1)    Chao Lian, Shi-Qi Hu, Jin Zhang, Cai Cheng, Zhe Yuan, Shiwu Gao, and Sheng Meng, Integrated plasmonics: Broadband Dirac plasmons in borophene, Phys. Rev. Lett. 125, 116802  (2020).

2)    Yu Zhang, Fei Gao, Shiwu Gao, and Lin He, Tunable magnetism of a single-carbon vacancy in graphene, Science Bulletin 65, 194-200 (2020).

3)    Zhao Liu, and Chi-Yung Yam, Shiwu Gao, Tao Sun and Dong-Bo Zhang, Lattice dynamics of twisted ZnO nanowires under generalized Born– von Karman boundary conditions, New J. Phys. 22, 023004 (2020).

4)    Yunzhen Zhao, Decai Huang, Jiaye Su, and Shiwu Gao, Coupled Transport of Water and Ions through Graphene Nanochannels, J. Phys. Chem. C 124, 17320-17330 (2020).

5)    Jie Ma, Shiwu Gao, Plasmon-Induced Electron-Hole Separation at the Ag/TiO2(110) Interface, ACS Nano 13, 13658-13667 (2019).

6)    Jianfeng Wang, Xuelei Sui, Shiwu Gao, Wenhui Duan, Feng Liu and Bing Huang, Anomalous Dirac Plasmons in Quasi-1D Topological Electrides, Phys. Rev. Lett. 123, 206402 (2019).

7)    Shizheng Wen, Shiwu Gao, and Chi-Yung Yam, Serial and parallel spin circuits at molecular scale with two atomic-vacancies in graphene: Amplification of spin-filtering effect, Carbon 154, 357-362 (2019).

8)    Da-Jie Yang, S. P. Zhang, S. Im, Q. Q. Wang H. X. Xu, and Shiwu Gao, Analytical analysis of spectral sensitivity of plasmon resonance in a nanocavity, Nanoscale 11, 1097 (2019) DOI: 10.1039/C9NR02766A.

9)    Fei Gao, and Shiwu Gao, Thermodynamic stability of magnetic states of monovacancy in graphene revealed by ab initio molecular dynamics simulations,  Scientific Reports  9, 751 (2019).

10) S. Z. Wen, F. Gao, C. Y. Yam, & Shiwu Gao, Nanomechanical control of spin current flip using monovacancy graphene, Carbon 133, 218-223 (2018).

11) Y. Yang, F. Gao, Shiwu Gao, and S. H. Wei, Origin of the stability of two-dimensional perovskites: a first-principles study,  Journal of Materials Chemistry A, 6(30), 14949-14955 (2018).

12) S. Chen, A. P. Draude, X. Nie, H. P. Fang, N. R. Walet, Shiwu Gao, & J. C. Li,  Effect of layered water structures on the anomalous transport through nanoscale graphene channels, Journal of Physics Communications 2, 085015 (2018).

13) S. Govindarajan, C. Y. Yam, Shiwu Gao, & M. Y. Chen, Roles of Chenodeoxycholic Acid Coadsorbent in Anthracene-Based Dye-Sensitized Solar Cells: A Density Functional Theory Study, The Journal of Physical Chemistry C, 122(41), 23280-23287 (2018).

14) Fei Gao, Shiwu Gao, Sheng Meng, Screening single-atom catalysts for methane activation: α-Al2O3(0001)-supported Ni, Phys. Rev. Materials 1,  035801 (2017).

15) S. J. Ding, D. J. Yang, J. L. Li, G. M. Pan, L. Ma, Y. J. Lin, J. H. Wang, L. Zhou, M. Feng, H. Xu, S. Gao, and Q. Q. Wang, The nonmonotonous shift of quantum plasmon resonance and plasmon-enhanced photocatalytic activity of gold nanoparticles, Nanoscale  9, 3188-3195 (2017).

16) S. Govindarajan, S. Gao, W. Cai and C.Y. Yam, Rational design and first-principles studies of phenothiazine-based dyes for dye-sensitised solar cells, Molecular Physics 115, 731 (2017).

17) F. Gao and S. Gao, Controlling magnetic transition of monovacancy graphene by shear distortion, Scientific Reports  7, 1792 (2017).

18) Y. R. Fang, Yang Jiao,  K. L. Xiong, Z. J. Yang, Shiwu Gao, A. B. Dahlen, M. Käll, Plasmon Enhanced Internal Photoemission in Antenna-Spacer-Mirror Based Au/TiO2 Nanostructures, Nano Lett. 15,  4059-4065 (2015).

19) Y. Jiao, A. Hellman, Y. R. Fang, Shiwu Gao, Schottky barrier formation and band bending revealed by  first-principles calculations, Scientific Reports 5,  11374 (2015).

20) Shiwu Gao, Nonlinear response of metal nanoparticles: Double plasmon excitation and electron transfer, J. of Chem. Phys. 142,  234701 (2015).

21) Z. J. Ding, Shiwu Gao, and S. Meng, Orbital dependent interaction of quantum well states for catalytic water splitting, New J. of Phys. 17,  013023 (2015).

22) K. Liu and Shiwu Gao, Water adsorption at metal surfaces, state-specific coupling with quantum well states, J. of Phys. Chem. C 113,  17613-17618 (2012).

23) P. Song, S. Meng, P. Nordlander, and Shiwu Gao, Quantum plasmonics: symmetry dependent plasmon-molecule coupling and quantized photoconductance, Phys. Rev B 86, 121410 (R) (2012). 

24) S. Peng, P. Nordlander, and Shiwu Gao, Quantum Mechanical study of the coupling of plasmon excitations to atomic scale electron transport, J. Chem. Phys. 134, 074701 (2011).

25) Z. Yuan, Y. Jiang, Y. Gao, M. Käll, Shiwu Gao, Symmetry-dependent screening of surface plasmons in ultrathin supported films: The case of Al/Si, Phys. Rev. B 83, 165452 (2011). 

26) Y. Gao, Z. Yuan, and Shiwu Gao, Semiclassical approach to plasmon-electron coupling and Landau damping of surface plasmons, J. Chem. Phys. 134, 134702 (2011).

27) Huajun Qin, Yi Gao, Jing Teng, Hongxing Xu, Kehui Wu, and Shiwu Gao, Laterally tunable plasmon resonance in confined bi-atomic-layer Ag nanodisks, Nano Letters 10, 2961-2964 (2010).

28) Q. X. Bao, H. Zhang, Shiwu Gao, X. D. Li, and X. L. Cheng, Hydrogen adsorption on Ti containing organometallic structures grafted on silsesquioxanes, Structural Chemistry 21, 1111-1116 (2010).

29) Z. Yuan and Shiwu Gao, Linear response approach to collective electronic excitations in solids and at surfaces, Comput. Phys. Commun. 180, 466 (2009).

30) Z. Yuan and Shiwu Gao, Landau damping and lifetime oscillation of surface plasmons in metallic thin films, Surface Science 602, 460 (2008).

31) J. Yan and Shiwu Gao, Plasmon resonances in linear atomic chains: free electron behavior and anisotropic screening of d electrons, Phys. Rev. B 78, 235413 (2008).

32) Q. F. Zhang, G. Wahnstrom, M. E. Bjorketun, Shiwu Gao, E. G. Wang, Path integral treatment of proton transport processes in BaZrO3, Phys. Rev. Lett. 101, 215902 (2008).

33) J. D. Guo, E. G. Wang, X. D. Bai, H. Chen, L. W. Guo, Z. X. Cao, X. C. Ma, K. Xia, and Shiwu Gao, Designing and construction of functional low-dimensional structures at surfaces, Physics (in Chinese) 37(6), 384-391 (2008).

34) J. Yan, Z. Yuan and Shiwu Gao, End and central plasmon resonances in linear atomic chains, Phys. Rev. Lett. 98, 216602 (2007).

35) H. Liu, J. Yan, H. W. Zhao, Shiwu Gao and D. M. Chen, Confinement Effect on Scattering States in a Thin Lead Film, Phys. Rev. B 76, 113403 (2007).

36) Z. Yuan and Shiwu Gao, Linear response study of plasmon excitation in  metallic thin films: layer-resolved hybridization and dispersion, Phys. Rev. B 73, 155411 (2006).

37) A. Kiejna, T. Pabisiak and S. W. Gao, The energetics and structure of rutile TiO2(110), J. Phys.: Condens. Matter 18, 4207 (2006).

38) S. Meng and Shiwu Gao, Formation and interaction of hydrated alkali metal ions at the graphite-water interface, J. Chem. Phys. 125, 014708 (2006).

39) K. Liu and Shiwu Gao, Adsorbate vibration and resonance lifetime broadening of a cobalt adatom on a Cu(111) surface, Phys. Rev. B 74, 195433 (2006).

40) S. Meng, E. G. Wang, Ch. Frischkorn, M. Wolf, Shiwu Gao, Consistent picture  for the wetting structure of water/Ru(0001), Chem. Phys. Lett. 402, 384-388 (2005).

41) Y. Yang, S. Meng, L. F. Xu, E. G. Wang, and Shiwu Gao, Dissolution dynamics of NaCl nanocrystal in liquid water, Phys. Rev. E 72, 012602 (2005).

42) Shiwu Gao, and Z. Yuan, Emergence of collective plasmon excitation in metal atomic chains, Phys. Rev. B 72, 121406 (R) (2005).   

43) K. Liu, and Shiwu Gao, Excitation of frustrated translation and nonadiabatic adatom hopping induced by inelastic tunneling, Phys. Rev. Lett. 95, 226102 (2005).

44) S. Meng, D. C. Charkarov, B. Kasemo, and Shiwu Gao,  Two dimensional hydration shells of alkali metal ions on a hydrophobic surface, J. Chem. Phys. 121, 12572 (2004).

45) S. Meng, E. G. Wang, and Shiwu Gao, Water adsorption on metal surfaces: a general picture from density functional theory studies, Phys. Rev. B 69, 195404 (2004).

46) S. Meng, E. G. Wang, and Shiwu Gao, Pressure induced phase transition of confined water from ab initio molecular dynamics simulations, J. Phys. Cond. Matt. 16, 8851-8859 (2004).

47) S. Meng, E. G. Wang, and Shiwu Gao, A molecular picture of hydrophilic and hydrophobic interactions from ab initio DFT calculations, J. Chem. Phys. 119, 7617 (2003).

48) S. Meng, L. F. Xu, E. G. Wang, and Shiwu Gao, Comment on ``Vibrational recognition of hydrogen-bonded water networks on a metal surface''—Reply, Phys. Rev. Lett. 91, 059602 (2003).

49) Shiwu Gao, J. R. Hahn, and W. Ho, Adsorption induced hydrogen bonding by CH group, J. Chem. Phys. 119, 6232 (2003).

50) Shiwu Gao, Linear-scaling parallelization of the WIEN package with MPI,  Comput. Phys. Commun. 153, 190 (2003).

51) T. Yamanaka, Anders Hellman, Shiwu Gao, and W. Ho, Time-resolved  femtosecond desorption of NO from Pt(111) surface, Surf. Sci. 514, 404 (2002).

52) Shiwu Gao, H. Petek, J. Aizpurua, and P. Apell, Coherence and decoherence of a localized excitation on an adatom at surface, Chin. Phys. Lett. 19, 1195 (2002).

53) S. Meng, L. F. Xu, E. G. Wang, and Shiwu Gao, Vibrational recognition of hydrogen-bonded water networks on a metal surface, Phys. Rev. Lett. 89, 176104 (2002).

54) Shiwu Gao, Johan Stromquist, and B. I. Lundqvist, Dissipative quantum dynamics in 2D: Anisotropic dissipation and selective bond-breaking in surface  photochemistry, Phys. Rev. Lett. 86, 1805 (2001).

55) B. I. Lundqvist, A. Bogicevic, K. Carling, S. V. Dudiy, Shiwu Gao et al, Density-functional bridge between surfaces and interfaces, Surface Science 493, 253 (2001).

56) Shiwu Gao, Dissipative quantum dynamics at surfaces, a nonlinear coupling model, Phys. Rev. B 60, 15609 (1999).

57) Shiwu Gao, Reply to a comment, Phys. Rev. Lett. 82, 3377 (1999).

58) Shiwu Gao and D. C. Langreth, Image state mediated electron transfer at surfaces, Surf. Sci. Lett., 398 (3), L314-L319 (1998).

59) Shiwu Gao, A discussion on the Ehrenfest theorem-Gao’s Reply, Phys. Rev. Lett. 80, 5703 (1998).

60) Shiwu Gao, Lindblad approach to quantum dynamics of open systems, Phys. Rev. B 57, 4509 (1998).

61) Johan Stromquist and Shiwu Gao, Quantum mechanical wavepacket calculation of photoinduced reaction:O2/Pt(111), J. Chem. Phys. 106, 5751--5760 (1997).

62) Shiwu Gao, Quantum kinetic theory of vibrational heating and bond-breaking by hot electrons, Phys. Rev. B 55, 1876--1886 (1997).

63) Shiwu Gao, M. Persson and B. I. Lundqvist, Theory of atom transfer in scanning tunneling microscope, Phys. Rev. B 55, 4825--4836 (1997).

64) Shiwu Gao, Dissipative quantum dynamics with a Lindblad functional, Phys. Rev. Lett. 79, 3101--3104 (1997).

65) B. C. Stipe, M. A. Rezaei, W. Ho, S. Gao, M. Persson, and B. I. Lundqvist, Single molecule dissociation by tunnelling electrons, Phys. Rev. Lett. 78, 4410--4413 (1997).

66) Shiwu Gao, B. I. Lundqvist, and W. Ho, Hot-electron-induced vibrational heating at surface: importance of a quantum-mechanical description, Surf. Sci. Lett. 341, L1031--L1036 (1995).

67) D. G. Busch, Shiwu Gao, R. A. Pelak, M. F. Booth, and W. Ho, Femtosecond desorption dynamics probed by time-resolved final-state velocity measurements, Phys. Rev. Lett. 75, 673--676 (1995).

68) Shiwu Gao, D. G. Busch, and W. Ho,  Femtosecond dynamics of electron vibrational heating and desorption, Surf. Sci. Lett. 344, L1252--L1258 (1995).

69) Shiwu Gao and W. Ho, Femtosecond dynamics of electron-vibrational heating and bond breaking, Invited paper in “Laser techniques for Surface Science II”, Proceedings of the SPIE's 40th Annual Meeting, 9--14 July 1995, edited by J. M. Hicks, W. Ho  and  H. L. Dai, Vol 2547, p.97--108, (SPIE, Bellingham, 1995).

70) R. A. Pelak, M. F. Booth, D. G. Busch, Shiwu Gao and W. Ho, Time-resolved state distributions of femtosecond laser desorption of NO from Pt(111), “Laser techniques for Surface Science II”, Proceedings of the SPIE's 40th Annual Meeting, 9--14 July 1995, edited by J. M. Hicks, W. Ho  and  H. L. Dai, Vol 2547, p.62--72, (SPIE, Bellingham, 1995).

71) Zhongwen Li and Shiwu Gao, Band theoretical calculation of image states on a metal surface, Phys. Rev. B 50, 15349--15352 (1994).

72) Shiwu Gao, Heating and breaking of ad-molecule bond by inelastic tunneling, Surf. Sci. 313, 448--458 (1994).

73) B. Hellsing and Shiwu Gao, Chemisorbed molecular oxygen on metals: interaction and charge transfer, Solid State Communications 90, 223--228 (1994).

74) Lieping Zhong, Shiwu Gao, and Dingsheng Wang, Interaction in a chemisorption system of the submonolayer Cs on InP(110) substrate, Phys. Rev. B 47, 9791--9796 (1993).

75) Shiwu Gao, M. Persson and B. I. Lundqvist, Theoretical investigation of the mechanism for Xe transfer in the atomic switch, J. Electron Spectroscopy and Related Phenomena, 64/65, 665--670 (1993).

76) Shiwu Gao, M. Persson and B. I. Lundqvist, Atomic switch proves importance of electron-hole pairs in processes on metal surfaces? Solid State Commun. 84, 271--273 (1992).

77) Shiwu Gao, Inelastic hot electron scattering at GaAs(110) surface, Solid State Commun. 84, 563--567 (1992).

78) Shiwu Gao and B. I. Lundqvist, Two-dimensional electron gas in Rydberg surface states; Limits set by Auger decay, Solid State Commun. 84, 147--150 (1992).

79) L. P. Zhong, Shiwu Gao, and Dingsheng, Wang,Interaction of alkali-metal overlayer with III-V semiconductor surfaces, Proceedings of 21 international Conference on The physics of semiconductors, edited by P. Jiang, and H.-Z. Zheng, 594--597 (World Scientific, 1992).

80) Shiwu Gao and B. I. Lundqvist, Auger decay of surface Rydberg states, Progr. Theor. Phys. Suppl. 106, 405--410 (1991).

81) B. Hellsing and Shiwu Gao, Molecular oxygen on metals, Chem. Phys. Lett. 187, 137--142 (1991).

82) Shiwu Gao and Dingsheng Wang, Non-metallic behavior for Cs/GaAs(110), Phys. Rev. B 44, 8812--8817 (1991).

83) Shiwu Gao, and Dingsheng Wang, Coverage dependence of charge transfer between Cs overlayer and 5d transition metal substrates, Chin. Phys. Lett. 8, 25--28 (1991).

84) Dingsheng Wang, K. Chen, Shiwu Gao, R. Wu, and N. Wang, Theory of submonolayer alkali-metal adsorption, Structure of Surfaces--III (ICSOS--III), Springer series in surface science, eds. by S. Y. Tong, M. A. Van Hove, K. Takayanagi, and X. Xie, Vol.24, 24--37 (Springer, 1991).

85) Shiwu Gao and Dingsheng Wang, An embedding scheme for calculating charge transfer between adsorbatesand metal substrates, J. Phys. Cond. Matt. 2, 2187--2197 (1990).