SOLVING SPARSE LINEAR SYSTEMS OF EQUATIONS

Chao Yang
Computational Research Division
Lawrence Berkeley National Laboratory
Berkeley, CA, USA
OUTLINE

• Sparse matrix storage format
• Basic factorization algorithm
 • Left-looking
 • Right-looking
 • Multi-frontal
• Supernodes and block algorithm
• Elimination tree and symbolic factorization
• Matrix ordering
• Parallel left-looking factorization algorithm for share-memory machines
• Parallel right-looking factorization algorithm for distributed-memory machines
• Parallel triangular substitution
• Sparse solvers: PARDISOL, SuperLU, MUMPS
Sparse Matrix and storage form

- Triplet format: 3 arrays: rowind, colind, nzvals

<table>
<thead>
<tr>
<th>rowind</th>
<th>colind</th>
<th>nzvals</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

- Compressed sparse column (CSC) format

<table>
<thead>
<tr>
<th>nzvals</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>rowind</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>colptr</td>
<td>1</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$A = \begin{pmatrix}
1 & 4 \\
2 & 6 \\
3 & 5 & 8 \\
7 & 9
\end{pmatrix}$

- Compressed sparse row (CSR) format
- Other format (skyline, ELLPACK format)
Sparse matrix-vector multiplication

- \(y \leftarrow Ax \)

- non-symmetric version

 for \(j = 1:n \)

 for \(i = \text{colptr}(j):\text{colptr}(j+1)-1 \)

 \[y(\text{rowind}(i)) = y(\text{rowind}(i)) + \text{nzvals}(i) \times x(j) \]

 end

 end

- Symmetric version

 for \(j = 1:n \)

 for \(i = \text{colptr}(j):\text{colptr}(j+1)-1 \)

 \[y(\text{rowind}(i)) = y(\text{rowind}(i)) + \text{nzvals}(i) \times x(j) \]

 if \((\text{rowind}(i) \neq j) \) then

 \[y(j) = y(j) + \text{nzvals}(i) \times x(\text{rowind}(i)) \]

 end

 end

 end

indirect addressing
Basic algorithm for sparse Cholesky

• Recall

\[A = \left(\begin{array}{cc} \sqrt{\alpha_{11}} & I \\ a/\sqrt{\alpha_{11}} & \end{array} \right) \left(\begin{array}{c} 1 \\ \hat{A} - \frac{aa^T}{\alpha_{11}} \end{array} \right) \left(\begin{array}{cc} \sqrt{\alpha_{11}} & a^T/\sqrt{\alpha_{11}} \end{array} \right) \]

• Left-looking:

\[l = \frac{a}{\sqrt{\alpha_{11}}} \text{(cdiv)} \quad \hat{A} e_1 = \hat{A} e_1 - e_1^T l l^T e_1 \text{ (cmo)} \]

• Algorithm:

```plaintext
for j = 1:n
    If (j>1) then
        foreach k such that \( L_{jk} \neq 0 \) do
            \[ \text{cmo}(j,k) \]
        end
    end
    If (j<n) then
        \[ \text{cdiv}(j) \]
    end
end
```

exploit sparsity
Non-zero fill

- The L factor can be much denser than the original matrix
- The extra nonzeros in L are called nonzero fills
- The positions of these nonzeros should be determined (quickly) by a preprocessing procedure called symbolic factorization
- The number of nonzeros in L can be reduced/minimized by properly reordering the rows and columns of the matrix

\[
A = \begin{pmatrix}
 X & X \\
 X & X & X \\
 X & X & X \\
 X & X & X
\end{pmatrix}
\quad
L = \begin{pmatrix}
 + & + \\
 + & + & + \\
 + & + & + & + & +
\end{pmatrix}
\]
Symbolic factorization and elimination tree

- Symbolic factorization is used to determine the nonzero structure of \(L \) before the matrix \(A \) is factored numerically.
- The nonzero structure of the \(j \)th column of \(L \) is determined by the nonzero structure of the \(k \)th column of \(L \) for all \(k \leq j \) such that \(L_{jk} \neq 0 \).
- The column dependency can be represented by a tree called elimination tree.

\[
L = \begin{pmatrix}
1 & 2 & \times & 3 & \times & \times & \times & \times & 4 & \times & \times & \times & 5 & \times & \times & \times & 6 & \times & \times & \times & \times & 7
\end{pmatrix}
\]

Each node is mapped to a matrix column number.

Parent\((k)\) = the smallest row index \(j \) such that \(L_{jk} \neq 0 \).
Matrix reordering

• Reverse Cuthill-McGee (make reordered matrix narrow banded)
• Minimum degree (greedy algorithm, heuristics to minimize potential nonzero-fill)
• Minimum fill
• Nested dissection (divide-and-conquer, motivated by mesh domain decomposition)
Reverse Cuthill-McKee
Minimum degree

matrix A

matrix L
Nested Dissection and Graph Partition

Separator
Indirect address mapping

- The challenge of a sparse factorization is in $cmod(j,k)$
 - Not all columns $k<j$ contribute to the update of column j
 - Columns k and j may have different sparsity structures

- Use symbolic factorization (to be discussed later) to construct, for each column j, a list of contributing columns $(k<j)$.
 - Can be achieved by converting L from CSC to CSR format.
 - Can be done dynamically using an array of length n

- Use an index map to place nonzero update from column k in column j
Supernodes

- A supernode is a set of adjacent columns that share identical nonzero structure below the diagonal block.
- The nonzero structure of a supernode can be indexed by a single array (reduce the number of indirect addressing).
- A supernode contains dense blocks that can take advantage of BLAS3.
Left-looking, right-looking, multi-frontal

• Left-looking: use the factored nodes below the node being factored in the elimination tree to update

• right-looking: the node being eliminated is used to update all of its ancestors

• Multifrontal: the node being eliminated passes its contribution to all ancestors as fronts to its parent
Parallel left-looking factorization for shared memory parallel machines

1. Copy the nonzero entries of A to L;
2. do $j = 1, 2, ..., n$
 2.1 if $(j > 1)$ then
 2.1.1 foreach k such that $L_{j,k} \neq 0$ do
 2.1.1.1 $cmod(j, k)$;
 2.1.2 endif
 2.2 endif
3. if $(j < n)$ then
 3.1 $cdiv(j)$;
4. endif
5. enddo;

1. Copy the nonzero entries of A to L;
2. Compute the row structure of L;
3. do $j = 1, 2, ..., n$ up in parallel
 3.1 $kusd = 0$;
 3.2 foreach $(k < j)$ such that $L_{j,k} \neq 0$ do
 3.2.1 if $iready(k) = 1$ then
 3.2.1.1 $nelm = nelm + 1$;
 3.2.1.2 $enode(nelm) = k$;
 3.2.2 else
 3.2.1.1 Save k in a linked list link;
 3.2.3 endif
 3.3 endif
 3.4 for $p = 1, nelm$ do
 3.4.1 $k = enode(p)$;
 3.4.1 $cmod(j, k)$;
 3.5 endfor;
 3.6 $kusd = kusd + nelm$;
 3.7 if $kusd < runz$ then
 3.7.1 $nelm = 0$;
 3.7.2 foreach $k \in$ link do
 3.7.2.1 if $iready(k) = 1$ then
 3.7.2.1.1 remove k from link;
 3.7.2.1.2 $nelm = nelm + 1$;
 3.7.2.1.3 $enode(nelm) = k$;
 3.7.2.2 endif
 3.7.3 endif
 3.7.4 go to 3.4;
 3.8 endif
 3.9. $cdiv(j)$;
 3.10. $iready(j) = 1$;
4. enddo;
Parallel right-looking factorization for distributed-memory machines

1. while some L_{IJ} with $\text{map}[L_{IJ}] = \text{MyID}$ is not complete do
2. receive some L_{IK}
3. if $I = K$ /* diagonal block */
4. $\text{Diag}_{K, \text{MyID}} := L_{KK}$
5. foreach $L_{JK} \in \text{Wait}_{K, \text{MyID}}$ do
6. $L_{JK} := L_{JK} L_{KK}^{-1}$
7. send L_{JK} to all P that could own blocks in row J or column J
8. else
9. $\text{Rec}_{K, \text{MyID}} := \text{Rec}_{K, \text{MyID}} \cup \{L_{IK}\}$
10. foreach $L_{JK} \in \text{Rec}_{K, \text{MyID}}$ do
11. if $\text{map}[L_{IJ}] = \text{MyID}$ then
12. Find L_{IJ}
13. $L_{IJ} := L_{IJ} - L_{IK} L_{JK}^T$
14. $\text{nmod}[L_{IJ}] := \text{nmod}[L_{IJ}] - 1$
15. if $(\text{nmod}[L_{IJ}] = 0)$ then
16. if $I = J$ then /* diagonal block */
17. $L_{JJ} := \text{Factor}(L_{JJ})$
18. send L_{JJ} to all P that could own blocks in column J
19. else if $(\text{Diag}_{J, \text{MyID}} \neq \emptyset)$ then
20. $L_{IJ} := L_{IJ} L_{JJ}^{-1}$
21. send L_{IJ} to all P that could own blocks in row I or column I
22. else
23. $\text{Wait}_{J, \text{MyID}} := \text{Wait}_{J, \text{MyID}} \cup \{L_{IJ}\}$

Rothberg and Gupta, SISC vol 15, pp 1413-1439, 1994
Sparse direct solver software

- MUMPS
- SuperLU, SuperLU_MT, SuperLU_DIST
- PARDISOL (Intel MKL)
- PSPASES
- CLIQUE (ELEMENTAL)
Iterative methods for solving linear systems

• Direct methods are good when the factorization does not produce too many nonzero fills
• Iterative method only require a procedure to multiply a matrix (and its transpose) with a vector
• The convergence of iterative method often depends on the condition number of the coefficient matrix \(A \)
• Preconditioner are often used to accelerate convergence
• Performance largely depends on how efficient matrix-vector multiplication can be performed
• Types of iterative methods:
 • Matrix splitting based methods (Jacobi, Gauss-Seid)
 • Krylov subspace based methods (GMRES, Conjugate Gradient)
 • Multigrid
Matrix splitting methods

- Matrix splitting: $A = M - R$
- Iterative method based on: $Mx_{k+1} = Rx_k + b$
- Error recurrence: $e_{k+1} = M^{-1}Re_k$, where $e_k = x_k - x$
- Convergence guaranteed if $|\lambda_{max}(M^{-1}R)| < 1$
Jacobi iteration

- Let $A = L + D + U$, L strictly lower triangular, U strictly upper triangular, D diagonal
- Recurrence defined by
 \[Dx_{k+1} = (-L - U)x_k + b \]
 or
 \[x_{k+1} = x_k + D^{-1}(b - Ax_k) \]
Gauss-Seidel

• Let $A = L + D + U$

• Gauss-Seidel is defined by setting $M = L + D$, and $R = -U$

• Recurrence:

• $(L + D)x_{k+1} = -Ux_k + b$
Successive Overrelaxation

- Let $A = L + D + U$
- Choose $M = D + \omega L$, $R = (1 - \omega)D - \omega U$
- Recurrence:
 $$x_{k+1} = x_k + \omega (D + \omega L)^{-1}(b - Ax_k)$$
- Choose ω to optimize the converge (i.e., the spectral radius of $M^{-1}R$)
Krylov subspace method

- Krylov subspace $\mathcal{K}(A, v_0) = \{v_0, Av_0, A^2v_0, \ldots, A^{k-1}v_0\}$
- Approximate the solution to $Ax = b$ from the Krylov subspace $x \approx Vg$, where $\text{span}\{V\} = K(A, v_0)$
- Prefer V to be an orthonormal basis. Can be generated by Gram-Schmidt: Arnoldi algorithm
 \[AV_k = V_kH_k + fe_k^T, \quad V_k^TV_k = I, \quad V_k^Tf = 0 \]
 where H_k is upper Hessenberg or tridiagonal when A is symmetric
- Convergence depends on the condition number of A and also the distribution of eigenvalues
- Precondition: solve $M^{-1}Ax = M^{-1}b$ or $L^{-1}AL^{-T}(L^Tx) = L^{-1}b$
How to extract approximation from a Krylov subspace

- Recall $\hat{x} \approx Vg$, where V contains an orthonormal basis of a Krylov subspace

- We can choose g
 - to minimize $\|r\| = \|A\hat{x} - b\|_2$
 - to minimize $\|r\|_{A^{-1}}^2 = (A\hat{x} - b)A^{-1}(A\hat{x} - b) = \|\hat{x} - x\|_A^2$
 - to ensure $r = Ax - b$ is orthogonal to $\mathcal{K}(A, v_0)$ (Galerkin condition)
 \[
 V^T(b - Ax) = 0
 \]
 - To ensure $r = Ax - b$ is orthogonal to some other subspace (Petro-Galerkin condition)
GMRES (general minimum residual)

- \(\hat{x} = \left(V_k, \frac{f}{\|f\|} \right) g \), choose \(g \) to minimize \(\|r\| = \|A\hat{x} - b\|_2 \)
- Because \(AV_k = V_k H_k + f e_k^T, V_k^T V_k = I, V_k^T f = 0 \)
- Equivalent to solving small least squares \(\|\hat{H}_k g - \hat{b}\|_2 \)

where \(\hat{H} = \left(\begin{array}{c} H_k \\ \|f\| e_k^T \end{array} \right), \hat{b} = \left(\begin{array}{c} V_k^T \\ f^T / \|f\| \end{array} \right) b \)

- Incremental QR factorization of \(\hat{H}_k \) by Given’s rotation
- Monitor the convergence, terminate when the estimated residual norm is small enough
The GMRES algorithm

\[\beta = \|r\|_2, \ v^1 = r/\beta; \ \hat{b} = \beta e^1 \]
e\ is the first unit vector (of length m + 1)

\[\text{for } i = 1, 2, \ldots, m \]
\[w = Av^i \]
\[\text{for } k = 1, \ldots, i \]
\[h_{k,i} = (v^k)^T w, \ w = w - h_{k,i}v^k \]
\[h_{i+1,i} = \|w\|_2, \ v^{i+1} = w/h_{i+1,i} \]
\[r_{1,i} = h_{1,i} \]
\[\text{for } k = 2, \ldots, i \]
\[\gamma = c_{k-1}r_{k-1,i} + s_{k-1}h_{k,i} \]
\[r_{k,i} = -s_{k-1}r_{k-1,i} + c_{k-1}h_{k,i} \]
\[r_{k-1,i} = \gamma \]
\[\delta = \sqrt{r^2_{i,i} + h^2_{i+1,i}}, \ c_i = r_{i,i}/\delta, \ s_i = h_{i+1,i}/\delta \]
\[r_{i,i} = c_ir_{i,i} + s_ih_{i+1,i} \]
\[\hat{b}_{i+1} = -s_i\hat{b}_i, \ \hat{b}_i = c_i\hat{b}_i \]
\[\rho = |\hat{b}_{i+1}| = \|b - Ax(\lfloor j \rfloor m + i)\|_2 \]

if \(\rho \) is small enough then
\(n_r = i, \) goto SOL

SOL:
\[n_r = m, \ y_{n_r} = \hat{b}_{n_r}/r_{n_r,n_r} \]
\[\text{for } k = n_r - 1, \ldots, 1 \]
\[y_k = (\hat{b}_k - \sum_{i=k+1}^{n_r} r_{k,i}y_i)/r_{k,k} \]
\[x = \sum_{i=1}^{n_r} y_i v^i, \text{ if } \rho \text{ small enough quit} \]
\[r = b - Ax \]
MINRES

- When A is symmetric (but not necessarily positive definite), H_k is tridiagonal
- The orthonormal basis of $\mathcal{K}(A, v_0)$ can be generated via a 3-term recurrence
- The solution of the tridiagonal least squares problem $\min_g \|\widehat{H}_k g - \beta e_1\|$ can be accumulated with a few vectors
- But the use of 3-term recurrence may quickly lead to loss of orthogonality among the columns of V_k (only three are kept at one time)
- As a result, round off error can propagate rapidly
MINRES algorithm

Compute \(v_1 = b - Ax_0 \) for some initial guess \(x_0 \)
\[\beta_1 = ||v_1||_2; \eta = \beta_1; \]
\[\gamma_1 = \gamma_0 = 1; \sigma_1 = \sigma_0 = 0; \]
\[v_0 = 0; w_0 = w_{-1} = 0; \]
for \(i = 1, 2, \ldots \)

The Lanczos recurrence:
\[v_i = \frac{1}{\beta_i} v_i; \quad \alpha_i = v_i^T Av_i; \]
\[v_{i+1} = Av_i - \alpha_i v_i - \beta_i v_{i-1} \]
\[\beta_{i+1} = ||v_{i+1}||_2 \]

QR part:
old Givens rotations on new column of \(T \):
\[\delta = \gamma_i \alpha_i - \gamma_{i-1} \sigma_i \beta_i; \quad \rho_1 = \sqrt{\delta^2 + \beta_{i+1}^2} \]
\[\rho_2 = \sigma_i \alpha_i + \gamma_{i-1} \gamma_i \beta_i; \quad \rho_3 = \sigma_{i-1} \beta_i \]
New Givens rotation for subdiag element:
\[\gamma_{i+1} = \delta / \rho_1; \quad \sigma_{i+1} = \beta_{i+1} / \rho_1 \]
Update of solution (with \(W_i = V_i R_{i,i}^{-1} \))
\[w_i = (v_i - \rho_3 w_{i-2} - \rho_2 w_{i-1}) / \rho_1 \]
\[x_i = x_{i-1} + \gamma_{i+1} \eta w_i \]
\[||r_i||_2 = ||\sigma_{i+1}|| ||r_{i-1}||_2 \]
check convergence; continue if necessary
\[\eta = -\sigma_{i+1} \eta \]
end
Conjugate Gradient

- Let $\hat{x} = Vg$
- Choose g such that $V^T(b - A\hat{x}) = 0$ (Galerkin condition)
- Equivalent to solving $H_k g = V^T b$

 if $Ve_1 = b/\|b\|$, the right hand side becomes $\|b\|e_1$
- If A is nonsymmetric, this is the FOM
- If A is symmetric positive definite, this choice of g also minimizes $\|r\|_{A^{-1}} = \|e\|_A$, yields the conjugate gradient method:
 - $\hat{x} = VH_k^{-1}e_1\|b\| = VL^{-T}D^{-1}L^{-1}e_1\|b\| = Py$
 - $P = VL^{-T}$ satisfies $P^TAP = I$
 - Columns of P are successive A-conjugate search directions used to minimize $f(x) = \frac{1}{2}x^T Ax - x^T b$
 - 3-term recurrence follows from the fact that H_k is tridiagonal
The CG algorithm

Compute $r_0 = b - Ax_0$ for some initial guess x_0

for $i = 1, 2, \ldots.$

Solve z_{i-1} from $Kz_{i-1} = r_{i-1}$

$\rho_{i-1} = r_{i-1}^T z_{i-1}$

if $i = 1$

$p_1 = z_0$

else

$\beta_{i-1} = \frac{\rho_{i-1}}{\rho_{i-2}}$

$p_i = z_{i-1} + \beta_{i-1} p_{i-1}$

endif

$q_i = Ap_i$

$\alpha_i = \frac{\rho_{i-1}}{p_i^T q_i}$

$x_i = x_{i-1} + \alpha_i p_i$

$r_i = r_{i-1} - \alpha_i q_i$

check convergence; continue if necessary

end;
Precondition

• Suppose $M = LL^T$ is a good approximation to A
• We apply CG to $L^{-1}AL^{-T}(L^Tx) = L^{-1}b$
• Gradient of the preconditioned problem
 $\tilde{r} = L^{-1}A\hat{x} - L^{-1}b$
• $\rho = \tilde{r}^T\tilde{r} = r^T L^{-T} L^{-1} r = r^T M^{-1} r$
Convergence rate of CG

- Let $x^{(i)}$ be the approximation obtained at the ith CG iteration.
- Error bound:
 \[
 \|x - x^{(i)}\|_A \leq \left(\frac{\sqrt{\kappa(A)} - 1}{\kappa(A) + 1}\right)^i \|x - x^{(0)}\|_A
 \]
- The actual number of iterations required to reach convergence depends on the number of eigenvalue clusters and the right-hand side b.

Bi-CG

- When A is nonsymmetric, the Arnoldi procedure does not lead to a short recurrence
- Try to construct a short (3-term) recurrence $AV_k = V_k H_k + f e_k^T$ by giving up the orthonormality constraint $V_k^T V_k = I$
- Require $W_k^T V_k = D$ for some basis W_k and diagonal matrix D
- Force $W_k^T AV_k = H_k$ to be tridiagonal
- Generate W_k from $A^T W_k = W_k H_k^T + h e_k^T$ (two-sided Lanczos)
- Make sure $W_k^T (b - A\hat{x}) = 0$ (Petro-Galerkin)
- Take $\hat{x} = V_k g$, use a LU factorization of $H_k = LU$ (both L and U are bidiagonal) to construct short recurrences
- Serious breakdown: $f^T h = 0$
- Stabilization yields the BiCGSTAB algorithm
Bi-CG algorithm

Compute \(r^{(0)} = b - Ax^{(0)} \) for some initial guess \(x^{(0)} \)
Choose \(\tilde{r}^{(0)} \) (for instance, \(\tilde{r}^{(0)} = r^{(0)} \))

for \(i = 1, 2, \ldots \)

Solve \(z^{i-1} \) from \(Kz^{i-1} = r^{(i-1)} \)
solve \(\tilde{z}^{i-1} \) from \(KT\tilde{z}^{i-1} = \tilde{r}^{(i-1)} \)

\(\rho_{i-1} = (\tilde{r}^{(i-1)})^*z^{i-1} \)

if \(i = 1 \)
\(p^1 = z^0 \)
\(\tilde{p}^1 = \tilde{z}^0 \)

else
\(\beta_{i-1} = \frac{\rho_{i-1}}{\rho_{i-2}} \)
\(p^i = z^{i-1} + \beta_{i-1}p^{i-1} \)
\(\tilde{p}^i = \tilde{z}^{i-1} + \beta_{i-1}\tilde{p}^{i-1} \)
endif

\(q^i = Ap^i \)
\(\tilde{q}^i = A^*\tilde{p}^i \)
\(\alpha_i = \frac{\rho_{i-1}}{(p^i)^*q^i} \)
\(x^{(i)} = x^{(i-1)} + \alpha_ip^i \)
\(r^{(i)} = r^{(i-1)} - \alpha_iq^i \)
\(\tilde{r}^{(i)} = \tilde{r}^{(i-1)} - \alpha_i\tilde{q}^i \)

check convergence; continue if necessary

end;
QMR (Quasi-Minimal Residual)

- Try to minimize $\|r\| = \|b - A\hat{x}\|$, where $\hat{x} = V_k g$,

- Recall: V_k satisfies $AV_k = V_{k+1} \hat{H}_k$, where $\hat{H}_k = \begin{pmatrix} H_k \\ \|f\| e_k^T \end{pmatrix}$,

 $V_{k+1} = (V_k, f/\|f\|)$

- $\|r\| \neq \|W_{k+1}^T (b - A\hat{x})\| = \|\|b\| e_1 - \hat{H}_k g\|$ because $W_{k+1}^T W_{k+1} \neq I$

- Minimize $\|\tilde{r}\| = \|\|b\| e_1 - \hat{H}_k g\|$ anyway to yield quasi-minimal residual norm

- Can show $\|\tilde{r}\| \leq \sqrt{k} \|r\|$
Restarted GMRES

- Limit the size of the Krylov subspace
- Use the last residual vector to start a new GMRES to seek the correction to the previous approximation
 - \(r = b - Ax_0 \)
 - While no convergence
 - \(c = \text{GMRES}(A, r, k); \)
 - \(x_0 = x_0 + c \)
 - \(r = b - Ax_0 \)