if the

confinement is asymmetric, and the spin splitting is approximately proportional to

the external electric field1.

1This is the case when the heavy hole-light hole subband splitting is independent of the field. See
however the discussion in Ref. [31]
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Figure 3.1. Left: Two dimensional energy subbands for holes in a
W = 150 Å thick GaAs quantum well, in the spherical approximation.
The electric field is Ez = 1 MV/m and the dashed line is a Fermi
energy corresponding to a total density of holes n = 1.4 1011 cm−1,
as in Ref. [4]. Right: spin splitting of the two highest subbands. The
dashed line is the cubic approximation given by Eqs. (3.7) and (3.8).

To exemplify this point we consider a model calculation of holes confined by infinite

barriers, while the electric field is uniform inside the quantum well:

V (r) =







Ezez if 0 ≤ z ≤W

+∞ otherwise
, (3.5)

where W is the thickness of the quantum well.

For simplicity, we restrict ourselves to the spherical approximation of the Luttinger

hamiltonian, as given in (3.4). The spectrum can be obtained by straightforward

numerical diagonalization of H ′
Γ8

in the complete set:

ψnk(r, Jz) =
e−ik·r
√
L2

√

2

W
sin

nπz

W
|Jz〉 , (3.6)

where k is in the x, y plane and L is the linear size of the two-dimensional system.

The result is plotted in the first panel of Figure 3.1, for the case of GaAs and a

particular choice of the parameters W = 150 Å and Ez = 1 MV/m.
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As it is shown in the second panel of Figure 3.1, the spin splitting is not linear.

The form of the spin-orbit coupling can be obtained approximately using the un-

perturbed solutions at zero in-plane wavevector [3]. In fact, Eq. (3.4) simplifies to

~
2

2m0

[

γ1 + γ̃(5
2
− 2γ̃J2

z )
]

k̂2
z , which is immediately diagonalized by the eigenfunctions

ψn0(r, Jz) as in (3.6). Standard perturbative treatment at small in-plane wavevectors

k and electric field Ez allows one to obtain the following spin-orbit contribution:

Ĥ0 =
p̂2

2m
+
iγ

2
(p̂3

−σ̂+ − p̂3
+σ̂−) , (3.7)

where p̂± = p̂x ± ip̂y and σ̂± = σ̂x ± iσ̂y . As anticipated, the spin-orbit term has a

cubic dependence in the hole momentum.

The explicit value of the spin-orbit coupling is

γ =
512 e γ̃2W 4

9~3π6 (γ1 − 2 γ̃)(3γ1 + 10 γ̃)
Ez , (3.8)

which gives ~
3γ ' 200 eVÅ

3
with the parameters of Figure 3.1. As it can be seen

in the second panel, the perturbative formula is in good agreement with the exact

result. Furthermore, the spin-orbit splitting in our crude model is comparable to

the experimental findings. In fact, we find from Figure 3.1 that the difference of the

Fermi wavevectors of the two branches is ∆pF = 5.4× 10−9 eV s/m, compared to the

experimental value ∆pF = 14 × 10−9 eV s/m of Ref. [4].

3.3 Effect of an in-plane magnetic field

We obtain and discuss here spin dependent contributions to the effective hamilto-

nian appropriate to the highest two-dimensional heavy hole subband in the presence

of an in-plane magnetic field B = Bxx̂ + Byŷ. We show that the magnetic field

introduces a spin-orbit coupling quadratic in the hole momentum.

As in the previous section, we begin by approximately describing the motion of the

holes in the bulk through the spherical approximation of the Luttinger hamiltonian

[29], given in Eq. (3.4). Within this context the effect of the magnetic field can be

described by introducing the Zeeman hamiltonian ĤZ = −2κµB B·Ĵ, where for GaAs
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κ = 1.2. Orbital effects are treated by including the vector potential in the following

convenient form: A = zByx̂− zBxŷ.

For simplicity we consider again the confinement associated with an infinite rect-

angular well of width W . The corresponding effective hamiltonian for holes in the

highest two-dimensional subband can be written as:

Ĥ0 + δĤ21 + δĤ03 , (3.9)

where Ĥ0 is the unperturbed effective hamiltonian (at B = 0), which is approxi-

mately expressed by Eq. (3.7). δĤ21, δĤ03 are spin dependent terms associated with

the external magnetic field. The sub-indices indicate respectively the power of the

dependence on the hole momentum and the magnetic field. Their explicit form can

be found by making use of perturbation theory in B and in the wave vector k, in a

way similar to the derivation of the cubic spin-orbit appearing in Eq. (3.7) [3]. For

the first term we obtain:

δĤ21 =
aµBW

2

π2~2

B+p
2
+σ̂− +B−p

2
−σ̂+

2
, (3.10)

where B± = Bx ± iBy and the explicit form of the numerical coefficient is given by

a = 1024γ̃2

9π2(3γ1+10γ̃)
− 3κ

2
. For the second term we find:

δĤ03 = bµ3
B

(

m0W
2

π2~2

)2
B3

+σ̂− +B3
−σ̂+

2
, (3.11)

where b = κ(π2−6)
2

− 27γ̃2

8(2γ1+5γ̃)
. We should remark that the present results do differ

from the ones one would infer from the corresponding formulas appearing in Ref. [3].

For GaAs we have a ' −0.2 and b ' 1.5.

For a given growth direction, these results can be extended beyond the spherical

approximation to include the appropriate cubic anisotropy as for instance done in

Ref. [3]. Following this procedure one then obtains in (3.9) an additional anisotropic

linear Zeeman term. By choosing coordinates along the principal axes, this can be

generally expressed as:

δĤ01 =
µB

2
(gxBxσ̂x + gyByσ̂y) . (3.12)
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As it turns out, this term vanishes (even beyond the spherical approximation) for the

high symmetry growth directions [100] and [111]. However, in the case of the exper-

imentally relevant [113] growth direction, (3.12) is non vanishing and the principal

axes x and y are along the [11̄0] and [332̄] respectively. A perturbative estimate of the

suitable Landé g-factors for the case of an infinite rectangular well gives gx ' −0.17

and gy ' 0.41 [3].

3.4 Generalized spin-orbit coupling

We consider here a formulation that elegantly includes all the possible forms of

spin-orbit coupling discussed so far. We introduce the following single-particle hamil-

tonian:

Ĥ0,n =
p̂2

2m
+ iγ

(p̂−)nσ̂+ − (p̂+)nσ̂−
2

, (3.13)

the motion taking place in the x, y plane. In Eq. (3.13) we have p̂± = p̂x ± ip̂y and

σ̂± = σ̂x ± iσ̂y, while n is an integer number assuming values from 0 to 3. In view

of its structure we will refer to the second term in (3.13) as a generalized spin-orbit

coupling.

In the simplest case, n = 0 corresponds to the familiar Zeeman coupling with

γ = gµBB
2

while, for n > 0, Eq. (3.13) describes different types of bona fide spin-

orbit interactions. For n = 1 we obtain a form equivalent to the Rashba [14, 15] or

Dresselhaus [13] spin-orbit hamiltonians discussed in the previous Chapter while δĤ21

and δĤ03 are of the type n = 2 and n = 0 respectively.

Because of the isotropy implied by the spherical approximation, the value of the

corresponding coupling strength γ extracted by comparison to (3.13) only depends

on the magnitude of the magnetic field B and is immediately found to be:

γ21 =
aµBW

2B

π2~2
, (3.14)

and

γ03 = bµ3
B

(

W 2m0

π2~2

)2

B3 , (3.15)
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for δĤ21 and δĤ03 respectively.

The coupling strength γ of the n = 0 term Ĥ01 of Eq. (3.12) depends on the

direction of the magnetic field, and is given by:

γi
01 =

gi µB

2
B , (3.16)

for the particular case of an external field of magnitude B along one of the two

principal axes (i ≡ x or y).

Finally, the n = 3 term of (3.13) corresponds to the cubic Rashba spin-orbit

coupling of Eq. (3.7) and the value of γ is given in (3.8).

3.5 Non interacting ground state

We now discuss the non interacting problem in the presence of generalized spin-

orbit and introduce the important concept of generalized polarization. The eigen-

states of (3.13) are plane waves, a fact that allows one to write the spin-orbit term in

the form −γ (~k)n
σ · ŝk, where ŝk is defined as follows:

ŝk = − sin(nφk)x̂+ cos(nφk)ŷ . (3.17)

Here φk = arctan(ky/kx) is the polar angle spanned by k. The unit vector ŝk de-

termines the direction of the quantization axis for the particular value of the wave

vector k. The two possible spin orientations immediately give the eigenstates:

ϕk,±(r) =
eik·r
√

2L2





±1

ieinφk



 , (3.18)

with energies2:

εk,± =
~

2k2

2m
∓ γ(~k)n , (3.19)

which generalize the results discussed in the previous Chapter for the n = 1 case of

Rashba spin-orbit.

2The form of the spin-orbit coupling we consider is obviously not valid at large k.
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Figure 3.2. Orientation of the spin for noninteracting eigenstates in
the presence of generalized spin-orbit. The cases n = 0, 2 and 3 are
displayed from left to right. The case n = 1 is displayed in Figure 2.2.

We notice that in view of the structure of the spinors the integer n can be seen

as a spin direction winding number. A schematic representation of the eigenstates

for the cases of n = 0, 2, 3 is shown in Figure 3.2. The case n = 1 is displayed in

Figure 2.2.

As in the previous Chapter, an important class of determinantal many-body states

with compact momentum space occupation which are homogeneous and isotropic in

the plane of motion [21] are uniquely determined by the number density n and the

generalized polarization defined by:

p =
n+ − n−

n
, (3.20)

where n± refers to the particle density corresponding to the two spin subbands. It

must be immediately noted here that in the general case p should not be interpreted

as a spin polarization for this is in general vanishing in these states. p does merely

determines the two Fermi vectors k± of the so called spin-split subbands via the

relations:

k± =
√

2πn(1 ± p) , (3.21)

which uniquely determine the occupation numbers nk± of the subbands.

In the particular case n = 1 it is obvious that the generalized polarization p is

equivalent to the chirality χ0, defined in Eq. (2.19). For simplicity, we will restrict
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ourselves to the regime when both spin-split subbands are occupied, so that p < 1.

For n = 1 the more general treatment in terms of the generalized chirality is discussed

in the previous Chapter.

It is readily found that the non interacting energy per particle (in Rydbergs) is

given by:

E0,n(γ̄, rs, p) =
1 + p2

r2
s

− γ̄
2

n
2

rn
s

(1 + p)1+ n
2 − (1 − p)1+ n

2

1 + n
2

, (3.22)

which is a generalization of Eq. (2.23) (for p < 1). The dimensionless coupling is

defined by:

γ̄ =
mn−1e2(n−2)

~n−2
γ , (3.23)

The first term in (3.22) is the contribution of the kinetic energy while the second

corresponds to the spin-orbit interaction.

In this case, minimization of the total energy with respect to the value of p,

∂E0,n

∂p
= 0, leads to the ground state value of the equilibrium generalized polarization

p
(0)
min. Interestingly the result only depends on the dimensionless quantity

g = 2
n
2 γ̄r2−n

s , (3.24)

so that it can be compactly expressed as follows:

p
(0)
min =































g for n = 0 ,

g
√

1 − g2

4
for n = 1 ,

g for n = 2 ,

g
√

−3g4+6g2−2+2(1−2g2)3/2

g6 for n = 3 .

(3.25)

For small coupling this quantity behaves as

p
(0)
min ' g +

n(n− 2)

8
g3 +O(g5) . (3.26)

One can then immediately notice that since for n = 1 we have g =
√

2γ̄rs, in this case

the high-density regime is equivalent to a vanishing spin-orbit. The opposite obtains

for n = 3, since g = 2
√

2γ̄/rs. For quadratic spin-orbit g = 2γ̄, and the fractional

generalized polarization p is independent of the density.
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It is also useful to define here the depopulation coupling strength γ̄
(0)
d as the

particular value of γ̄ for which, at a given density, the upper band empties and

p
(0)
min = 1. This is readily obtained from (3.25):

γ̄
(0)
d =







1
r2
s

for n = 0 ,

rn−2
s

2n−1 for n = 1, 2, 3 .
(3.27)



31

4. Effects of the lateral confinement with Rashba spin-orbit

coupling

We consider in this and in the next Chapter the properties of a noninteracting two-

dimensional liquid, in the presence of spin-orbit coupling and lateral confinement. We

assume that the lateral confinement is realized with hard boundaries, which has little

consequence on the nature of the spin-polarization effects displayed by the system,

but allows a simple treatment of the problem.

We first examine the case of linear Rashba spin-orbit, by studying in detail the

spectrum and the inhomogeneous spin-polarization of the eigenstates, resulting from

the presence of the external potential. Special emphasis is given to the out-of-plane

component that is produced from coherent superposition of in-plane polarized two-

dimensional eigenstates.

While the total equilibrium polarization is vanishing, a finite result is obtained

in the presence of a nonequilibrium population, as in the particular case of a finite

current flowing through the system. This fact is well known in bulk two-dimensional

electronic system where a current forced along the x direction will be accompanied by

an in plane polarization along y [32–36]. By a perturbative analysis we show that in

the strong confined regime this component is quenched and the polarization is mostly

out-of plane. The crossover between the two regimes is discussed.

4.1 Formulation of the problem and boundary conditions

The model Hamiltonian we consider is the following:

Ĥ =
p̂2

2m
+ α(σ̂xp̂y − σ̂yp̂x) + V (ŷ) , (4.1)
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Figure 4.1. Schematic of our model quantum wire obtained by pinch-
ing along the y direction a quantum well of side L by means of a
hard-wall lateral confining potential.

where the motion is restricted to the x, y plane and the lateral confining potential is

given by:

V (y) =







0 for |y| < W/2 ,

∞ for |y| ≥W/2 .
(4.2)

The setup is schematically depicted in Figure 4.1.

Since the system is translationally invariant along the x direction, the eigen-

functions of the problem can be constructed by linear superposition of free space

(V (y) = 0) eigenstates with definite values of kx, which are given in (2.17). The

corresponding eigenenergies are in (2.18). Because of time reversal, states within the

same band with opposite wave vectors have opposite spins, which allows to assume

kx > 0 without loss of generality.

The surfaces (lines) at constant energy ε are concentric circles with radii K±.

These are given as the positive solutions of the equation

ε =
~

2K2
±

2m
∓ ~αK± . (4.3)

Constant energy lines are schematically displayed in Figure 4.2.

At a given energy ε, there are only four free space eigenstates that can be com-

bined to form solutions satisfying the zero boundary condition of the inhomogeneous
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k x

k y

k x

k y

Figure 4.2. Possible free space states that can be superimposed to
obtain confined eigenstates. On right we show a situation for which
the two states of the upper branch have Re[ky] = 0.

problem. This is depicted in Figure 4.2: for each spin subband ± we have two states

with opposite value of ky. The four possible values of ky are ±k±y , with

k±y =
√

K2
± − k2

x , (4.4)

where K± are given in Eq. (4.3) above.

Since we are interested in spatially undamped solutions, we always take kx < K+.

However, it will necessary to include the case K− < kx < K+, where k−y = i|k−y | is

purely imaginary. We also define the angles φ± by means of:

φ± = arctan
k±y
kx

. (4.5)

If k−y = i|k−y | we have that also φ− is purely imaginary and from the above formula

we get φ− = iarctanh
|k−

y |
kx

.

It is convenient to consider the following two couples of (unnormalized) states,

which are also eigenstates of the reflection symmetry y → −y:

ψ±±(ε, kx, y) =





cos (k±y y − φ±
2

)

±i cos (k±y y + φ±
2

)



 eikxx , (4.6)

ψ±∓(ε, kx, y) =





sin (k±y y − φ±
2

)

±i sin (k±y y + φ±
2

)



 eikxx . (4.7)
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The first ± subscript refers to the chirality of the spin subband while the second ±
subscript refers to the reflection operation y → −y. The eigenstates in the confined

system are then expressed in the following way:

ϕ+
n (kx, y) = c++

n ψ++ + c−+
n ψ−+ , (4.8)

ϕ−
n (kx, y) = c+−

n ψ+− + c−−
n ψ−− , (4.9)

where the superscript in ϕ±
n refers to the reflection parity, and not to the chirality.

As one would expect, the solutions of the confined system are an admixture of states

with different chirality. A spin subband index will be introduced as an approximate

quantum number in the case of small spin orbit in a following Section where we

present a perturbative treatment of the problem.

Imposing the boundary condition at y = W/2 for the ϕ±
n leads to the following

conditions:




cos (
k+

y W−φ+

2
) sin (

k−
y W−φ−

2
)

i cos (
k+

y W+φ+

2
) −i sin (

k−
y W+φ−

2
)









c++
n

c−+
n



 = 0 , (4.10)





sin (
k+

y W−φ+

2
) cos (

k−
y W−φ−

2
)

i sin (
k+

y W+φ+

2
) −i cos (

k−
y W+φ−

2
)









c+−
n

c−−
n



 = 0 . (4.11)

At fixed kx, the determinants of (4.10) and (4.11) are functions of ε, through the

implicit dependence of k±y and φ±. The zeros of these determinants provide two sets

of discrete energies ε±n (kx), corresponding to states of opposite parity.

If one is not interested in separating states with different reflection parity, one can

combine the conditions ensuing from (4.10) and (4.11) into the compact equation:

(1 − cos k+
y W cos k−y W ) sinφ+ sin φ− (4.12)

+(1 − cos φ+ cosφ−) sin k+
y W sin k−y W = 0 ,

which gives the whole spectrum for a given kx. The eigenfunctions, dropping the

reflection parity index, are henceforth quite generally denoted as ϕν(kx, y).

We finally notice that for values of ε and kx such that k−y is purely imaginary, the

structure of the above formulas still holds, and one need only substitute hyperbolic

for trigonometric functions.
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4.2 Solution of the problem

4.2.1 Exact solution at kx = 0

A case in which the solutions can be expressed in simple closed form is that

of kx = 0. For this particular value of kx it is immediate to see that Eq. (4.1)

admits solutions which are eigenstates of σ̂x. Assuming the following form for the

wavefunctions

e∓i mα
~

yΦ(y)|±〉x , (4.13)

Φ(y) is found to satisfy:

[

− ~
2

2m

∂2

∂y2
+ V (y) − 1

2
mα2

]

Φ(y) = εΦ(y) . (4.14)

This result is quite general holding for an arbitrary form of the confining potential

V (y). For the case of an infinite well we obtain:

εn =
~

2

2m

(πn

W

)2

− 1

2
mα2 , (4.15)

where n is a positive integer. For every eigenvalue there is an additional twofold spin

degeneracy.

4.2.2 Numerical results

We reproduce in Figures 4.3-4.7 numerical results, calculated with the methods

of the previous Section. In Figure 4.3 and 4.4 we present two examples of the energy

spectrum as function of kx for different values of the spin-orbit coupling α.

The properties of the eigenfunctions are perhaps more interesting and can be best

exemplified by the corresponding number and spin polarization densities. Figures 4.5,

4.6 and 4.7 refer to these properties of the eigenfunctions, and have been obtained

with the same parameters of Figure 4.3 and an occupation characterized by a Fermi

energy εF = 6 meV. In particular, we show there for each state the relative number
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Figure 4.3. Energy spectrum of a W = 0.1 µm wide quantum wire.
For clarity the exact energy bands are only shown (dots) for discrete
values of kx, while the perturbative results from Eq. (4.21) are also
plotted (solid lines) for comparison. The parameters values are as fol-
lows: ~α = 2 10−9meV m and m = 0.3m0. The horizontal dashed line
marks a Fermi level of 6 meV and is significant in relation to Figures
4.5, 4.6 and 4.7. The corresponding electron density is 0.67 1012 cm−2.
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Figure 4.4. Same as in Figure 4.3 but with a larger value of the
spin orbit coupling: ~α = 5 10−9 meV m. Strong deviations from
perturbation theory are due to anti-crossing of bands.
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Figure 4.5. Number density Nν(y) (in m−1 units) of individual eigen-
states at the Fermi level of a quantum wire. The parameters are the
same as in Figure 4.3. The wave vector values are determined by the
crossings of the bands with the horizontal dashed line at 6 meV in
Figure 4.3 and are given at the top (dots on the kx line). The corre-
sponding Nν(y) functions are shown in the panels, where the numbers
label the first twelve wave vectors, counted from left to right on the
top kx line. States with opposite wave vectors have the same density.

density Nν(kx, y) and spin polarization density ~Pν(kx, y). These quantities are defined

as follows:

Nν(kx, y) = 〈ϕν(kx, y
′)|δ(y − ŷ′)|ϕν(kx, y

′)〉 , (4.16)

~Pν(kx, y) = 〈ϕν(kx, y
′)|~̂σδ(y − ŷ′)|ϕν(kx, y

′)〉 . (4.17)

From simple symmetry considerations, it follows that the polarization is vanishing

in the x direction, along the wire, and states with the same energy and opposite values

of kx have the same density but opposite spin polarization. As it will be discussed

in a following Section, this fact allows in principle to produce a net spin polarization

along the y and z direction, by driving an electrical current along the wire.

4.2.3 Perturbation theory

Although the numerical analysis provides the complete answer to the problem,

useful insight can be gained from an examination of the perturbative approach. We
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Figure 4.6. Spin polarization density Pz
ν (y) along the z direction (in

m−1 units) of the same eigenstates of Figure 4.5. States with opposite
wave vectors have polarization of opposite sign. Solid lines correspond
to the first twelve kx values, counted from left to right on the top kx

line, while dashed lines refer to −kx.
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Figure 4.7. Spin polarization density Py
ν (y) along the y direction (in

m−1 units) of the same eigenstates of Figure 4.5. States with opposite
wave vectors have polarization of opposite sign. Solid lines correspond
to the first twelve kx values, counted from left to right on the top kx

line, while dashed lines refer to −kx.
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therefore consider next the case of small spin orbit coupling and will assume that

the Rashba term can indeed be treated as a perturbation. In order to simplify the

notation, in this Section we consider a potential that confines the electrons in 0 <

y < W rather than −W/2 < y < W/2. For simplicity we will label the perturbed

eigenstates via the (approximate) quantum numbers of the unperturbed solutions.

Accordingly we write

ϕn±(kx, y) = ϕ0
n±(kx, y) +O(α) , (4.18)

where

ϕ0
n±(kx, y) =

√

2

LW
eikxx sin

nπy

W
|±〉y , (4.19)

with n a positive integer. We also find convenient to choose the spinors along y, in

such a way that the states are eigenstates of the y reflection symmetry. The relevant

matrix elements of the spin orbit interaction are:

〈ϕ0
n′±|R̂0|ϕ0

n±〉=∓~αkxδnn′δkxk′
x
, (4.20)

〈ϕ0
n′∓|R̂0|ϕ0

n±〉=∓2~α

W

nn′(1 − (−1)n+n′
)

(n2 − n′2)
δkxk′

x
.

We can easily obtain the form of the perturbation expansion, up to second order:

εn±(kx)=
~

2

2m

( πn

W 2

)2

+
~

2k2
x

2m

∓~αkx −
1

2
mα2 +O(α3) . (4.21)

Higher order terms are also readily obtained.

The necessary condition for the validity of the perturbative expansion is that the

matrix elements (4.20) be smaller than the unperturbed energy differences. The latter

are of order ~2

mW 2 . This gives:

α � ~

mkxW 2
and α � ~

mW
. (4.22)

Clearly the perturbative expansion fails for large values of kx, or for a channel with

large W .
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The perturbation theory allows us to explicitly calculate a number of interesting

quantities. In particular the z-component of the spin polarization density of the

confined states (see Eq. (4.17)) is given by:

Pz
n±(kx, y) = 〈ϕn±(kx, y

′)|σ̂zδ(y − ŷ′)|ϕn±(kx, y
′)〉 (4.23)

= ∓αm
~
Fn(y/W ) −

(

αmW

~

)2

kxGn(y/W ) +O(α3) ,

where the functions Fn and Gn are given by:

Fn(y/W )=
64

π2

∑

m

′ nm

(n2 −m2)2
sin

πny

W
sin

πmy

W
,

Gn(y/W )=
256

π4

∑

m

′ nm

(n2 −m2)3
sin

πny

W
sin

πmy

W
, (4.24)

where the sum extends over positive even (odd) integers m for odd (even) n.

In the same way, while Px
n±(kx, y) vanishes, the corresponding perturbative result

for the polarization along y of the n± states can be expressed as:

Py
n±(kx, y) = 〈ϕn±(kx, y

′)|σ̂yδ(y − ŷ′)|ϕn±(kx, y
′)〉 (4.25)

= ± 2

W
sin2 πny

W
∓
(αm

~

)2

WHn(y/W ) +O(α3) ,

where the function Hn is defined as follows:

Hn(y/W ) =
128

π4

[

∑

m

′ m2n2

(n2 −m2)4
sin2 πny

W

+2
∑

m,n′

′ m2nn′

(n2 −m2)2(n2 − n′2)(m2 − n′2)
sin

πny

W
sin

πn′y

W

+
∑

m,m′

′ mm′n2

(n2 −m2)2(n2 −m′2)2
sin

πmy

W
sin

πm′y

W

]

, (4.26)

where the sums extend over the positive integers. In particular while n′ is of the same

parity as n, both m and m′ are of opposite parity. Moreover n′ 6= n.

Notice that as expected, in all these formulas the substitution kx → −kx and

± → ∓ gives a state with the same energy and opposite spin polarization.
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4.3 Edge spin polarization

We consider here the spin accumulation at the boundaries of the wire in the

presence of an electric current in the x direction.

Although the response of a system of electrons subject to Rashba spin orbit and

an applied electric field is quite complicated and requires a careful analysis [32, 33],

for simplicity sake we will model here a current carrying steady state by assuming a

modified electron occupation distribution. In particular we will assume that a finite

chemical potential difference δµ = µ+ − µ− is established between the right moving

and left moving states. This is depicted in Figure 4.3 by the two short horizontal solid

lines (whose separation from the equilibrium Fermi level - dashed - is not in scale).

The present model is meant to describe ballistic transport with all the chemical

potential drop occurring at the contacts at x = ±∞.

Within this framework, the total spin polarization density due to the current flux

can be obtained in the linear regime from the relation:

~M(y) = ± gµB

2

˜∑

ν

δµ

2π~ vFν

~Pν(kFν , y) , (4.27)

where the sum is restricted to the occupied one-dimensional subbands with kFν and

vFν being the (positive) Fermi wave vector and Fermi velocity relative to the occupied

band as labeled by the index ν. In this formula the positive sign refers to the case of

hole transport. As a consequence the direction of the magnetization only depends on

the current direction and not on the type of carrier involved.

The perturbative result for the z component Mz is readily obtained from Eqs. (4.24):

Mz(y) ' ∓ δµ
mgµB

2π~2

(

mαW

~

)2
˜∑

n

Gn(y/W ) , (4.28)

where the sum is limited to the positive integers corresponding to the occupied bands.

The results of the (exact) numerical calculations of Mz(y) are shown in Figure 4.8.

Interestingly the expression given in (4.25) is not sufficient to obtain the leading

corresponding perturbative expression for My(y). The reason is simply that in the

confined geometry the first finite contribution to this quantity is clearly of order α3
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Figure 4.8. Spin polarization density in the z direction of a W =
0.1 µm wide quantum wire, for carriers with effective mass m = 0.3m0

and g = 2. The Fermi energy is εF = 6 meV, which corresponds to an
electron density of 0.67 1012 cm−2. We used δµ = 0.1 meV which gives
a current in the wire of 23 nA. In the top panel ~α = 1.5 10−9 meV m
while in the bottom one ~α = 3.5 10−9 meV m. The perturbative
result is also plotted (dashed). As a comparison of the magnitude of
the effect, the Pauli susceptibility is χP = 72.5 µB/(µm2 T).

(see also below). This term can be of course readily calculated. The results for

the exact calculation of My(y) are plotted in Figure 4.9 alongside the perturbative

expression.

It is remarkable that the z component of the magnetization is larger for small val-

ues of the spin-orbit coupling constant while the two components become comparable

for larger values. Furthermore, while Mz(y) changes sign and displays an asymmetric

behavior across the wire, My(y) remains of the same sign and is instead symmetric.
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Figure 4.9. Spin polarization in the y direction corresponding to the
same parameters of the previous Figure 4.8. In the top panel ~α =
1.5 10−9 meV m while in the bottom one ~α = 3.5 10−9 meV m. The
leading perturbative contribution (cubic in α) is also plotted (dashed).

As expected, in all cases, there is good agreement with the approximate analytical

formula (4.28) for small values of α. In this respect, we notice that the choice of the

parameters of Figs. 4.8 and 4.9 refers to typical values reported in the experimental

literature for holes [4]. The choice is motivated from the fact that, due to the value

of the effective mass, larger values of the polarization are attained. For the case of

electrons, the effect would be suppressed by a factor (me/mh)
3 in the transverse case,

as apparent from (4.28), and by a factor (me/mh)
4 for the in-plane polarization, as it is

clear from the previous discussion. Therefore the effect would be accurately described

by the perturbative expressions, and the discussed quenching of the y polarization

compared to the z component would be more evident.
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Figure 4.10. Magnetization density of a W = 0.1 µm wide quantum
wire, for carriers with same parameters as the first panel of Figure
4.8. We used E = 1 kV/m and a constant value for τ = 7.3 10−13 s,
which gives the same current in the wire of Figure 4.8. The perturba-
tive result is also plotted (dashed). The magnetization is somewhat
different from the previous case, where the oscillations of the mag-
netization are more pronounced. The overall sign of the effect is the
same.

Our theory can be extended to the case of non ballistic transport. A simple

treatment of such a situation can be obtained by setting δµ→ eEvFντν in Eq. (4.27).

Here E is the magnitude of the driving electric field and vFντν is the elastic mean

free path appropriate for the states of the one dimensional subband ν, a length scale

that we assume much larger than the width W of the wire. By taking for simplicity

the same scattering time for all subbands τν = τ the ensuing magnetization can be

obtained. The results for Mz(y) are plotted in Figure 4.10. We notice that the

oscillations of the magnetization are somewhat damped as compared to the ballistic

case. On the other hand, the overall sign of the effect is unchanged, the behavior being

in disagreement with the experimental results of Ref. [37]. We haste to state however

that our model is rather different from the situation of a dirty three-dimensional

sample dealt with in the experiment.
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Figure 4.11. Distorted momentum space occupation distribution used
to calculate the bulk value of the magnetization. K± are defined in
Eq. (4.3).

4.4 Discussion

As we have noted, while for small spin orbit the out of plane (z-axis) polarization

Mz(y) induced by an x-axis current is quadratic in the coupling constant, the in plane

(y-axis) polarization My(y) is much smaller, first appearing in third order. This result

is only in apparent contradiction with the well known corresponding bulk result in

two dimensions which entails a linear dependence of My(y) on the coupling constant.

Within the simplified model used in Section 4.3 such a behavior can be readily derived

by assuming the distorted momentum space electron distribution function of Figure

4.11. The final expression is given by

1

L2
〈σ̂y〉 =

αm
3

2 δµ

π2~2
√

2εF +mα2
, (4.29)

where δµ = 2~vF δk. As expected for small α My(y) is linear in the coupling con-

stant1.

The difference lies with a quenching of the y-axis polarization due to the con-

fining potential. As it can be surmised by inspecting Eq. (4.25), this effect can be

1It must be noted for completeness that within the more rigorous microscopic approach in which the
effect of impurities is accounted for (see for instance Ref. [32] and [33]) the coefficient of the linear
contribution to My(y) depends on the specific electron impurity potential assumed.
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Figure 4.12. Average spin polarization density in the y direction as
a function of α. The parameters used are: W = 0.15 µm, εF =
2.5, 10, 40 meV, δµ = 0.05 meV, and m = 0.3m0 (mass as in previous
Figures). Here the dots represent the (exact) numerical result, while
the dotted curves are obtained from Eq. (4.29) in the text. The dashed
line is a guide to the eye representing a pure cubic behavior.

readily seen to originate from the lowest order cancellation of the contributions to

My(y) stemming from states within the same spin-split one dimensional band. The

cancellation only occurs when the spin-splitting is smaller than the energy quantiza-

tion associated with the one-dimensional confining potential. This is of course not

operational in the bulk since in such a situation the energy spectrum is continuum.

The crossover between these two regimes approximately occurs when the spin-

splitting equals the energy spacing between the eigenvalues of the confining potential

along the y direction, i.e. for mαW
~

' 1. In order to exemplify this phenomenon we

have plotted in Figure 4.12 the spatially averaged magnetization density

My =
1

W

∫ W/2

−W/2

My(y)dy , (4.30)

as a function of the value ~α of the spin orbit coupling constant. With the parameters

chosen in Figure 4.12 the crossover occurs approximately for ~α = 1.7 10−9 meV m.

The dashed curve superimposed to the εF = 2.5 meV dotted line is purely cubic and

provides a useful guide to the eye for that case.
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Exactly the opposite mechanism is responsible for the case of Mz(y), which, as

we have seen, is instead vanishing in the bulk. Interestingly, as one can infer from

Figure 4.12, the expression of Eq. (4.29), formally valid in the bulk for finite values of

α when in principle the perturbative condition is inapplicable, still gives good results

for the case of a rather narrow channel with W = 0.15 µm.

We discuss next how the different behaviors of the two components of the spin

polarization we have just discussed are compatible with a quite general and rigorous

argument regarding the parity of Mz(y) and My(y) with respect to the sign of the

spin orbit coupling constant. Consider the effect on the hamiltonian (including con-

tributions from the electron electron interaction and non magnetic impurities) of the

application of the operator σ̂z . Clearly σ̂zĤ(α)σ̂z = Ĥ(−α). Then it immediately

follows that given an eigenstate of the problem for a given value of α, the correspond-

ing solution for −α can be obtained simply by application of σ̂z. This in turn implies

that, quite generally, while Mz(y) is even with respect to α, My(y) is odd.

In concluding, we notice that the effect we described is phenomenologically anal-

ogous to, yet distinct, from the spin-Hall effect that has recently been the subject of

intense discussion (for a useful review, see Ref. [6]) and was demonstrated experimen-

tally [37–40]. The mechanism relevant to the present discussion simply stems from

the structure of the electronic wavefunctions in a confined geometry. Accordingly,

there is no need to make appeal to spin currents or impurity scattering. Moreover its

geometric nature should leave the phenomenon mostly unchanged in the presence of

a moderate amount of impurities in the wire.

Interestingly we believe that some of the features observed in model calculations

specifically designed to study the spin-Hall effect (see for instance reference [41]) must

in fact be ascribed to the simple phenomenon described here. A similar effect should

also be relevant in the case of electronic states localized by an impurity potential as

well as in the transition to a low density Wigner crystal in the presence of Rashba

spin orbit.
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5. Effects of the lateral confinement for holes in GaAs

In this last Chapter devoted to properties of the noninteracting system we consider

the effect of the lateral confinement on two-dimensional holes. This problem has

great interest, since it is the object of recent experimental activity which has shown

the relevance of the spin-orbit coupling in the point-contact transmission of holes in

GaAs [4, 42].

Due to the peculiar form of the spin-orbit coupling, the one-dimensional spectrum

resulting from the lateral confinement substantially differs from the case of linear

Rashba spin-orbit discussed in the previous Chapter. The most relevant feature

is the crossing of the two lowest lying spin-split subbands at a finite value of the

momentum along the wire. The presence of the crossing can be controlled by an

external magnetic field or electric gating. Interesting polarization properties of the

point-contact transmission are well understood on a qualitative level from the form of

the one-dimensional spectrum and are confirmed by the explicit solution of a simple

model for the point-contact.

5.1 Qualitative introduction

We discussed at length in the previous Chapter the effect of the lateral confinement

in the presence of a linear Rashba spin-orbit term:

Ĥ0,1 =
p̂2

2m
+ α (σ̂xp̂y − p̂xσ̂y) , (5.1)

which is appropriate for particles with spin | ± 1/2〉. In the case of holes of typical

III-V semiconductors (as in particular GaAs), the highest two-dimensional subband

of a quantum well is approximately formed by heavy-holes with spin |±3/2〉. For this



50

reason one obtains that the cubic term discussed in Chapter 3 is the main contribution

to the spin-orbit coupling:

Ĥ0,3 =
p̂2

2m
+
iγ

2
(p̂3

−σ̂+ − p̂3
+σ̂−) , (5.2)

where p̂± = p̂x ± ip̂y and σ̂± = σ̂x ± iσ̂y.

While the form of Ĥ0,3 is well established in the theoretical literature (for reviews,

see Refs. [3, 6]), a clear experimental demonstration that distinguishes between the

two types of spin-orbit might be difficult to obtain. We suggest that clear evidence of

the different form of the spin-orbit mechanism is obtained in the presence of a lateral

confinement. In fact, the hamiltonians (5.1) and (5.2) lead to a very different form

of the energy dispersion of the one-dimensional subbands, as it is obtained next with

a ”back of the envelope” calculation.

5.1.1 The one-dimensional spectrum

In the limit of strong lateral confinement (when the one-dimensional quantization

energy is much larger than the spin-orbit splitting) one can substitute for the lowest

one dimensional subband p2
y ∼

(

~π
W

)2
, where W is the extent in the y direction of the

laterally confining potential. Furthermore, in the case of for a symmetric potential,

one can also substitute py ∼ 0. This gives:

Ĥ1D,1 =
p̂x

2

2m
− α p̂xσ̂y +

~
2π2

2mW 2
, (5.3)

for the linear case and:

Ĥ1D,3 =
p̂x

2

2m
+ γ

(

3~
2π2

W 2
p̂x − p̂3

x

)

σ̂y +
~

2π2

2mW 2
, (5.4)

for the cubic case.

The (5.3) and (5.4) are readily diagonalized, and the main difference between them

is that in the first case the spin orbit splitting is 2α~kx, which is linearly increasing

with the wavevector kx, and vanishes only at kx = 0. On the other side, the spin

splitting in (5.4) is zero also at the finite wavevectors kx = ±
√

3 π
W

.
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This degeneracy at kx = ±
√

3 π
W

can be lifted by applying an external potential

which violates the particular symmetry corresponding to the crossing behavior of the

one-dimensional subbands. In fact σ̂y is conserved in (5.4) and the two subbands are

relative to different values of the spin projection. More generally, we can observe that

the physical system is invariant upon reflection in a transverse plane parallel to the

longitudinal direction of the wire. Therefore, every perturbation that violates this

symmetry will produce an anticrossing behavior which results in the removal of the

degeneracy. Examples are a longitudinal magnetic field and an asymmetry in the

lateral confinement along y, which both introduce in (5.4) terms proportional to σ̂x.

5.1.2 The point contact problem

For a point contact, the lateral confinement of the external potential slowly

changes along the x propagation direction of the holes, forming a narrow constriction

at x = 0.

In the simplest case, for a sufficiently smooth potential, the holes transmitted

through the constriction follow adiabatically the one-dimensional spectrum instanta-

neously determined by the lateral confinement, with a constant energy determined

by the chemical potential of the injecting reservoir. A quantized step in the conduc-

tance of e2/h is observed every time the gating potential allows the transmission of

an additional non-degenerate one-dimensional channel through the constriction.

This picture of adiabatic transmission is experimentally violated in the spin fo-

cusing experiment of Ref. [4], when a magnetic field is applied that removes the spin

degeneracy. It is observed here that the holes transmitted at the onset of the con-

ducting regime are not those with largest wavevector, as one would expect if they

were to adiabatically follow the first one-dimensional subband (with lowest energy).

This anomaly is explained accounting the crossing behavior of the one-dimensional

subbands discussed in the previous paragraph. In fact the condition for adiabatic

transmission is violated at the (quasi)degenerate points, at small magnetic fields.
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To obtain an explicit condition, one can consider the spin precession in the total

magnetic field ~Btot, which is the sum of the fixed external field and the field produced

by the spin-orbit coupling. The latter is determined by the instantaneous velocity

of the hole. The condition for adiabaticity is ωZ � dBtot/dt
Btot

, where ~ωZ is the gap

between the two spin states. At the (quasi)degenerate points the spin-orbit field is

zero so that we have Btot = B and ~ωZ = gµBB, where B is the value of the external

field. To estimate the rate we have that the change in Btot is only determined by the

spin-orbit field, and therefore gµB

2
dBtot

dt
' γ~3k3

F

L/v
, where v is the instantaneous velocity

and L is a typical length of the point contact. Finally:

B � ~
2(2γk3

Fv/L)1/2

gµB
. (5.5)

This condition is easier to satisfy at kx ' 0, since v is small. At kx = ±
√

3 π
W

the velocity is larger (in fact, is of the order of the Fermi velocity vF ) and (5.5) is

violated up to sizable values of the magnetic field. In this conditions, the holes cannot

adiabatically follow the lower/higher one-dimensional band at the (quasi)degenerate

point, but cross to the higher/lower one. Therefore the transmission of holes at the

onset of the conducting regime is preferentially in the second subband, as observed

in Ref. [4].

The adiabatic condition for the transmission is of course recovered if a large enough

magnetic field is applied, such that a large gap is always present between spin-split

subbands.

5.2 Spectrum of two-dimensional holes with lateral confinement

While the previous introductory discussion provides the main qualitative features

of the one-dimensional spectrum, the calculation can be extended to more accurately

compute the eigenvalues of the hamiltonian (5.2) in the presence of a laterally con-

fining potential. However, some mathematical difficulties are encountered. These

ultimately originate from the perturbative character of (5.2), which is valid in the
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Figure 5.1. Schematic setup of a one-dimensional channel with trans-
verse dimensions W and T , obtained from the bulk by means of hard-
boundary barriers along [113] and [11̄0] or [113] and [223̄]. A trans-
verse electric field E3 is always present in the [113] growth direction
and the effect of a lateral electric field E2 and a longitudinal magnetic
field B are also considered.

limit of small wavevectors, while the presence of the lateral potential requires in

general this requirement to be violated.

Results of numerical calculations using (5.2) and hard-wall lateral confinement

can be found in the literature related to the spin-Hall effect [6, 43, 44]. Therefore we

find useful to discuss in more detail this particular example in Appendix A.

In the present Section we prefer to treat the problem directly using the Luttinger

hamiltonian given in Eq. (3.1), from which (5.2) can be derived [3]. This also allows

to discuss effects due to the cubic crystalline potential.

The confinement potential is chosen to be:

V (x2, x3) =







0 for |x2| ≤W/2 and |x3| ≤ T/2 ,

+∞ otherwise ,
(5.6)

where x3 is along the growth direction of the quantum well, and x2 is an in-plane

direction of lateral confinement. The complete hamiltonian is:

Ĥ3D,V = Ĥ3D + V (x̂2, x̂3) + E3e x̂3 , (5.7)

where the transverse electric field (perpendicular to the plane of the quantum well)

is responsible to produce the inversion-asymmetry spin-orbit splitting. The setup

considered here is schematically depicted in Figure 5.1.
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We will consider in the following the experimentally relevant case [4, 42] of the

[113] growth direction, while x2 is chosen to be along either [11̄0] or [332̄]. In the first

case, the one-dimensional subbands resulting from the numerical diagonalization of

(5.7) are plotted in the first panel of Figure 5.2. For the two highest subbands, the

similarity to the simplified model (5.4) is apparent, since the two highest subbands

cross at a finite value of the longitudinal wavevector k.

In the second panel of of Figure 5.2 we plotted the spectrum for the second lateral

confinement direction, along [332̄]. Here the one dimensional subbands display an

anticrossing behavior, due to the absence of the reflection symmetry operation x2 →
−x2. This is broken by the crystalline potential, which is asymmetric along [332̄]. The

situation has to be contrasted to the previous case, where the lateral confinement is

along the highly symmetric crystallographic axis [11̄0].

The subbands splitting can be introduced or modified by making use of external

perturbations. We present in the first panel of Figure 5.3 the case of an external

magnetic field, which is treated introducing a Zeeman coupling term in (5.7):

ĤZ = −2κµB
~B · Ĵ , (5.8)

where ~B is taken along the wire and κ = 1.2 for GaAs. Orbital effects are neglected

for simplicity.

A similar effect is produced by an externally induced asymmetry in the confine-

ment potential. This is exemplified in the second panel of Figure 5.3, which shows the

spin splitting between the two highest subbands, including a lateral electric field term

E2e x̂2 in the hamiltonian (5.7). At variance with the longitudinal magnetic field, only

the degeneracy at finite wavevector is removed, while at k = 0 the degeneracy due to

the time-inversion symmetry is preserved.
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Figure 5.2. One-dimensional subbands for wires obtained from a
quantum well with growth direction along [113] and lateral confine-
ment along [11̄0] (left) and [332̄] (right) directions. We used pa-
rameters T = 15 nm and W = 40 nm and transverse electric field
E3 = 1 MV/m.
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Figure 5.3. Left panel: effect of a finite longitudinal magnetic field
(in the same direction of the wire). The splitting between the two
higher subbands is plotted at B = 0, 1, . . . 5 T. Right panel: effect
of a finite lateral electric field. The splitting between the two highest
subbands is plotted at increasing values of E2 = 0, 25, . . . 125 kV/m.
In both figures the solid line represents the unperturbed case (B = 0
or E2 = 0). The lateral confinement is along [11̄0] in both cases and
we used T = 15 nm and W = 40 nm.
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5.3 Spin-resolved point contact transmission

We consider in this section the transmission of holes trough a point contact which

(we neglect henceforth the cubic anisotropy) we suppose to be formed in the (x, y)

plane of the quantum well, with holes propagating in the x direction.

As a simple model of a point contact, we make use of the hamiltonian (5.4), which

includes the two lowest spin-split subbands and allows to describe the onset of the

conducting regime. In (5.4) we assume that the hard-wall lateral confinement has a

varying width [45] W (x) such that:

V (x) =
~

2π2

2mW (x)2
=

~
2π2

2mW 2
0

e−x2/L2

, (5.9)

where W0 is the (minimum) width of the constriction at x = 0 and L is a typical

length of the point-contact.

The complete hamiltonian, including a longitudinal magnetic field (along the point

contact direction) reads:

ĤPC =
p̂x

2

2m
+ V (x̂) +

gµB

2
Bσ̂x + γ

[

3m{V (x̂), p̂x} − p̂3
x

]

σ̂y , (5.10)

where we introduced the anticommutator {a, b} = ab + ba in the spin-orbit term to

obtain an hermitian hamiltonian. This modification has little effect in the limit of a

smooth contact, when ∂V/∂x → 0.

Distant from the x = 0 constriction we have that the potential V (x) is vanishing,

and the (5.10) has eigenstates which are plane waves with wavevector kx and a specific

orientation of the spin, quantized in the same direction of total magnetic field ~Btot =

Bx̂− 2γ~3k3
x

gµB
ŷ. The eigenstates of the free case, corresponding to the two spin branches,

are denoted as ψ±(kx) and have energies:

ε±(kx) =
~

2k2
x

2m
∓
√

γ2(~kx)6 + (gµBB/2)2 . (5.11)

The corresponding velocities are v± = ∂ε±
~∂kx

. We will also assume that the asymptotic

wavefunctions have amplitudes such that |〈ψ±(kx)|ψ±(kx)〉|2 = 1.
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If we now solve the scattering problem for an incident hole injected in the state

ψµ(kµ) of a definite spin branch µ, the transmitted wavefunction is ψT
µ (kµ) (at x →

+∞). This is a superposition of the two possible states ψν(kν) (ν = ±) that have

the same energy of the incident state, according to expression (5.11). In particular,

kν = kµ if ν = µ and k+ is the largest of the two wavevectors, since it corresponds to

the lower energy branch.

Therefore, we can define appropriate transmission coefficients given by the ex-

pression T µν
12 = vν

vµ
|〈ψν(kν)|ψT

µ (kµ)〉|2, which is a function of the energy of the incident

(or transmitted) holes only. The label indicates that the hole is injected in the first

contact (at x → −∞) and transmitted in the second contact (at x → +∞). The

other case of T µν
21 refers to the scattering problem in the opposite direction.

The total and spin-resolved conductances are given in the Landauer-Büttiker for-

malism respectively by [46]:

G =
e2

h

∑

µ,ν=±
T µν

12 , Gν =
e2

h

∑

µ=±
T µν

12 , (5.12)

where the T µν
12 are evaluated at the fixed energy εF equal to the Fermi energy of the

two-dimensional contacts.

These quantities are plotted for increasing values of B in Figures 5.4 and 5.5,

which displays different clearly distinct regimes. These are discussed in more detail

in the following and are consistent with the qualitative arguments presented in the

Subsection 5.1.2.

The particular choice of parameters is: m = 0.3m0, g = 0.2, γ~
3 = 0.15 eV nm3,

L = 0.5µm and εF = 1 meV. A small value of g is chosen, appropriate for a magnetic

field directed along [11̄0] . For the [332̄] direction the value of g would be larger.

We also add that the value of the g-factor is modified by the lateral confinement [47]

and a possible dependence of g from the wavevector kx is also neglected. However, in

the simple model of Eq. (5.10), the specific value of g has the only consequence of a

rescaling of B.
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Vanishing magnetic field. The transmission is in this case exactly unpolarized.

This is a consequence of the simple form of our model and, in particular, of the neglect

of higher one-dimensional bands together with the conservation of the y component

of the spin. These two facts reduce the problem to a two-terminal device for each

spin orientation, for which T±±
12 = T±±

21 , that follows from the unitary of the 2 × 2

scattering matrices relative to each spin orientation ±. By time inversion we also

have T±±
12 = T∓∓

21 which leads to T++
12 = T−−

12 .

This property however is lost in more realistic models including scattering between

the one-dimensional subbands (see for example Ref. [48]) and a finite polarization is

present also at zero field.

Small magnetic field. In this case the current is polarized at the onset of the

conducting regime, due to the removal of the spin degeneracy at kx = 0. As antici-

pated, the violation of the adiabatic condition at the kx 6= 0 degeneracy points leads

to the fact that the transmitted holes are those injected originally in the second spin-

split subband, i.e. those with smaller wavevector. In fact, at the degeneracy point

occurring at finite wavevector the spin is approximately conserved at low magnetic

field, and the holes are scattered from one band to the other.

The spin-resolved conductance of this band G− is plotted in Figure 5.4 as a dotted

line, while G+ is the dashed curve. The opposite behavior for the relative magnitude

of G+ and G− would be observed in the case of linear Rashba spin-orbit.

A second noticeable fact is that the first quantization plateau in the total con-

ductance does not appear at e2/h, but at somehow higher values. This is due to the

fact that at small fields the adiabatic condition is only partially satisfied at kx = 0

for the lowest values of the magnetic field, and the point contact is incapable to com-

pletely filter the holes of the suppressed spin subband. In fact, the plateau evolves to

lower conductance values and eventually approaches the value e2/h at higher mag-

netic fields, as it can be seen in the second and third panels of Figure 5.4. In the case

of linear spin-orbit coupling a similar behavior would be observed.
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Figure 5.4. Total (solid) and spin-resolved (dashed and dotted lines)
conductance as a function of the minimum width W0 of the point
contact. The dashed line refers to the + band, which is the lowest
energy band at x → +∞, where it corresponds to holes transmitted
with largest wavevector. We exemplify here the range of small values
of B, such that the transmission is either unpolarized or polarized in
the − band. The conductances are expressed in units of 2e2/h and
the parameters used are listed in the text. The first plateau is seen
to gradually evolve to the e2/h value.
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Figure 5.5. Same of Figure 5.4 at larger values of the magnetic field.
The crossover to the adiabatic case of holes polarized in the + band
is shown.
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We also notice that the evolution of the first plateau has some resemblance to the

phenomenon of the ”0.7” anomaly, which it was proposed to occur in the presence of

a finite polarization in the point-contact (see Ref. [42]). However, the ”0.7” anomaly

is observed at zero magnetic field and is possibly a many-body effect due to the

Coulomb interaction, which is neglected here.

The condition following from (5.5) gives:

B � ~
3γ(6k5

F/L)1/2

gµB

, (5.13)

where we estimated v = 3γ~
2π2

W 2
0

' 3γ~
2k2

F as obtained from Eq. (5.4) at kx = 0 and

x = 0. Using the parameters of Figure 5.4 and W0 = 35 nm as appropriate at the

onset of the conducting regime, we obtain that the e2/h plateau is established at

B � 3.5 T, which is in good agreement with Figure 5.4.

Intermediate magnetic field. At higher fields the crossover from the previous

regime to the high-field adiabatic transmission is realized. The first panel of Figure 5.5

represents the situation in which the transmission is almost completely unpolarized.

Large magnetic field. At very large fields, the onset of the conduction occurs in

the lowest energy band, as displayed in the second panel of Figure 5.5. In fact, the

conductance at the e2/h plateau is almost completely contributed by G+.

This regime is established on a scale of larger values of B, as it can be estimated

by (5.5). Neglecting the small spin-orbit and Zeeman energies, the onset of the

conduction occurs at εF ' ~
2

2mW 2
0

and k2
x + π2

W 2 = π2

W 2
0

so that the condition kx =
√

3π
W

is realized at kx '
√

3π
2W0

'
√

3
2
kF . Therefore the velocity is of the order of vF , larger

than in the previous case around kx ' 0. We obtain:

B � ~
2(
√

3γk3
F vF/L)1/2

gµB

, (5.14)

and B � 8 T with the parameters of Figure 5.5, in good agreement with Figure 5.51.

1Accidentally the agreement is surprisingly accurate.
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5.4 Discussion

The above discussion and numerical results show that the particular nature of the

spin-orbit coupling for two-dimensional heavy holes has clear qualitative consequences

on the polarization properties of the holes transmitted in the point contact. Our

results are in agreement with the experimental evidence available so far from spin-

focusing experiments [4]. We predict that a change in sign in the polarization of the

transmitted holes can be observed in a regime of rather high magnetic fields.

Another interesting problem would be the effect of a magnetic field transverse to

the channel, which was not considered here or in the experiment [4].

We also notice that a detailed theoretical treatment would require a more sophis-

ticated approach that the one considered here to take in account the geometry of

the smooth gating potentials producing the point-contact and the intricacies of the

band-structure cubic symmetry. Regarding this last point, we notice that a different

behavior is expected between wires oriented in the two different crystallographic di-

rections, [11̄0] or [332̄], due to the fact that in the [11̄0] case anticrossing gaps are

opened in the spectrum at zero magnetic field, due to the broken reflection symmetry.

In the same way, it is also interesting that the polarization of the carriers could be in

principle influenced by purely electrical means, by tuning the symmetry of the lateral

confinement by external gates.

Hints of the discussed new experimental features at larger magnetic fields and

different crystal orientations are already observed [49]. However, no systematic study

of all aspects of the polarized transmission is available to date, which is expected to

reveal a rather reach phenomenology.
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6. Exchange energy and generalized spin-orbit coupling

In this Chapter we start the study of the interacting problem. In particular, we con-

sider the model two-dimensional electronic system described by the following hamil-

tonian1:

Ĥn =
∑

i

Ĥ
(i)
0,n +

1

2

∑

i6=j

e2

ε|r̂i − r̂j|
, (6.1)

where the single-particle terms are given in Eq. (3.13), which includes a generalized

spin-orbit coupling. For easier notation we use in the following and ε = 1.

As a preliminary analysis, we consider in this Chapter the effect of the exchange

energy on the paramagnetic phase, for which a mean-field description in terms of

noninteracting single-particle states is appropriate. The general description of the

Hartree-Fock theory and the construction of low-density self-consistent polarized so-

lutions is presented in the following Chapters, where the most interesting case of the

linear Rashba spin-orbit is examined in great detail.

We will show here that the effect of the exchange energy is in most cases to

suppress, rather to enhance, the generalized polarization of the system. This fact

allows to qualitatively understand recent experimental results for polarized states of

two-dimensional holes in a GaAs heterostructures [20].

6.1 Exchange energy

For the standard n = 0 case of Eq. (6.1), the expression for the exchange energy

per particle in a homogeneous electron liquid is well known [1]. In particular, for the

1In this expression standard terms associated with the neutralizing background have been omitted
for simplicity [1].
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two dimensional case, which is of relevance in the present discussion, the formula is

given by (in Rydbergs):

Ex,0(rs, p) = −4
√

2

3π

(1 + p)
3

2 + (1 − p)
3

2

rs
, (6.2)

where p is defined in Eq. (3.20).

It is important to notice that Eq. (6.2) is obtained under the assumption that the

spins are quantized along a common arbitrary quantization axis ŷ. Therefore, when,

as in this particular case, the label ± refers to the orientation ↑↓ of the spin, p assumes

the meaning of a fractional spin polarization. It is easy to see that the exchange energy

(6.2) monotonically attains its maximum magnitude for p = 1, and therefore favors

the polarization of the system. In fact, within the Hartree-Fock approximation, a

transition to a fully spin polarized state occurs for rs = 3π
8(2−

√
2)

' 2.01 [1].

As we will presently show, this scenario changes in interesting ways in the pres-

ence of the spin-orbit interaction. If translational invariance is not broken [21], a

single Slater determinant can be constructed with plane waves states characterized

by generic orientation of the spin quantization axis ŝk and occupation numbers nk±.

The total exchange energy can be written in the following elegant general form [50]:

Ex = − 1

2L2

∑

k,k′;µ,µ′=±
vk−k′

1 + µµ′ ŝk · ŝk′

2
nkµnk′µ′ , (6.3)

which represents a functional of nk± and ŝk. Eq. (6.3) immediately reduces to the

familiar textbook result when ŝk = ŷ. In this case only states with parallel spin

contribute.

Making use of Eq. (3.17) in (6.3) leads to the following result for the exchange

energy per particle (in Rydbergs):

Ex,n(rs, p) = Ex,0(rs, p) + δEx,n(rs, p) , (6.4)

where the correction to Eq. (6.2) can be obtained from the following quadrature:

δEx,n(rs, p) =

√
2

4πrs

∫

√
1+p

√
1−p

κ dκ

∫

√
1+p

√
1−p

κ′ dκ′
∫ 2π

0

1 − cosnθ√
κ2 + κ′2 − 2κκ′ cos θ

dθ .(6.5)
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Figure 6.1. Plot of the exchange energy per particle Ex,n(rs, p) (in Ry
units) as a function of p. Here rs = 1. The different values of n are
noted, and the limiting curve n = ∞ is also displayed (dashed line).

The resulting exchange energy is plotted in Figure 6.1 as a function of p. We

notice that for p = 0, the exchange energy is independent of the spin quantization axis

orientations ŝk. This can be understood by realizing that the corresponding many-

body state can be constructed by repeated application of b†k+b
†
k−, an operator that

creates a spin singlet and is therefore independent of the spin quantization direction.

As a consequence the ŝk dependence of all the physical quantities (e.g. the exchange

and the spin orbit energies) stems only from the existence of regions of momentum

space where nk+ 6= nk−. It is also important to remark that only for n = 0 is the

magnitude of the exchange energy maximum for p = 1. For the other cases the

minimum occurs at p = p∗1 ' 0.915 for n = 1 (see also the first panel of Figure 8.2)

and at p = 0 for n ≥ 2.

For completeness we remark that in the limiting case of very large winding number

n the result can be obtained simply neglecting the cosnθ contribution in Eq. (6.5).

For comparison the corresponding curve is shown as a dashed line in Figure 6.1.
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Notice that in this case the magnitude of the exchange energy is minimum for p = 1,

the value being given by:

lim
n→∞

Ex,n(rs, 1) = − 8

3πrs
. (6.6)

6.2 Interacting generalized polarization

The value pmin of the ground state generalized polarization can be found by min-

imizing the total energy:

En(rs, p) = E (0)
n (rs, p) + Ex,n(rs, p) , (6.7)

where the noninteracting energy E (0)
n (rs, p) is given in (3.22) and the exchange con-

tribution is described in the previous section.

The different behavior of the exchange energy in the various cases leads to dissim-

ilar results. For n = 0, the fact that the minimum of Ex,0 occurs at p = 1 leads to an

enhancement of pmin i.e. to the familiar enhancement of the spin polarization. The

opposite is true for n ≥ 2 since in these cases the minimum of Ex,0 occurs at p = 0.

The n = 1 case is slightly more complex and is treated in detail in Chapter 8. A

similar argument leads one to conclude that the critical value γ̄d for which the upper

spin band empties (at fixed rs) decreases from its non interacting value for n = 0

(g = 1) while it does increase in the other cases.

Studying the limit of small p is of particular interest since it corresponds to a

determination of the generalized susceptibility. In this case a direct inspection of the

integral of Eq. (6.5) leads to the asymptotic formula:

Ex,n(rs, p) ' −8
√

2

3πrs

− Cn

rs

p2 , (6.8)

where we have defined the quantity

Cn =

√
2

π

n
∑

m=0

1

1 − 2m
. (6.9)

The resulting value for pmin is then given by:

pmin ' g

1 − Cnrs

. (6.10)
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Figure 6.2. Plot of the fractional generalized polarization pmin as
function of the parameter γ̄ for different values of rs. Here n = 2.
The increase of the depopulation value γ̄d with rs is manifest.

Eq. (6.10) simply expresses the fact that in this limit the effect of the interactions

is to renormalize the non interacting result p
(0)
min ' g via the denominator (1−Cnrs)

−1.

Interestingly the latter corresponds to an enhancement only for n = 0.

In particular for n = 0 we recover the well known Hartree-Fock differential in-

stability occurring at rs = π√
2

[1]. On the other hand, for n = 1 we have C1 = 0.

In this case the whole renormalization effect is associated with higher order terms

and it will be obtained explicitly in a later Chapter. Finally for n ≥ 2, Cn is (ever

increasingly) negative leading to a perhaps iconoclastic exchange driven quenching of

the generalized polarization.

Expression (6.10) is valid in the limit of γ̄ → 0 or, for n > 1, when rs is large. The

generic case when pmin is not small must be obtained numerically. As an example we

show in Figure 6.2 the value of pmin as function of the dimensionless coupling strength

γ̄ for different values of the density parameter rs in the case of n = 2. We notice

that for low densities the depopulation value γ̄d, for which pmin = 1, is considerably

increased by exchange. This is in stark contrast with the familiar n = 0 case. In

particular, for the n = 2 case of Figure 6.2 we have:

γ̄d =
1

2
+

(

1

12
− 1

9π

)

rs , (6.11)
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where the second term represents the increase of the depopulation field due to ex-

change effects. In this particular case the correction is linear in the density parameter

rs.

6.3 Application to spin polarized hole systems

Spin polarization experiments have recently been performed on GaAs two dimen-

sional hole systems with growth direction along [113] and [100] [20]. In these studies,

the magnitude of the in-plane depopulation field Bd, when only one band is occupied,

is surmised from the measured longitudinal magneto-resistance. While a small sup-

pression of Bd with respect to its non interacting value B0
d is observed in the [113]

case, basically no suppression is observed for the [100] growth direction. This must

be contrasted with the fact that, as discussed in Ref. [20], in the absence of spin-orbit

interaction and at the densities under consideration, the expected ratio for electrons

is of order B0
d/Bd ∼ 10.

The experiments of Ref. [20] are carried out at somewhat low densities (rs '
10 − 15) a regime in which a simple Hartree-Fock treatment, as well as somewhat

more sophisticated analytical treatments designed to approximately include correla-

tion effects, generally fail to provide reliable quantitative results. On the other hand,

Monte Carlo analysis of the system being to date non existent, it is reasonable to

expect that many of the qualitative features established by a study of the exchange

energy will prove sufficiently robust to justify such a preliminary discussion.

In these quantum wells the introduction of a magnetic field induces in the effective

hamiltonian of two-dimensional holes the spin dependent terms given in Eqs. (3.10),

(3.11), and (3.12) of Section 3.3. All these terms can be reduced to some of the

generic forms contemplated by our model hamiltonian (3.13). The corresponding

coupling strength γ for each of these terms can then be extracted, as for instance

explicitly done in (3.14), (3.15), and (3.16). One can then make use of the definitions
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(3.23) and (3.24), alongside suitable numerical parameters, to determine the relevant

dimensionless coupling strength.

For our numerical estimates we use values appropriate for the case of Ref. [20].

In particular: W = 200 Å for the width of the quantum well, m ' 0.2m0 for the

effective mass, ε = 12.4 for the background dielectric constant, and n = 3 1010 cm−2

for the hole density (corresponding to rs ' 10).

We first consider the [113] growth direction. In this case the various physical

properties are anisotropic in the plane, the principal directions being given by x ≡
[11̄0] and y ≡ [332̄]. For the density under consideration the depopulation field is

approximately given by Bd ' 10 T along x and Bd ' 5 T along y. This gives the

following results for various dimensionless couplings:

For Eq. (3.10) we have

|gx
21| = 0.19 and |gy

21| = 0.09 ; (6.12)

For Eq. (3.11):

|gx
03| = 0.23 and |gy

03| = 0.03 ; (6.13)

Finally for Eq. (3.12):

|gx
01| = 0.14 and |gy

01| = 0.16 . (6.14)

We recall here that (3.10) is a term of type n = 2, while (3.11) and (3.12) are both

of type n = 0. We notice that the quadratic spin-orbit, although in general smaller,

has a strength which is comparable to that of the terms of the Zeeman type.

For the [100] growth direction, the Zeeman term (3.12) is vanishing, and the

depopulation magnetic field is approximately Bd ' 10 T. In this case, we obtain that

the quadratic spin orbit and the Zeeman term cubic in B have comparable strength:

|g03| ' |g21| ' 0.2.

These estimates suggest that the apparent quenching of the many-body enhance-

ment of the spin susceptibility is due to the presence of a large n = 2 spin-orbit

coupling. Moreover the presence of a sizable n = 3 Rashba spin-orbit term would
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also result in a reduction of the generalized polarization. This is consistent with the

experimental finding that the suppression is most noticeable for [100] quantum wells,

for which the quadratic spin-orbit is comparatively stronger.

From our theory one can moreover surmise that a larger many-body enhancement

of the susceptibility is expected in the limit of very low densities when, due to the

∝ k2 and ∝ k3 dependence, the n = 2 and n = 3 terms become less relevant. The

enhancement should be also more noticeable in the limit of a very narrow well. In the

particular case of the [113] growth direction, this happens because the linear Zeeman

term (3.12) can in principle become dominant. For the [100] growth direction on the

other hand, the term (3.12) vanishes while the cubic Zeeman term (3.11) is largest.

This in spite of the ∼W 4 proportionality of the coupling strength. The reason is that

the depopulation field is large in a very narrow well. This obtains since Bd ∼ 1/W
4

3

while the magnitude of the quadratic spin-orbit (3.10) behaves like ∼ W
2

3 thereby

losing its relevance. It should be kept in mind that, being based on a perturbative

treatment and not taking in account orbital effects, these conclusions should be taken

at best as qualitative2.

6.4 Discussion

The main conclusion of our analysis is that in the presence of quadratic and cubic

spin-orbit interactions the magnitude of the exchange energy decreases with increasing

generalized polarization. This results in a quenched value of p and in a corresponding

increase of the value of the depopulation coupling γ̄d.

Being based on a study of the exchange energy only, our theory can be expected to

be strictly valid in the high density limit. The reason is that it is in this regime that

the exchange energy represents the first interaction correction to the non interacting

result, correlation effects becoming comparatively smaller as rs decreases. On the

other hand, at not too low densities, the physics of the exchange is still expected to

2A potentially relevant phenomenon we have neglected is that of the effective mass enhancement
associated with the magnetic field [20].
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give qualitatively reasonable results. This conclusion appears to be corroborated by

the apparent observed reduction of the many-body enhancement of the spin suscepti-

bility in dilute hole systems in which, beside the familiar Zeeman term, the magnetic

field also induces large quadratic spin-orbit interactions.

It will be also clear from the discussion in the following Chapters that, when

the spin-orbit coupling terms described by Eq. (3.13) are present in isolation, the

many-body states, as parameterized by rs and p, are also self-consistent solutions of

the Hartree-Fock equations. On the other hand this is not the case when multiple

concomitant terms are present. In such situations the circular symmetry is broken,

and the interacting problem is considerably more complicated. Such situations must

be treated case by case. In particular the spin quantization directions ŝk must be

determined self-consistently3. As we will see, this problem has nontrivial solutions

in the case of broken symmetry states, like for instance in the case of ferromagnetic

phases [50].

As a final remark we stress that since the generalized fractional polarization does

not correspond directly to an actual magnetization, strictly speaking, one cannot

draw direct conclusions about the enhancement of the spin-spin response from mea-

surements of the depopulation field Bd. We will show that the spin susceptibility

is enhanced by the exchange, in a way similar to the usual case without spin-orbit.

The bare spin-spin susceptibility involves the response to a pure n = 0 perturbation

which, from an experimental point of view, is not straightforward to realize for the

case of hole systems of Ref. [20]. In fact, as we have argued, the external magnetic

field induces also a change of the n = 2 spin-orbit coupling.

In the same way, the quenching of the generalized polarization do not correspond

to a lower critical density for the transition to a ferromagnetic state. Interestingly,

we will obtain that the Bloch transition occurs at densities that are in general larger

than in the absence of spin-orbit interaction.

3This also happens in the presence of terms equivalent to the same n by different spin rotations, as
for example in the simultaneous presence of Rashba and Dresselhaus spin-orbit.
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7. Hartree-Fock theory with Rashba spin-orbit coupling

We start discussing in this Chapter the Hartree-Fock approximation in the presence

of spin-orbit coupling. For definiteness, we consider the particular case of the linear

Rashba spin-orbit, which turns out to be the case with most interesting features. The

particular interacting hamiltonian Ĥ under consideration is given by Eq. (6.1), in the

particular case n = 1.

We devote this Chapter to a general discussion of the HF approximation in pres-

ence of Rashba spin-orbit, and present explicit results in the following Chapters. The

treatment can be easily generalized to other types of spin-orbit, and correlation ef-

fects that go beyond the mean field treatment can be approximately included in the

high-density limit.

7.1 Hartree-Fock energy

We start from the second quantization form of the hamiltonian Ĥ expressed in

the standard plane waves basis. The spin quantization axis is chosen along the z-axis,

which by definition is perpendicular to the plane of the motion:

Ĥ =
∑

k,σ

~
2k2

2m
â†kσâkσ +

∑

k

α~k (ie−iφk â†k↑âk↓ + h.c.) + (7.1)

+
1

2L2

∑

k,k′,q 6=0,σ,σ′

vq â
†
k+qσâ

†
k′−qσ′ âk′ σ′ âkσ ,

where vq = 2πe2

|q| .
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Limiting our study to the case of homogeneous solutions, an interesting class

of mean field states is represented by the Slater determinants formed occupying the

single particle states obtained as the result of the following Bogolubov transformation:




b̂†k+

b̂†k−



 =





cos βk

2
eiγk sin βk

2

e−iγk sin βk

2
− cos βk

2









â†k↑

â†k↓



 . (7.2)

For a given k, this transformation simply affects a rotation of the spin quantization

axis from ẑ to an arbitrary orientation ŝk, as discussed in the previous Chapters.

The geometry of this rotation as well as the definition of the corresponding polar

and azimuthal angles βk and γk are still provided in Figure 2.5. This choice of the

single particle states is the most general if one assumes that translational invariance

is preserved, while the instability to charge- and spin-density-wave type distortions

has in general to be considered [21].

At this point we evaluate the expectation value of the exact hamiltonian Ĥ over

any determinantal state obtained filling states of the type (7.2). The total energy is

given by the following expression:

EHF [nk±, ŝk] =
∑

k, µ

~
2k2

2m
nkµ − ~α

∑

k, µ

µ k φ̂k · ŝk nkµ (7.3)

− 1

2L2

∑

k,k′, µ,µ′

vk−k′
1 + µµ′ ŝk · ŝk′

2
nkµnk′µ′ ,

where the indices µ and µ′ are summed over the values ±. The corresponding particle

energies can be calculated from the expression:

εµ(k) =
~k2

2m
− µ~αk φ̂k · ŝk −

1

2L2

∑

k′,µ′

vk−k′(1 + µµ′ ŝk · ŝk′)nk′µ′ , (7.4)

which it is immediate to obtain from (7.3).

Clearly EHF represents the (total) Hartree-Fock energy of this particular class of

states and is a functional of the occupation numbers nk± and of the orientation of

the (wave vector space) local spin quantization axis unit vector ŝk. It is still to be

assessed which of these states correspond to actual solutions of the HF problem [1],

which we discuss next.
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7.2 Mean field diagonalization

The HF equations are obtained by means of a standard Wick theorem based decou-

pling and diagonalization of the Hamiltonian Ĥ , expressed in terms of the operators

b̂k±. The kinetic and Rashba terms retain their quadratic form and in particular the

kinetic energy remains diagonal. The electron-electron interaction can be reduced to

a quadratic form with the use of the following approximation of the quartic products

of b̂k± operators:

b†k+q ν b
†
k′−q ν′ bk′µ′ bk dµ ' 〈b†k+q ν bk′µ′〉 〈b†k′−q ν′ bkµ〉 + (7.5)

−〈b†k+q ν bk′µ′〉 b†k′−q ν bkµ − 〈b†k′−q ν′ bk µ〉 b†k+q ν bk′µ′ ,

where the averages are taken over the trial Slater determinant constructed with the

b̂†k± operators, and are directly expressed in terms of the occupation numbers of the

new single particle states:

〈b†kµ bk′µ′〉 = nkµδkk′δµµ′ . (7.6)

The final result is a quadratic hamiltonian that is in general non diagonal in

the chirality indexes. The mean field solutions are obtained by requiring that the

coefficient of the b†k+ bk− term is vanishing:

−i ~α k e−iφk(cos2 βk

2
+ e2i(φk−γk) sin2 βk

2
) − e−iγk

L2

∑

k′

vk′−k

(nk′+ − nk′−)

2
×

×
[

cosβk′ sin βk − ei(γk−γ
k′ ) sin βk′ cos2 βk

2
+ e−i(γk−γ

k′ ) sin βk′ sin2 βk

2

]

= 0 ,

(7.7)

where the first contribution is from the Rashba spin-orbit and the second from the

electron-electron interaction. By separating the real and imaginary part of the above

equation, we are lead to the following conditions:

~α k cos (φk − γk) =
1

2L2

∑

k′

vk−k′(nk′+ − nk′−) sin (γk − γk′) sin βk′ , (7.8)
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tan βk =

1
2L2

∑

k′ vk−k′(nk′+ − nk′−) cos (γk − γk′) sin βk′ + ~α k sin (γk − φk)

1
2L2

∑

k′ vk−k′(nk′+ − nk′−) cosβk′
,

(7.9)

which have a simple geometrical interpretation. If we define the following effective

magnetic field:

gµB

2
Beff(k) = −~α k φ̂k −

1

4L2

∑

k′

(nk′+ − nk′−) vk−k′ ŝk′ , (7.10)

Eq. (7.8) requires Beff(k) to be in the plane of ŝk and ẑ and, given this condition,

(7.9) requires Beff(k) and ŝk to be parallel.

This result was obtained with a formal procedure but could have been surmised

directly from the form of the energy functional (7.3), which has to be minimum for

the HF ground state. If we fix the occupation numbers nk±, (7.3) only depends on the

orientations ŝk and can be interpreted as the energy of a system of magnetic dipoles,

placed at fixed positions in k space and in presence of an external azimuthal magnetic

field arising from the Rashba spin-orbit. The exchange energy provides a dipole-dipole

interaction which has a 1/|k| dependence. In equilibrium, the direction ŝk of each

magnetic dipole is parallel to Beff , which is the sum of the external Rashba field and

the exchange field produced by the self-consistent distribution of all the remaining

dipoles.

7.3 Energy minimization for B 6= 0

We derive here the HF equations by direct minimization of the energy (7.3).

This is an equivalent procedure to the formal mean field method we discussed in

the previous section, the only difference being that we consider here the slightly

more general situation in which an external magnetic field is present. This is treated

by adding a perturbing Zeeman term to the single-particle hamiltonian (2.15) while
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smaller orbital effects are neglected. The Zeeman term can be immediately included

in the energy functional (7.3) by adding the following contribution:

EZ [nk±, ŝk] =
gµB

2
B ·
∑

k, µ

µ ŝknk± . (7.11)

We use in this section dimensionless units, and in particular we rescale the wavevectors

as κ = k/kF where kF =
√

2πn. The azimuthal angle of κ is denoted by φ, and the

spin quantization axis is expressed as a function of dimensionless momenta via ŝ(y, φ),

determined by ŝ(k/kF , φ) = ŝk. The magnetic field is also rescaled as follows:

B̄ =
gµB

e2kF
B . (7.12)

We consider explicitly the particular case in which two bands are occupied. We

assume that the occupation of each band is a simply connected region around the

origin, and can be specified by the radial distances ρ±(φ) which define the two Fermi

surfaces. If only one band is occupied, such that the occupied states have momenta

between the two Fermi surfaces as determined by ρin(φ) and ρout(φ), the treatment

is very similar. The expressions only differ for the substitution ρ± → ρout(in) and for

a few other modifications that we are going to discuss when needed.

The total energy per particle in Ry units is expressed as the following sum:

EHF [ρ±, ŝ] =
EHF [nk±, ŝk]

N Ry
= EZ + EK + Eso + Ex , (7.13)

where each of the four terms is a functional of ρ±(φ) and ŝ(κ, φ).

The first term refers to the Zeeman energy:

EZ =

√
2

rs
B̄ ·
∫ 2π

0

dφ

2π

∫ ρ+(φ)

ρ−(φ)

ŝ(κ, φ) κdκ , (7.14)

and the second to the kinetic energy:

EK =
2

r2
s

∫ 2π

0

dφ

2π

(

∫ ρ+(φ)

0

κ3dκ+

∫ ρ−(φ)

0

κ3dκ

)

, (7.15)

where in the case of a single band the second integral in parenthesis has to be multi-

plied by −1. The third contribution refers to the Rashba spin-orbit:

Eso = −2
√

2 ᾱ

rs

∫ 2π

0

dφ

2π

∫ ρ+(φ)

ρ−(φ)

φ̂ · ŝ(κ, φ) κ2dκ , (7.16)
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and the last to the exchange energy:

Ex = −
√

2

2rs

[

∫ 2π

0

dφ

2π

∫ ρ+(φ)

ρ−(φ)

κdκ

∫ 2π

0

dφ′

2π

∫ ρ+(φ′)

ρ−(φ′)

1 + ŝ(κ, φ) · ŝ(κ′, φ′)
√

κ2 + κ′2 − 2κκ′ cos (φ− φ′)
κ′dκ′

+ 4

∫ 2π

0

dφ

2π

∫ ρ+(φ)

0

κdκ

∫ 2π

0

dφ′

2π

∫ ρ−(φ′)

0

κ′dκ′
√

κ2 + κ′2 − 2κκ′ cos (φ− φ′)

]

,

(7.17)

where in the case of a single band the contribution in the second line is omitted.

In the minimization of EHF one has to enforce the constraints that the ŝ(κ, φ) unit

vectors are normalized:

ŝ(κ, φ) · ŝ(κ, φ) = 1 , (7.18)

and that the particle number is conserved:
∫ 2π

0

ρ2
+(φ) + ρ2

−(φ)

2

dφ

2π
= 1 . (7.19)

In the case of a single band this second constraint involves the difference ρ2
out(φ) −

ρ2
in(φ) instead.

Finally, the quantity that has to be minimized is the following functional, where

the appropriate Lagrange multipliers λ1 and λ2(κ, φ) have been introduced:

FHF [ρ±, ŝ] = EHF [ρ±, ŝ] − λ1

∫ 2π

0

ρ2
+(φ) + s−ρ

2
−(φ)

2

dφ

2π

−
∫ 2π

0

dφ

2π

∫ +∞

0

λ2(κ, φ) ŝ(κ, φ) · ŝ(κ, φ) κdκ . (7.20)

The minimization can be achieved as follows. The first condition δFHF

δŝ(κ,φ)
= 0 leads to

the equation:

ŝ(κ, φ) =
1√

2 rsλ2(κ, φ)

[

B̄ − 2ᾱ κ φ̂ (7.21)

−
∫ 2π

0

dφ′

2π

∫ ρ+(φ′)

ρ−(φ′)

ŝ(κ′, φ′)
√

κ2 + κ′2 − 2κκ′ cos (φ− φ′)
κ′dκ′

]

,

which remains unchanged in the case of a singly occupied band. The second functional

derivative, δFHF

δρ±(φ)
= 0, gives the following two equations:

λ1 =
2ρ2

±(φ)

r2
s

±
√

2

rs

[

B̄ · ŝ(ρ±(φ), φ) − 2ᾱ φ̂ · ŝ(ρ±(φ), φ) ρ±(φ) (7.22)
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−
∫ 2π

0

dφ′

2π

∫ ρ+(φ′)

ρ−(φ′)

1 + ŝ(ρ±(φ), φ) · ŝ(κ′, φ′)
√

ρ2
±(φ) + κ′2 − 2ρ±(φ)κ′ cos (φ− φ′)

κ′dκ′
]

−2
√

2

rs

∫ 2π

0

dφ′

2π

∫ ρ∓(φ′)

0

κ′dκ′
√

ρ2
±(φ) + κ′2 − 2ρ±(φ)κ′ cos (φ− φ′)

.

In the case of a single band the latter has to be modified as follows: the ± sign in

the first line becomes +, and the term in the last line must be omitted.

Eq. (7.21) corresponds to the HF equations (7.8) and (7.9) derived in the previous

section. In fact it can be rewritten as:

ŝ(κ, φ) =
B̄ + B̄eff√
2 rsλ2(κ, φ)

, (7.23)

expressing the proportionality of the spin quantization direction ŝ and the total self-

consistent magnetic field. B̄eff = gµB

e2kF
Beff is obtained by rescaling Eq. (7.10) to

dimensionless form.

The second condition (7.22) was not obtained in the previous section, and corre-

sponds to the fact that many solutions of the HF equation exist, that in general don’t

correspond to minima of the total energy. The simplest example is provided by the

usual HF approximation for the electron liquid in absence of spin-orbit: in this case

every occupation of the plane wave states provides a solution of the HF equations.

The condition (7.22) can be rewritten:

λ1 =
ε±(kFρ±(φ))

Ry
, (7.24)

where ε±(k) are the single particle energies defined by Eq. (7.4). Therefore the con-

dition (7.24) requires the chemical potential to be constant at the two Fermi surfaces

defined by ρ±(φ), and equal between the two bands.
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8. Isotropic Hartree-Fock solutions

We begin in this Chapter the study of the mean field phase diagram of the electron

liquid with linear Rashba spin-orbit, by establishing the different types of solutions

for the HF problem in absence of magnetic field. The analysis is greatly simplified

by the assumption of isotropy in the plane of motion. The concept of generalized

chirality χ is in this case a useful tool to parameterize the occupation of a large class

of Slater determinants. At a given occupation, the HF equations allow to determine

the self consistent distribution of the spin quantization axis ŝk and, by making use

of the circular symmetry, they can reduced to a unidimensional integral equation for

the azimuthal angle βk. The knowledge of χ and βk provides a compact, complete

description of the solution, and allows one to calculate every other desired property

of the system.

8.1 Isotropic Hartree-Fock equation

The most general isotropic choice for the angles βk and γk is expressed as follows:

βk = β̄(κ) , (8.1)

γk = φk + δγ̄(κ) , (8.2)

where κ = k/kF is the rescaled wavevector. While β̄(κ) is a central quantity, we show

in Appendix B that the energy is minimized by:

δγ̄(κ) =
π

2
. (8.3)

.



82

We can now specify the HF equations (7.8) and (7.9) to the case under consid-

eration. Eq. (7.8) is automatically satisfied, while Eq. (7.9) can be simplified to the

following form, written with dimensionless quantities:

tan β̄(κ) =

∫
√

1+χ√
|1−χ| dκ

′ ∫ 2π

0
κ′ sin β̄(κ′) cos θ√
κ′2+κ2−2κκ′ cos θ

dθ + 4πᾱ κ

∫
√

1+χ√
|1−χ| dκ

′
∫ 2π

0
κ′ cos β̄(κ′)√

κ′2+κ2−2κκ′ cos θ
dθ

. (8.4)

A remarkable property of this integral equation is that any explicit dependence from

the density parameter rs is absent. Therefore at a fixed spin-orbit coupling ᾱ and

chirality χ, a solution βk can be obtained at every density by simple rescaling of k

with the Fermi wavevector.

Another interesting property is given by the following powerful symmetry:

β̄1/χ(κ) = β̄χ(
√
χκ) , (8.5)

which relates solutions with reciprocal values of the generalized chirality.

8.2 Energy and polarization

We give here explicit formulas to calculate the total energy of a HF solution. The

general form is:

EHF [χ; β̄] = EK(χ) + Eso[χ; β̄] + Ex[χ; β̄] , (8.6)

where we the appropriate dependence on ᾱ and rs for the different terms is understood.

The kinetic energy term is the same of the noninteracting case:

EK(χ) =







1+χ2

r2
s

for 0 ≤ χ < 1

2χ
r2
s

for χ ≥ 1
. (8.7)

The Rashba term can be obtained by:

Eso[χ; β̄] = −ᾱ 2
√

2

rs

∫
√

1+χ

√
|1−χ|

κ2 sin β̄(κ) dκ . (8.8)

The exchange energy can be calculated from:

Ex[χ; β̄] = E (0)
x (χ) + δEx[χ; β̄] , (8.9)
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where E (0)
x (χ) is the exchange energy for a given occupation (as determined by χ)

in the case in which all the spin quantization axis coincide, and it is given by the

following expression:

E (0)
x (χ) = −4

√
2

πrs

|1 + χ|3/2 + |1 − χ|3/2

3
(8.10)

+
8
√

2

3πrs

√

χ + 1

[

χE

(

χ− 1

χ+ 1

)

−K

(

χ− 1

χ+ 1

)]

θ(χ− 1) ,

where the elliptic functions are in the notation of Abramowitz-Stegun [51]. The

correction δEx[χ; β̄] reads as follows:

δEx[χ; β̄] =
1

2
√

2πrs

∫
√

1+χ

√
|1−χ|

κ′ dκ′
∫

√
1+χ

√
|1−χ|

κ dκ

∫ 2π

0

dθ (8.11)

×1 − cos β̄(κ′) cos β̄(κ) − sin β̄(κ′) sin β̄(κ) cos θ√
κ′2 + κ2 − 2κ′κ cos θ

.

Finally, the fractional spin polarization is given by:

p [χ; β̄] =
〈Ŝz〉
N

=

∫
√

1+χ

√
|1−χ|

κ cos β̄(κ) dκ , (8.12)

where Ŝz =
∑

i σ̂
(i)
z .

The symmetry of the solutions corresponding to reciprocal chiralities (8.5) leads

to corresponding relations for the above quantities:

Eso[χ; β̄χ]=χ3/2Eso[1/χ; β̄1/χ] , (8.13)

δEx[χ; β̄χ]=χ3/2δEx[1/χ; β̄1/χ] , (8.14)

p [χ; β̄χ]=χ p [1/χ; β̄1/χ] . (8.15)

8.3 Paramagnetic solutions

Eq. (8.4) always admits the solution β̄(κ) = π
2
, which correspond to a Slater

determinant constructed with the noninteracting single particle states (2.17). This

type of solutions have no net polarization, the relative momentum space spin texture

being exemplified in Figure 8.1. The different contributions to the energy can be easily
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Figure 8.1. Spin texture in momentum space for the unpolarized
states at ᾱ = 0.1. Left χ = 0.4 and right χ = 2.5.

calculated by making use of the formulas of the previous section, and in particular

the noninteracting energy is given by Eq. (2.23).

For the exchange energy we could not obtain a closed form, and we give in Figure

8.2 the plot of the numerical result. It displays an interesting minimum at χ ' 0.9147.

At large χ the exchange energy is asymptotically vanishing, and the leading term is:

Ex[χ;
π

2
] ' −1 + 6 log 2 + 2 logχ

πrs

√
2χ

. (8.16)

Once the total energy is obtained as function of χ, minimization at fixed values of

ᾱ and rs gives the paramagnetic ground state in the HF approximation, which is very

similar to the noninteracting ground state, the only difference being the occupation,

which results in a value of the generalized chirality different from χ
(0)
min, as obtained

in Eq. (2.24). In Figure 8.2 we compare the HF value χmin of the paramagnetic

ground states to the noninteracting result χ
(0)
min. The effect of the interactions is

easily understood from the behavior of the function Ex[χ; π
2
]: when it is a decreasing

function of χ, it results in a value of χmin larger than the noninteracting value. The

opposite occurs when Ex[χ; π
2
] is an increasing function, while at the stationary point

χ ' 0.9147 the exchange has no effect.

The correction to the noninteracting chirality is also very small in the limit of

small rs, due to the fact that Ex[χ; π
2
] vanishes to quadratic order at χ → 0. The

high-density limit will be examined in detail in Chapter 12.
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2
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can be compared to the noninteracting case (dashed).
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Figure 8.3. Spin texture in momentum space for the polarized states
at ᾱ = 0.1. Left χ = 0.4, right χ = 2.5.

A useful exact result is the derivative of the exchange energy in χ = 1, which is

obtained to be π−1−2K
πrs

, where K =
∑∞

i=0
(−1)i

(2i+1)2
' 0.9160 is the Catalan constant.

This allows to find the value ᾱd(rs) at which chi = 1:

ᾱd(rs) =
1

rs
+
π − 1 − 2K

2π
, (8.17)

where the second term is the (positive) correction to the noninteracting result.

8.4 Isotropic ferromagnetic solutions

Eq. (8.4) also admits nontrivial solutions with β̄(κ) 6= 0 and with a net polarization

along the z-axis. Examples of the momentum space spin texture arising in these states

is displayed in Figure 8.3. The computation of these solutions can be practically

achieved by iteration of (8.4) from an initial guess. Figure 8.4 displays several results

for β̄(κ) at different values of χ. (8.4) needs only to be solved explicitly at, say, χ < 1

by virtue of Eq. (8.5).

Once β̄(κ) is obtained at different values of χ, this provides the total energy and

polarization as a function of χ. We show some results for the Rashba and exchange

contributions to the energy in Figure 8.5, while results for the fractional polarization

are given in Figure 8.6.
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A first remark can be made about the existence of polarized solutions determined

by Eq. (8.4), which only exist in a finite interval of χ around the χ = 1 value. Because

of (8.5) the interval is necessarily of the form [χ(ᾱ), 1/χ(ᾱ)]. This interesting result

is examined in more detail in Appendix C and the final result for the allowed region

is plotted in Figure 8.7.

We also notice that the all the contributions to the energy are singular at χ = 1,

and in particular the exchange energy Ex[χ; β̄] displays a marked cusp minimum. In

fact, minimization of the total energy as function of χ at fixed values of ᾱ and rs gives

that the polarized state with lowest energy has occupation χmin = 1. An illustration

of such state with minimum energy and maximum polarization is provided in Figure

8.7. While for any value of the chirality χ 6= 1 a polarized solution only exists below

a critical value of ᾱ, the χ = 1 solutions may exist for every ᾱ, even if we don’t have

a rigorous proof of this fact.

A last remark about the fractional polarization is that it is always smaller than

one, even for the maximally polarized state that occurs at χ = 1. In fact, since in

general β̄ 6= 0, the fractional spin polarization does not coincide with the fraction of

electrons with unpaired spin, as it is the case when spin-orbit is absent. Eventually,

the polarization is vanishingly small at large values of ᾱ. We also notice that the

fractional polarization of the χ = 1 state is independent of rs (at a fixed value of ᾱ)

due to the fact that the solutions of (8.4) are only determined by χ and ᾱ.

8.5 Relative phase diagram

The relative phase diagram including the isotropic homogeneous HF solutions of

the previous Sections is obtained by minimization of the total energy. This was al-

ready performed separately for the two classes of solutions, and in particular it was

obtained that the ferromagnetic state has occupation determined by χ = 1, which

corresponds to maximum polarization. In Figure 8.8 the total energy and the corre-

sponding value of χmin are plotted against rs, accounting for both paramagnetic and
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unpolarized ground state; dashed curve: maximally polarized (χ = 1)
ground state; dotted curves: corresponding results for the familiar
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ferromagnetic HF solutions. The ensuing scenario is as follows: the gas is unpolarized

both at reasonably low and at high values of the density while a spin polarized state

exists in a finite range of rs. While the high density transition is the analog of the

Bloch transition that occurs in absence of spin-orbit [1], the low density transition

has no analog in absence of spin-orbit interaction. At large spin-orbit the polarized

region is of difficult numerical evaluation but necessarily shrinks to zero, following

the curve (8.17) at which the paramagnetic state has χ = 1 occupation. The appear-

ance of the ferromagnetic region can be attributed to the fact that, in presence of a

finite polarization along the z-axis, the effect of the exchange energy is to remove the

degeneracy of the single particle bands at k = 0. Therefore, at the occupation χ = 1,

the formation of the gap contributes to the decrease of the total energy, a mechanism

similar in spirit to that at work in the Perleis instability.
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9. Spin susceptibility of paramagnetic states

We consider in this chapter the effect of a perturbing magnetic field on the param-

agnetic solutions of the previous Chapter. Small orbital effects are neglected, and

the Zeeman term contributing to the single-particle hamiltonian is given in (2.25).

Rather than deriving the spin response by means of standard linear response theory

we find in the present context more efficient to obtain the spin susceptibility from the

relation

χS =
1

L2
lim
B→0

M

B
, (9.1)

where the magnetization M is determined in terms of the suitable fractional spin

polarization p as follows

M = − µBg

2
Np . (9.2)

p is defined in terms of the expectation value of the total spin operator Ŝy(z) =
∑

j σ̂y(z),j :

p‖(⊥) =
〈Ŝy(z)〉
N

. (9.3)

The HF ground state in presence of a small magnetic field can be obtained solv-

ing (7.21) and (7.22) to linear order in the magnetic field, and the corresponding

magnetization can be calculated.

Within linear response the wave vector and frequency dependent spin susceptibil-

ity of the system will be in general represented by a function χS(ᾱ, rs, q, ω) of the di-

mensionless spin-orbit coupling ᾱ and the density parameter rs. Given the anisotropy

of the system, the spin susceptibility will also depend on the orientation of the field

relative to the plane of the electron motion. For this reason we will make use of the

notation ‖ and ⊥ to distinguish between the in plane magnetic field (B = Bŷ) and

the transverse magnetic field (B = Bẑ) cases. While in the fully interacting case the

calculation of the full q and ω dependence of χ
‖(⊥)
S (ᾱ, rs, q, ω) presents a formidable
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problem, it is quite useful to at least determine its small q and ω limiting behavior.

The latter is non trivial for, as it is common for response functions in general, the

q → 0 and ω → 0 limits are here non commuting. Accordingly, depending on the

order with which these two limits are taken, one can define two distinct physical

quantities, which we discuss in more detail in the next section and obtain explicitly

in the remaining of the Chapter.

9.1 Isothermal and adiabatic susceptibilities

We define the isothermal spin susceptibilities:

χ
‖(⊥)
S (ᾱ, rs) = lim

q→0
χ
‖(⊥)
S (ᾱ, rs, q, 0) , (9.4)

and the adiabatic spin susceptibilities:

χ̃
‖(⊥)
S (ᾱ, rs) = lim

ω→0
χ
‖(⊥)
S (ᾱ, rs, 0, ω) . (9.5)

The quantity with more direct physical meaning is the isothermal susceptibility,

which is directly related to the static magnetization of the gas when a uniform mag-

netic field is applied. The more obscure adiabatic susceptibility corresponds to the

response to an oscillating uniform magnetic field, assuming that the time for the sys-

tem to reach thermodynamic equilibrium remains much longer than the inverse of

the frequency ω, as it is made to vanish. Nevertheless the q = 0 in plane susceptibil-

ity χ
‖
S(ω) (and therefore its adiabatic limit χ̃

‖
S) is directly related to other response

functions of different kind which we discuss in the following.

The first example is the so called spin-Hall current conductivity σsH , which is

defined as follows [52]:

σsH = lim
E→0

〈Ĵz
x〉
E

, (9.6)

where E is the magnitude of an electric field ~E = Eŷ applied along the y axis, and

the operator Ĵz
x is defined as Ĵz

x = ~

4L2

∑

i{v̂x,i, σ̂z,i}. This is related to the spin-spin

response through [53]:

σsH(ω) = − e ~
2

m(gµB)2
χ
‖
S(ω) . (9.7)
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For non interacting electrons we have, according to (2.30), χ̃
‖
S = χP/2 which in turn

gives the non interacting value of the spin-Hall conductance1:

σ
(0)
sH = − e

8π
. (9.8)

Another example is provided by the following spin-current response functions σSx

and σSy, which we define as:

σSx(y) = lim
B→0

〈Ĵx(y)〉
B

, (9.9)

where B is the magnitude of a magnetic field ~B = Bŷ applied along the y-axis, and

the operator Ĵx(y) is the charge current density Ĵx(y) = − e
L2

∑

i v̂x(y),i. With the same

method of reference [53] it is easy to obtain:

σSx(ω) = −α 2e

gµB

χ
‖
S(ω) . (9.10)

In the case of pure Rashba spin-orbit, σSy = 0. The same argument in the presence

of a Dresselhaus spin-orbit β(σ̂xp̂x − σ̂yp̂y) gives:

σSy(ω) = −β 2e

gµB
χ
‖
S(ω) , (9.11)

which leads to a practical way to obtain the ratio β/α from the angle between the

magnetic field and the charge current [54].

We notice that the above relations are obtained in the presence of electron-electron

interactions, and since for in plane magnetic field orbital effects can be neglected, they

can be considered essentially exact results.

Finally, we recall the standard HF results when the spin-orbit coupling is absent.

In this case, the response is isotropic and there is no need to specify the direction of

the external magnetic field. The isothermal spin susceptibility is:

χ
‖(⊥)
S (0, rs) =

χP

1 −
√

2rs

π

, (9.12)

while the adiabatic spin response vanishes χ̃
‖(⊥)
S (0, rs) = 0 because of the conservation

of the total spin.

1Notice that the correct sign differs from that of reference [52].
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Figure 9.1. Left: plot of the isothermal transverse susceptibility, as
function of the spin-orbit coupling parameter ᾱ, at different values of
rs. Right: plot of the isothermal transverse susceptibility, as function
of the density parameter rs, at different values of ᾱ. The dashed line
is the ᾱ = 0 result of Eq. (9.12).

9.2 Isothermal transverse susceptibility

We consider the perturbation of the paramagnetic HF solution by an external

magnetic field B = Bẑ. We define a tilting angle δβ̄(κ) of the directions ŝk from the

x-y plane of motion as follows:

βk =
π

2
+ δβ̄(k/kF ) . (9.13)

For this transverse case the tilting of the spin is the only effect, and no change in the

population of the bands occurs to first order in B. This latter fact can be formally

proved by noticing that to first order in B, the perturbing term in (7.22) is vanishing.

The equation for δβ̄(κ) can be obtained by multiplying (7.21) by the unit vector ẑ

and retaining the terms to first order in B. This gives:

δβ̄(κ) =

∫ κ+

κ−
κ′dκ′

∫ 2π

0
δβ̄(κ′)√

κ2+κ′2−2κκ′ cos θ
dθ
2π

− B̄
∫ κ+

κ−
κ′dκ′

∫ 2π

0
cos θ√

κ2+κ′2−2κκ′ cos θ
dθ
2π

+ 2ᾱκ
, (9.14)

which refers to the case of two occupied bands but can be applied directly to the

case when only one band is occupied with the substitution κ± → κout(in). We use the
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notation κ± and κout(in) for the rescaled radii of the unperturbed Fermi surfaces and

in particular we have:

κ± =
√

1 ± χ , κout(in) =
√

χ± 1 . (9.15)

The fractional polarization can then be calculated from:

p⊥(ᾱ, rs) =

∫ κ+

κ−

δβ̄(κ) κ dκ . (9.16)

The corresponding susceptibility χ⊥
S (ᾱ, rs) easily follows from p⊥(ᾱ, rs).

In general, an analytic form for χ⊥
S (ᾱ, rs) cannot be obtained and a numerical

solution of the linear integral equation (9.14) can be calculated via standard meth-

ods [55, 56]. Some of the results are shown in Figure 9.1. We notice that the spin

susceptibility is enhanced by the electron-electron interaction. The enhancement is

larger for larger values of the spin-orbit coupling.

9.3 Isothermal in plane susceptibility

We consider next the perturbation of the paramagnetic HF solution from an ex-

ternal magnetic field in the plane of motion. For simplicity we assume B = Bŷ. In

this case the directions ŝk are tilted in the x-y plane and we define a tilting angle

δγ̄(κ) according to:

γk = φk +
π

2
− δγ̄(k/kF ) sinφ . (9.17)

We also define two parameters a± which determine the Fermi surfaces according to:

ρ±(φ) = κ± + a± cosφ . (9.18)

The angular dependences of γk and ρ±(φ) are exact to first order in B, as it can be

surmised from the perturbing terms in (7.21) and (7.22). (7.21) can be multiplied by

the radial unit vector κ̂ and keeping terms to first order in B leads to the following

integral equation:

δγ̄(κ) =

∫ κ+

κ−
κ′dκ′

∫ 2π

0
δγ̄(κ′) cos2 θ√

κ2+κ′2−2κκ′ cos θ
dθ
2π

− B̃
∫ κ+

κ−
κ′dκ′

∫ 2π

0
cos θ√

κ2+κ′2−2κκ′ cos θ
dθ
2π

+ 2ᾱκ
, (9.19)
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Figure 9.2. Tilting and repopulation contributions to the polarization,
for an in plane magnetic field.

where

B̃ = B̄−a+κ+

∫ 2π

0

sin2 θ
√

κ2 + κ2
+ − 2κκ+ cos θ

dθ

2π

+a−κ−

∫ 2π

0

sin2 θ
√

κ2 + κ2
− − 2κκ− cos θ

dθ

2π
. (9.20)

The expressions (9.19) and (9.20) hold unchanged for the case of a single occupied

band. In that case κ± → κout(in).

Approximation of the second HF equation (7.22) to first order in B leads to the

following linear system:




m++m+−

m−+m−−









a+

a−



 =





c+

c−



 , (9.21)

where the matrix elements are mere numbers:

m±± = 2ᾱ∓ 2
√

2

rs
κ± ∓

[

1

3π
− 2K

π
(9.22)

+

∫ κ∓/κ±

0

κ dκ

∫ 2π

0

(1 − cos θ)(1 − κ cos θ)

(1 + κ2 − 2κ cos θ)3/2

dθ

2π

]

,

m±∓ = ±κ∓
∫ 2π

0

(1 − cos θ) cos θ
√

κ2
+ + κ2

− − 2κ+κ− cos θ

dθ

2π
, (9.23)

while the c± are functionals of δγ̄(κ):

c± = B̄ −
∫ κ+

κ−

κ dκ

∫ 2π

0

δγ̄(κ) sin2 θ
√

κ2 + κ2
± − 2κκ± cos θ

dθ

2π
. (9.24)
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Figure 9.3. Left: plot of the inplane transverse susceptibility, as func-
tion of the spin-orbit coupling parameter ᾱ, at different values of rs.
Right: plot of the inplane transverse susceptibility, as function of the
density parameter rs, at different values of ᾱ. The dashed line is the
ᾱ = 0 result of Eq. (9.12).

K =
∑∞

i=0
(−1)i

(2i+1)2
is the Catalan constant and the equations for the case of a single

band are obtained with the substitution κ± → κout(in) and the following modifications:

the sign of the 2
√

2
rs
κout(in) term in (9.22) is − instead of ± and the (1− cos θ) factors

in (9.22) and (9.23) are replaced by (−1 − cos θ).

The fractional polarization can be calculated by means of the relation:

p‖(ᾱ, rs) =
1

2

∫ κ+

κ−

δγ̄(κ) κ dκ+
1

2
(κ+a+ − κ−a−) . (9.25)

This expression contains two terms of different origin. The first contribution to the

polarization arises from the tilting of the spin orientations ŝk, at unperturbed occu-

pation numbers, while the second contribution is related to the change in population

only, with untilted spins. The origin of the two terms is illustrated in Figure 9.2.

Results for the spin susceptibility are displayed in Figure 9.3. The same comment

about the enhancement of the spin susceptibility from the combination of electron-

electron interactions and spin-orbit coupling applies here, in a similar way to the

transverse case. However the effect is smaller, as it can be ascertained by comparing

Figure 9.3 and Figure 9.1. Therefore we obtain the interesting consequence that, at

variance with the case of the usual HF spin susceptibility (9.12), the spin response at

finite Rashba spin-orbit is anisotropic.
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Figure 9.4. Left: plot of the adiabatic in plane susceptibility, as func-
tion of the spin-orbit coupling parameter ᾱ, at different values of rs.
The rs = 2 curve is dashed in the region when the HF unperturbed
ground state is polarized and the calculation does not apply. Right:
plot of the adiabatic in plane susceptibility, as function of the density
parameter rs, at different values of ᾱ. For the ᾱ = 0.7 curve the result
does not apply in a very small region around the singularity, where
χ = 1 and the gas is polarized. The dashed line is the ᾱ→ 0 result.

9.4 Adiabatic susceptibilities

We finally consider the adiabatic susceptibilities, for which we have to introduce

only minor modifications to the treatment of the isothermal response that we have

just discussed. Upon reflection, one can convince himself that correct results for

this case are obtained by simply neglecting the repopulations effects. In fact, when

ω = 0+ the gas evolves adiabatically following the external perturbation and since the

external field is adiabatically switched on at t = −∞ from the B = 0 ground state,

the occupation numbers nk± do not change during the time evolution and coincide

with those of the noninteracting t = −∞ state.

For the case of a transverse field no change of the unperturbed occupations num-

bers occurs at first order in B, and therefore we have that the adiabatic and isothermal

spin susceptibilities coincide:

χ̃⊥
S (ᾱ, rs) = χ⊥

S (ᾱ, rs) . (9.26)
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We notice at this point that the adiabatic susceptibility is not analytic in the limit

of ᾱ → 0. In fact, it can be verified that the transverse case gives the standard HF

result (9.12), and therefore the limit of χ̃⊥
S (ᾱ, rs) is not vanishing:

lim
ᾱ→0

χ̃⊥
S =

χP

1 −
√

2 rs

π

. (9.27)

The reason of this not analytic behavior is understood considering that the linear

response applies in the limit of zero magnetic field and in particular B � ~αkF/µB.

Therefore, the region of validity of the result (9.27) becomes vanishing small as ᾱ → 0.

For an in plane magnetic field, the equations for the tilting angle and fractional

polarization are obtained from those of the previous section by setting the repopula-

tion parameters a± = 0. We are left with the following single integral equation for

δγ̄:

δγ̄(κ) =

∫ κ+

κ−
κ′dκ′

∫ 2π

0
δγ̄(κ′) cos2 θ√

κ2+κ′2−2κκ′ cos θ
dθ
2π

− B̄
∫ κ+

κ−
κ′dκ′

∫ 2π

0
cos θ√

κ2+κ′2−2κκ′ cos θ
dθ
2π

+ 2ᾱκ
. (9.28)

The corresponding fractional polarization is obtained from:

p̃‖(ᾱ, rs) =
1

2

∫ κ+

κ−

δγ̄(κ) κ dκ . (9.29)

In the limit of small ᾱ we get the following finite result:

lim
ᾱ→0

χ̃
‖
S =

χP

2

1 −
√

2 rs

3π

, (9.30)

which corresponds to a renormalization of the noninteracting spin-Hall conductivity,

according to (9.7):

σsH =
− e

8π

1 −
√

2 rs

3π

. (9.31)

Finally, numerical results at finite spin-orbit coupling are displayed in Figure 9.4.

9.5 Differential instabilities

We collect in Table 9.1 the results for the ᾱ → 0 limit of the noninteracting and

interacting spin susceptibilities. The latter present a diverging behavior at critical
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Table 9.1

Values of the ratio χS/χP in the ᾱ → 0 limit. The first two lines
give the results appropriate to the noninteracting case. First column:
transverse case. Second column: longitudinal case.

Bẑ Bŷ

χS0/χP 1 1

χ̃S0/χP 1 1
2

χS/χP
1

1−
√

2 rs
π

1

1−
√

2 rs
π

χ̃S/χP
1

1−
√

2 rs
π

1

2

1−
√

2 rs
3π

values of rs, which correspond to differential instabilities of the system. At finite

spin-orbit the lines of differential instability can be found in the following way: since

in the three cases the integral equation (9.1) for χ⊥
S , the combination of (9.19) and

(9.21) for χ
‖
S and (9.28) are linear problems that can be reduced to systems of linear

equations, the instability lines are obtained from the zeroes of the determinant of

such linear systems.

We collect in Figure (9.5) results relative to such instabilities. A first important

result is inferred from the left panel, where the isothermal differential instabilities of

the paramagnetic gas, as signaled by the divergence of χ⊥
S and χ

‖
S, are plotted. The

region of instability for field along the z-axis is contained in the region of the isotropic

ferromagnetic state that we obtained in the previous Chapter. This corresponds to

the fact that the phase transition is of first order, similarly to the Bloch transition

in absence of spin-orbit, i.e. the differential instability is preempted by a sudden

polarization instability [1]. However, the instability region for the magnetic field in

the plane extends up to the largest values of rs, when the isotropic HF ground state

is paramagnetic. This proves that an anisotropic in plane polarized state has lower

energy than the paramagnetic state in some regions of the phase diagram. We will

extensively study this problem in the next Chapter.
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Figure 9.5. Left: isothermal instabilities of the paramagnetic HF
solutions. The two long dashed lines relative to χ⊥

S can be compared
to the shaded region of the isotropic ferromagnetic state. The short
dashed line refers to χ

‖
S. Right: inplane differential instabilities. The

short dashed line refers to the instability due to tilting-only (such that

χ̃
‖
S is diverging) and the long dashed line to the repopulation-only

case. The shaded region refers to the complete case, as determined
by χ

‖
S.

We also plot in the right panel of Figure (9.5) the in plane instability for χ̃
‖
S. This

is obtained from the in-plane response by neglecting repopulation, i.e. by setting

a± = 0, and results necessarily in a smaller region than the one determined by χ
‖
S. A

third type of repopulation-only instability is obtained by considering changes in a±

only while setting δγ̄ = 0. This is also displayed in Figure (9.5). We will comment

more extensively in the next Chapter, in connection to anisotropic HF solutions.
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10. In plane polarized Hartree-Fock solutions

We complete in this Chapter the study of homogeneous solutions of the HF equations,

by considering states polarized in the plane. Our analysis does not apply however to

the semiclassical Wigner crystal phase that must exist at much lower densities.

The relevance of in-plane polarized solutions was obtained in the previous Chapter,

in the study of the differential instability of the paramagnetic state in the presence

of an in-plane magnetic field. We consider in the present Chapter in more detail this

intriguing in-plane polarized phase, establishing the phase boundaries with the other

two types of homogeneous states.

The study of this phase is complicated by the fact that the isotropy in the x-

y plane is broken, and the occupation numbers nk± and spin quantization axes ŝk

assume complicated textures, that can be generally calculated only by numerical

means. Analytical results are given in the following sections only in the limiting cases

of very small or very large spin orbit coupling α.

10.1 Simple variational state

We discuss here a proof that the spatially homogeneous low density phase is a

in plane polarized state. This fact was already derived by the differential instability

of the paramagnetic state in the presence of an external magnetic field. However,

the differential instability phase boundary is not of immediate computation, and the

argument is still somewhat unsatisfactory, since only a finite portion of the (rs, ᾱ)

plane can be numerically examined. We find here explicitly a simple variational

state that has energy lower than the paramagnetic state and we expect to be the

asymptotically correct homogeneous HF ground state in the limit of very low densities.
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The state is defined by:

nk+ = θ(
√

2kF − |k− k0|), nk− = 0 ,

ŝk = ŷ , (10.1)

where kF =
√

2πn is the Fermi vector and θ(x) is the usual step function. The

electrons occupy only one band, with definite spin along ŷ, the occupation being a

circle of radius
√

2kF displaced from the origin. The value of k0 of the center of the

circle which minimizes the energy is given by:

k0 =
mα

~
x̂. (10.2)

This can be obtained by the condition that the average velocity of the state has to be

vanishing. In fact the single particle velocity operator is such that v̂x = p̂x/m−α σ̂y,

and has a contribution from the polarization along ŷ.

An example of this state is depicted in Figure 10.1. It has the maximum available

exchange energy and the single particle states have wavevectors centered around the

minimum of the lowest noninteracting chiral subband. Therefore, in the limit of very

large rs, when the occupation is a small droplet around |k0|, the kinetic and Rashba

contributions are also approximately minimized. Furthermore, since the Rashba spin

orbit amounts to an external magnetic field in momentum space which at k0 is directed

along ŷ, the state is also asymptotically a solution of the HF equations.

The energy per particle can be calculated exactly and it is given by (in Ry units):

E (trial) = −ᾱ2 +
2

r2
s

− 16

3πrs

. (10.3)

The first two terms combine the kinetic and Rashba contributions. They contain a r−2
s

correction to the minimum single particle noninteracting energy, which is −1
2
mα2 =

−ᾱ2Ry. The last term is the exchange energy, as appropriate for a fully polarized

state. (10.3) can be compared to the paramagnetic total energy:

E (unpol) ≥ −ᾱ2 − 1.203

rs

, (10.4)
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Figure 10.1. In the first figure, the relative phase diagram of the
simple trial state and the exact isotropic HF solution is shown. The
dashed lines are phase boundaries with the paramagnetic state. In
the second figure an example of the simple trial state is shown, for
particular values of rs and ᾱ.

where we used −ᾱ2 as a lower bound for the kinetic and Rashba contributions, and the

minimum unpolarized exchange energy, which occurs when the chirality is χ = 0.9147.

This gives immediately E (unpol) ≥ E (trial) for rs ≥ 4.044, which proves that the low

density state must be polarized.

Numerical evaluation of the region where E (trial) is lowest in energy gives the phase

diagram displayed in Figure 10.1, relative to the paramagnetic state and the in plane

and out-of plane polarized states. This turns out to be qualitatively correct, while

for the true HF solution the phase boundary occurs at smaller values of rs.

10.2 Small ᾱ limit

We now consider the effect of the presence of a small spin-orbit coupling on a fully

polarized ground state. The calculation is analogous to that of the spin susceptibility,

with the difference that we consider here the spin-orbit as a small perturbation,

instead of the Zeeman term. The unperturbed state is taken to be the usual fully

polarized HF solution, in absence of spin orbit:

n
(0)
k+ = θ(

√
2kF − k), n

(0)
k− = 0 ,
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ŝ
(0)
k = ŝ(0) = cos θ0 ŷ + sin θ0 ẑ , (10.5)

where the polarization forms an angle θ0 with the x-y plane of motion.

The minimization of the functional (7.3) leads to the following conditions:

λ1 =
2ρ2(φ)

r2
s

−
√

2

rs

[

2ᾱ φ̂ · ŝ(ρ(φ), φ) ρ(φ) (10.6)

+

∫ 2π

0

dφ′

2π

∫ ρ(φ′)

0

1 + ŝ(ρ(φ), φ) · ŝ(κ′, φ′)
√

ρ2(φ) + κ′2 − 2ρ(φ)κ′ cos (φ− φ′)
κ′dκ′

]

,

and:

ŝ(κ, φ) = − 1√
2 rsλ2(κ, φ)

[

2ᾱ κ φ̂+

∫ 2π

0

dφ′

2π

∫ ρ(φ′)

0

dκ′ (10.7)

× ŝ(κ′, φ′)
√

κ2 + κ′2 − 2κκ′ cos (φ− φ′)
κ′

]

,

which are expressed in dimensionless form, according to the definitions of the previous

Chapters. κ = ρ(φ) specifies the Fermi surface of the only occupied band and the

two Lagrange multipliers λ1 and λ2(κ, φ) ensure respectively the conservation of the

particle number and the normalization of the ŝ(κ, φ) unit vectors. In particular

Eq. (10.6) expresses the fact that the chemical potential λ1 at the Fermi surface

has to be constant, the right hand side being the HF single particle energy evaluated

at κ = ρ(φ). Eq. (10.7) is the requirement that the spin ŝ(κ, φ) must be parallel

to a self-consistent magnetic field produced by the spin orbit coupling and exchange

interaction, where λ2(κ, φ) is proportional to the magnitude of such an effective field.

The condition satisfied by the first order correction δŝ(κ, φ) to the spin directions

can be obtained by multiplying Eq. (10.7) by the following unit vectors, perpendicular

to the original polarization direction ŝ(0):

x̂′ = −x̂ , (10.8)

ŷ′ = sin θ0 ŷ − cos θ0 ẑ . (10.9)
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Figure 10.2. Plot of the function δs(κ), describing the spin tilting of
a polarized state at ᾱ→ 0.

The angular dependence is determined by the external perturbation, and in particular

we have 2ᾱ κ φ̂ · x̂′ = 2ᾱ κ sinφ and 2ᾱ κ φ̂ · ŷ′ = 2ᾱ κ cosφ sin θ0, which allows us to

set:

ŝ(κ, φ) · x̂′ = ᾱ δs(κ) sinφ , (10.10)

ŝ(κ, φ) · ŷ′ = ᾱ δs(κ) cosφ sin θ0 , (10.11)

and to obtain the following single integral equation for δs(κ):

δs(κ) =

∫

√
2

0
κ′dκ′

∫ 2π

0
δs(κ′) cos θ√

κ2+κ′2−2κκ′ cos θ
dθ
2π

+ 2 κ
∫

√
2

0
κ′dκ′

∫ 2π

0
1√

κ2+κ′2−2κκ′ cos θ
dθ
2π

. (10.12)

Since Eq. (10.12) is obtained from Eq. (10.7) to first order in ᾱ, it is appropriate

to derive it using the unperturbed values for the Lagrange multiplier λ
(0)
2 (κ, φ) =

− 1√
2rs

∫

√
2

0
κ′dκ′

∫ 2π

0
1√

κ2+κ′2−2κκ′ cos θ
dθ
2π

and the Fermi surface radius ρ(0)(φ) =
√

2.

The function δs(κ) can be evaluated numerically and it is shown in Figure 10.2.

We now consider the repopulation, described by the ρ(φ) Fermi surface. The

angular dependence can be determined by the Rashba perturbation term in Eq. (10.6),

for which we have 2ᾱ φ̂ · ŝ(0) = 2ᾱ cosφ cos θ0. This allows us to set:

ρ(φ) =
√

2 + ᾱ a cosφ cos θ0 . (10.13)
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The coefficient a can be obtained by first order approximation of Eq. (10.6) or alter-

natively by the reasoning described below.

Eq. (10.13) describes an occupation which to first order in ᾱ is a circle displaced

from the origin by an amount ᾱ a cos θ0. The center of the occupation circle can be

determined by the condition that the velocity px/m − ασx to be vanishing. Since

the normalization condition of the spins requires that δŝ(κ, φ) is to lowest order

perpendicular to the original polarization direction, the correction to the unperturbed

polarization are of second order in ᾱ and do not contribute to the velocity. This gives

immediately:

a =
rs√
2
. (10.14)

The correction to the unperturbed energy can be calculated once δs(κ) and a are

known. However, since the result is of second order in ᾱ, the appropriate expression

to be used for ŝ(κ, φ) has to be normalized to second order terms:

ŝ(κ, φ) =ŝ(0) + δŝ(κ, φ) − ᾱ2 δs(κ)
2

2
(sin2 φ+ cos2 φ sin2 θ0) ŝ

(0) , (10.15)

where other choices are possible for the second order term, the final results not being

affected. The following kinetic, Rashba and exchange contributions can be obtained

by direct calculation:

δEK = ᾱ2 cos2 θ0 , (10.16)

δEso = −2ᾱ2

(

cos2 θ0 +
1 + sin2 θ0√

2 rs

∫

√
2

0

δs(κ) κ2dκ

)

, (10.17)

δEx = −ᾱ2 1 + sin2 θ0

2
√

2 rs

∫

√
2

0

κ dκ

∫

√
2

0

κ′dκ′
∫ 2π

0

δs(κ)δs(κ′) cos θ − δs(κ)2

√
κ2 + κ′2 − 2κκ′ cos θ

dθ

2π
,

(10.18)

where the exchange energy Ex can be simplified by making use of the integral equation

(10.12). The final result for the total energy is δE = δEK + δEso + δEx = 1
2
δEso, where

the numerical coefficient of δE is obtained by numerical integration of δs(κ):

δE(θ0) = −ᾱ2

[

cos2 θ0 +
2.211

rs
(1 + sin2 θ0)

]

. (10.19)
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The final result Eq. (10.19) gives immediately the phase with lowest energy at

ᾱ ' 0:

θ0 = π
2

for r∗s < rs < 2.211 , (10.20)

θ0 = 0 for rs > 2.211 , (10.21)

where r∗s = 3π
8(2−

√
2)

' 2.011 is the usual HF critical density below which the electron

liquid in absence of spin orbit is paramagnetic. Therefore the out-of-plane ferro-

magnetic state survives in a narrow interval of intermediate densities before the low

density in-plane ferromagnetic phase.

With little effort the boundary curvature between the paramagnetic and out-of-

plane ferromagnetic state can be obtained. Expanding to second order in ᾱ the total

energy of the paramagnetic state we get δE (unpol) = −2ᾱ2 and the phase boundary is

obtained equating the total energies:

(

1

r2
s

− 8
√

2

3πrs

)

− 2ᾱ2 =

(

2

r2
s

− 16

3πrs

)

− 4.422

rs
ᾱ2 ,

which around rs . r∗s gives:

ᾱ =
√

0.6172 (r∗s − rs) . (10.22)

This corresponds to a shift of the critical density to lower rs at finite spin-orbit

coupling. For the transition between the two ferromagnetic states the curvature of

the phase boundary requires the expansion of the energies to higher order in ᾱ, and

cannot be obtained from our previous result Eq. (10.19).

As a final remark, we compare the perturbative in plane polarized ground state

to the simple trial state of the previous section. While the occupations are the same

for both states, the spin tilting of the perturbative state as determined by δs(κ)

is independent of the density, which is in apparent contradiction to the intuitive

expectation that the trial state is the correct solution at large rs. However, we notice

that the perturbative treatment can be considered reliable only in close proximity of

the unperturbed state, a fact that allows us to immediately infer that the displacement
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Figure 10.3. Left panel: instability of an isotropic paramagnetic state
to an anisotropic polarized state via repopulation. Right panel: qual-
itative sketch of the final polarized state for a large ᾱ value.

of the occupation center is very small, a �
√

2. Instead, the trial state is expected

to be a reliable approximation in the opposite limit, when a�
√

2. From (10.14) we

can surmise that at every fixed ᾱ, the perturbative treatment fails above a certain

value of rs ∼ 1/ᾱ.

10.3 Large ᾱ limit

We now discuss the large ᾱ limit, which is such that the HF solution does not

converge to a paramagnetic state, and a perturbative treatment is not possible. This

could be perhaps surprising, since in this limit the noninteracting energy becomes

the dominating contribution and the electron spin is required to be aligned in the

azimuthal direction, as dictated by the Rashba spin-orbit coupling. The breaking

down of a possible perturbative solution has to be ascribed to the fact that in this

limit the momentum space occupation is a large narrow ring of states with almost

degenerate energy, and the occupation can be rather wildly modified, with negligible

cost of noninteracting energy.

We now identify more explicitly the instability of the paramagnetic state as a

repopulation instability. Consider in the second panel of Figure 9.5 the in plane dif-

ferential instabilities of the paramagnetic state, where the three curves refer to three
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possible cases: (i) both repopulation and spin tilting are considered (a± 6= 0 and

δγ̄(κ) 6= 0), (ii) repopulation only (δγ̄(κ) = 0), (iii) spin tilting only (a± = 0). While

the region of spin tilting instability shrinks to zero at large ᾱ, the instability region

asymptotically coincides with the repopulation instability only. Such repopulation in-

stability exists for every density rs, at large enough ᾱ. Therefore, the phase boundary

of the in plane polarized state is such that rs → 0 when ᾱ → ∞.

For ᾱ → ∞ the occupation of the paramagnetic state is a narrow ring with large

radius, where the inner and outer radii are expressed in terms of the generalized

chirality as κ± =
√
χ± 1 ' √

χ. We then consider a infinitesimal change in the

Fermi surfaces, described as follows:

ρ±(φ) = κ± (1 ± η cosφ) , (10.23)

while keeping unchanged the azimuthal direction of the spin quantization axis ŝ(κ, φ) =

φ̂. This induces a infinitesimal polarization along ŷ, by thickening one side of the ring

with respect to the other (see Figure 10.3). In practice, one is moving electrons from

one side of the ring to the diametrically opposite one, an operation that implies a

flipping of the spin. The exchange energy for such a state is obtained as follows, in

the limit of large χ:

Ex ' −1 + 6 log 2 + (2 + η2) logχ

πrs

√
2χ

, (10.24)

which is a generalization of the η = 0 result (8.16). Using that χ ' (rsᾱ)2

2
to leading

order (both for the interacting and noninteracting paramagnetic state) we get:

δE '
[

1

2r4
s ᾱ

2
− 2 log(ᾱrs)

πᾱr2
s

]

η2 , (10.25)

where the first term is the leading term in the kinetic and spin orbit contribution.

This is negligible in the limit of large ᾱ, for every density rs, which leads to a negative

energy change at finite η and proves the instability of the paramagnetic state.
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Such an instability leads to a HF ground state which in the limit ᾱ → ∞ is a fully

polarized droplet in momentum space. The droplet has dimensionless area 2π and is

centered around κ0 = ᾱrs√
2
x̂. Expansion of the energy functional (7.3) gives:

EHF ' −ᾱ2 +
1

πr2
s

∫

D
κ2

x dκ −
√

2

(2π)2rs

∫

D

dκ dκ
′

|κ − κ′| , (10.26)

which neglects terms vanishing when rsᾱ → ∞. The spin quantization axes were

assumed to be asymptotically along φ̂, and the integrals are performed around the

occupied region D which we have translated from κ0 to the origin. The energy

corresponds to particles that interact via an attractive Coulomb potential, in the

presence of an external parabolic confining potential along the x direction. The

occupation resulting from (10.26) is independent of ᾱ and consists of some oblate

region of finite fixed extent along y, the exact shape being determined by the density

rs. Therefore the (10.26) becomes an exact approximation when ᾱ → ∞ at constant

rs.

We notice that the (10.26) becomes also exact in the rs → ∞ at constant ᾱ, if the

occupation has finite extent. In this case the external confining potential becomes

negligible and the exchange energy leads to a circle occupation as discussed in the

first section.

10.4 Numerical analysis and results

To calculate the HF in-plane polarized ground states at generic values of rs and

ᾱ it is necessary to resort to direct numerical minimization of the energy. This we

perform as follows: we restrict ourselves to the case of a single occupied band, so that

the occupation is determined by nk+ ≡ nk. We also assume that the direction of the

spin quantization axes ŝk lies in the plane of motion. From the initial trial occupation

numbers nk and spin orientations ŝk we calculate the effective magnetic field, which

is given by:

~Beff(k) = −α ~k φ̂k −
1

2L2

∑

k′

nk′vk−k′ ŝk′ . (10.27)
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Figure 10.4. Top: examples of occupation and spin texture in the
dimensionless momentum space for states at ᾱ = 0.8 and increasing
values of rs. The circles mark the paramagnetic state occupation.
Note the different length scale of each case. Bottom: solutions at
fixed rs = 2.4 and increasing values of ᾱ. In the first case the χ = 1
occupation circle in dashing for reference.
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In the next iteration the electrons have spin oriented along ŝk =
~Beff (k)

| ~Beff (k)| , as calculated

from the previous configuration.

Once a set of nk and ŝk is given, one can also calculate the single particle energies

ε(k):

ε(k) =
~k2

2m
− 1

2L2

∑

k′

vk−k′ nk′ − | ~Beff(k)| . (10.28)

At this point a new set of occupation numbers nk is determined by setting nk = 1

for the lowest N values of ε(k) and zero otherwise. This therefore generates a new

set of nk and ŝk. The procedure is iterated on a finite grid of wavevectors to achieve

self-consistency.

In Figure 10.4 we reproduce a set of states with the same spin orbit coupling ᾱ

at increasing values of rs. At high density the convergence is to the paramagnetic

state while at low densities the simple trial state of Section 10.1 is recovered. We also

notice that the phase transition from the paramagnetic state is first order: in fact the

occupation becomes simply connected across the transition point. The polarization

is also discontinuous.

In Figure 10.4 a second set of states is also presented with fixed density rs and

increasing spin orbit coupling ᾱ. At small ᾱ the occupation is a displaced circle, as

we discussed for the perturbative case. In the limit of large ᾱ the oblate completely

polarized droplet is obtained.

Physical quantities of these self-consistent solutions must be calculated by refine-

ment of the grid as to approach the continuous limit. This last step presents some

complication and is briefly discussed in Appendix E. There, we also show results for

the total energy. The polarization of the anisotropic solutions can also be obtained,

and it is plotted in Figure 10.5. At large values of rs the solution is asymptotically

converging to the trial variational state, and the fractional polarization saturates to

one. The polarization of the mean field solution with lowest energy is also plotted in

Figure 10.5 as a function of rs, at the particular value ᾱ = 0.4. The first discontinuity

corresponds to the transition from the paramagnetic state to the isotropic ferromag-



115

0 2 4 6 8 10 12

rs
0

0.2

0.4

0.6

0.8

1

p

0.6

0.4

0.2

0 2 4 6 8

rs

0.2

0.4

0.6

0.8

1

p

Figure 10.5. Left: fractional polarization of the in plane ferromagnetic
HF solutions as a function of the density parameter rs for different
values of the spin orbit coupling ᾱ. Right: polarization of the HF
ground state at ᾱ = 0.4 as function of rs. In the region of the isotropic
ferromagnetic solution, the fractional polarization is constant.

netic solution, while the second discontinuity corresponds to the transition to the in

plane polarized phase.

The complete phase diagram including the paramagnetic solution and both types

of ferromagnetic states is shown in Figure 10.6. At low spin-orbit coupling ᾱ . 0.6

the gas is polarized at a critical value of rs up to the lowest densities. At higher

density the ferromagnetic state is polarized perpendicular to the plane of motion,

while a phase transition to an in plane ferromagnetic state occurs at lower density.

The latter preempts the reentrant transition to the paramagnetic state.

At large values of ᾱ & 0.6 the reentrant transition from the out-of-plane polarized

state to the paramagnetic state survives. The actual FZ polarized region shrinks at

large spin orbit and follows the curve at which the paramagnetic state has generalized

chirality χ = 1, which is the dotted line in Figure 10.6. The transition to the in plane

polarized phase is directly from the paramagnetic state. We can compare the phase

boundary with the differential instability of the paramagnetic state, which is the

short dashed line in Figure 10.6. As expected, the transition is first order, and the

differential instability of the paramagnetic state occurs when the system is already

polarized. The boundary of the in-plane polarized phase was actually evaluated only
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Figure 10.6. Complete HF phase diagram. The FZ region is of difficult
evaluation at large ᾱ, but follows the dotted χ = 1 curve. The marked
points refer to actually computed points of the phase boundary. The
short dashed line is the differential instability of the paramagnetic
state for in plane external magnetic field. The last dashed line is the
reentrant transition boundary between the FZ and PM phases.

at the marked points. At small ᾱ it is difficult to obtain the critical density, because

the two polarized phases have almost indistinguishable energy, but the exact ᾱ → 0

value was obtained from perturbation theory in Section 10.2.



117

11. Hartree-Fock theory with generalized spin-orbit coupling

The treatment carried out in detail in the presence of linear Rashba spin-orbit can be

immediately extended to other types of spin-orbit coupling. We collect in this Chapter

results of the Hartree-Fock approximation for the hamiltonian Ĥn of Eq. (6.1), in the

particular cases n = 2 or 3.

It is clear from the general structure of the Hartree-Fock theory that the spin-

susceptibility is enhanced in all situations. We consider explicitly in this Chapter the

form of the phase-diagram, which has a different form from the result obtained in the

previous Chapter for linear Rashba spin-orbit coupling. Interestingly, the transition

is directly to a ferromagnetic state polarized in the plane. This is not surprising, since

the formation of the n = 1 transverse phase is due to the presence of a cusp in the

single particle spectrum at k = 0, which is a peculiar feature of the linear spin-orbit.

11.1 Hartree-Fock equations

The condition satisfied by the Hartree-Fock ground state can be obtained as in

Chapter 7. In particular, it is convenient to obtain the appropriate equations by

minimizing the energy with the appropriate constrains. The only difference pertains

the spin-orbit energy which is given by:

Eso = −2
√

2n γ̄

rn
s

∫ 2π

0

dφ

2π

∫ ρ+(φ)

ρ−(φ)

ŝ0(φ) · ŝ(κ, φ) κn+1dκ , (11.1)

where the notation is the same of Section 7.3. The definition of γ̄ is given in Eq. (3.23)

and the form of ŝ0(φ) = − sin(nφ)x̂+ cos(nφ)ŷ corresponds to Eq. (3.17).

Minimization with respect to the quantization directions leads to the following

equation:

ŝ(κ, φ) =
1√

2 rsλ2(κ, φ)

[

B̄ − 2γ̄

√
2n−1

rn−1
s

κn ŝ0(φ) (11.2)
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−
∫ 2π

0

dφ′

2π

∫ ρ+(φ′)

ρ−(φ′)

ŝ(κ′, φ′)
√

κ2 + κ′2 − 2κκ′ cos (φ− φ′)
κ′dκ′

]

,

while minimization with respect to the occupation numbers gives the couple of equa-

tions:

λ1 =
2ρ2

±(φ)

r2
s

±
√

2

rs

[

B̄ · ŝ(ρ±(φ), φ) − 2γ̄

√
2n−1

rn−1
s

ŝ0(φ) · ŝ(ρ±(φ), φ) ρn
±(φ)

−
∫ 2π

0

dφ′

2π

∫ ρ+(φ′)

ρ−(φ′)

1 + ŝ(ρ±(φ), φ) · ŝ(κ′, φ′)
√

ρ2
±(φ) + κ′2 − 2ρ±(φ)κ′ cos (φ− φ′)

κ′dκ′
]

(11.3)

−2
√

2

rs

∫ 2π

0

dφ′

2π

∫ ρ∓(φ′)

0

κ′dκ′
√

ρ2
±(φ) + κ′2 − 2ρ±(φ)κ′ cos (φ− φ′)

.

The above equations are written for the case of two occupied bands. For a single

occupied band Eq. (11.2) is unchanged and Eq. (11.3) is modified as follows: the ±
sign in the first line becomes +, and the term in the last line must be omitted.

11.2 Small coupling limit

Due to the perturbative character of the n = 2, 3 spin-orbit terms, an analysis at

generic values of the coupling γ̄ is impossible. Therefore we restrict ourselves to the

case of small coupling, which still allows to obtain a complete picture of the mean-field

phase-diagram. For this case Eqs. (11.2) and (11.3) simplify to:

ŝ(κ, φ) =− 1√
2 rsλ2(κ, φ)

[

2γ̄

√
2n−1

rn−1
s

κn ŝ0(φ) (11.4)

+

∫ 2π

0

dφ′

2π

∫ ρ(φ′)

0

ŝ(κ′, φ′)
√

κ2 + κ′2 − 2κκ′ cos (φ− φ′)
κ′dκ′

]

,

λ1 =
2ρ2(φ)

r2
s

−
√

2

rs

[

2γ̄

√
2n−1

rn−1
s

ŝ0(φ) · ŝ(ρ(φ), φ) ρn(φ)

+

∫ 2π

0

dφ′

2π

∫ ρ(φ′)

0

1 + ŝ(ρ(φ), φ) · ŝ(κ′, φ′)
√

ρ2(φ) + κ′2 − 2ρ(φ)κ′ cos (φ− φ′)
κ′dκ′

]

, (11.5)

which are approximated to first order in γ̄ by setting ŝ(κ, φ) = ŝ(0) + δŝ(κ, φ) and

ρ(φ) =
√

2 + δρ(φ), where ŝ(0) = ẑ or ŝ(0) = ŷ for the transverse or in-plane case

respectively.
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Figure 11.1. Left: Plot of the solutions of Eq. (11.8), for different
values of n. Right: Bloch transition for different values of n. n = 2, 3
correspond to in-plane polarized states and n = 1 to a transverse
ferromagnetic state. For this last case, the phase boundary to an
in-plane polarized phase at rs ' 2.211 is not shown.

For the transverse case we have, to first order in γ:

δŝ(κ, φ) = γ̄

√
2n

rn−1
s

∆θ(κ) ŝ0(φ) , (11.6)

δρ(φ) = 0 , (11.7)

where ∆θ(κ) satisfies the integral equation:

∆θ(κ) =

∫

√
2

0
κ′dκ′

∫ 2π

0
∆θ(κ′) cos θ√

κ2+κ′2−2κκ′ cos nθ
dθ
2π

+
√

2 κn

∫

√
2

0
κ′dκ′

∫ 2π

0
1√

κ2+κ′2−2κκ′ cos θ
dθ
2π

, (11.8)

which is easily derived by Eq. (11.4). The corresponding solutions are plotted in

Figure 11.1.

For the in-plane case we have:

δŝ(κ, φ) = −γ̄
√

2n

rn−1
s

∆θ(κ) sin(nφ)x̂ , (11.9)

δρ(φ) = γ̄
a

rn−1
s

cos(nφ) , (11.10)

where ∆θ(κ) satisfies the same integral equation Eq. (11.8) and a is obtained using

Eq. (11.5):

a =
2n−1rs√
2 − Cnrs

. (11.11)
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The constant Cn =
√

2
π

∑n
m=0

1
1−2m

was already defined in Eq. (6.9).

The change in total energy can be calculated to quadratic order by making use

of the previous results. For both cases is found to be equal to 1
2
Eso. In particular we

have:

δE⊥ = −γ̄2 2n

r2n−1
s

∫

√
2

0

∆θ(κ)κn+1 dκ , (11.12)

and:

δE‖ = −γ̄2 2n

r2n−1
s

[ 2n−2

√
2 − Cnrs

√
2rs +

1

2

∫

√
2

0

∆θ(κ)κn+1 dκ
]

. (11.13)

The constant entering in Eqs. (11.12) and (11.12) is obtained numerically as fol-

lows:
∫

√
2

0

∆θ(κ)κn+1 dκ '







1.413 for n = 2 ,

1.011 for n = 3 ,
(11.14)

which allows to compare the values of δE⊥ and δE‖. For n = 2, 3 and rs > r∗s =

3π
8(2−

√
2)

' 2.011 we obtain δE⊥ > δE‖ and therefore we conclude that the Bloch

transition is directly to an in-plane polarized phase.

With a method similar to the case of Rashba spin-orbit, it is possible to obtain

the curvature of the phase boundary. In fact, it is sufficient to equate (11.13) to the

second-order approximation of the paramagnetic phase energy:
(

1

r2
s

− 8
√

2

3πrs

)

− 2nγ̄2r2−2n
s

1 − Cnrs
=

(

2

r2
s

− 16

3πrs

)

+ δE‖ , (11.15)

which gives:

γ̄ '







√

0.1822(r∗s − rs) for n = 2 ,
√

0.1501(r∗s − rs) for n = 3 .
(11.16)

This final result is displayed in Figure 11.1. It has to be noted that the presence of a

finite spin-orbit coupling favors the transition to the ferromagnetic state in all of the

three cases.

11.3 Exact numerical results

The same result of the previous section can also be calculated exactly, with similar

results. The in-plane polarized states are obtained on a finite grid, and one example is
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Figure 11.2. Left: example of an in-plane polarized state for n = 3, at
rs = 2 and γ̄ = 0.175. The solid line denotes the perturbative result
for the Fermi surface, as obtained in Section 11.2, which has a good
agreement with the numerical solution. Right: exact boundary of the
Bloch transition for n = 3. The boundary is computed at the marked
points and the dashed line is the approximation (11.16).

shown in Figure 11.2 for the case n = 3. The energies are calculated by extrapolation

to the continuous limit, as described in Appendix E. The resulting boundary of the

polarized region can be obtained, by equating the energy of the polarized states to

that of the paramagnetic phase, which was obtained in Chapter 6. This result is

plotted in the second panel of Figure 11.2.
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12. High density limit in the presence of Rashba spin-orbit

coupling

So far, we have examined the properties of the two-dimensional electron liquid in the

framework of the Hartree-Fock approximation. This allows to completely characterize

the properties of the system, but only in an approximate manner. In fact, it is found

that the Hartree-Fock approximation gives qualitatively correct results for the case

without spin-orbit, but its validity is very limited from the quantitative point of view.

A simple exact treatment of the problem is only amenable in the asymptotic regimes,

of which we examine here the high density limit.

This limit can be studied in the form of a series expansion in the small dimen-

sionless density parameter:

rs =
1

√

πna2
B

, (12.1)

where aB is the effective Bohr radius and n is the number density. At small rs, the

first correction to the noninteracting problem is provided by the exchange energy and

was obtained in Chapter 6 for a generalized spin-orbit coupling. In the particular case

of linear Rashba spin-orbit it was found that the leading contribution of the exchange

is zero and therefore a more careful treatment is necessary.

The other relevant dimensionless parameter is ᾱ = ~α
e2 . Alternatively, the following

coupling strength g can be used:

g =
√

2ᾱrs . (12.2)

This formula is a particular case of (3.24) and expresses the ratio of the spin-orbit

and kinetic energy. It is clear that g is vanishing small in the high density limit.

We will obtain in the following the leading corrections to the chirality and to the

exchange-correlation energy due to the Rashba spin-orbit coupling, in terms of the

small parameters rs and g.
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12.1 Non interacting electrons

The noninteracting problem in the presence of Rashba spin-orbit was extensively

treated in Chapter 2. We repeat here briefly some of the formulas, for ease of reference

and to fix the notation used in this Chapter.

The eigenstates of the noninteracting problem given in Eq. (3.18) are plane waves

with spinor functions given by:

|k±〉 =
1√
2





±1

ieiφk



 , (12.3)

and all the nonintercting physical quantities are functions of g only. In particular,

the eigenenergies (in Rydbergs) are equal to 2
r2
s
ε±(k) where:

ε±(k) = k2 ∓ g k . (12.4)

In the previous formula and in the rest of the Chapter the wavevectors are expressed

in terms of kF =
√

2πn. The two Fermi surfaces are determined by the radii:

k± =
√

|1 ± χ| , (12.5)

where the generalized chirality χ can be larger than unity (in which case k± would

be more appropriately labeled kout/in). The corresponding occupation is:

n±(k) = θ(
√

|1 ± χ| − k) − θ(χ− 1)θ(
√

χ− 1 − k) , (12.6)

where θ(x) is the usual step function and we assume χ ≥ 0. In particular, we have

n±(k) = θ(k± − k) if 0 ≤ χ ≤ 1.

The noninteracting energy is obtained as in Eq. (2.23) at a generic value of χ:

E0(g, rs, χ) =
(1 + χ2) − (χ− 1)2θ(χ− 1)

r2
s

+
2g

r2
s

√

|1 − χ|3 −
√

|1 + χ|3
3

, (12.7)

while the noninteracting ground state is determined as in Eq. (2.24):

χ
(0)
min(g) = g

√

1 − g2

4
θ(
√

2 − g) +

(

g2

4
+

1

g2

)

θ(g −
√

2) . (12.8)

Finally, the ground state energy is obtained:

E0(g, rs) = E0(g, rs, χ
(0)
min(g)) . (12.9)
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12.2 Exchange-correlation energy

The exchange-correlation energy of the electron liquid without spin-orbit is well

known from decades of theoretical investigations [1]. At a generic values of the density,

the value of Exc(rs) is obtained numerically with the Monte Carlo method [1, 23] 1.

The high density limit can be studied in the form of a perturbative expansion [22]:

Exc(rs) = −8
√

2

3πrs

− 0.385 − 2
√

2

3π
(10 − 3π) rs ln rs + . . . , (12.10)

where the first term is the exchange energy, the constant term is the result of the

numerical integration of the second order correlation energy, and the last contribution

can be calculated from the infinite sum of diverging ring diagrams, as first discovered

for the three-dimensional case [57].

On the other hand, the computation of the exchange-correlation energy at finite

spin-orbit coupling is a problem which is unexplored. We define δExc(g, rs) from the

equation:

E(g, rs) = E0(g, rs) + Exc(rs) + δExc(g, rs) , (12.11)

where the noninteracting energy is given by (12.7), (12.8) and (12.9). The correction

δExc(g, rs) is generally neglected, for example in density functional studies including

the spin-orbit interaction. A partial justification to this procedure is given below,

where we show that δExc is actually vanishing to the quadratic order in g for the

particular case of the Rashba spin-orbit. However, δExc is not zero in general and it

might lead to important effects in the case of large g (e.g. at low density).

Formally, the total energy of the interacting system can be calculated via a pertur-

bative expansion, as for example to obtain Eq. (12.10). In the presence of spin-orbit

coupling, each perturbative term acquires a dependence from g and χ. The value of

χ refers to the noninteracting state used in the perturbative expansion, which does

not need to be the noninteracting ground state. As a consequence, we can write the

total energy as:

E(g, rs, χ) = E0(g, rs, χ) + Exc(rs) + δExc(g, rs, χ) , (12.12)

1See however the next Chapter for the case of finite polarization.
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where E0(g, rs, χ) is given in (12.7).

The interacting chirality χmin(g, rs) can be obtained by minimization of (12.12),

which also gives the final interacting ground state energy (12.11). One has to notice

that there are two different contributions to δExc(g, rs). The first is given directly

by δExc(g, rs, χmin), while the second arises from the renormalization of χ in the

noninteracting energy E0(g, rs, χ).

In concluding this Section, we comment about some aspects of the perturbative

expansion. One requirement for its validity is the fact that by adiabatic switching

on/off of the electron-electron interaction only a multiplicative phase-factor is intro-

duced. This is not automatically true for degenerate excited states and the use of a

generic value of χ different from χ
(0)
min(g) is a delicate point. For the class of noninter-

acting states parametrized by χ we assume that this property holds true, otherwise

the presence of isotropic Fermi surfaces would be destroyed.

Another interesting point is that it is not clear if an analog of the Luttinger

theorem is valid in this case. In other words, if the Fermi surfaces of the actual

interacting ground state correspond to the value χmin(g, rs) obtained as described

above. This is obviously true in the Hartree-Fock approximation, where interacting

and noninteracting (paramagnetic) states coincide, but it is not clear in general terms.

12.3 The high-density limit

Taking the rs → 0 limit at a constant value of ᾱ corresponds also to a vanishing

strength of the spin orbit coupling g, as it is clear from (3.24). Furthermore, since

χmin(g, rs) is given in first approximation by the noninteracting value (12.8), we also

have χ ' g. Therefore, we have to obtain an expansion of (12.12) in the small

parameters rs, g and χ, which are all of O(rs).

The high density limit correction is correctly obtained in the Hartree-Fock theory.

The exchange energy of the unpolarized state is studied in Chapter 8:

E(g, rs, χ) = E0(g, rs, χ) + Exc(rs) + δEx(rs, χ) + . . . , (12.13)
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where δEx(rs, χ) ≡ δEx[χ; π
2
], as defined in Eq. (8.11). This quantity gives the cor-

rection to the exchange energy due to the spin-orbit coupling and its plot is easily

obtained from the first panel of Figure 8.2, if the constant 8
√

2
3π

is added.

The asymptotic form of δEx(χ) at small χ is given by:

δEx(rs, χ) =

√
2

48πrs

χ4(lnχ− C) + . . . , (12.14)

where C = 3 ln 2 − 23
12

' 0.162775 and the omitted terms are O(χ6). In Eq. (12.14)

the term quadratic in χ is missing, and therefore it seems a priori possible that the

exchange contribution is only a subleading term.

However, we will show that this is not the case. We will prove in Section 12.4.1

the following general form for the formal expression of a generic diagrammatic con-

tribution of order n to the total energy:

δDn = rn−2
s [c2,n(g − χ)2 + . . .] , (12.15)

where the omitted terms are of higher order in g and χ. In the particular case of the

exchange energy we have c2,1 = 0.

The generic contribution (12.15) does not produce any correction to lowest order

in the value of E(g, rs, χ) and its derivative ∂E(g,rs,χ)
∂χ

since χ ' g in first approximation.

Therefore the lowest order correction to χmin(g, rs) and δExc(g, rs) is zero to all orders

of perturbation theory, and one can consider in the high density limit the exchange

energy only.

By making use of (12.13), with the definition (12.7) and (12.14) one obtains:

χmin(g, rs) = χ
(0)
min(g)

[

1 −
√

2

24π
rsg

2(ln g − C +
1

4
) + . . .

]

, (12.16)

which represents the analytic form of the small chirality enhancement discussed in

Chapter 8. The relative correction is of order O(r3
s) and, as anticipated, it is quadratic

in the spin-orbit coupling.

In calculating the correction to the total energy, one has to notice that χ0(g)

is a stationary value of the noninteracting energy. Therefore, the correction to the
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noninteracting energy due to the renormalized value of χ is of order O( (rs4)2

rs2 ) = O(r6
s)

and can be safely neglected. The leading term is given by δEx(rs, g):

δExc(g, rs) =

√
2g4

48πrs
(ln g − C) + . . . , (12.17)

while correlation corrections are of higher order.

12.4 Formally exact properties

We prove here two formally exact properties satisfied by the total energy and the

self-energy of the interacting system with Rashba spin-orbit. The proof is based on

the diagrammatic expansion but is carried out at a generic order of the perturbation

series. Detailed questions relative to the convergence of the single diagrams and the

appropriateness of certain mathematical manipulations are treated loosely. Since the

proof is valid for a generic type of two-body interaction, we will assume that the

expressions are analytically well behaved. The explicit treatment of the lowest order

contributions for the case of the Coulomb interaction is provided in the next Section.

The perturbative rules in the presence of spin-orbit have little modifications to

the case without spin-orbit [1]. For clarity we discuss them here briefly. The Green

function is defined as:

Gµ(k, t) = −i〈T b̂kµ(t)b̂†kµ(0)〉 , (12.18)

where the average is on the interacting ground state. b̂†kµ|0〉 is a noninteracting eigen-

state in the presence of spin-orbit, as in (3.18). The Green function is diagonal

for the paramagnetic phase. To prove this fact we can assume k along x and con-

sider the transformation R̂y, corresponding to the y → −y reflection. We have that

〈R̂−1
y b̂kν b̂

†
kµR̂y〉 = µν 〈b̂kν b̂

†
kµ〉, due to the form of the single-particle states. The para-

magnetic ground state can be assumed to have a definite parity with respect to R̂y

and therefore we obtain a vanishing result when µν = −1. The same property does

not hold if such symmetry is broken, as for example for a polarized ground-state.
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The noninteracting Green function is:

G0µ(k, ω) =
1 − nµ(k)

ω − εµ(k) + iη
+

nµ(k)

ω − εµ(k) − iη
, (12.19)

where nµ(k) is defined in (12.6) and contains the dependence on χ, while εµ(k) is

defined in (12.4) and contains the dependence on g. We expressed frequencies in

units of εF

~
=

~k2
F

2m
and energy in Rydbergs, which gives ~ = εF

Ry
= 2

r2
s
.

The perturbation theory for the Green function diagrams has the usual rules,

which in the units of our choice contemplate a factor 2
√

2rs

q
for an interaction line

with momentum q and an overall factor in(−1)L (i.e. ~ is omitted in the prefactor,

while L is as usual the number of loops and n the order of the diagram). The most

important modification is that each vertex (as in Figure 12.1) is associated with the

scalar product 〈kµ|k′µ′〉, beside the delta functions ensuring frequency/momentum

conservation. The form of the spinors is given in (12.3).

The self energy is defined from Gµ(k, ω) = 1/ (ω − εµ(k) − Σµ(k, ω)/~) and there-

fore a similar set of rules apply, except a multiplicative ~ = 2
r2
s

overall factor which

converts it to an energy.

12.4.1 An exact property of the energy expansion

The total energy is obtained from the following integration over the coupling

constant formula [1]:

E(g, rs, χ) = E0(g, rs, χ) + (12.20)

+
1

2

∑

µ

∫ 1

0

dλ

λ

∫

dk

(2π)2

∫

dω

2πi
Gλ

µ(k, ω)Σλ
µ(k, ω) ,

where an additional factor λ is included for each interaction line. As it is clear by

the form of the integrand, this is the sum of closed diagrams containing one or more

fermionic loops. A diagram of order n has an overall factor λnrn−2
s , in agreement with

(12.15). We now consider in detail the form of one of these contributions, and we
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Figure 12.1. Left: interaction vertex, associated with a 〈kµ|k′µ′〉
factor. Right: fermionic loop, appearing in energy diagrams.

suppose for simplicity that one loop is present only. The proof can be easily extended

to the general case of many loops. If the loop contains N solid lines we can write:

D =

∫

[. . .]
∑

{µi}

∫

dk

(2π)2

N
∏

i=1

G0µi
(pi, ωi)〈piµi|pi+1µi+1〉 , (12.21)

where {µi} ≡ {µ1, µ2, . . . µN} and N + 1 ≡ 1. The internal momenta and frequencies

are pi = k+qi and ωi = ω+Ωi, as in Figure 12.1, where k and ω are the momentum

and frequency flowing in the loop. Finally, [. . .] is the remaining expression of the

diagram which is independent on k and ω.

One can now take derivatives with respect to χ and g of the above expression.

The derivatives only act on the noninteracting Green functions, given by (12.19), and

in particular ∂
∂χ

acts on the occupation functions and ∂
∂g

on the energy denominators.

After setting χ = g = 0 the spin summation can be performed explicitly and gives zero

in the case of the first derivatives. The second derivatives of D have more complicated

expressions that in general are nonvanishing.

We now introduce the following ’resolved’ Green function at vanishing spin-orbit,

so that the unperturbed Green function is G0(k, ω) = G̃0(k, k, ω):

G̃0(kχ, kg, ω) =
1 − n0(kχ)

ω − k2
g + iη

+
n0(kχ)

ω − k2
g − iη

, (12.22)
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where n0(k) = θ(1 − k). We then consider the following expression corresponding to

the same diagram (12.21):

Dab =

∫

[. . .]

∫

dkχdkg

(2π)2
2 δ2(kχ − kg)

[

~∇ka · ~∇kb

4

]

N
∏

i=1

G̃0(p
χ
i , p

g
i , ωi) , (12.23)

where each of the indexes a, b can be χ or g while pχ
i = kχ + qi and pg

i = kg + qi. It

is clear that, omitting the differential operator in the square parenthesis, the above

expression corresponds to the value of D at χ = g = 0. On the other side, the

operator ~∇kχ acts on the occupation functions of the G̃0 while ~∇kg on the energy

denominators, in a way similar to the derivatives in χ and g of (12.21). In fact, one

can show by an explicit comparison:

∂2D

∂a∂b

∣

∣

∣

∣

0

= Dab . (12.24)

The explicit calculation is straightforward and the details are provided in Appendix F.1.

Finally, the quantities Dab are immediately seen from (12.23) to be related among

them, by simple integrations by parts. Therefore we obtain:

∂2D

∂χ2

∣

∣

∣

∣

0

=
∂2D

∂g2

∣

∣

∣

∣

0

= − ∂2D

∂χ∂g

∣

∣

∣

∣

0

, (12.25)

which corresponds to the general form given in (12.15).

12.4.2 An exact property of the self-energy

The self-energy Σµ(k, ω) satisfies a similar exact relation to linear order in g, which

reads as follows:
∂Σµ(k, ω)

∂g

∣

∣

∣

∣

0

= −µ
2

∂Σ0(k, ω)

∂k
, (12.26)

where Σ0(k, ω) is the unperturbed (g = χ = 0) self energy. In the derivation we can

suppose χ ' g, as appropriate to linear order in g for the interacting ground state.

The proof is readily obtained by considering the explicit form of a diagram con-

tributing to the self-energy, in the same notation of (12.21):

DΣ =

∫

[. . .]
∑

{µi}

N
∏

i=1

G0µi
(pi, ωi)

N
∏

j=0

〈pjµj|pj+1µj+1〉 , (12.27)
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where only Green functions connected which the external momentum k are explicitly

written. Therefore pi = k + qi while p0 = pN+1 = k and µ0 = µN+1 = µ.

The derivative ∂
∂g

involves all the Green functions appearing in the diagram. How-

ever, one has not to worry about the ones that are not written in (12.27), since these

are involved in fermionic loops. In this case, using
∂G0µ

∂g
∝ µ and the spin sum

(N + 1 ≡ 1 and µj ∈ {µi}):

∑

{µi}
µj

N
∏

i=1

〈piµi|pi+1µi+1〉 = 0 , (12.28)

one has that the contributions from these terms are vanishing.

On the other side the expression for the same unperturbed diagram is simply:

DΣ0
=

∫

[. . .]

N
∏

i=1

G0(pi, ωi) , (12.29)

and the derivative with respect to k acts in a similar way on the Green functions as

∂
∂g

in (12.27). Therefore the equality (12.26) is verified diagram by diagram. We refer

to Appendix F.2 for more details.

A perhaps better form of (12.26), valid to linear order in g, is as follows:

Σµ(k, ω) = Σ0(k −
µg

2
, ω) + . . . . (12.30)

This expression of the self-energy (12.30) confirms that the Fermi surfaces of the elec-

tron liquid are obtained when k±∓ g
2
' 1 which is equivalent to k± =

√
1 ± χ at first

order in g. Furthermore, it is obtained that all the quasiparticle properties (effective

mass, lifetime, . . . ) are equal to the case without spin-orbit, at the appropriate den-

sity rs, to linear order in g. We notice that this fact was proved already in Ref. [17]

for the RPA approximation and the corrections quadratic in g are explicitly obtained.

The results of Ref. [17] are exact in the high density limit. However, we notice that

the property (12.30) is more general, since it is exact at generic values of rs, if the

requirement ᾱ� 1
rs

is satisfied.
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12.5 Explicit evaluation of correlation terms

The derivations given in the previous Section are general but of formal character.

In particular, we did not worry about many detailed questions of convergence of the

formal expressions and appropriateness of the mathematical manipulations, as for

example the exchange of order of derivatives and integrations. For the self-energy our

conclusions are confirmed by the treatment of Ref. [17]. We consider now explicitly

the details of the first two terms of the perturbative expansion, i.e. the second-order

correlation energy and the ring-diagrams sum, which appear in the classical expansion

(12.10) at α = 0.

12.5.1 Second order correlation energy

The second-order correlation energy E2(g, χ) is obtained by standard perturbation

theory, where in the intermediate state two electron-hole pairs are present such that

occupied states with wavevectors k, k′ and spin indexes µ, µ′ have scattered to new

unoccupied states:

(k, µ) → (p, σ) and (k′, µ′) → (p′, σ′) , (12.31)

where p = k + q and p′ = k′ − q.

As it is well known, two different terms contribute to E2(g, χ), corresponding to

the two different ways to scatter back to the original state:

(p, σ) → (k, µ) and (p′, σ′) → (k′, µ′) , (12.32)

(p, σ) → (k′, µ′) and (p′, σ′) → (k, µ) , (12.33)

referring respectively to direct and exchange processes.

Therefore we can write:

E2(g, χ) = ED
2 (g, χ) + EX

2 (g, χ) . (12.34)

where the direct and exchange contributions are given by:
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ED
2 (g, χ) = − 1

4π3

∑

µ,µ′,σ,σ′

∫

dq

∫

dk

∫

dk′ |〈p σ|kµ〉|2 |〈p′ σ′|k′µ′〉|2
q2

×nµ(k)nµ′(k′)(1 − nσ(p))(1 − nσ′(p′))

εσ(p) − εµ(k) + εσ′(p′) − εµ′(k′)
, (12.35)

EX
2 (g, χ) =

1

4π3

∑

µ,µ′,σ,σ′

∫

dq

∫

dk

∫

dk′ 〈p σ|kµ〉 〈kµ|p′σ′〉 〈p′σ′|k′µ′〉 〈k′µ′|p σ〉
q |k − k′ + q|

×nµ(k)nµ′(k′)(1 − nσ(p))(1 − nσ′(p′))

εσ(p) − εµ(k) + εσ′(p′) − εµ′(k′)
. (12.36)

By direct evaluation of the derivatives of these expressions one obtains the quadratic

expansion in χ and g as follows:

ED
2 (g, χ) ' −0.614 − (g − χ)2

4
+ . . . , (12.37)

EX
2 (g, χ) ' 0.229 + . . . , (12.38)

where for the case of the exchange term the second-order spin-orbit correction is

exactly vanishing. The explicit calculation can be done in a straightforward but

tedious way, and details are collected in the Appendices F.3 and F.4.

The above formulas display the expected form of the spin-orbit correction at

small coupling g. In principle, they could also be useful in obtaining higher orders

corrections in (12.17), which are completely negligible to the order of approximation

considered here.

To further confirm the correctness of the previous discussion, we evaluate nu-

merically the second-order contributions. The evaluation of these multi-dimensional

integral is complicated in the general case by the presence of singularities in the in-

tegration domain. The singularities arise, for generic values of g and χ, from the

energy denominators. In fact, the excitation energy is guaranteed to be positive

when χ = χ
(0)
min(g), while in the general case the energy denominator can be zero or

negative. We only obtain here the simple case χ = χ
(0)
min(g).

The direct and exchange second-order terms are plotted separately as functions

of g in Figure 12.2. The sum of the two is plotted in a bigger range of values in
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Figure 12.2. Plot of the second-order correlation energy for the non-
interacting ground state, as function of g. The generalized chirality is
χ = χ

(0)
min(g) and the range of both plots is such that g <

√
2, which

gives χ < 1. The left panel shows the direct term ED
2 (g, χ

(0)
min(g)) and

the right panel the exchange term EX
2 (g, χ

(0)
min(g)). The points repre-

sent numerical results from Monte-Carlo integrations, and the lines
are polynomial fits of the results.
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Figure 12.3. Plot of the total second-order correlation energy
E2(g, χ

(0)
min(g)) for the noninteracting ground state, as a function of

g. The inset shows the region of small g, when χ < 1, and is obtained
as the sum of the curves displayed in the previous Figure 12.2. The
points represent numerical results from Monte-Carlo integrations, and
the lines are polynomial fits of the results.
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Figure 12.3. We notice in Figure 12.2 that in the limit g → 0 both functions ED
2

and EX
2 display a flat behavior in agreement with the fact that the g2 contribution is

vanishing. The direct term is larger and dominates in the sum of the two, displayed

in Figure 12.3. The characteristic behavior, similar to the case of the exchange energy

(see Figure 8.2) is probably due to a g4 ln g leading term.

It is also noticeable that at large values of g the correlation energy becomes very

large, which corresponds to the highly correlated non-perturbative regime of large

spin-orbit, already manifested in the Hartree-Fock treatment.

12.5.2 Ring diagrams contribution

The higher order terms in the perturbative treatment of the two-dimensional elec-

tron liquid are in general diverging for the case of the bare Coulomb interaction.

However, a method to obtain the next leading correction to the correlation energy

was devised for the three-dimensional case [57], and consists in summing to infinite

order the most diverging diagrams so that the final result is finite. This was applied

in the two-dimensional case in Ref. [22] and is extended with minor modifications

including the Rashba spin-orbit.

The general expression of the generic ring diagram is (n > 1):

E (n)
R (g, rs, χ) = −(−1)n

πnr2
s

∫ +∞

−∞
du

∫ ∞

0

q2dq

(

Qq(u)rs

2
√

2πq

)n

, (12.39)

where Qq(u) is given by the following expression:

∑

µ,σ

∫

dk nµ(k)(1 − nσ(p))
(εσ(p) − εµ(k))|〈p σ|kµ〉|2
(εσ(p) − εµ(k))2/4 + u2q2

. (12.40)

E (n)
R (g, rs, χ) has a (formal) dependence of rn−2

s . These quantities are diverging, except

the n = 2 term which is a compact expression for Eq. (12.35). The infinite sum of

the diverging ring diagrams gives:

ER(g, rs, χ) =
1

πr2
s

∫ +∞

−∞
du

∫ ∞

0

q2dq

[

ln

(

1 +
Qq(u)rs

2
√

2πq

)

− Qq(u)rs

2
√

2πq
+

1

2

(

Qq(u)rs

2
√

2πq

)2
]

,

(12.41)
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which is a finite quantity.

By patterning the calculation done in the absence of spin-orbit coupling, one can

apparently obtain the exact coefficient of the leading contribution in the rs → 0,

which has a rs ln rs dependence. This is determined by the small-q integration region,

and therefore what is usually done is to substitute Qq→0(u) in (12.41). The value is

obtained by neglecting in (12.40) terms involving scattering to the opposite branch,

because of the |〈σp|µk〉|2 factor which is ∼ 1 for the intra-band and ∼ q2 for the

inter-band contributions:

Qq(u) '
∑

µ

∫

dk

q

2nµ(k)(1 − nµ(p)) (k − µg
2

) cosφk

(k − µg
2

)2 cos2 φk + u2

=
2πk+

k̃+

R(
u

k̃+

) +
2πk−

k̃−
R(

u

k̃−
) , (12.42)

where R(u) = 1− 1√
1+1/u2

and we have assumed χ < 1 (as appropriate in the rs → 0

limit) so that k± =
√

1 ± χ. Finally we defined k̃± = k± ∓ g/2. Using this result in

(12.41) and performing the integration in dq one extracts the coefficient of the rs ln rs

contribution:

ER(g, rs, χ) ' − rs ln rs

3
√

2(2π)4

∫ +∞

−∞
[Q0(u)]

3 du , (12.43)

which gives the standard result −2
√

2
3π

(10 − 3π)rs ln rs with Q0(u) = 4πR(u). Using

Q0(u) as in Eq. (12.42), the result can still be obtained analytically in terms of the

function

F (x, y) =

∫ +∞

−∞
[R(u/x)]2R(u/y) du , (12.44)

which has the explicit expression:

F (x, y) = 4(x+ y) − πx− 4xE(1 − y2

x2
) +

2x2 arccos y
x

√

x2 − y2
. (12.45)

Here E(x) is the complete elliptic integral of the second type [51], and one should use

the identity
arccos y

x√
x2−y2

=
arccosh y

x√
y2−x2

for y > x.

The final result reads:

ER(g, rs, χ) ' −rs ln rs

6
√

2π

[

(10 − 3π)

(

k3
+

k̃2
+

+
k3
−

k̃2
−

)

(12.46)
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+
3k+k

2
−

k̃+k̃
2
−
F (k̃+, k̃−) +

3k−k
2
+

k̃−k̃
2
+

F (k̃−, k̃+)

]

,

which does not have the expected form. In fact, for small values of g and χ we have:

δER(g, rs, χ) ' −rs ln rs

6
√

2π

[

(
208

5
− 51π

4
) g2 +

27

10
(−16 + 5π) g χ+ (−42

5
+

9π

4
)χ2
]

,

(12.47)

which is not ∝ (χ− g)2.

This apparent contradiction to our general result can be understood in the follow-

ing terms. The q → 0 limit of Qq(u) obtained in (12.42) violates the general condition

to have a correction ∝ (χ−g)2, and therefore leads to a corresponding violation in the

final result. However, one notices that this value is a good approximation to Qq(u)

only for q � g. Therefore, the above calculation is valid if g is kept constant when

rs becomes small, which corresponds to a diverging spin-orbit coupling ᾱ.

In the more canonical limit of ᾱ kept constant, the contribution to the integration

of the region q � g (which shrinks to zero with g =
√

2ᾱrs) is negligible compared

to the rs log rs leading term. Outside this interval of q the correction to the function

Qq(u) satisfies the ∝ (χ − g)2 condition, and therefore also the final result for the

coefficient of the rs log rs term has the expected form.

Although the final result is reassuring, the previous discussion shows the delicate

questions that could arise from possible nonanalytic behavior of the spin-orbit ex-

pansion of the energy. In particular, in our formal derivation in Section 12.4.1 we

performed the derivatives in χ and g at a generic density rs, which strictly speaking

corresponds to the limit g → 0 before rs → 0. One can hope that, as it happens for

the ring-diagram sum, the same expansion (12.15) holds when rs → 0 at constant

ᾱ, which implies in this case g → 0 at the same time. Instead, in the other limit of

g → 0 after rs → 0 we showed that the same form of the expansion is not valid in

general.

We finally notice that this problem of the order of the limits do not arise for the

second-order correlation energy, which has no dependence on rs. Therefore, these

correlation contributions that we explicitly examined in detail do not introduce any
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modifications to the Hartree-Fock result and Eqs. (12.16) and (12.17) are valid ex-

pressions for the high density limit.
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13. High density limit for polarized electrons

We consider in this last Chapter the high-density expansion of the correlation energy

for the two-dimensional electron liquid in the absence of spin-orbit. This problem

was studied in the classic Ref. [22]. The final expression for the paramagnetic case

(in Rydbergs) reads:

Ec(rs, p = 0) = −0.385 − 2
√

2

3π
(10 − 3π) rs ln rs + . . . , (13.1)

for the case of a paramagnetic system. We will consider the effects of a finite po-

larization as parameterized by p = 2Sz

~n
, where Sz is the uniform spin polarization

density. For generic values of the polarization, the coefficients of the expansion (13.1)

become functions of p and the p = 1 result can be obtained by making use of a simple

transformation [22].

The constant term in (13.1) is obtained from second-order perturbation theory

and is the sum of two distinct contributions. The first is the second-order exchange

energy, which is independent of p and can be calculated analytically [58]. The second

one stems from the second-order direct energy term, commonly referred to as the first

ring diagram. The latter has been recently evaluated numerically for generic values

of p in Ref. [59]. These contributions are accurately represented by the interpolation

formula of Ref. [23].

As discussed in the previous Chapter, the next perturbative term is obtained

as an infinite sum of ring diagrams, which results in the sub-leading rs ln rs term.

This elegant method was originally developed for the corresponding unpolarized three

dimensional case [57], a problem in which the ring diagrams sum up to give the leading

ln rs contribution to the correlation energy1. For the three dimensional case the exact

polarization dependence was also determined [60] .

1At variance with the two dimensional case, in three dimension all the individual ring diagrams
correspond to divergent contributions.
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13.1 Ring diagrams contribution

We obtain here the generic dependence of the rs ln rs term on p. This is simply

obtained from the calculation described in the previous Chapter. In the absence of

spin-orbit coupling, the same procedure of Section 12.5.2 is repeated with the following

modifications: the spinor functions of the individual eigenstates are quantized along

a common direction, and therefore |k±〉 are substituted by | ↑〉,| ↓〉 where we identify

± with ↑, ↓. Furthermore, we set g = 0 and substitute χ→ p.

As a result, we have that the explicit expression for Qq(u) is given by:

Qq(u) =
∑

σ=↑,↓

∫

dk

q

q + 2kx

( q
2

+ kx)2 + u2
nσ(k)(1 − nσ(k′)) , (13.2)

where k′ =
√

(kx + q)2 + k2
y. The polarization dependence of Qq(u) is implicitly

determined by the occupation functions nσ(k) = θ(kσ − k), where the rescaled Fermi

wavevectors are:

k↑(↓) =
√

1 ± p , (13.3)

This form of Qq(u) has to be used to obtain the ring-diagrams contribution to the

correlation energy ER(p), which is expressed in the same form of Eq. (12.41).

The q = 0 value is immediately obtained as in (12.42) and reads:

Q0(u) = 2π[R(u/k↑) +R(u/k↓) ] , (13.4)

where R(u) = 1 − 1√
1+1/u2

. This result is used to extract the high-density limit of

ER(p). At high densities Eq. (12.43) can be used for ER(p):

ER(p) ' − rs ln rs

3
√

2(2π)4

∫ +∞

−∞
[Q0(u)]

3 du , (13.5)

which gives the standard result (13.1) by making use of Q0(u) = 4πR(u), i.e.

ER(0) ' − 2
√

2

3π
(10 − 3π) rs ln rs . (13.6)

and can be exactly integrated at finite values of p in the same way we obtained

Eq. (12.46).



143

0 0.2 0.4 0.6 0.8 1
p

0.2

0.4

0.6

0.8

1

I
R
Hp
L

Figure 13.1. Plot of the scaling factor IR(p) (defined in Eq. (13.7)) as a
function of the fractional polarization p. Solid line: exact expression
(13.8). Dashed line: Eq. (13.9) as obtained from the interpolation
formula proposed in Ref. [23].

The final result can be expressed in terms of a scaling function defined by:

IR(p) = lim
rs→0

ER(p)

ER(0)
. (13.7)

The explicit expression of IR(p) is given by:

IR(p) =
1

8

(

k↑ + k↓ + 3
F (k↑, k↓) + F (k↓, k↑)

10 − 3π

)

, (13.8)

where F (x, y) is defined in (12.45). This formula readily gives the correct value at

p = 0 using F (1, 1) = 10 − 3π. At p = 1, using F (
√

2, 0) = F (0,
√

2) = 0, we obtain

the known result [22] IR(1) =
√

2
8

.

As it turns out the exact result IR(p) is not well reflected in the most recent

interpolation formulas of Monte-Carlo calculations provided in the literature. In par-

ticular, from the correlation energy formula of Ref. [23], denoted here as EMC
c (rs, p),

the following limit is obtained:

IMC
R (p)= lim

rs→0

EMC
c (rs, p) − EMC

c (0, p)

ER(0)

' 1 − 0.3932 p2 − 0.4297 p4 , (13.9)

which is compared in Figure 13.1 to the exact result of Eq. (13.8). The difference

is remarkable, even if the specific aim of Ref. [23] is to address the polarization



144

dependence of the whole correlation energy. Agreement of IMC
R (p) with the exact

result is only achieved for p = 0 and p = 1, values known from the extant literature.

A noticeable failure is the behavior near p = 1, where the polynomial (13.9) gives a

finite slope while the leading term in the exact expression is:

IR(p) '
√

2

8
+

14 − 3π

4(10 − 3π)

√

1 − p . (13.10)

Around p = 0, while being correctly quadratic in p, Eq. (13.9) displays an incorrect

coefficient. The exact coefficient is given by:

IR(p) ' 1 − 168 − 45π

160(10 − 3π)
p2 ' 1 − 0.2893 p2 . (13.11)

The disagreement between IR(p) and the Monte Carlo based interpolation IMC
R (p)

is hardly surprising for the latter was obtained by sampling the energy at a number

of polarization values for each of the values rs = 1, 2, 5, 10, which are clearly outside

of the rs � 1 perturbative regime2. In practice, IR(p) refers to the sub-leading term

in the density expansion, so that it gives only small corrections to the total energy.

Nevertheless, incorporating this exact formula would certainly result in an improved

empirical expression for the polarization dependence of the correlation energy.

13.2 High-density limit expansion

For ease of reference, we collect here the explicit form of all the leading terms

contributing to the perturbative expansion of the total energy of the two dimensional

electron liquid at finite polarization. The general formula (in Ry units) reads:

E(rs, p) = EK(rs, p) + Ex(rs, p) + Ec(rs, p) . (13.12)

In this expression EK(rs, p) represents the noninteracting kinetic energy and is given

by:

EK(rs, p) =
1 + p2

r2
s

, (13.13)

2It should be kept in mind that in practice the perturbative theoretic expression of the energy of the
electron liquid based on the ring diagrams does provide a quantitatively accurate description only
at very small values of rs (see also Ref. [1]).
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while Ex(rs, p) represents the exchange energy:

Ex(rs, p) = −8
√

2

3π

(1 + p)3/2 + (1 − p)3/2

2rs
. (13.14)

The expansion for the correlation energy takes the form:

Ec(rs, p) = E2(p) −
2
√

2

3π
(10 − 3π) IR(p) rs ln rs + . . . , (13.15)

where the omitted corrections are of order O(rs). In this expression IR(p) is defined

by Eqs. (13.8), (12.45) and (13.3). The density independent term is in turn given by:

E2(p) = E (b)
2 + E (r)

2 (p) , (13.16)

where [58]:

E (b)
2 = 0.2287 , (13.17)

and [59]:

E (r)
2 (p) = −0.6137 I2(p) , (13.18)

where the scaling function I2(p) is given by:

I2(p) = 1 − (1 + p) ln(1 + p) + (1 − p) ln(1 − p)

4 ln 2
− δf(p)

2
, (13.19)

with3:

δf(p) ' 0.0636 p2 − 0.1024 p4 + 0.0389 p6 . (13.20)

3It should be noted that as in the original paper, Eq. (13.20) does not account for a small dip near
p = 1 seemingly uncovered in the numerical work of Ref. [59].
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14. Conclusions

We have considered in this Thesis many phenomena relative to the effects of the spin-

orbit interaction in two-dimensional electronic systems, which we treated by including

a model of generalized spin-orbit coupling that is relevant for many practical situa-

tions. This includes the well known linear Rashba spin-orbit for electrons and cubic

spin-orbit for holes, produced by an asymmetric confinement potential. We have also

shown that for heavy-holes an in-plane magnetic field results in a particular form of

quadratic spin-orbit coupling, which we believe is very relevant for the interpretation

of recent magnetotransport measurements [20].

The presence of spin-orbit coupling allows to control in some degree the polariza-

tion of the system, as exemplified in the presence of lateral potentials constraining the

two-dimensional system to a quasi one-dimensional wire. The case of linear Rashba

spin-orbit was already extensively examined in the literature for the case of a bulk, in

which a finite in-plane polarization is produced if a current is driven through the sam-

ple [32–36]. This is linear in the spin-orbit coupling, while no transverse polarization

is present and the controversial spin-Hall current was also shown to be vanishing1 [6].

We obtained that in the opposite regime of a strongly laterally confined system the op-

posite holds true: the in-plane component of the polarization is strongly suppressed,

appearing only as a third-order perturbative effect. The inhomogeneous nonequilib-

rium polarization is approximately perpendicular to the plane of motion, and has

opposite signs in the vicinity of the two boundaries. The crossover between the two

opposite regimes was examined. We stress that similar numerical results obtained in

the literature [41, 61] on the spin-Hall effect are simply understood in terms of the

geometrical structure of the wavefunctions, while the concept of a spin-Hall current

has little relevance.

1The correct vanishing result contradicts the early report of Ref. [52].
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The more interesting example of quasi one-dimensional holes is motivated by re-

cent experimental activity [4]. We have shown that the cubic nature of spin-orbit

coupling reflects itself in a peculiar form of the one-dimensional spectrum, in which

the two lowest subbands cross at a finite value of the wavevector. This behavior is re-

lated to the reflection symmetry in the lateral direction of confinement, and therefore

is destroyed in the presence of a lateral asymmetry or a magnetic field along the wire.

In a smooth point-contact the adiabatic transmission of the holes is a subtle question

at the degeneracy points, which makes it possible to control the polarization of the

current at the onset of the conducting regime, by tuning the value of the longitudinal

magnetic field. The low-field polarization is in agreement with the surprising experi-

mental result of Ref. [4], and offers a clear qualitative demonstration of the particular

nature of the spin-orbit coupling for holes. A switch of the polarization is predicted

at relatively high values of the magnetic field.

In the remaining part of this Thesis we have extensively discussed the effects of

the electron-electron interactions in the presence of spin-orbit coupling. This repre-

sents a formidable problem of great relevance, which is essentially unexplored in the

literature. In fact, the classical interacting electron liquid is the subject of decades of

theoretical studies [1] and still is unsatisfactory in many respects for the simple case

of parabolic dispersion. On the other side, many systems require to account at the

same time of band structure effects in the noninteracing hamiltonian, of which the

spin-orbit coupling terms are examples.

The simplest theory of the interacting liquid is the Hartree-Fock approximation,

which is very limited from the quantitative point of view, but it is known to give a cor-

rect qualitative picture in the absence of spin-orbit coupling. In fact, the Hartree-Fock

theory exactly includes the effect of the exchange, which is the leading correction to

the noninteracting properties in the high density limit. A simple analysis on the basis

of the exchange energy leads to interesting results for the high density phase in the

presence of spin-orbit. We introduced the concept of generalized polarization, which

refers more properly to the occupation of the single-particle states and is distinct from
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the spin-polarization of the system. We have shown that the generalized polarization

resulting from a finite spin-orbit is in most cases surprisingly quenched by the ex-

change energy. This conclusion is in qualitative agreement with recent experimental

measures [20].

The proper spin susceptibility is enhanced by many-body effects, as in the usual

case without spin-orbit coupling. The transition to a ferromagnetic state is also

slightly favored by the presence of a finite spin-orbit coupling. Nevertheless, a strong

anisotropy is introduced in the system close to the ferromagnetic Bloch transition,

between the in-plane and transverse directions. This anisotropy is reflected both in

the spin-susceptibility and in the polarization of the ferromagnetic phase. For the

case of small linear Rashba spin-orbit the transverse phase is favored at the value

of the Bloch transition, and an additional in-plane polarized phase occurs at lower

densities. The in-plane phase is always favored for quadratic and cubic spin-orbit.

Beside providing an exactly solvable and intuitively transparent approach in which

to include a general form of spin-orbit coupling and the leading contribution of many-

body effects, the Hartree-Fock solutions are the foundation of more elaborate treat-

ments. At generic densities, the ground state properties are obtained numerically by

improved versions of the Hartree-Fock wave functions, as in particular the Jastrow

wave function in variational calculation, or by evolution in imaginary time in the

Diffusion Monte-Carlo method [1]. It seems natural that the highly nontrivial nature

of the Hartree-Fock polarized wave functions needs to be included from the start in

this type of calculations.

Alternately, the correlation can be included with accuracy in the asymptotic lim-

its, of which we treated in detail the high density regime with linear Rashba spin-orbit.

Unfortunately, very small effects are obtained in this case, and the system is proved

to be indistinguishable from the usual electron liquid, to lowest order in the spin-

orbit coupling. As a byproduct of the detailed analysis of the correlation terms, we

obtained a new analytical result for the polarization dependence of the ring diagram

contribution, in the traditional case of vanishing spin-orbit. Our result is not accu-
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rately reflected in the interpolation formulas [23] commonly used in density-functional

calculations.

The other two interesting limits are those of very low densities and very large

spin-orbit coupling that we did not examine in detail. In the first case the system

will form a Wigner crystal, although the properties of the system will be strongly

affected by the spin-orbit coupling. We also proved that the limit of very large linear

Rashba spin-orbit coupling is highly correlated, even at the largest densities. This

is due to the vanishing bandwidth of the single-particle spectrum. The Hartree-

Fock wavefunction we obtained is a homogeneous in-plane polarized state, but large

correlation corrections might very possibly lead to a non homogeneous phase [21]. The

knowledge of the true behavior of the system in these limits might lead insight to the

general structure of the phase-diagram at finite values of the density and spin-orbit

coupling.
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A. Lateral confinement with cubic spin-orbit

We discuss here more in detail the problem of the lateral confinement for the two-

dimensional hamiltonian (5.2). For simplicity we consider hard wall barriers:

VU(W, y) =







0 for |y| ≤W/2 ,

U for |y| > W/2 ,
(A.1)

and we will take eventually U → ∞, in which case an appropriate basis in the interval

[−W/2,W/2] is ϕn(y) =
√

2
W

sin nπ(y+W/2)
W

, where n is a positive integer.

We first note that using for example the procedure discussed in Chapter 4, it is

possible to find eigenstates of (5.2) which also satisfy the zero boundary condition in

y = ±W/2. These are obtained by linear combination of the four plane waves which

are eigenstates of (5.2) with the same energy ε and longitudinal wavevector kx.

However, these eigenstates are not correct and, in particular, are found to be

non-orthogonal. The reason is that solutions found in this way completely disregard

the behavior of the wavefunctions inside the barriers. In particular, calculating the

matrix elements of the p̂3
y operator in the usual way (i.e. assuming that ϕn(y) is

exactly zero in the barriers), one obtains:

〈ϕn(y)|p̂3
y ϕm(y)〉 = i

(

~

W

)3
2nm3π2

n2 −m2
((−1)n+m − 1) , (A.2)

which are not matrix elements of an hermitian operator. In fact, the eigenstates

determined by making use of (A.2) are not orthogonal.

A more careful definition of the basis wavefunctions is:

ψn(y) =



















ϕn(y) for |y| ≤W/2 ,

nπ
u

√

2
W 3 e

u (y+W/2) for y < −W/2 ,
(−1)n+1 nπ

u

√

2
W 3 e

−u (y−W/2)for y > W/2 ,

(A.3)
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Figure A.1. Lowest 10 eigenstates of Ĥ0,3 + V∞(W, ŷ) (given by (5.2)
and (A.1)), as a function of the size 2nmax (including spin) of the
truncated basis. This is chosen to be eikxxψn(y)|±〉 where ψn(y) is
discussed in (A.3) and n ≤ nmax. The parameters used are m =
0.3m0, γ~

3 = 100 meV nm3, W = 100 nm and kx = 0.2 nm−1. The
condition (A.5) gives nmax � 40, at which value the eigenenergies
start to diverge.

where u =
√

2mU
~2 is assumed to be (infinitely) large. Using this definition one obtains:

〈ψn(y)|p̂3
y ψm(y)〉 (A.4)

= i

(

~

W

)3
nm(n2 +m2)π2

n2 −m2
((−1)n+m − 1) .

This is the correct hermitian form of the matrix elements but leads to a spectrum

which is unbounded, as it shown in Figure A.1. Therefore, it has to be regularized,

for example by introducing a momentum cutoff. In the specific case one can restrict

the basis ψn(y) to values of n that for a particular value of kx satisfy:
√

n2π2

W 2
+ k2

x � 1

2mγ~
, (A.5)

where the large wavevector on the right side is such that the spin-orbit energy γ~
3k3

equals the kinetic energy. Otherwise, the spectrum is rather independent of the

specific value of the cutoff, as exemplified in Figure A.1. Analogous problems are well

known to occur in envelope-function multiband calculations based on perturbative

hamiltonians [3, 62] (e.g. the Kane model).
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B. Proof of Eq. (8.3)

Consider in (7.3) the only contribution of the exchange energy that depends on γk.

It has the following form:

− 1

4L2

∑

k,k′,µ,µ′

vk−k′ µµ′ nkµnk′µ′ cos (γk − γk′) sin βk sin βk′ . (B.1)

This can be rewritten in dimensionless form and by using the circular symmetry:

−
∫

√
1+χ

√
|1−χ|

y dy

∫
√

1+χ

√
|1−χ|

y′ dy′
∫ 2π

0

sin β̄(y′) sin β̄(y) cos θ
√

y′2 + y2 − 2y′y cos θ
cos(δγ̄(y) − δγ̄(y′)) dθ .

(B.2)

The integration in dθ can be performed exactly and leads to a positive function of

y and y′. We also have sin β̄ ≥ 0 (since β̄ ∈ [0, π]) and we conclude that δγ̄(y) =

δγ̄(y′) for the exchange energy to be minimized. The angle δγ̄(y) is therefore a

constant. Requiring that the Rashba contribution is minimum, we arrive at the

desired conclusion:

δγ̄(y) =
π

2
. (B.3)
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C. Existence of isotropic polarized HF solutions

We consider here polarized solutions of Eq. (8.4). For definiteness we assume cos β̄(κ) >

0. In fact, it is easy to understand that cos β̄(κ) does not change sign, to minimize

the energy. Eq. (8.4) can be rewritten:
∫

√
|1+χ|

√
|1−χ|

κ′ dκ′
∫ 2π

0

sin β̄(κ) cos β̄(κ′) − sin β̄(κ′) cos β̄(κ) cos θ√
κ′2 + κ2 − 2κκ′ cos θ

dθ = 4πᾱ κ cos β̄(κ)

(C.1)

After applying
∫

κdκ to both sides and changing variables of integration κ ↔ κ′ in

the sin β̄(κ) cos β̄(κ′) term we obtain an equation of the form:
∫

√
|1+χ|

√
|1−χ|

Fχ(κ) cos β̄(κ) dκ = 4πᾱ

∫

√
|1+χ|

√
|1−χ|

κ2 cos β̄(κ) dκ (C.2)

where Fχ(κ) = κ
∫

√
|1+χ|√
|1−χ| κ

′ dκ′
∫ 2π

0
sin β̄(κ′)(1−cos θ)√
κ′2+κ2−2κκ′ cos θ

dθ is finite function of κ (smaller

than the value obtained setting sin β̄ = 1).

Eq. (C.2) can be only satisfied below a certain critical ᾱc (at fixed χ) because for

large ᾱc the left integrand is much smaller than the right one in the whole integration

region. However, this argument for ᾱc fails if χ = 1 because the right integrand

vanishes quadratically in κ = 0.

To explicitly compute the boundary of the allowed region plotted in Figure 8.7

it is convenient to write the solution in close proximity of the boundary in the form

β̄(κ) = π
2
− δβ̄(κ), where δβ̄(κ) is a very small angle. First order expansion of (8.4)

leads to the following integral equation:
∫

√
1+χ

√
|1−χ|

κ′ dκ′
∫ 2π

0

δβ̄(κ′) − δβ̄(κ) cos θ√
κ2 + κ′2 − 2κκ′ cos θ

dθ = 4πᾱ κ δβ̄(κ) , (C.3)

which is linear and of the Fredholm type [55,56], the kernel having a weak singularity

at κ = κ′. In particular, the (C.3) can be reduced to a linear system and the values

of ᾱ and χ for which the determinant is vanishing correspond to the boundary of the

allowed region.
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D. Particle current at finite magnetic field

We discuss in this Appendix the rather technical point of the particle current present

in the paramagnetic ground state, when perturbed by a magnetic field. We restrict

ourselves to the case of linear response examined in Chapter 9. Because of the spin-

orbit interaction, the particle velocities v̂x and v̂y have a contribution from the spin

polarization. For example:

v̂x =
∂Ĥ0

∂p̂x
=
p̂x

m
− ασ̂y . (D.1)

In the isothermal case the particle current in the ground state has to be vanishing.

In fact, if this is not the case, a state with lower energy is obtained after a galileian

transformation. This property can be immediately verified to hold in the transverse

case, where the occupation numbers retain the circular symmetry, and the polarization

is out of the plane. Therefore we have 〈∑i
p̂x,i

m
〉 = 〈∑i ασ̂y,i〉 = 0, and the average

velocity is also vanishing.

The in plane case is more complicated. Here, in view of the fact that the average

position of the occupied region in momentum space is displaced off the origin we

have 〈∑i
p̂x,i

m
〉 6= 0. However the ground state has a net in plane polarization, and

since 〈∑i
p̂x,i

m
〉 = 〈∑i ασ̂y,i〉 the two contributions to the velocity cancel each other.

In particular, the following relation (D.2) corresponding to vanishing particle current

can be derived starting from the HF equations (9.19) and (9.21):

ᾱ

∫ κ+

κ−

δγ̄(κ) κ dκ−
√

2

rs
(κ2

+a
2
+ + κ2

−a
2
−) + ᾱ (κ+a+ − κ−a−) = 0 . (D.2)

We rewrite (9.19) as follows:

2ᾱ κ δγ̄(κ) =

∫ κ+

κ−

κ′dκ′
∫ 2π

0

δγ̄(κ′) cos2 θ − δγ̄(κ) cos θ√
κ2 + κ′2 − 2κκ′ cos θ

dθ

2π
− B̃ . (D.3)
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After integration
∫ κ+

κ−
dκ of both sides and a change of variables we get:

2ᾱ

∫ κ+

κ−

κ δγ̄(κ)dκ = (D.4)

−
∫ κ+

κ−

B̃ dκ−
∫ κ+

κ−

dκ′
∫ κ+

κ−

dκ

∫ 2π

0

δγ̄(κ′) cos θ
∂

∂κ

√
κ2 + κ′2 − 2κκ′ cos θ

dθ

2π
.

At this point, the right hand side can be transformed as follows:

−
∫ κ+

κ−

B̃ dκ+

∫ κ+

κ−

dκ′
∫ κ+

κ−

dκ

∫ 2π

0

∂

∂κ

κκ′ δγ̄(κ′) sin2 θ√
κ2 + κ′2 − 2κκ′ cos θ

dθ

2π
(D.5)

= κ−c− − κ+c+ + a+κ+

∫ κ+

κ−

dκ

∫ 2π

0

sin2 θ
√

κ2 + κ2
+ − 2κκ+ cos θ

dθ

2π
(D.6)

−a−κ−
∫ κ+

κ−

dκ

∫ 2π

0

sin2 θ
√

κ2 + κ2
− − 2κκ− cos θ

dθ

2π
,

where in (D.5) we have integrated by parts with respect to dθ and in (D.6) we used

the previous definitions (9.20) and (9.24) of B̃ and c±. We can now substitute (9.21)

and after straightforward manipulations we get to:

ᾱ

∫ κ+

κ−

δγ̄(κ) κ dκ−
√

2

rs
(κ2

+a
2
+ + κ2

−a
2
−) + ᾱ (κ+a+ − κ−a−) =

∑

µ=±

aµ

2
κµI(κµ, κ−µ) ,

where:

I(κ+, κ−) =
1

3π
− 2K

π
+

∫ κ−/κ+

0

κ dκ

∫ 2π

0

(1 − cos θ)(1 − κ cos θ)

(1 + κ2 − 2κ cos θ)3/2

dθ

2π
(D.7)

−κ−
∫ 2π

0

(1 − cos θ) cos θ
√

κ2
− + κ2

+ − 2κ−κ+ cos θ

dθ

2π
+

∫ κ+

κ−

dκ

∫ 2π

0

sin2 θ
√

κ2 + κ2
+ − 2κκ+ cos θ

dθ

2π
.

Finally, it can be shown that this apparently complicated expression for I(κ−, κ+)

is exactly zero, for arbitrary values of κ+ and κ−. This proves relation (D.2) corre-

sponding to a vanishing current.

We now consider the in plane adiabatic case. Here there is no repopulation and

the polarization is different from zero. A finite current is present in the ground state.

However, since the magnetic field is oscillating, although with almost vanishing fre-

quency ω = 0+, the average current is still zero. Since the repopulation contribution

is zero, it is immediate to obtain from (D.1) that the charge current density is:

〈Ĵx〉 = α
e〈Ŝy〉
L2

= −α 2e

gµB

χ̃
‖
SB ,

which is in complete agreement with (9.10).
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E. Continuous limit for numerical in-plane polarized

solutions

The in-plane polarized solutions of Chapter 10 are obtained by discretization on a

finite grid. If the side of the grid is divided inN intervals, the exchange energy involves

N4 terms which makes the self consistent iterations cumbersome when increasing grid

size. However, we find that the numerical error scales as ∼ 1/N and extrapolation of

the energies gives very acceptable results at moderate grid size. We give in Figure E.1

an example of the procedure. When the state converges to a paramagnetic solution,

the energies can be obtained with a simple quadrature, and the reliability of the

method can be tested. An example of the phase transition between the out-of-plane

and the in plane polarized state is displayed in the second panel of Figure E.1.
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Figure E.1. Left: results for the total energy of the in plane polarized
state at ᾱ = 0.4. The large dots refer to results obtained with different
grid lattice constants 4/N (N indicated in the Figure) while the small
dots are the extrapolated results. At small rs the convergence is to a
paramagnetic solution (dashed line). Right: transition point between
the two types of polarized states. The solid lines are the energy of the
in-plane polarized state, as obtained by extrapolation from pairs of
grid results of the previous panel. The dashed line is the out-of-plane
polarized state energy.
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F. Details of derivations for Chapter 12

We present here for the convenience of the reader a more detailed derivation of some

of the results discussed in Chapter 12.

The following useful formulas are easily obtained for the derivatives of the occu-

pation functions (at χ = 0):

∂nµ(k)

∂χ

∣

∣

∣

∣

0

=
µ

2
δ(1 − k) , (F.1)

∂2nµ(k)

∂χ2

∣

∣

∣

∣

0

=
δ′(1 − k) − δ(1 − k)

4
, (F.2)

for the derivatives of the Green functions (at g = χ = 0):

∂G0µ(p, ω)

∂χ

∣

∣

∣

∣

0

=µ iδ(ω − p2) δ(1 − p) , (F.3)

∂G0µ(p, ω)

∂g

∣

∣

∣

∣

0

=−µ [G0(p, ω)]2 p , (F.4)

∂2G0µ(p, ω)

∂χ2

∣

∣

∣

∣

0

= iδ(ω − p2)
δ′(1 − p) − δ(1 − p)

2
, (F.5)

∂2G0µ(p, ω)

∂g∂χ

∣

∣

∣

∣

0

= p δ′(ω − p2) iδ(1 − p) , (F.6)

∂2G0µ(p, ω)

∂g2

∣

∣

∣

∣

0

=2[G0(p, ω)]3 p2 , (F.7)

for the derivatives of the ’resolved’ Green functions (at pg = pχ = p), where we use

pa = ka + q (a can be equal to χ or g):

~∇ka

2
G̃0(p

χ, pg, ω)

∣

∣

∣

∣

∣

0

=− ∂G0µ(p, ω)

∂a

∣

∣

∣

∣

0

µp

p
, (F.8)

~∇2
kχ

4
G̃0(p

χ, pg, ω)

∣

∣

∣

∣

∣

0

=
∂2G0µ(p, ω)

∂χ2

∣

∣

∣

∣

0

, (F.9)

~∇kχ · ~∇kg

4
G̃0(p

χ, pg, ω)

∣

∣

∣

∣

∣

0

=
∂2G0µ(p, ω)

∂χ ∂g

∣

∣

∣

∣

0

, (F.10)

~∇2
kg

4
G̃0(p

χ, pg, ω)

∣

∣

∣

∣

∣

0

=
∂2G0µ(p, ω)

∂g2

∣

∣

∣

∣

0

+ [G0(p, ω)]2 , (F.11)
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and for the spin sums (where N + 1 ≡ 1 and µj, µk ∈ {µi}):

∑

{µi}

N
∏

i=1

〈piµi|pi+1µi+1〉 = 2 , (F.12)

∑

{µi}
µjµk

N
∏

i=1

〈piµi|pi+1µi+1〉= 2
pj ·pk

pjpk
. (F.13)

If an odd number of indexes µj is present the sum vanishes (see Eq. (12.28)).

F.1 Derivatives of the energy diagrams

We consider first the case of ∂2D
∂χ2

∣

∣

∣

0
. The comparison to Dχχ is easily done, by

inspection of the explicit expressions (12.21) and (12.23). In fact, we have terms

containing double derivatives of the Green functions, which are equivalent because of

(F.5) and (F.9). An appropriate factor of 2 in ∂2D
∂χ2

∣

∣

∣

0
is obtained from the spin sum

(F.12). The terms involving products of the first derivatives of two Green functions

are also seen to be equivalent, using (F.3) and (F.8). The factors
pj ·pk

pjpk
obtained in

this type of terms appear in ∂2D
∂χ2

∣

∣

∣

0
because of the spin sum (F.13) and in (12.23)

because of the form of (F.8).

The equivalence of ∂2D
∂χ∂g

∣

∣

∣

0
and Dχg is also immediately seen, in the same way we

discussed above. The only complication appears for ∂2D
∂g2

∣

∣

∣

0
because of an additional

term Dgg of the following form (see Eq. (F.11)):

∆Dgg=

∫

[. . .]

∫

dk

(2π)2
2

N
∑

j=1

[G0(pj , ωj)]
2
∏

i6=j

G0(pi, ωi)

=−
∫

[. . .]
∂

∂ω

∫

dk

(2π)2
2

N
∏

i=1

G0(pi, ω + Ωi) , (F.14)

which is seen to be vanishing upon integration in the loop frequency dω.
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F.2 Exact property of the self-energy

For this case, we can consider the expression of ∂DΣ

∂g

∣

∣

∣

0
, which contains N terms in-

volving the first derivatives of the Green functions explicitly appearing in Eq. (12.27).

The spin sum for each term can be performed with the aid of:

∑

{µi}
µj

N
∏

i=0

〈piµj|pi+1µi+1〉 = µ
k · pj

k pj
, (F.15)

where pi = k + qi while p0 = pN+1 = k and µ0 = µN+1 = µ. The index µ does not

participate in the sum while µj does (µ /∈ {µi} and µj ∈ {µi}).
The comparison to

∂DΣ0

∂k
(see Eq. (12.29)) can be immediately done using:

∂G0(pi, ωi)

∂k
= −2µi

∂G0µi
(pi, ωi)

∂g

k · pi

k pi

, (F.16)

which is obtained from (F.8) (in the assumption that χ = g).

F.3 Derivatives of the second order direct term

We consider here the second derivatives of ED
2 (g, χ), as given by Eq. (12.35). We

start from
∂2ED

2

∂g2

∣

∣

∣

0
, which only involves the energy denominator of (12.35). The spin

summation is easily evaluated by making use of:

∑

µ,µ′,σ,σ′

|〈p σ|kµ〉|2 |〈p′ σ′|k′µ′〉|2(σp− µk + σ′p′ − µ′k′)2 = 8q2 . (F.17)

which follows from (F.12) and (F.13).

We than evaluate the angular integration in dq and integrations in dky, dk′y to

obtain the following expression:

∂2ED
2

∂g2

∣

∣

∣

∣

0

= − 1

π2

∫ ∞

0

dq

q2

∫ 1

−1

dkxdk
′
x

L(q, kx)L(q,−k′x)
(q + kx − k′x)

3
, (F.18)

We have introduced the geometrical factor L(q, kx) =
∫

n0(k)(1−n0(p)) dky, which

is defined when −1 ≤ kx ≤ 1:

L(q, kx) =



















0 if q < 2 and kx ≤ − q
2
,

2
√

1 − kx
2 if kx ≥ −q + 1 ,

2
√

1 − kx
2 − 2

√

1 − (q + kx)2 otherwise ,

(F.19)
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The integral in (F.18) can be finally evaluated. The numerical calculation leads

a result which is indistinguishable from −1
2
. We believe that this result is exact,

although we could not prove it analytically:

∂2ED
2

∂g2

∣

∣

∣

∣

0

= −1

2
. (F.20)

The remaining derivatives are obtained immediately from the general relation

Eq. (12.25). We calculate them here explicitly for completeness.

∂2ED
2

∂g∂χ

∣

∣

∣

0
, involves the first derivatives of the occupation functions given in (F.1).

Performing the spin summations with the aid of (F.12,F.13) and after some further

simplification, we arrive to the following expression:

∂2ED
2

∂χ∂g

∣

∣

∣

∣

0

= − 1

4π3

∫

dq

q2

∫

dk

∫

dk′ n0(k
′)(1 − n0(p

′))

(q2 + q · (k − k′))2
(F.21)

× [(k · q) (1 − n0(p)) δ(1 − k) − (p · q)n0(k) δ(1 − p)] .

Finally, after a change of variable k → −k − q = −p in the second term of the

integrand, angular integration in dq and integrations in dky and dk′y we get:

∂2ED
2

∂χ∂g

∣

∣

∣

∣

0

= − 1

π2

∫ ∞

0

dq

q2

∫ 1

−1

dkxdk
′
x

kx L(q,−k′x)
√

1 − k2
x

[

1 − n0(p)

(q + kx − k′x)
2

+
n0(p)

(kx + k′x)
2

]

,

(F.22)

where p =
√

1 + q2 + 2qkx. This integral can be actually transformed to the opposite

of (F.18), by means of an integration by parts of the two terms of the integrand, and

and a suitable change of variable in the second one. Therefore we conclude:

∂2ED
2

∂χ∂g

∣

∣

∣

∣

0

=
1

2
. (F.23)

The last term is
∂2ED

2

∂χ2

∣

∣

∣

0
which only involves derivatives of the occupation functions

as given in (F.1) and (F.2). Terms containing double derivatives of the occupation

functions can be transformed according to:

∫

f(k)
∂2nµ(k)

∂χ2
dk =

1

4

∫

∂f(k)

∂k
δ(1 − k) dk . (F.24)

.
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After performing the spin summations explicitly, a change of primed and unprimed

variables to collect similar terms, and the usual angular integration in dq we arrive

to:

∂2ED
2

∂χ2

∣

∣

∣

∣

0

= − 1

2π2

∫ ∞

0

dq

q2

∫

dk′ n0(k
′)(1 − n0(p

′))

∫

dk

[(

∂

∂k

1 − n0(p)

q + kx − k′x

)

δ(1 − k)

−
(

∂

∂p

n0(k)

q + kx − k′x

)

δ(1 − p) − 2 cos(φk − φp)

q + kx − k′x
δ(1 − k)δ(1 − p)

]

, (F.25)

where in the dk, dk′ integrations, the x axis is chosen to be along q so that, in

particular, p =
√

k2 + q2 + 2qkx. It is also convenient to change variable k → −k−q

in the second term in the square brackets.

The contributions from the first two terms in the square brackets involving the

derivative ∂n0(p)
∂k

= −δ(1 − p)∂p
∂k

cancel exactly the third term. In fact we have that

the coefficient multiplying the product δ(1 − k)δ(1 − p):

∂p/∂k

q + kx − k′x
− ∂p/∂k

kx + k′x
− 2 cos(φk − φp)

q + kx − k′x
, (F.26)

and we can simplify this by using kx = cosφk = − q
2
. Furthermore, ∂p/∂k = (k +

q cos φk)/p = 1 − q2

2
and cos(φk − φp) = 1 − q2

2
as well. Therefore, (F.26) is seen

to vanish identically. The remaining part of (F.25), after integrations in dky, dk′y, is

given exactly by the opposite of expression (F.22). Therefore we conclude:

∂2ED
2

∂g2

∣

∣

∣

∣

0

= − ∂2ED
2

∂χ∂g

∣

∣

∣

∣

0

=
∂2ED

2

∂χ2

∣

∣

∣

∣

0

= −1

2
. (F.27)

F.4 Derivatives of the second order exchange term

The fact that
∂2EX

2

∂g2

∣

∣

∣

0
= 0 is easily obtained using:

∑

µ,µ′,σ,σ′

〈p σ|kµ〉 〈kµ|p′σ′〉〈p′σ′|k′µ′〉 〈k′µ′|p σ〉(σp− µk + σ′p′ − µ′k′)2 = 0 , (F.28)

which follows from (F.12) and (F.13). Because of the general property (12.25), also

the other derivatives have to vanish. The mixed derivative
∂2EX

2

∂g∂χ

∣

∣

∣

0
= 0 is easily found

to be vanishing upon summation on the spin indexes.
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The second derivative
∂2EX

2

∂g2

∣

∣

∣

0
is calculated in a similar way of the direct contribu-

tion
∂2ED

2

∂g2

∣

∣

∣

0
. In particular we obtain the following sum of two integrals:

∂2EX
2

∂χ2

∣

∣

∣

0
= 1

4π2

∫∞
0

dq
q

∫

dk′ n0(k
′)(1 − n0(p

′)) (F.29)

×
∫

dk
[

(1 − n0(p))
∂
∂k

1
|k−k′+q|(q+kx−k′

x)
+ n0(p)

∂
∂k

1
|k+k′|(kx+k′

x)

]

δ(1 − k)

+ 1
4π2

∫∞
0

dq
q

∫

dk′ ∫ dk 1
|k−k′+q|(kx−k′

x+q)

[

k·k′

k k′ (1 − n0(p))(1 − n0(p
′)δ(1 − k)δ(1 − k′)

+p·p′

p p′ n0(k)n0(k
′)δ(1 − p)δ(1 − p′) − 2k·p′

k p′ n0(k
′)(1 − n0(p))δ(1 − k)δ(1 − p′)

]

.

where in the second one, written over the last two lines, we collected additional terms

that are absent in the corresponding calculation of the previous subsection. In fact,

these term do not vanish after spin summation, as it happens for the corresponding

ores of the direct contribution.

To see that the total result is exactly zero, one can rewrite the derivatives in the

second lines using:

∂f(k − k′)

∂k
= −∂f(k − k′)

∂k′x
cos φk −

∂f(k − k′)

∂k′y
sinφk , (F.30)

and perform an integration by parts in dk′. The derivatives of n0(k
′)(1 − n0(p

′))

produce additional δ functions, and the first integrand is reduced to a form similar

to the second one. Then, it is not difficult to prove that the two integrals differ only

in the sign, and cancel each other.

Therefore we have:

∂2EX
2

∂g2

∣

∣

∣

∣

0

=
∂2EX

2

∂χ∂g

∣

∣

∣

∣

0

=
∂2EX

2

∂χ2

∣

∣

∣

∣

0

= 0 . (F.31)
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