Generalized Holstein model for spin-dependent electron-transfer reactions

Li-Ping Yang(杨立平), Qing Ai(艾清), and C. P. Sun(孙昌璞)*
State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Science,
Beijing 100190, People’s Republic of China
(Received 20 October 2011; published 15 March 2012)

Some chemical reactions are described by electron transfer (ET) processes. The underlying mechanism could be modeled as a polaron motion in the molecular crystal—the Holstein model. By taking spin degrees of freedom into consideration, we generalize the Holstein model (molecular crystal model) to microscopically describe an ET chemical reaction. In our model, the electron spins in the radical pair simultaneously interact with a magnetic field and their nuclear-spin environments. By virtue of the perturbation approach, we obtain the chemical reaction rates for different initial states. It is discovered that the chemical reaction rate of the triplet state demonstrates its dependence on the direction of the magnetic field while the counterpart of the singlet state does not. This difference is attributed to the explicit dependence of the triplet state on the direction when the axis is rotated. Our model may provide a possible candidate for the microscopic origin of the avian compass.

I. INTRODUCTION

Nowadays, it has been prevailing in both experimental and theoretical explorations that quantum coherence effects due to the role of phase in quantum superposition may exist in living processes. This essentially implies that there may exist quantum coherence effect in chemical reactions in some living processes, such as charge and energy transfer in photosynthesis [1–6] and singlet-and-triplet transition in the avian compass [7–18].

It has long been questioned how migratory birds can navigate to their destination over hundreds of miles. One of the possible answers is given by the radical pair mechanism [11–13], Two unpaired electron spins in the radical pair are initially prepared in the singlet state. Due to their interactions with the geomagnetic field and their environmental nuclear spins, the electron spins coherently transit between the singlet and triplet states. Since the singlet and triplet states could result in different products of chemical reactions, the direction and magnitude of the geomagnetic field determine the relative yields of two distinct products. By sensing the information incorporated in the final products of the chemical reactions in their retinas, the birds can find their way to their destination. Therefore, quantum coherence underlies the avian compass since the singlet and triplet states correspond to different types of quantum entanglement. Ever since it was proposed a decade ago, the radical-pair-mechanism–based avian compass has been supported by a series of biological and chemical experiments [7,9].

In this hypothesis, the nuclear spins play a crucial role because there would be no coherent transition between the singlet and the triplet states if there were no nuclear spins [13]. Previous studies mainly concentrated on the nuclear-spin environment without intercoupling [15–17]. Mostly recently, by taking into account the intercoupling of the nuclear spins, we studied a special avian compass model with the nuclear environments modeled by an Ising model in a transverse field [18]. The rationality of this model lies in the fact that the weak internuclear-spin coupling is comparable with the Zeeman energy splitting induced by the weak geomagnetic field. It was discovered that quantum criticality in the environment enhances the sensitivity of magneto-reception. On the other hand, although various master-equation approaches were proposed to deal with such spin-dependent chemical reactions in the avian compass [9], the underlying physical mechanism is still missing in studying the quantum coherence with microscopic models. Thus, it is urgent to propose appropriate microscopic models for different kinds of chemical reactions to better understand the quantum coherence effect in those processes. A case in point is the Holstein’s molecular crystal model, which is also regarded as a microscopic model of chemical reactions with electron transfer (ET) [19].

The Holstein model was originally proposed to characterize vibration-assisted ET in a one-electron molecular crystal [19]. Here, in order to describe the chemical reaction of spin dependence as well as direction dependence, the Holstein model is generalized to incorporate the degrees of freedom of spin to make electrons naturally interact with a magnetic field. Additionally, due to the presence of the nuclear-spin environments surrounding the electron spins, there would be coherent transition between the singlet and triplet states of the two electron spins. In contrast to the previous investigation using anisotropic hyperfine coupling [13], the hyperfine interaction between the electron spin and its nuclear environment is isotropic in our model. Based on this generalized model, we calculate the chemical reaction rates of the singlet and triplet states of the electron spins. Here, the chemical reaction rate is determined by the transition rate of one electron in a localized molecular orbit to another at a distance. It is discovered that the reaction rate of the triplet state sensitively responds to the variation of the direction of the magnetic field with respect to the polarization of two electron spins. On the contrary, the chemical reaction of the singlet state does not demonstrate such dependence on the direction of the magnetic field. The above results are attributed to the invariance of the singlet state under the rotation of the system around the \(y \) axis, while the triplet state will change along with the rotation according to the irreducible tensor of the SO(3) group. Therefore, our proposed model may serve as a microscopic origin for the chemical reaction in the avian compass.
In the next section, we generalize the Holstein model to incorporate the electron spin degrees. In Sec. III, we consider a general case with an external magnetic field and nuclear-spin environments. In Sec. IV, we study the dynamic evolution of the radical pair and obtain the chemical reaction rates for different initial states. Finally, we summarize our main results in the conclusion. Furthermore, we show the detailed calculations for the chemical reaction probability, the chemical reaction rate, and the transition probability from the triplet state to the singlet state in Appendix A and B, respectively.

II. GENERALIZED HOLSTEIN MODEL

Many chemical reactions are accompanied by ET, where the electron is transferred from one site to another (Fig. 1). A very important but simple quantum-mechanical model for ET reactions is the molecular crystal model, which was originally developed by Holstein to describe so-called polaron motion in narrow-band conductors [20] and understood as a microscopic model in describing simple chemical reactions [19].

The model Hamiltonian \(H = H_v + H_e + H_{ev} \) is decomposed into two parts; that is, the ionic vibration part

\[
H_v = \frac{1}{2} \sum_{j=1}^{2} \left(-\frac{\hbar^2}{m_j} \frac{\partial^2}{\partial x_j^2} + m_j \omega_j^2 x_j^2 \right) + \sqrt{m_1 m_2} f x_1 x_2, \tag{1}
\]

and the electron-phonon hybrid part

\[
H_e + H_{ev} = \sum_{j,a} \bar{\varepsilon}_j (x_1, x_2) c_{ja}^\dagger c_{ja} - J \sum_a (c_{1a}^\dagger c_{2a} + \text{H.c.}), \tag{2}
\]

where \(x_j \) is the displacement of the \(j \)th ion, \(\omega_j \) is the harmonic vibration frequency with the reduced mass \(m_j \), \(f \) is the coupling constant of the two molecules, and \(c_{ja} (c_{ja}^\dagger) \) is the fermionic annihilation (creation) operator of the electron at molecule \(j \) with spin \(\alpha \). Since the orbital energy \(\bar{\varepsilon}(x_1, x_2) \) is linearized as

\[
\bar{\varepsilon}_j (x_1, x_2) \approx \varepsilon_j + \sum_i \left(\frac{\partial \varepsilon_j}{\partial x_i} \right) x_i, \tag{3}
\]

we explicitly obtain the electronic Hamiltonian

\[
H_e = \sum_{j,a} \varepsilon_j c_{ja}^\dagger c_{ja} - J \sum_a (c_{1a}^\dagger c_{2a} + \text{H.c.}), \tag{4}
\]

and the electron-vibration coupling

\[
H_{ev} = -\frac{1}{2} \sum_{j,a} A_j c_{ja}^\dagger c_{ja} x_j. \tag{5}
\]

Here, the molecular orbital energy \(\varepsilon_j \) is spin-independent. In the next section, we will consider a more general case with an external magnetic field. The tunneling integral \(J \) is assumed to be independent of the displacement \(x_j \) and \(A_j = \sqrt{2\hbar \varepsilon_j / \partial x_j} \) denotes the electron-vibration coupling, where the factor \(\partial \varepsilon_j / \partial x_j \) for \(i \neq j \) is neglected because the molecular orbital energy of the \(j \)th molecule changes negligibly when the displacement of the \(i \)th molecule varies.

For simplicity, we assume two identical molecules (i.e., \(m_1 = m_2 = m, \omega_1 = \omega_2, \) and \(A_1 = A_2 = A \)). Choosing coordinates \(X = (x_1 + x_2) / \sqrt{2} \) and \(x = (x_1 - x_2) / \sqrt{2} \), we decompose the Hamiltonian \(H = H_r + H_e \) into two decoupled parts; that is, the one for the motion of the center of mass,

\[
H_r = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial X^2} + \frac{1}{2} m \Omega^2 X^2 + AX, \tag{6}
\]

with \(\Omega = \sqrt{\omega_1^2 + f} \), and the other for the relative motion,

\[
H_e = \hbar \omega \left(b^\dagger b + \frac{1}{2} \right) + \sum_{j,a} \varepsilon_j c_{ja}^\dagger c_{ja} - J \sum_a (c_{1a}^\dagger c_{2a} + \text{H.c.})
- \frac{1}{2} \sqrt{\frac{\hbar}{2m \omega}} (b^\dagger + b) \sum_a (c_{2a}^\dagger c_{2a} - c_{1a}^\dagger c_{1a}), \tag{7}
\]

where we have introduced the bosonic operators

\[
b = \sqrt{\frac{m \omega}{2 \hbar}} \left(x + \frac{\hbar}{m \omega} \frac{\partial}{\partial x} \right), \quad b^\dagger = \sqrt{\frac{m \omega}{2 \hbar}} \left(x - \frac{\hbar}{m \omega} \frac{\partial}{\partial x} \right), \tag{8}
\]

where \(\omega = \sqrt{\omega_1^2 + f} \) is the effective frequency.

Next, we make the Van Vleck transformation, also called the polaron transformation [21,22],

\[
\hat{H} = e^{i H} H e^{-i H}, \tag{9}
\]

for the above generalized Holstein model, where

\[
s = -i \sum_{j,a} \phi_j (b^\dagger - b) c_{ja}^\dagger c_{ja} \tag{10}
\]

is the transformation kernel and

\[
\phi_1 = -\phi_2 = \frac{A}{2 \hbar \omega} \sqrt{\frac{\hbar}{2m \omega}} = \phi. \tag{11}
\]
Thus, we can formally decouple the degrees of freedom of electron and vibration, obtaining
\(\hat{H}_r = \hat{H}_r^{(0)} + \hat{H}_r^{(1)} \), with
\[
\hat{H}_r^{(0)} = \hbar \omega b^\dagger b + \sum_{ja} \varepsilon_j c^\dagger_{ja} c_{ja} - \hbar \omega \left(\sum_{ja} \phi_j^\dagger c^\dagger_{ja} c_{ja} \right)^2 ,
\]
and
\[
\hat{H}_r^{(1)} = -J \sum_a \left(c^\dagger_{1a} c_{2a} e^{2\phi(b^\dagger b)} + c^\dagger_{2a} c_{1a} e^{-2\phi(b^\dagger b)} \right) .
\]

This molecular crystal Hamiltonian (12) describes the ET process for a two-local-orbit system. Here, we generalize the Holstein model by taking into consideration the degrees of freedom of the electron spins. Up to now, the above generalization seems to be trivial, since we could totally separate the spin and orbital degrees of freedom. However, when a local external magnetic field is applied to the radical pair to form asymmetric couplings to the two electron spins, spin-orbit coupling is induced. In this case, a spin-dependent ET process takes place. These asymmetric couplings can also be implemented by coupling to their nuclear-spin environments.

III. SPIN MOLECULAR CRYSTAL IN MAGNETIC FIELD AND NUCLEAR ENVIRONMENT

In the previous section, we described the generalized Holstein model, with spin degree of freedom. In this section, on account of an external magnetic field and nuclear-spin environments, we investigate how a chemical reaction responds to its magnetic environment.

Choosing the polarization direction of the spin state as the \(z \) direction, we define the singlet state \(|s\rangle \) and triplet state \(|t\rangle \) of the electron spins as
\[
|s\rangle = \frac{1}{\sqrt{2}} \left(|\uparrow \uparrow \rangle |\downarrow \downarrow \rangle - |\downarrow \uparrow \rangle |\uparrow \downarrow \rangle \right) = \frac{1}{\sqrt{2}} (c^\dagger_{11} c^\dagger_{22} - c^\dagger_{12} c^\dagger_{21})|0\rangle ,
\]
and
\[
|t\rangle = \frac{1}{\sqrt{2}} \left(|\uparrow \downarrow \rangle |\downarrow \uparrow \rangle + |\downarrow \uparrow \rangle |\uparrow \downarrow \rangle \right) = \frac{1}{\sqrt{2}} (c^\dagger_{11} c^\dagger_{21} + c^\dagger_{12} c^\dagger_{22})|0\rangle ,
\]
respectively, with \(|0\rangle\) being the vacuum state. Here, we remark that the polarization of the spin state should be initialized in a specific direction in order to make the consequential chemical reaction respond to the external magnetic field. This is one of the essences lying at the core of the radical-pair mechanism [8,13].

In a simple case where the hyperfine couplings are isotropic, the Hamiltonian, which describes the interaction between the electron spins and their asymmetric magnetic environments (the magnetic field plus the nuclear spins), reads
\[
H_s = -\sum_{j=1}^{2} (\mu_B \vec{B}_0 \cdot \hat{S}_j + g_j \vec{I}_j \cdot \hat{S}_j) ,
\]
where \(\vec{B}_0 = B_0 \sin \Theta \hat{x} + g \hat{z} \) is the external geomagnetic field with the inclination angle \(\Theta \), \(\mu_B \) is the Bohr magneton, \(\hat{S}_j = (S^x_j, S^y_j, S^z_j) \) are the Pauli operators for the \(j \)-th electron spin, \(\vec{I}_j = (I^x_j, I^y_j, I^z_j) \) are the Pauli operators for the \(j \)-th nuclear spin, and \(g_j \) is the hyperfine coupling constant between the \(j \)-th electron spin and its environmental nuclear spin.

Combining the relative vibration and spin Hamiltonians, the total Hamiltonian for a spin-dependent ET reaction is obtained as
\[
H_{tot} = H_r + H_s .
\]
After a rotation around the \(y \) axis by the angle \(\Theta \) (Fig. 2), combined with the Van Vleck transformation defined in Eq. (9), we obtain
\[
H_{tot} = \hat{H}_r + \hat{H}_s ,
\]
where the relative vibration Hamiltonian \(\hat{H}_r = \hat{H}_r \) is the same as that given in Eqs. (12) and (13), but the Hamiltonian of the spin part is changed into
\[
\hat{H}_s = -\sum_j (\mu_B B_0 S^z_j + g_j I^z_j \cdot S_j) .
\]
Meanwhile, we make the same rotation and transformation for the quantum states of the whole system as in Eq. (9). Straightforwardly, after the combined transformation, the singlet and triplet states read as
\[
|\tilde{s}\rangle = |s\rangle \text{ and } |\tilde{t}\rangle = \cos \Theta |t\rangle + \frac{1}{\sqrt{2}} \sin \Theta \left(|\uparrow \uparrow \rangle - |\downarrow \downarrow \rangle \right) ,
\]
respectively.

It is obvious that the singlet state is not \(\Theta \)-dependent, while the triplet state is. In the next section, we will study the dependence of the chemical reaction rate on the direction of the geomagnetic field. As shown in the following, it is this explicit dependence on the direction in the rotated triplet state that results in the variation of its chemical reaction rate along with the changes of the magnetic field direction.
IV. MAGNETIC DIRECTION CONTROLLING CHEMICAL REACTION

In this section, by means of the perturbation method, we analytically obtain the probability for one electron to transfer to the other local orbit to complete a chemical reaction. Assuming that, at the initial time, the vibration and nuclear spins are both in thermal equilibrium states and the electron spins are in the triplet state, the density matrix of the whole system $\rho(0) = \rho_v \otimes \rho_n \otimes \rho_t$ includes three parts. The first part

$$\rho_v = \frac{1}{Z} \sum_{m=0}^{\infty} \exp\left(-\frac{m\hbar \omega}{k_B T}\right) |m\rangle\langle m|$$

(19)

denotes the relative vibration of the molecules, where $Z = 1/[1 - \exp(-\hbar \omega/k_B T)]$, where k_B is the Boltzmann constant and T is the temperature of the environment. The second part is the density matrix of the nuclear spins. Since $\mu_n B_0 < k_B T$ with μ_n being the nuclear magneton, the nuclear spins are in the state

$$\rho_n = \frac{1}{4} \sum_{j=1}^{4} |\chi_j^n\rangle\langle \chi_j^n|,$$

(20)

where $|\chi_j^0\rangle = |\downarrow 1 \downarrow 2\rangle$, $|\chi_j^1\rangle = |\downarrow 1 \uparrow 2\rangle$, $|\chi_j^2\rangle = |\uparrow 1 \downarrow 2\rangle$, and $|\chi_j^3\rangle = |\uparrow 1 \uparrow 2\rangle$. The last one,

$$\rho_t = |t\rangle\langle t|,$$

(21)

describes the electrons.

Starting from the above initial state, we calculate the total ET reaction probability of the triplet state (for details please refer to Appendix A):

$$P(\tau) = \frac{1}{4Z} \sum_{m,n=0}^{\infty} \sum_{j=1}^{4} \sum_{p=1}^{24} e^{-\beta m \omega_n} P_{j,mnp}(\tau),$$

(22)

where

$$P_{j,mnp}(\tau) = \left| \sum_{q} c_{jmq} \tilde{H}_{hmp,mq}^{(1)} \frac{1 - e^{i\hbar \omega_{hmp,mq} \tau}}{\hbar \omega_{hmp,mq}} \right|^2,$$

(23)

and $c_{jmq} = \langle \psi_j^{(n)} | \tilde{J} \chi^m \rangle / \tilde{J} \chi^m$ is the expanding coefficient. And the chemical reaction rate is determined by the reaction probability per unit time in the long-time limit [23]

$$k_r = \frac{\partial}{\partial \tau} \lim_{\tau \to \infty} P(\tau),$$

(24)

where the explicit expression which displays direction dependence is given in Appendix A.

To show the above results in an intuitive way, we turn to numerical examples. We take the orbital energy difference $\Delta = \epsilon_1 - \epsilon_2 = 0.01$ eV and the relative vibration frequency $\omega = 10^9$ Hz. We assume the tunneling integral $J = 0.01 \Delta$ and $\phi = 0.2$. The magnitude of the geomagnetic field is $B_0 = 50$ μT and the hyperfine coupling constant is $g_1 = g_2 = 10^{-8}$ eV. In the following calculations, we need to take a cut of the phonon occupation number, which is defined by an effective temperature of the environment. We find that the chemical reaction probability is not sensitive to the temperature of the environment. For these parameters, the perturbation condition holds. Then we numerically calculate

the transition probability for the initial triplet state from Eq. (22) as shown in Fig. 3.

Obviously, the ET probability displays its dependence on the angle Θ. At a given time, the ET probability falls to its minimum value when the magnetic field is perpendicular to the z direction, while it reaches its maximum when the direction of the external field is parallel to the z axis. Besides, the probability is symmetrical about $\Theta = \pi/2$, which coincides with the experimental result of Ref. [7]. When we come to the initial singlet state, there is no such dependence on the angle Θ. This is a reasonable result for isotropic hyperfine coupling case since both the singlet state and the transformed Hamiltonian do not explicitly depend on the angle.

On the other hand, the chemical reaction rate for triplet state would vanish if there were no interaction between the electron spins and their nuclear environments (i.e., $g_j = 0$), while the ET reaction happens when the electron spins are in the singlet state. This can be seen from the fact that $H_{\perp}^{(1)} |t\rangle = 0$ but $H_{\perp}^{(1)} |s\rangle \neq 0$. The coupling of electron spins to the nuclear-spin environments can induce the transition from the triplet to the singlet states to make the ET happen. Then the

FIG. 3. (Color online) (a) Chemical reaction probability vs time and Θ. (b) Chemical reaction probability for triplet state at a given time $t = 0.5/\omega$ for effective temperature $T = 5$ mK (red dashed line) and $T = 10$ mK (blue solid line).
spatial ET leads to the chemical reaction. In order to illustrate the mechanism of magnetic-direction-controlling chemical reaction more clearly, we study the dynamic evolution of the radical pair. Using the same parameters as those in Fig. 3, we plot the transition probability from the triplet state to the singlet state,

$$P_{t \to s} = \text{Tr}_{e.n.e}[\hat{\rho}_s e^{-i\hat{H}_t/t} \hat{\rho}(0) e^{i\hat{H}_t/t}],$$

in Fig. 4. Due to the presence of the nuclear-spin environments, there is periodical interconversion between the singlet and triplet states. Besides, the amplitude of this periodical oscillation is adjusted by the direction of the magnetic field. For one thing, the singlet-triplet interconversion is induced by the hyperfine couplings, not the uniform magnetic field, but it is modulated by the geomagnetic field. Our conjecture, that the triplet state is converted to the singlet state to complete the ET reaction, is confirmed by the same line shape of the maximum conversion probability as that of the chemical reaction probability of the triplet state.

Now we define the contrast C of the maximum probability of triplet-singlet transition as

$$C = \frac{P_{t \to s}^{\text{max}}(\Theta = 0) - P_{t \to s}^{\text{max}}(\Theta = \pi/2)}{P_{t \to s}^{\text{max}}(\Theta = 0) + P_{t \to s}^{\text{max}}(\Theta = \pi/2)}.$$

As shown in the inset of Fig. 4(b), with increasing magnitude of the magnetic field, the contrast increases and finally reaches unity when $B \to \infty$. In order not to break down the perturbation theory, since a strong magnetic field will induce level crossing, it is required that the Zeeman splitting of the electron spins is much smaller than the orbital energy difference (i.e., $B_0 \ll \Delta/\mu_B \sim 1$T). It should be noted that, all the above results are valid just for $B_0 > 0$. When there is no external magnetic field, we can also calculate the triplet-singlet transition probability in the perturbation approach. It is straightforward to find that the triplet-singlet transition probability is not zero, but independent of the inclination angle Θ. As a result, the chemical reaction rate is neither vanishing nor Θ dependent.

V. CONCLUSION

On account of electron spin degrees of freedom, we study the effect of the direction of the magnetic field on the chemical reaction by generalizing the Holstein model. By means of the perturbation approach, we obtain the ET reaction probability and chemical reaction rate of the singlet and triplet states. The chemical reaction rate of the triplet state displays its sensitive dependence on the direction of the magnetic field in contrast to the counterpart of the singlet state. We demonstrate that the triplet state indirectly participates in the chemical reaction. It must be converted to the singlet state by the hyperfine coupling between electrons and nuclear spins to take part in the ET reaction. We emphasize that the hyperfine couplings are isotropic in our model which are different from the anisotropic couplings in the previous study [13]. With the above comprehensive consideration, it could be concluded that our model may serve as a possible microscopic origin for the avian compass.

ACKNOWLEDGMENTS

We thank Hui Dong, Cheng-Yun Cai, and Da Zhi Xu for helpful discussion. This work is supported by National Natural Science Foundation of China under Grants No. 10935010 and No. 11074261.

APPENDIX A: CHEMICAL REACTION RATE

In this appendix, we calculate the ET reaction probability to first order.

First of all, the Hamiltonian of the electron spin-j part $\tilde{H}_j^{(i)}$ is diagonalized with eigenstates

$$|e_1^{(j)}\rangle = |\uparrow_{j}|\downarrow_{j}\rangle,$$

$$|e_2^{(j)}\rangle = \frac{\theta_j}{2} |\uparrow_{j}|\downarrow_{j}\rangle - \sin \frac{\theta_j}{2} |\downarrow_{j}|\uparrow_{j}\rangle,$$
Here, the mixing angles is defined as

\[
\varphi = h \omega \phi_0.
\]

The total Hamiltonian \(\tilde{H} \) is split into two parts; namely, \(\tilde{H}^{(0)} = H^{(0)} + H_t \) governing the free dynamic evolution and \(\tilde{H}^{(1)} = \hat{H}^{(1)} \) for the ET process. \(|\psi_0\rangle \oplus |m\rangle \) are the eigenstates of \(\hat{H}^{(0)} \) with eigenvalues \(E_{mq}^{(0)} = m \hbar \omega + E_{eq} \). Here, \(m = 0, \ldots, \infty \) denotes the relative vibrational quantum number. A given initial state is expanded as

\[
|\Psi_m(0)\rangle = \sum_{q=1}^{24} c_{mq}(0) |\psi_{mq}^{(0)}\rangle,
\]

and then the wave function at time \(t \) is given by

\[
|\Psi(t)\rangle = \sum_{n=0}^{\infty} \sum_{p=1}^{24} c_{np}(t) \exp \left[-i E_{np}/\hbar \right] |\psi_{np}^{(0)}\rangle,
\]

where \(c_{np}(t) \) are the coefficients determined by the Schrödinger equation

\[
i \hbar \dot{c}_{np}(t) = \sum_{n',p'} c_{n'p'}(t) E_{np'} - E_{n'p'} / \hbar,
\]

and

\[
\hat{H}^{(1)}_{npq} = \langle \psi_{np} | \hat{H}^{(1)} | \psi_{pq} \rangle.
\]

To the first-order approximation, as \(c_{np}(t) \) on the right-hand side of Eq. (A12) is approximated as \(c_{np}(0) \delta_{n',m} \), it is straightforward to obtain

\[
c_{np}(t) = c_{np}(0) - \sum_{q} c_{mq}(0) \hat{H}^{(1)}_{npmq} e^{i\omega_{npmq} t} / \hbar \delta_{npmq}.
\]

The square of its norm gives the probability \(P_{np} \) of finding the system in the state \(|\psi_{np}\rangle \) at time \(t \). Thus, for \((n,p) \neq (m,q) \), we have

\[
P_{np}(t) = \sum_{q} c_{mq}(0) \hat{H}^{(1)}_{npmq} e^{i\omega_{npmq} t} / \hbar \delta_{npmq}^2.
\]

The total ET reaction probability is \(P(t) = \sum_{np} P_{np}(t) \). And the chemical reaction rate is determined by the reaction probability per unit time in the long-time limit [23]; namely,

\[
k = \frac{\partial}{\partial \tau} \lim_{\tau \to -\infty} P(t).
\]

In our case, the system is initially in the state \(\rho(0) = \rho_v \otimes \rho_o \otimes \rho_i \); namely, the relative vibration part

\[
\rho_v = \frac{1}{Z} \sum_{m=0}^{\infty} e^{-E_{mq} \hbar \omega} |m\rangle \langle m|,
\]

with

\[
Z = 1/[1 - \exp(-\hbar \omega / k_B T)],
\]

the nuclear spin part

\[
\rho_o = \frac{1}{4} \sum_{j=1}^{4} |x_j^1\rangle \langle x_j^1|,
\]

and the electron spin part

\[
\rho_i = |t\rangle \langle t|.
\]
TABLE II. Coefficients for chemical reaction rate of triplet state.

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Explicit expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R_{1,m_1,21}$</td>
<td>$\cos^2 \Theta \sin^2 \frac{i \Theta}{2} \sin \frac{\Theta}{2} \delta (E_{n_{21}} - E_{m_{21}}) + \cos^2 \frac{i \Theta}{2} \cos \frac{\Theta}{2} \delta (E_{n_{21}} - E_{m_{21}})$</td>
</tr>
<tr>
<td>$R_{1,m_2,21}$</td>
<td>$\sin^2 \Theta \sin^2 \frac{i \Theta}{2} \sin \frac{\Theta}{2} \delta (E_{n_{21}} - E_{m_{21}}) + \cos^2 \frac{i \Theta}{2} \cos \frac{\Theta}{2} \delta (E_{n_{21}} - E_{m_{21}})$</td>
</tr>
</tbody>
</table>

TABLE III. Coefficients for the probability from triplet to singlet state at time t.

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Explicit expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>$D_{n_1,1}$</td>
<td>$\frac{1}{2} \left[\sin \frac{\Theta}{2} \sin \frac{\Theta}{2} \cos \Theta \Theta_{E_{n_1},t,0} + \sin \frac{\Theta}{2} \sin \frac{\Theta}{2} \cos \Theta \Theta_{E_{n_1},t,1/2} + \cos \frac{\Theta}{2} \cos \frac{\Theta}{2} \cos \Theta \Theta_{E_{n_1},t,1} \right]$</td>
</tr>
<tr>
<td>$D_{n_1,2}$</td>
<td>$\frac{1}{2} \left[\sin \frac{\Theta}{2} \sin \frac{\Theta}{2} \cos \Theta \Theta_{E_{n_1},t,0} + \sin \frac{\Theta}{2} \sin \frac{\Theta}{2} \cos \Theta \Theta_{E_{n_1},t,1/2} + \cos \frac{\Theta}{2} \cos \frac{\Theta}{2} \cos \Theta \Theta_{E_{n_1},t,1} \right]$</td>
</tr>
<tr>
<td>$D_{n_1,3}$</td>
<td>$\frac{1}{2} \left[\sin \frac{\Theta}{2} \sin \frac{\Theta}{2} \cos \Theta \Theta_{E_{n_1},t,0} + \sin \frac{\Theta}{2} \sin \frac{\Theta}{2} \cos \Theta \Theta_{E_{n_1},t,1/2} + \cos \frac{\Theta}{2} \cos \frac{\Theta}{2} \cos \Theta \Theta_{E_{n_1},t,1} \right]$</td>
</tr>
</tbody>
</table>

032707-7
where $\tilde{\rho}_t$, $\tilde{\rho}_e$, $\tilde{\rho}_d$, and $\tilde{\rho}_s$ are the initial density matrices of the system, environment, donor, and singlet states, respectively. And we calculate the total chemical reaction probability as

$$P_r(\tau) = \frac{1}{4Z} \sum_{m,n=0}^{\infty} \sum_{j=1}^{4} \sum_{p=1}^{24} e^{-\beta n\hbar\omega} P_{jmn}(\tau),$$

(A22)

where

$$P_{jmn}(\tau) = \sum_{q} c_{jmq} \tilde{H}_{np mq}^{(1)} \left(1 - e^{i\omega_{np mq} \tau} \right)^2,$$

(A23)

with $c_{jmq} = \langle \psi_{mq}^{(0)} | \chi_j^n | m \rangle$.

(A24)

As a matter of fact, those energy-increasing terms with $q = 17, 18, 19, 20$ (corresponding to the final states with both electrons at the orbits of the donor) and the cross-product terms with $\omega_{np mq} \neq 0$ of Eq. (A23) do not contribute much to the chemical reaction probability. Therefore, a Fermi's golden-rule-like chemical reaction rate is obtained as

$$k_r = \frac{\pi J^2}{4Z \hbar} \sum_{m,n=0}^{\infty} \sum_{j=1}^{4} \sum_{p=21}^{24} e^{-\beta n\hbar\omega} |(m|e^{-2\beta(|b^{(b=1)}|)}|m)\rangle|^2 R_{jmn}$$

(A25)

with the coefficients listed in Table II.

APPENDIX B: SINGLET AND TRIPLET STATES INTERCONVERSION

For the system initially in the state

$$\tilde{\rho}(0) = \tilde{\rho}_e \otimes \tilde{\rho}_d \otimes \tilde{\rho}_s,$$

(B1)

the probability of the electrons converted to the singlet state at time t reads

$$P_{t \rightarrow s} = \text{Tr}_{e,d,s}[\tilde{\rho}_e e^{-i\tilde{H}_t / \hbar} \tilde{\rho}(0) e^{i\tilde{H}_t / \hbar}]$$

(B2)

$$= \frac{1}{4Z} \sum_{m,n} \sum_{i,j} e^{-\beta n\hbar\omega} \times |\langle i | \chi_j^n | m \rangle \rangle |^2 \langle \chi_j^n | \tilde{\rho}_s (0) | \chi_i^n \rangle|^2,$$

(B3)

The eigenfunction of \tilde{H} is approximated to the first order as

$$|\psi_{mq} \rangle = |\psi_{mq}^{(0)} \rangle + \sum_{n=0}^{\infty} \sum_{p=1}^{24} \xi(m.n.q,p) |\psi_{np}^{(0)} \rangle,$$

(B4)

with

$$\xi(m.n.q,p) = \frac{\langle \psi_{np}^{(0)} | \tilde{H}^{(1)} | \psi_{mq}^{(0)} \rangle^2}{E_{mq}^{(0)} - E_{np}^{(0)}},$$

(B5)

while the eigenenergy is obtained to the second order as

$$E_{mq} = E_{mq}^{(0)} + \sum_{n,p} \left(|\psi_{np}^{(0)} \rangle \langle \tilde{H}^{(1)} | \psi_{mq}^{(0)} \rangle^2 / E_{mq}^{(0)} - E_{np}^{(0)} \right).$$

(B6)

As a result, the time evolution operator is approximated as

$$e^{-i\tilde{H}_t / \hbar} = \sum_{k=0}^{\infty} \sum_{q=1}^{24} e^{i\xi E_{mq} t / \hbar} |\psi_{kq} \rangle \langle \psi_{kq} |,$$

(B7)

Neglecting the second-order terms, we obtain the conversion probability as

$$P_{t \rightarrow s} = \frac{1}{4Z} \sum_{m=0}^{\infty} \sum_{j,k=1}^{4} e^{-\beta n\hbar\omega} \times \sum_{q=1}^{16} \langle \tilde{\delta} (|i \rangle \langle \chi_j^n | m \rangle \rangle |^2 \langle \chi_j^n | \tilde{\rho}_s (0) | \chi_i^n \rangle|^2,$$

(B8)

where the coefficients D_{mjk} are listed in Table III.

