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Classical Brownian motion has well been investigated since the pioneering work of Einstein, which
inspired mathematicians to lay the theoretical foundation of stochastic processes. A stochastic for-
mulation for quantum dynamics of dissipative systems described by the system-plus-bath model
has been developed and found many applications in chemical dynamics, spectroscopy, quantum
transport, and other fields. This article provides a tutorial review of the stochastic formulation for
quantum dissipative dynamics. The key idea is to decouple the interaction between the system and
the bath by virtue of the Hubbard-Stratonovich transformation or Itô calculus so that the system
and the bath are not directly entangled during evolution, rather they are correlated due to the
complex white noises introduced. The influence of the bath on the system is thereby defined by an
induced stochastic field, which leads to the stochastic Liouville equation for the system. The exact
reduced density matrix can be calculated as the stochastic average in the presence of bath-induced
fields. In general, the plain implementation of the stochastic formulation is only useful for short-time
dynamics, but not efficient for long-time dynamics as the statistical errors go very fast. For linear
and other specific systems, the stochastic Liouville equation is a good starting point to derive the
master equation. For general systems with decomposable bath-induced processes, the hierarchical
approach in the form of a set of deterministic equations of motion is derived based on the stochastic
formulation and provides an effective means for simulating the dissipative dynamics. A combination
of the stochastic simulation and the hierarchical approach is suggested to solve the zero-temperature
dynamics of the spin-boson model. This scheme correctly describes the coherent-incoherent tran-
sition (Toulouse limit) at moderate dissipation and predicts a rate dynamics in the overdamped
regime. Challenging problems such as the dynamical description of quantum phase transition (local-
ization) and the numerical stability of the trace-conserving, nonlinear stochastic Liouville equation
are outlined.
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1 Introduction

If one would calculate the dynamics of the universe mi-
croscopically by either classical or quantum mechanics,
one would have an exact solution to the evolution of
the universe as a whole and also for any physical vari-
ables. This is, of course, an impossible task. Exact sim-
ulation with quantum dynamics is subject to the curse
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of dimensionality, a term borrowed from Bellman [1]. In
fact, as the computer memory required to store the wave
function in the Schrödinger picture or the CPU time to
propagate the wavefunction by virtue of the path in-
tegral grow exponentially with the size of the system,
the curse of dimensionality is unavoidable and the exact
simulation with quantum dynamics is limited to systems
with few degrees of freedom. By contrast, the computa-
tional cost with molecular dynamics based on classical
mechanics is linearly proportional to the size of the sys-
tem. Consequently, the molecular dynamics simulation
has become a popular and powerful tool for studying
physical properties of complex molecular systems when
the quantum effect is negligible [2]. However, even lin-
ear scaling is too expansive for the simulation of the
whole universe or any macroscopic system. Fortunately,
we are in general interested in the dynamical behavior of
“few” variables instead of the whole universe [3]. These
variables, therefore, define the system of interest and
the rest of the universe coupled to the system is usually
called environment or heat bath.

When a system of interest is coupled to the other per-
haps infinite variables, it is a dissipative or open system.
Open systems are ubiquitous in the real world because
innumerable dynamical processes are mediated by the
environmental condensed phases [4–7]. Of most impor-
tance are diversified transport phenomena in gases, liq-
uids and solids, chemical reactions in solutions, surfaces
or interfaces, biological processes in cells and so on.

A paradigm of open systems is the Brownian parti-
cle. In his miracle year of 1905, Einstein laid the phys-
ical foundation of the Brownian motion in terms of
the Einstein–Smoluchowski relation [8, 9], the precur-
sor of the more general fluctuation-dissipation theorem
[10–12]. After the pioneering work of Einstein many
scientists have made significant contributions to this
field and the culminating results include the Johnson-
Nyquist theorem [13, 14], the Langevin equation [15,
16], the Fokker-Planck equation [17–20], the Ornstein–
Uhlenbeck process [21], the Kramers problem [22, 23],
and the phenomenological stochastic model for line-
shape in spectroscopy [24].

Although various open system dynamics have been
extensively investigated at different levels, an apparent
obstacle in developing a microscopic description is the
quantum effect, which becomes even dominant when
the temperature of the environment is lower than the
scale of the intrinsic energy. The proof of the quantum
fluctuation-dissipation theorem was a milestone in the
study of quantum Brownian motion [25, 26]. Up to date,
there are still no reliable approaches for simulating the
quantum dynamics of general open systems. Formally,
one can employ the projection operator technique to
solve the motion of the bath. By doing so, one obtains
the Nakajima-Zwanzig equation which is a generaliza-
tion of the master equation and contains an extremely
complicated retarded time integration over the history

of the reduced system [27, 28]. The Langevin equation
can be also generalized to deal with the quantum dis-
sipation when the quantum noise is used instead of the
classical c-number noise [29]. There have been several
excellent monographs and reviews covering quantum
Brownian motion [30–34].

A widely used, generic model for describing open sys-
tems has been proposed by Caldeira and Leggett [35].
In this model the bath consists of infinite “effective” har-
monic oscillators that are linearly coupled to the system
and the impact of the bath on the system is fully char-
acterized by its spectral density function. To study the
quantum dissipative dynamics, Caldeira and Leggett ex-
plored and popularized the path integral influence func-
tional technique originally suggested by Feynman and
Vernon [35, 36]. For the Caldeira–Leggett model the in-
fluence functional assumes a Gaussian functional form
and Feynman first recognized that its real part can be
constructed with a Gaussian colored noise [36]. With the
same reasoning, Cao and co-workers introduced that the
average over the degrees of freedom of the bath can be
performed by directly sampling paths of the discretized
harmonic modes and then propagating the system un-
der the influence of random Gaussian field [37]. As such,
the quantum dissipative dynamics can be conveniently
simulated with the stochastic differential equation. Fol-
lowing the interpretation of Feynman, Stockburger and
Grabert resolved the influence functional with Gaussian
colored noises and derived a stochastic Liouville equa-
tion for the reduced density matrix [38–40]. Strunz, Yu
and coworkers presented the non-Markovian quantum
state diffusion method to describe the dynamics of the
open system in terms of the stochastic Schrödinger’s
equation [41–46]. Alternatively, Breuer suggested the
quantum jump approach and transferred the full non-
Markovian reduced dynamics into Markovian random
jump processes [47]. A stochastic description of a linear
open quantum system was also developed by Calzetta
and coworkers [48].

Our group put forward a stochastic Liouville equation
for the dissipative dynamics of the system by decoupling
the system-bath interaction in the equation of motion
directly [49]. In this way the system-bath correlation is
represented with the common random fields exerting on
both the system and the bath. It is general and appli-
cable for arbitrary types of bath and system-bath cou-
pling. For the linear dissipation, it can be recast into the
same form suggested by Stockburger and Grabert [50].

This review will focus on the stochastic description of
dissipative systems. Special emphasis is placed on nu-
merical simulations of dissipated two-level systems. Sec-
tion 2 presents a detailed derivation of the stochastic Li-
ouville equation via a stochastic decoupling of the quan-
tum dissipative interaction. Both non-Hermitian and
Hermitian schemes are derived and their numerical per-
formance is discussed. Section 3 gives numerical exam-
ples for dissipated two-level systems with the stochas-
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tic schemes. In Section 4 we demonstrate that the ex-
act master equation for analytically solvable models can
be conveniently worked out, starting from the stochas-
tic equation. For general systems with a decomposable
bath response function we show that the hierarchical
approach can be achieved and is efficient at interme-
diate to high temperatures in Section 5. For dynamics
at zero temperature or low temperatures, we suggest
the hybrid stochastic-hierarchical equation in Section 6.
The last section gives a brief summary and discusses the
remaining challenges.

2 Decoupling system-bath interaction

Because of the couplings between the system and the
bath, one has to take into account of the influence of
the heat bath in order to describe the dynamics of the
system exactly. For the description of the dissipative
dynamics, we start with the system-plus-model [34],

Ĥ = Ĥs + Ĥb + f(ŝ)g(b̂), (1)

where Ĥs and Ĥb specify the relevant system and the
bath, respectively. The system operator ŝ describes the
coupling to the bath with an arbitrary function g(b̂) of
the bath operator b̂. In quantum mechanics the general
interaction is a sum of force-field terms

∑
j fj(ŝ)gj(b̂).

To simplify the formalism, we first investigate the above
factorized form and discuss the extension to multiple
terms in Section 2.2. Eq. (1) is for general bath and
system-bath coupling. It becomes the Caldeira–Leggett
model if the bath consists of an infinite independent
quantum harmonic oscillators with linear system-bath
coupling, i.e., g(b̂) =

∑
j cj x̂j and a proper counterterm

is included in the system Hamiltonian Ĥs [35].
The dynamics of the whole system is determined by

the density matrix ρ(t) which satisfies the Liouville–von
Neumann equation

ih̄dρ/dt = [Ĥ, ρ(t)], (2)

with an initial condition ρ(0) at t = 0. Because we are
only interested in the dynamical behavior of the sys-
tem, the reduced density matrix ρs(t) = trb[ρ(t)] con-
tains sufficient information for the reduced dynamics.
Therefore, it is desired that the influence of the bath
should be incorporated without the explicit considera-
tion of the bath. This could be done by stochastically
decoupling the dissipation interaction.

2.1 Heuristic decoupling via stochastic fields

The propagation of the density matrix, in turn, the in-
trinsic dynamical feature of the system, is dictated by
the time evolution operator U(t) ≡ exp(−iĤt/h̄). The
propagator can be split along the time axis with Suzuki–

Trotter expansion [51]

U(t) =

N∏
j=1

U(∆t), ∆t = t/N, (3)

where the propagator for a short time interval ∆t is
approximated as

U(∆t) ≈ e−iĤs∆t/h̄e−iĤb∆t/h̄e−if(ŝ)g(b̂)∆t/h̄. (4)

Here, the first two factors are due to the contributions of
the system and the bath, respectively, whereas the last
one originates from the system-bath coupling. Because
the operators f(ŝ) and g(b̂) commutate, one can invoke
the Hubbard–Stratonovich transformation to decouple
the last factor [49]

e−i∆tf(ŝ)g(b̂)/h̄ =
∆t

2π

∫
dυ1,jdυ2,je

−(υ2
1,j+υ2

2,j)∆t/2

× ei∆t(υ1,j+iυ2,j)f(ŝ)/
√
2h̄−∆t(υ1,j−iυ2,j)g(b̂)/

√
2h̄. (5)

As the decoupling procedure is applied to every time
step, the time evolution operator U(t) is thus expressed
as

U(t) =
(∆t

2π

)N
∫ ∞

−∞
dυ1,1 · · ·dυ1,Ndυ2,1 · · ·dυ2,N

×
N∏
j=1

(
e−iĤs∆t/h̄e−iĤb∆t/h̄e(υ

2
1,j+υ2

2,j)∆t/2

× ei∆t(υ1,j+iυ2,j)f(ŝ)/
√
2h̄−∆t(υ1,j−iυ2,j)g(b̂)/

√
2h̄
)
.(6)

In the limit of N → ∞, the integration becomes a path
integral

U(t) =

∫
D[υ1]D[υ2]W [υ1, υ2]Us[υ1, υ2]Ub[υ1, υ2], (7)

where υ1(t) and υ2(t) now are two time-dependent ex-
ternal fields acting on the two subsystems and Us and Ub

are the propagators dictated by the “decoupled” system
and the bath described respectively by the Hamiltonian
H̃s(t) = Hs +

√
h̄[υ1(t) + iυ2(t)]f(ŝ)/

√
2 and H̃b(t) =

Hb +
√
h̄[υ2(t) + iυ1(t)]g(b̂)/

√
2. In Eq. (7), the weight

functional W [υ1, υ2] = exp[−
∫ t

0
dτ(υ2

1,τ +υ2
2,τ )/2] is the

probability of the path. Due to the Gaussian functional
form of the weight W [υ1, υ2], υ1(t) and υ2(t) are two
Gaussian white noises with mean M⟨υj(t)⟩ = 0 and
correlation M⟨υj(t)υk(t′)⟩ = δjkδ(t− t′). Therefore, the
exact evolution operator is the stochastic average of the
combined propagator Us[υ1, υ2]Ub[υ1, υ2] with respect to
two noises υ1(t) and υ2(t),

U(t) ≡ M⟨Us[υ1, υ2]Ub[υ1, υ2]⟩, (8)

where M denotes the stochastic averaging. Apparently,
upon introducing common random fields, there is no
direct interaction between the system and the bath. As
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a consequence, the stochastic system and bath evolve
“independently”. Note that the exact propagator is the
average of the product of the two stochastic propagators.
The decoupling scheme essentially converts the quantum
interaction to the stochastic correlation manifested in
the average. In this sense the system and the bath are
decoupled. Now, the evolution of the system and the
bath is separate for a factorized initial density matrix
ρ(0) = ρs(0)ρb(0), that is,

ρs(t) = Us[υ1, υ2]ρs(0)U
†
s [υ3, υ4], (9)

ρb(t) = Ub[υ1, υ2]ρb(0)U
†
b [υ3, υ4], (10)

where two more white noise fields υ3(t) and υ4(t) are
introduced to decouple the dissipative interaction for
the backward propagation. Then the exact density ma-
trix is obtained when taking the stochastic average of a
product of the system and the bath density operators,
ρ(t) = M⟨ρs(t)ρb(t)⟩.

One could start from Eqs. (9) and (10) to derive the
equations of motion for the stochastic densities ρs(t) and
ρb(t). However, the results would be lengthy. To have
a compact form, we define two complex-valued Wiener
processes

w1,t =

∫ t

0

dt′[υ1(t
′) + υ3(t

′) + iυ2(t
′)− iυ4(t

′)]/
√
2,

w2,t =

∫ t

0

dt′[υ2(t
′) + υ4(t

′) + iυ1(t
′)− iυ3(t

′)]/
√
2,

which have the properties

M⟨dwj,t⟩ = M⟨dwj,tdwk,t⟩ = 0,

M⟨dwj,tdw
∗
k,t⟩ = 2δjkdt. (11)

The equations of motion for ρs(t) and ρb(t) now become

ih̄dρs = [Hs, ρs(t)]dt+
√
h̄/2[f(ŝ), ρs(t)]dw1,t

+ i
√
h̄/2{f(ŝ), ρs(t)}dw∗

2,t, (12)

ih̄dρb = [Hb, ρb(t)]dt+
√
h̄/2[g(b̂), ρb(t)]dw2,t

+ i
√
h̄/2{g(b̂), ρb(t)}dw∗

1,t. (13)

Here, both the stochastic differential equation and the
stochastic integral are in Itô form.

2.2 Decoupling via Itô calculus

Alternatively, one may decouple the dissipative inter-
action via Itô calculus. For this purpose, we may in-
troduce white noises as common forces exerting on the
system and the bath, write down a general linear form
of the stochastic differential equations with indetermi-
nate coefficients for the independent evolution of the
density matrices ρs/b(t), require the stochastic aver-
age M⟨ρs(t)ρb(t)⟩ satisfying the quantum Liouville-von
Neumann equation, and solve the indeterminate coeffi-
cients in the stochastic differential equations.

We have to recognize two key properties of Itô cal-
culus. One is the differential equation of the product of
two Itô processes Xt and Yt

d(XtYt) = XtdYt + (dXt)Yt + (dXt)dYt, (14)

which is the differential form for the integration by parts
in Itô calculus. The last term in Eq. (14) has to be in-
cluded because dwj,t is of the order

√
dt. The other prop-

erty is the nonanticipating rule

M⟨Xtdwj,t⟩ = M⟨Xtdwj,tdwk,t⟩ = 0, (15a)

M⟨Xtdwj,tdw
∗
k,t⟩ = 2δjkM⟨Xt⟩dt, (15b)

which is analogous to Eq. (11). It holds because the Itô
process Xt is independent of the noise increments dwj,t

and dw∗
j,t.

To illustrate the procedure of the decoupling, we will
use the general Hamiltonian for the dissipated system

Ĥ = Ĥs + Ĥb +

NI∑
j

fj(ŝ)gj(b̂), (16)

where NI is the number of interaction terms. Basing
on the heuristic derivation, we propose the following
ansatz for the stochastic differential equations of the
two subsystems

ih̄dρs = [Ĥs, ρs]dt+
√
h̄

NI∑
j

[fj(ŝ), ρs]sj,1dwj,1

+ i
√
h̄

NI∑
j

{fj(ŝ), ρs}sj,2dwj,2, (17a)

ih̄dρb = [Ĥb, ρb]dt+
√
h̄

NI∑
j

[gj(b̂), ρb]bj,1dwj,3

+ i
√
h̄

NI∑
j

{gj(b̂), ρb}bj,2dwj,4, (17b)

where sj,a and bj,a are coefficients to be determined and
the Wiener processes wj,a could be real or complex.

We readily find the differential equation for the den-
sity matrix ρ(t) = M⟨ρs(t)ρb(t)⟩,

ih̄dρ = M⟨ih̄(dρs)ρb + ih̄ρsdρb + ih̄(dρs)dρb⟩

= M⟨[Ĥs, ρs]ρbdt+ [Ĥb, ρb]ρsdt

− i

NI∑
j,k

[fj(ŝ), ρs][gk(b̂), ρb]sj,1bk,1dwj,1dwk,3

+

NI∑
j,k

[fj(ŝ), ρs]{gk(b̂), ρb}sj,1bk,2dwj,1dwk,4

+

NI∑
j,k

{fj(ŝ), ρs}[gk(b̂), ρb]sj,2bk,1dwj,2dwk,3
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+i

NI∑
j,k

{fj(ŝ), ρs}{gk(b̂), ρb}sj,2bk,2dwj,2dwk,4⟩.

(18)

When the following requirements are satisfied

sj,1bk,1M⟨dwj,1dwk,3⟩ = 0,

sj,1bk,2M⟨dwj,1dwk,4⟩ = δjkdt/2,

sj,2bk,1M⟨dwj,2dwk,3⟩ = δjkdt/2,

sj,2bk,2M⟨dwj,2dwk,4⟩ = 0, (19)

Eq. (18) will reproduce the Liouville–von Neumann
equation. Although there are many possible choices for
sj,a and bk,a, we only consider the following simple set-
tings,

M⟨dwj,adwk,c⟩ = 0, M⟨dwj,adw
∗
k,c⟩ = δjkδac,

wj,3 = w∗
j,2, wj,4 = w∗

j,1, (20)

where a, c = 1, 2. When there is only one coupling
term in Eq. (16), Eqs. (17a) and (17b) are nothing
but Eqs. (12) and (13), respectively. Note that the so-
obtained stochastic differential equation for the system,
Eq. (17a) is non-Hermitian. We will discuss how to de-
rive a Hermitian stochastic differential equation for the
system using different settings of sj,a, bk,a and wj,a in
Section 2.4.

Once the decoupling scheme is chosen, one must pro-
ceed to establish the stochastic Liouville equation of the
system by taking into account the influence of the bath.
We will show that the impact of the bath can be char-
acterized by the induced stochastic field.

2.3 Bath-induced stochastic field

Although the system and the bath are decoupled, they
are still correlated because the real physical quantities
are averages over the common stochastic fields that
they are subject to. For instance, the reduced den-
sity matrix is obtained as ρ̃s(t) = trbM⟨ρs(t)ρb(t)⟩ =
M⟨ρs(t)trbρb(t)⟩. Once the trace of the bath is solved,
the effect of the bath on the evolution of the system can
be taken into account. This implies that the trace of the
random bath includes the effect of the bath on the re-
duced dynamics. One may take the trace of Eq. (13) to
find

trbρb(t) = exp

[∫ t

0

ḡ(t′)dw∗
1,t′/

√
h̄

]
, (21)

where ḡ(t) = trb{ρb(t)g(b̂)}/trbρb(t).
In performing the stochastic average to calculate the

reduced density matrix, it is more convenient to include
the contribution from the bath by absorbing the trace of
ρb(t) into the probability measure of the random fields.
This can be achieved by applying the Girsanov trans-

formation [52]. To illustrate the transformation clearly,
we resort to the path integral form of the stochastic av-
erage,

ρ̃s(t) =

∫
D[w1]D[w∗

1 ]D[w2]D[w∗
2 ]W [w1, w2]

× ρs[dw1,dw
∗
2 ; t] exp

[ ∫ t

0

dw∗
1,τ ḡ(τ)/

√
h̄
]
.(22)

Here the notation ρs[dw1, dw
∗
2 ; t] is used to refer to the

functional dependence of the density matrix ρs(t) on the
stochastic processes. As the exponential factor formally
assumes a Gaussian form, one may employ the Girsanov
transformation, namely,

w1,t = w̃1,t + 2

∫ t

0

dt′ḡ(t′)/
√
h̄, (23)

to absorb the contribution from the bath. This transfor-
mation leaves ḡ(t) invariant because ρb(t), hence ḡ(t),
depends on only w∗

1 and w2, but not w1 and w∗
2 . As a

result, Eq. (22) becomes

ρ̃s(t) =

∫
D[w̃1]D[w̃∗

1 ]D[w̃2]D[w̃∗
2 ]W [w1, w2]

× ρs[dw̃1 + 2ḡdt/
√
h̄, dw̃∗

2 ; t]

= M⟨ρs[dw̃1 + 2ḡdt/
√
h̄,dw̃∗

2 ; t]⟩. (24)

This equation shows that the measure of the stochastic
processes w1,t and w2,t keep unchanged while the differ-
ential equation for the stochastic density matrix of the
system is transformed to

ih̄dρs = [Hs + ḡ(t)f(ŝ), ρs]dt+
√
h̄/2 [f(ŝ), ρs] dw1,t

+ i
√
h̄/2 {f(ŝ), ρs} dw∗

2,t. (25)

Now the reduced density matrix is yielded by directly
taking the stochastic average of ρs(t) over the noises
w1,t and w2,t, that is, ρ̃s(t) = M⟨ρs(t)⟩. In words, once
the function ḡ(t) is known, the reduced dynamics can be
solved without the need of explicit treatment of the bath
at all. The role that ḡ(t) plays becomes obvious: like
the influence functional in the path integral treatment
[53], it is the bath-induced field fully representing the
influence of the environment.

So far the stochastic formalism is general, which is
suitable for arbitrary baths. Using this formalism as
a working procedure, we will focus on the Caldeira-
Leggett model. In this case, because the dynamics of
the bath is analytically solvable, one readily obtains
the bath-induced stochastic field ḡ(t). As usual, we as-
sume that the bath starts from a thermal equilibrium
state of noninteracting harmonic oscillators ρb(0) =

exp(−βĤb)/trb[exp(−βĤb)], where β = 1/(kBT ) is the
inverse of the absolute temperature T scaled by the
Boltzmann constant kB. The trace for the stochastic
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density matrix of the bath in Eq. (13) can be conve-
niently worked out in the interaction picture,

ρb(t) = U
(b)
0 (t)U

(b)
+ (t)ρb(0)U

(b)
− (t)U

(b)†
0 (t). (26)

Here U
(b)
0 (t) = exp(−iĤbt/h̄) is the propagator of the

free bath and U
(b)
± (t) are the forward/backward propa-

gators in the interaction picture satisfying the Itô dif-
ferential equations

ih̄dU
(b)
+ (t) = ĝ(t)U

(b)
+ (t)dχ+

t , (27a)

−ih̄dU
(b)
− (t) = U

(b)
− (t)ĝ(t)dχ−

t , (27b)

where ĝ(t) = U
(b)†
0 (t)g(b̂)U

(b)
0 (t) is the interaction pre-

sentation of the operator g(b̂), and χ±
t are the Wiener

processes involved in the forward/backward propaga-
tion,

χ+
t =

√
h̄/2(w2,t + iw∗

1,t),

χ−
t =

√
h̄/2(w2,t − iw∗

1,t).

Due to the unitarity of U (b)
0 (t) and the cyclic permuta-

tion invariance of the trace operation, the trace of the
bath is expressed as

trb[ρb(t)] = trb
[
U

(b)
− (t)U

(b)
+ (t)ρb(0)

]
. (28)

Note that we are using factorized initial condition. Be-
cause harmonic oscillators of the bath are noninteract-
ing, the propagators U

(b)
0 (t) and U

(b)
± (t), and the trace

of the density matrix ρb(t) are products of that of all the
individual oscillators. The standard way to work out the
operator ĝ(t) is the using of the operator algebra method
[54]. Alternatively, it may be calculated by solving the
equations of motion for the interaction representation
for the bath coordinate operators x̂j(t) and momentum
operators p̂j(t)

d

dt
x̂j(t) = p̂j(t)/mj ,

d

dt
p̂j(t) = −mjω

2
j x̂j(t). (29)

Combining the initial condition x̂j(0) = x̂j and p̂j(0) =
p̂j , one straightforwardly solves these equations and ob-
tains the result

ĝ(t) =
∑
j

cj [x̂j cos(ωjt) + p̂j/(mjωj) sin(ωjt)]. (30)

Eq. (30) is actually a sum of two time-dependent op-
erators. Consequently, one may resort to the Baker-
Campbell–Hausdorff formula [55–59] to solve Eq. (27),
yielding

U
(b)
+ (t) = exp

(
− i

∫ t

0

dχ+
τ ĝ(τ)

− 1

2

∫ t

0

dχ+
τ

∫ τ

0

dχ+
s [ĝ(τ), ĝ(s)]

)
, (31a)

U
(b)
− (t) = exp

(
+ i

∫ t

0

dχ−
τ ĝ(τ)

− 1

2

∫ t

0

dχ−
τ

∫ t

τ

dχ−
s [ĝ(τ), ĝ(s)]

)
. (31b)

For linearly driven harmonic oscillators, the formula ter-
minates at the second order because the commutator
[ĝ(τ), ĝ(s)] = ih̄

∑
j c

2
j/(mjωj) sin[ωj(τ − s)] is a scalar

function.
The product U

(b)
− (t)U

(b)
+ (t) can also be expressed

as a single exponential function by using the Baker-
Campbell–Hausdorff formula. Again, the first- and
second-order terms yield the exact result for the linear
bath,

U
(b)
− (t)U

(b)
+ (t) = exp

(
− i

∫ t

0

dχ+
τ ĝ(τ) + i

∫ t

0

dχ−
τ ĝ(τ)

+
1

2

∫ t

0

dχ−
τ

∫ t

0

dχ+
s [ĝ(τ), ĝ(s)]

− 1

2

∫ t

0

dχ+
τ

∫ τ

0

dχ+
s [ĝ(τ), ĝ(s)]

− 1

2

∫ t

0

dχ−
τ

∫ t

τ

dχ−
s [ĝ(τ), ĝ(s)]

)
.(32)

Calculating the quantum expectation and doing some
rearrangements, we finally find the result for the trace
of the bath,

trb[ρb(t)] = e
∫ t
0
dw∗

1,τ

∫ τ
0
[dw∗

1,sαr(τ−s)+dw2,sαi(τ−s)], (33)

where αr(t) and αi(t) are the real and imaginary parts
of the equilibrium correlation function α(t − s) =
trb[ĝ(t)ĝ(s)ρb(0)], respectively. For the linear dissipa-
tion model the correlation function becomes

α(t)=
1

π

∫ ∞

0

dωJ(ω)

[
coth

(βh̄ω
2

)
cos(ωt)−i sin(ωt)

]
,

(34)

where J(ω) is the spectral density of the bath

J(ω) =
π

2

∑
j

c2j
mjωj

δ(ω − ωj). (35)

A comparison between Eq. (21) and Eq. (33) yields the
bath-induced field [49],

ḡ(t) =
√
h̄

∫ t

0

[
dw∗

1,t′αr(t−t′)+dw2,t′αi(t− t′)
]
. (36)

One observes that the correlation function of the bath
serves as a memory kernel in the bath-induced field.

The stochastic description is flexible because it is al-
lowed to make a free combination of the white noise and
the bath-induced stochastic field or noise ḡ(t) expressed
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by Eq. (25). Doing so, one may obtain different compos-
ite Gaussian noises that affects the feasibility and effi-
ciency of the numerical implementation. For instance,
when the involved noises are rearranged such that

ξ1,t =
ḡ(t)√
h̄

+
1

2

dw1,t

dt
,

ξ2,t =
1

2

dw∗
2,t

dt
,

one recovers the stochastic formulation put forward by
Stockburger and Grabert [50],

ih̄ρ̇s = [Ĥs, ρs(t)] +
√
h̄ [f(ŝ), ρs(t)] ξ1,t

+ i
√
h̄ {f(ŝ), ρs(t)} ξ2,t. (37)

Here, the stochastic variables ξ1(2),t are Gaussian col-
ored noises with means and correlations

M⟨ξ1,t⟩ = M⟨ξ1,t⟩ = 0,

M⟨ξ1,tξ1,τ ⟩ = αr(t− τ),

M⟨ξ1,tξ2,τ ⟩ = Θ(t− τ)αi(t− τ),

M⟨ξ2,tξ2,τ ⟩ = 0, (38)

where δ is the Dirac δ-function and Θ is the Heaviside
step function

Θ(x) =

{
0, if x ≤ 0,
1, if x > 0.

(39)

2.4 Hermitian stochastic Liouville equation

In general there are two major factors that influence
the numerical performance of the stochastic formula-
tion. One factor is the number of involved noises and
the other is the intrinsic property of the stochastic dif-
ferential equation, which may cause a stochastic real-
ization dramatically different from the exact average.
For the former, because the stochastic averaging over
a larger number of noises corresponds to higher dimen-
sional functional integration, the convergence normally
becomes slower. Note that, although in our case there
are four real noises in Eqs. (25) and (37), one can simply
choose ξ1,t as a real noise to reduce the total number of
noises to three [39]. For the latter, the stochastic den-
sity matrices Eqs. (25) and (37) do not preserve norm-
conserving, hermicity and positivity that the exact one
must do. Generally speaking, the more properties the
stochastic density matrix possesses like the exact one,
the better numerical performance the stochastic method
will have. It is expected that a Hermitian stochastic
scheme could be more efficient in the numerical conver-
gence. We then suggest the following stochastic scheme
[60]

ih̄dρ̂s = [Ĥs, ρ̂s]dt+
√
h̄/2[f(ŝ), ρ̂s]dµ2

+ i
√
h̄/2{f(ŝ), ρ̂s}dµ1, (40)

ih̄dρ̂b = [Ĥb, ρ̂b]dt+
√

h̄/2[g(b̂), ρ̂b](dµ1 + idµ4)

+ i
√
h̄/2{g(b̂), ρ̂b}(dµ2 + idµ3). (41)

This equation corresponds to the stochastic decoupling
with Eq. (17) upon using the following parameters

s1,1 = s1,2 = b1,1 = b1,2 = 1/
√
2,

w1,1 = µ2, w1,2 = µ1,

w2,1 = µ1 + iµ4, w2,2 = µ2 + iµ3, (42)

for solving Eq. (19).
Knowing the trace of ρ̂b(t), one can solve the re-

duced dynamics by taking a two-step stochastic average
ρ̃s(t) = Mµ1,µ2⟨ρ̂s(t)Mµ3,µ4{trb[ρ̂b(t)]}⟩ as the evolu-
tion of the random system does not depend on the noises
µ3(t) and µ4(t).

Because Eq. (41) assumes the same form as Eq. (13),
the trace of the random density matrix ρ̂b(t) is given by
Eq. (33) with the replacement dw∗

1 →
√
2(dµ1 + idµ3)

and dw2 →
√
2(dµ2 + idµ4). The stochastic average

with respect to the Wiener processes µ3(t) and µ4(t)
is a Gaussian type functional integration, which can be
solved analytically

Mµ3,µ4⟨tr[ρ̂b(t)]⟩ = exp
{1

2

2∑
a,b=1

∫ t

0

dµa,τ

∫ t

0

dµb,s

×
[
δabδ(τ − s)− 1

2
Gab(τ − s)

]}
, (43)

where G(t − s) is the Green function of the correlation
matrix function Γ(t− τ)

Γ(t) =

(
cδ(t) + αr(t) Θ(t)αi(t)
Θ(−t)αi(−t) cδ(t)

)
, (44)

with c = 1/2. The right hand side of Eq. (43) assumes a
Gaussian functional form and serves as a multiplicative
factor in the stochastic average of the random density
matrix ρ̂s(t). Consequently, it can be combined with the
Wiener measure of the noises µ1(t) and µ2(t) in taking
the stochastic average

ρ̃s(t) =

∫
D[µ1]D[µ2]W [µ1, µ2]

× ρ̂s(t)Mµ3,µ4⟨tr[ρ̂b(t)]⟩

=

∫
D[µ1]D[µ2]e

− 1
4

2∑
a,b=1

∫ t
0
dµa,τ

∫ t
0
dµb,sGab(τ−s)

ρ̂s(t).

The exponential part is still of the Gaussian func-
tional form and can be treated as the measure of new
Gaussian noises. With the change of variables accord-
ing to µ1,t =

√
2
∫ t

0
dτξ1,τ and µ2,t =

√
2
∫ t

0
dτξ2,τ ,

the stochastic differential equation for the density ma-
trix assumes the same form as Eq. (37) but with noise
averages M[ξa,t] = 0 and new correlation functions
M[ξa,tξb,τ ] = Γab(t− τ).
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It is expected that the Hermitian formulation will
show a better numerical efficiency because of the her-
micity and the smaller number of noises involved. More-
over, it was proven that the constant c in Eq. (44) can
be arbitrarily chosen as long as the correlation function
is semi-positive definite [60]. Simulations with the mini-
mum allowed c value will further improve the numerical
performance.

3 Stochastic simulations of spin-boson model

Given the initial state of the system and the bath-
induced stochastic field ḡ(t), one can solve Eq. (25) or
Eq. (37) to obtain a stochastic trajectory. In general, the
system of interest is a small one and the calculation of
a single stochastic trajectory can be easily carried out.
Note, however, that in the stochastic scheme the system
is subject to the stochastic field characterizing the en-
vironment effect and one has to calculate many random
trajectories to reach the convergent statistical expecta-
tion of the reduced density matrix. Roughly speaking,
it is the statistics that makes the problem difficult.

We use the dissipated two-level system to demon-
strate the implementation and efficiency of methods
based on the stochastic formalism. Why are we inter-
ested in the spin-boson model? Well, as the two-level
system is the simplest model characterizing quantum
coherence, the unique feature in the microscopic world,
the spin-boson model would be the most basic defin-
ing the fundamental paradigms of quantum dissipation.
Moreover, the dynamics of the spin-boson model has
been a challenge for many years. It is appropriate to cite
Weiss here, “Despite its apparent simplicity, the spin-
boson model cannot be solved exactly by any known
method (apart from some limited regimes of the param-
eter space). Not only is the spin-boson model nontrivial
mathematically, it is also nontrivial physically.” [34]

We now consider the numerical simulation of the
stochastic density matrix of the spin-boson model. To
this end, we discretize the time using a uniform grid
{0, t1, · · · , tk, · · · }, (tk = k∆t) with a fixed step-size ∆t.
Then, utilizing the conventional splitting operator tech-
nique, we obtain the iteration relation for propagation

ρ(tk+1) = e−iĤs∆t/h̄−if(ŝ)[ḡk∆t/h̄+
√
h̄/2(∆w1,k+i∆w∗

2,k)]

×ρ(tk)e
iĤs∆t/h̄+if(ŝ)[ḡk∆t/h̄+

√
h̄/2(∆w1,k−i∆w∗

2,k)]. (45)

The quantity ∆wa,k is the change of the Wiener path
in the time interval [tk, tk+1]. In the fixed step-size
stochastic integration, one can simply put ∆wa,k =√
∆t(Ba,1,k + iBa,2,k) with Ba,j,k being independent

standard normal random numbers. The vector ḡk is the
discretized version for the bath-induced random field.
Note that a direct summation

ḡk=
√
h̄

k−1∑
j=0

[
αr((k−j)∆t)∆w2,k+αi((k−j)∆t)∆w∗

1,k

]
takes O(N2) multiplication and addition operations for
N -step propagation which becomes expensive for the
long time dynamics. Fortunately, it is a convolution in-
tegral and can be generated with an O(N logN) algo-
rithm by using the fast Fourier transform [61].

One may generate the Gaussian colored noises with
circulant embedding of the correlation Eq. (38) [62, 63].
We will exemplify the generation of a stochastic field
ζt with mean M[ζt] = 0 and correlation M[ζtζs] =
αr(t−s). Upon discretization, one may build a 2N×2N
circulant matrix embedding the correlation matrix

Cjk =

{
αr(|j − k|∆t), if |j − k| < N
αr(|2(N−1)−|j−k||∆t), if |j − k| ≥ N

.

The two principal submatrices with the first and the
last N columns and rows are the original covariance ma-
trix. The circulant matrix is diagonalized by the discrete
Fourier transform F †CF = Λ, where Λ is the diago-
nal matrix taking the eigenvalues of the circulant ma-
trix and F is the 2N × 2N discrete Fourier transform
matrix. If all the eigenvalues are non-negative, one can
form a 2N -dimensional complex vector with standard
Gaussian random numbers, multiply it with Λ1/2, and
carry out the discrete Fourier transform to obtain two
real random vectors x and y, i.e., x + iy = FΛ1/2z.
Now x and y are uncorrelated but have identical cor-
relation matrix C. Thus their first half and second half
are four colored noises with zero mean and autocorre-
lation function αr(t). This procedure can be extended
to generate multiple correlated Gaussian random fields
and the interested readers can refer to Refs. [64] and
[65] for further details.

To show how the stochastic formulation works, we
take the quantum nondemolition measurement of the
two-level system as the first numerical example. Specif-
ically, Ĥs =

1
2σz, f(ŝ) = σz, and α(t) = exp(it− 2|t|)/2

are adopted with an initial condition ρ̃s(0) = 0.5I +

0.5σx + 0.6σy. In this case the system Hamiltonian Ĥs

commutates with the coupling operator f(ŝ) and there is
no energy exchanging between the system and the bath
[49, 66–68]. Accordingly, the diagonal elements in the
eigen-energy representation do not change with time but
the off-diagonal matrix elements are damped to zero,
which is pure dephasing caused by the bath. The model
is exactly solvable and the master equation reads

ih̄ ˙̃ρ = [Ĥs, ρ̃]− iCr(t)[f(ŝ), [f(ŝ), ρ̃]] + Ci(t)[f(ŝ)
2, ρ̃],

where Cr/i =
∫ t

0
dταr/i(t − τ). The results of the

stochastic simulations with noises generated from circu-
lant embedding of Eq. (38) are depicted in Fig. 1. One
clearly sees that the random average with 256 stochas-
tic trajectories already produces the reduced density
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Fig. 1 The stochastic simulation for the coherence in a
quantum nondemolition measurement. (a) The real and (b)
the imaginary part of ρ01 with 256 stochastic trajectories are
compared with the exact results.

matrix up to time t = 2 quite well for both the real
and imaginary parts of the off-diagonal matrix element
ρ01(t).

The second example is the spontaneous decay of a
two-state atom at zero temperature. As its exact quan-
tum master equation is known [31, 43, 47], the exact dy-
namics can be calculated numerically. It thus provides a
good model for numerical tests of the stochastic scheme.
The Hamiltonian for the dissipative system reads

Ĥs =
h̄∆

2
σz, Ĥb =

∑
j

h̄ωjb
†
kbk,

Ĥsb = σ−ĝ1 + σ+ĝ2, ĝ1 = h̄
∑
j

cjb
†
j = ĝ†2.

Here there are two coupling terms in the Hamiltonian,
we will introduce two pairs of complex-valued Wiener
processes and use parameters given in Eq. (20) for the
stochastic Liouville equation Eq. (17). Following a simi-
lar procedure for Eqs. (26)–(22), we can solve the equa-
tion of motion for the bath to obtain the bath-induced
random fields

ḡ1(t) =

√
h̄

2

∫ t

0

(dw∗
21,τ − idw∗

22,τ )α(t− τ), (46)

ḡ2(t) =

√
h̄

2

∫ t

0

(dw∗
11(4),τ + idw∗

21,τ )α
∗(t− τ), (47)

with the response function of the bath α(t) =∑
j |cj |2eiωjt. To simplify the notations we define

µ1 = (w11 − iw12)/
√
2, µ2 = (w21 + iw22)/

√
2,

µ3 = (w11 + iw12)/
√
2, µ4 = (w21 − iw22)/

√
2.

Then the bath-induced fields are transformed to

ḡ1(t) =

√
h̄

2

∫ t

0

dµ∗
2,τα(t− τ),

ḡ2(t) =

√
h̄

2

∫ t

0

dµ∗
1,τα

∗(t− τ).

As a consequence, the stochastic differential equation
(17a) becomes

ih̄dρ̂s = [Ĥs+σ−ḡ1(t)+σ+ḡ2(t), ρ̂s]dt−
√

h̄

2
ρ̂sσ

−dµ1

+

√
h̄

2
σ+ρ̂sdµ2 +

√
h̄

2
σ−ρ̂sdµ3 −

√
h̄

2
ρ̂sσ

+dµ4. (48)

Note that the bath-induced fields ḡ1(t) and ḡ2(t) are
independent of the noises µ3(t) and µ4(t). We first take
the average over µ3(t) and µ4(t) to obtain

ih̄dρ̂s = [Ĥs + σ−ḡ1(t) + σ+ḡ2(t), ρ̂s]dt

−
√

h̄

2
ρ̂sσ

−dµ1 +

√
h̄

2
σ+ρ̂sdµ2. (49)

Although ρ̂s(t) in Eq. (49) is not the same as that in
Eq. (48), their stochastic averages are identical. Eq. (49)
assumes better numerical performance because it in-
volves a smaller number of stochastic fields.

We generate the bath-induced random fields by the
convolution method [61] and carry out the stochastic
simulations with Eq. (49) using α(t) = γ

2 e
−γ|t|+it(γ =

0.1). The excited state population follows a non-
exponential decay. As shown in Fig. 2, the results av-
eraged with 224 trajectories reproduce the damped os-
cillation very well and the maximum statistical error is
less the 0.006 for all times.

In the third example we investigate the dynamics
of the dissipated two-level system using the Hermitian
scheme. The Hamiltonian and the coupling operator for
the two-level system are

Ĥs = h̄∆ σx/2, f(ŝ) = σz/2, (50)

where ∆ is the tunneling matrix element. The spectral
density is assumed to take an Ohmic form with the De-
bye regulation

J(ω) = ηωω2
c/(ω

2
c + ω2), (51)

where η is the dissipation strength and ωc is the cut-off
frequency. We will use a relatively large cut-off ωc = 4∆
with a moderate dissipation strength η = 0.4 for the
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Fig. 2 Spontaneous decay of the excited state population
of a two-state atom. Solid line: The exact results. Bullets:
The stochastic simulations of Eq. (49) with 224 realizations.

stochastic simulations. The corresponding correlation
function can be expressed in terms of exponentials [69]

α(t) =
ηω2

c

2
[cot (βh̄ωc/2)− i] e−ωct

+
2ηω2

c

h̄β

∞∑
k=1

νke
−νkt

ν2k − ω2
c

, (52)

where νk = 2πk/(h̄β) is the kth Matsubara frequency
of the bath.

The Hermitian scheme is integrated with the order 2
weak Runge–Kutta approximation [70]. The two corre-
lated stochastic fields are generated with the circulant
embedding approach. The number of time steps of the
stochastic integration is 8192 with a step size of 0.001/∆
and the number of trajectories is 40 million for all sim-
ulations at different temperatures. With these settings,
it takes about 20 CPU hours with 16 Intel(R) Xeon(R)
E5620 CPUs having a clock speed of 2.40 GHz.

Stochastic simulations with Eqs. (25) and (44) at tem-
peratures of 0.001, 0.5, 1.0, 2.0, 3.0, 4.0 and 5.0 h̄∆/kB
are performed. Numerical simulations based on the hier-
archical approach outlined in Section 5 are carried out
at temperatures 1.0–5.0 h̄∆/kB to serve as numerical
benchmarks because this model is not exactly solvable.

The expectation σz(t) = ⟨σz ρ̃s(t)⟩, the population
difference between the left and right states is a key
quantity for understanding the dynamics of the dissi-
pated two-level system. The temperature dependence of
the evolution of the population difference is depicted in
Fig. 3. The dominant feature is the decrease of coher-
ence at higher temperatures. Further calculations show
that the population difference decrease monotonically
when temperature is higher than 6 h̄∆/kB. Another in-
teresting observation is that the line for the positions
of the minimum is not a straight line perpendicular to
x-axis. This fact is the reflection of the mechanism for
the temperature-dependent dephasing [71].

Figure 3(b) displays the deviations from the numeri-
cally exact results simulated with hierarchical approach.

Fig. 3 (a) The temperature dependence of the time evo-
lution for the population difference between the left and the
right states. The line connecting the minimum of each curve
is also shown. (b) The deviations of the stochastic simu-
lations from the numerically exact hierarchical results. The
errors are defined as (⟨σz⟩SDE−⟨σz⟩HE)/(1+|⟨σz⟩HE |) with
⟨σz⟩SDE being the results from the stochastic simulation and
⟨σz⟩HE that from the hierarchical approach. The tempera-
ture corresponding to the curves increases from the bottom
to the top at the intersections with the connecting curve in
(a) and the indicated arrow in (b).

One finds that the maximum errors are less than 0.004
up to the time t = 16/∆. If the results from the stochas-
tic simulation are plotted on top of the hierarchical
ones, the differences cannot be recognized with naked
eye. Thus the non-Markovian non-perturbative stochas-
tic master equation in Eq. (38) produces reliable results.
The other main feature is that bigger errors occur at
lower temperatures, as already noticed in the Monte-
Carlo simulations.

Define the trace distance D between two quantum
states ρ1,2 [72]

D(ρ1, ρ2) =
1

2
tr
√
(ρ†1 − ρ†2)(ρ1 − ρ2), (53)

which is a natural metric on the state space based
on the Schatten p-norm with p = 1 [73]. It satisfies
0 ≤ D ≤ 1 and is invariant under unitary transforma-
tion, non-increasing for completely positive and trace-
preserving quantum maps. Therefore, the trace distance
is often interpreted as a measure for the distinguishabil-
ity of quantum states. The quantity D is always decreas-
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Fig. 4 The trace distance between the left and right states
at different temperatures.

ing with time for Markovian propagation but sometimes
increasing for non-Markovian processes. Breuer, Laine
and Piilo suggested a measure for the non-Markovianity
based on the increase of D [74]. Interested readers may
refer to Ref. [75] for a recent review on the characteri-
zation and quantification of the non-Markovianity.

Note that the parity symmetry is preserved in the ex-
act reduced dynamics of the model. The symmetry im-
plies that the condition ρ2(t) = σxρ1(t)σx holds for any
time if it is satisfied at the initial time for two quantum
states ρ1(t) and ρ2(t). The parity symmetry allows us to
explore the non-Markovianity of the model by calculat-
ing the trace distance between a quantum state and its
symmetry image. Fig. 4 depicts the changes of the trace
distance between the left state and its symmetry im-
age (the right state) at different temperatures. It clearly
depicts the trend that the trace distance approaches
zero at long times. For all the simulated temperatures
there exist time ranges with increasing distance, which
is a clear sign of non-Markovianity. However, the in-
crease becomes weaker at higher temperatures, which
agrees with the intuition that the non-Markovianity be-
comes weaker as the temperature goes higher. We have
also carried out the propagation of quantum trajecto-
ries starting from the right state to check the reliability
of the symmetry based method. The differences between
the two sets of results are always less than 5% regardless
of time and temperature.

4 From stochastic to deterministic: Master
equation

The direct application of the stochastic differential equa-
tion is only suitable for weak to intermediate dissipation.
By contrast, deterministic methods are far more efficient
to study moderate to strong dissipation. Unfortunately,
exact deterministic method is not available for general
systems and thus accurate approximations are required
for the study of quantum dissipative dynamics. In devel-
oping approximations, analytically solvable models will

be appreciated because they not only provide insightful
understanding of quantum dissipation but also serve as
benchmarks.

The stochastic scheme outlined in previous sections
is useful to derive deterministic equations for certain
dissipative systems. To this end, one should first take the
stochastic average of Eq. (25) to obtain the deterministic
equation of motion for the reduced density matrix,

ih̄dρ̃s/dt = [Hs, ρ̃s(t)] + [f(ŝ),M⟨ḡ(t)ρs(t)⟩]. (54)

In the above derivation the nonanticipating property
Eq. (15) is used. Unfortunately, Eq. (54) is not in closed
form because of the correlation between the stochastic
density matrix ρs(t) and the random field ḡ(t). To work
out a master equation one has to express the statistical
average M⟨ḡ(t)ρs(t)⟩ explicitly in terms of the reduced
density matrix and other known operators of the sys-
tem. It is a challenging task to derive a deterministic
method from a stochastic one for arbitrary noise [12,
76–78].

For the Caldeira–Leggett model, the stochastic aver-
age M⟨ḡ(t)ρs(t)⟩ in Eq. (54) can be formally expressed
as follows by recognizing the expression of the bath-
induced field

M⟨ḡ(t)ρs(t)⟩ = M⟨ÔR(t)⟩+M⟨ÔI(t)⟩, (55)

ÔR(I)(t) =

∫ t

0

dt′αr(i)(t− t′)ρs,1(2)(t, t
′), (56)

where ρs,1(t, t
′) =

√
h̄ [υ1(t

′)− iυ4(t
′)] ρs(t) and

ρs,2(t, t
′) =

√
h̄ [υ2(t

′) + iυ3(t
′)] ρs(t). Here the real

Gaussian white noises υj are connected to the
Wiener processes w1/2 through the relations w1,t =∫ t

0
ds[υ1(s) + iυ4(s)] and w2,t =

∫ t

0
ds[υ2(s) + iυ3(s)].

To obtain the expressions of M⟨ρs,1(2)(t, t′)⟩ we resort
to the Furutsu-Novikov theorem [79], that is,

M⟨υ(t′)F [υ]⟩ = M
⟨
δF [υ]

δυ(t′)

⟩
(57)

for a white noise υ and an arbitrary functional F [υ].
Thanks to this theorem we are allowed to express the
random average M⟨ρs,1(2)(t, t′)⟩ in terms of functional
derivatives

M⟨ρs,1(t, t′)⟩ =
√
h̄M

⟨
δρs(t)

δυ1(t′)
− i

δρs(t)

δυ4(t′)

⟩
≡ Ôs,1(t, t

′), (58)

M⟨ρs,2(t, t′)⟩ =
√
h̄M

⟨
δρs(t)

δυ2(t′)
+ i

δρs(t)

δυ3(t′)

⟩
≡ Ôs,2(t, t

′). (59)

Also by applying the Furutsu–Novikov theorem and rec-
ognizing the formal solution of ρs(t), we find the results
for the functional derivatives with another type of noise
combination
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M
{ δρs(t)

δυ1(t′)
+i

δρs(t)

δυ4(t′)

}
=

2√
h̄

∫ t

t′
dsαr(s−t′)Ôs,1(t, s),

M
{ δρs(t)

δυ2(t′)
− i

δρs(t)

δυ3(t′)

}
=

2√
h̄

∫ t

t′
dsαi(s−t′)Ôs,2(t, s).

(60)

To proceed, we invoke the formal solution of Eq. (25)

ρs(t) = U+(t, 0)ρs(0)U−(0, t), (61)

where U±(t, 0) are the forward/backward propagator as-
sociated with the time-dependent stochastic Hamilto-
nian

Ĥ+(t) = Ĥs + [ḡ(t) +
√
h̄η+(t)/2]f(ŝ), (62)

and

Ĥ−(t) = Ĥs + [ḡ(t) +
√
h̄η−(t)/2]f(ŝ), (63)

respectively. Here η±(t) = υ1,t + iυ4,t ± iυ2,t ± υ3,t
are the noises ascociated with the forward/backward
propagation. By virtue of the stochastic propaga-
tor, one defines the Heisenberg operators x̂±(t, t

′) =

U±(t, t
′)f(ŝ)U±(t

′, t). Then the operators Ôs,1(2)(t, t
′)

corresponding to the functional derivatives are re-
expressed as

Ôs,1(t, t
′) = −iM

⟨
x̂+(t, t

′)ρs(t)− ρs(t)x̂−(t, t
′
)
⟩
,

Ôs,2(t, t
′) = M

⟨
x̂+(t, t

′)ρs(t) + ρs(t)x̂−(t, t
′
)
⟩
. (64)

Eq. (64) converts the task from solving M{ḡ(t)ρs(t)} to
tackling Ôs,1(2)(t, t

′) in terms of ρ̃s(t) and other known
operators.

For arbitrary systems, deriving the master equation
relies on whether the explicit expressions of dissipative
operators Ôs,1(2)(t, t

′) can be worked out or not. Unfor-
tunately, it cannot be analytically solved for general sys-
tems. However, the master equation can be constructed
when either the Hamiltonian of the system or the re-
sponse function of the bath assumes special properties.
Here we will present two examples, one with a special
response function and the other with the harmonic os-
cillator Hamiltonian.

4.1 High-temperature approximations

First, we consider dissipative dynamics at the high-
temperature limit. This is the classical regime, in which
the bath response is more local in time. Thus one may
resort to the Markovian approximation. We again con-
sider the Caldeira–Leggett model, see Eq. (36). Note
that in the bath-induced field the imaginary part of the
memory function is independent of temperature, which
is of a genuine quantum effect. At high temperatures
(small β) we use the Taylor expansion of coth(h̄βω) in
the real part of the memory function to obtain the dom-
inant contribution

αr(t) =
2

π

∫ ∞

0

dω
J(ω)

h̄βω
cos(ωt).

In the strict Ohmic dissipation J(ω) = ηω, the memory
time of the bath response becomes zero, that is

αr(t) =
2η

h̄β
δ(t)

and

αi(t) = ηδ′(t).

It is a bit subtle to use the δ-functions because they are
involved in the integral from 0 to t. In other words, only
half of the distribution contributes to the integration.
Without a rigorous proof we simply put down as∫ t

0

dt′δ(t′)f(t′) =
1

2
f(0),∫ t

0

dt′δ′(t′)f(t′) = −1

2
f ′(0).

These expressions can be substituted into Eq. (55) to
obtain

ÔR(t) =
η√
h̄β

ρs,1(t, t), (65)

ÔI(t) =
η

2

√
h̄

∂

∂t′
ρs,2(t, t

′)

∣∣∣∣
t′=t

. (66)

With the help of Eq. (25) we readily acquire

M⟨ÔR(t)⟩ = − iη

h̄β
[f(ŝ), ρ̃s(t)], (67)

M⟨ÔI(t)⟩ =
iη

2h̄
{[Hs, f(ŝ)] , ρ̃s(t)} . (68)

Inserting into Eq. (55), we obtain the semiclassical mas-
ter equation

ih̄
∂ρ̃s
∂t

= [Hs, ρ̃s]−
iη

h̄β
[f(ŝ), [f(ŝ), ρ̃s]]

+
iη

2h̄
[f(ŝ), {[Hs, f(ŝ)] , ρ̃s}] . (69)

For conventional systems Hs = p̂2/(2M) + VR(x̂) and
f(ŝ) = x̂ there is [Hs, f(ŝ)] = −ih̄p̂/M . Note that
the potential operator here includes the renormalization
contribution 1/2Mw̃2x̂2 with

ω̃2 =
∑
j

c2j
mjω2

j

=
2

π

∫ ∞

0

dω
J(ω)

ω
. (70)

Substituting into Eq. (69) leads to the well-known
Caldeira–Leggett master equation

ih̄
∂ρ̃s
∂t

= [Hs, ρ̃s]−
iη

h̄β
[x̂, [x̂, ρ̃s]]

+
η

2M
[x̂, {p̂, ρ̃s}] . (71)

This equation has been frequently discussed from dif-
ferent perspectives in the literature, for instance, in
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Ref. [80]. In this approximation the system follows
the exact quantum dynamics while the environment
is rather “classical” and Markovian as it is assumed
to be at high temperatures. At low temperatures, the
non-Markovian effect cannot be neglected and rigorous
methods are required [40].

4.2 Master equation for dissipative harmonic
oscillators

We consider a dissipative quantum harmonic oscillator
as the second example. The dissipative harmonic oscil-
lator is one among the few exactly solvable model for
theoretical analysis and has been extensively studied in
the literature [45, 48, 81–101]. Here we will follow Ref.
[101] to present a brief derivation in a straightforward
and elementary way through the stochastic decoupling
approach.

Suppose the renormalized frequency of the quantum
harmonic oscillator is ω when the contribution due to
Eq. (70) is accounted. For such a linear system, the
stochastic propagators U±(t, 0) can be solved by using
Eqs. (27)–(31) and the stochastic Heisenberg operators
x̂±(t, t

′) in Eq. (64) can be calculated correspondingly

x̂±(t, t
′) = cosω(t− t′)x̂− sinω(t− t′)

Mω
p̂

− 1

Mω

∫ t

t′
dt1 sinω(t1 − t′)

[
ḡ(t1) +

√
h̄

2
η±(t1)

]
.

Inserting into Eq. (64) and carrying out the involved
stochastic averaging, we obtain the following integral
equations for the operators Ôs,1 and Ôs,2

Ôs,1(t, t
′) = −i cosω(t− t′)

[
x̂, ρ̃s(t)

]
+

i

Mω
sinω(t− t′)

[
p̂, ρ̃s(t)

]
+

2

Mω

∫ t

t′
dt1

∫ t

t1

dt2 sinω(t1 − t′)

× αi(t1 − t2)Ôs,1(t, t2), (72)

Ôs,2(t, t
′) = cosω(t− t′)

{
x̂, ρ̃s(t)

}
− sinω(t− t′)

Mω

{
p̂, ρ̃s(t)

}
− 2

Mω

∫ t

t′
dt1

∫ t

0

dt2 sinω(t1 − t′)

× αr(t1 − t2)Ôs,1(t, t2)

− 2

Mω

∫ t

t′
dt1

∫ t1

0

dt2 sinω(t1 − t′)

× αi(t1 − t2)Ôs,2(t, t2). (73)

Here, Eq. (60) is used to obtain these equations.
The linear integral equation Eq. (72) for Ôs,1 does not

depend on Ôs,2 and can be solved at first. Taking into
account the inhomogeneous term, a reasonable guess for
the solution is

Ôs,1(t, t
′) = x11(t, t

′) [p̂, ρ̃s(t)] + x12(t, t
′) [x̂, ρ̃s(t)] ,

(74)

which can be verified by iteration. With the same rea-
soning, the expression of Ôs,2(t, t

′) possesses the follow-
ing form

Ôs,2(t, t
′) = x21(t, t

′
) {x̂, ρ̃s(t)}+ x22(t, t

′){p̂, ρ̃s(t)}
+ x23(t, t

′) [p̂, ρ̃s(t)] + x24(t, t
′) [x̂, ρ̃s(t)] . (75)

The coefficient functions xjk(t, t
′) are determined upon

substituting Eqs. (74) and (75) into the integral equa-
tions. The procedure results in the following integral
equations

x11(t, t
′) =

i

Mω
sinω(t− t′)

+
2

Mω

∫ t

t′
dt1

∫ t

t1

dt2 sinω(t1 − t′)

× αi(t1 − t2)x11(t, t2),

x12(t, t
′) = −i cosω(t− t′)

+
2

Mω

∫ t

t′
dt1

∫ t

t1

dt2 sinω(t1 − t′)

× αi(t1 − t2)x12(t, t2),

x21(t, t
′) = cosω(t− t′)

− 2

Mω

∫ t

t′
dt1

∫ t1

0

dt2 sinω(t1 − t′)

× αi(t1 − t2)x21(t, t2),

x22(t, t
′) = − sinω(t− t′)

Mω

− 2

Mω

∫ t

t′
dt1

∫ t1

0

dt2 sinω(t1 − t′)

× αi(t1 − t2)x22(t, t2),

x23(t, t
′) = − 2

Mω

∫ t

t′
dt1 sinω(t1 − t′)

×
[∫ t

0

dt2αr(t1 − t2)x11(t, t2)

+

∫ t1

0

dt2αi(t1 − t2)x23(t, t2)

]
,

x24(t, t
′) = − 2

Mω

∫ t

t′
dt1 sinω(t1 − t′)

×
[∫ t

0

dt2αr(t1 − t2)x12(t, t2)

+

∫ t1

0

dt2αi(t1 − t2)x24(t, t2)

]
.
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Finally one obtains the desired master equation in terms
of the above expressions,

ih̄
dρ̃s(t)

dt
= [Ĥs, ρ̃s(t)] +A1(t) [x̂, {x̂, ρ̃s(t)}]

+A2(t) [x̂, {p̂, ρ̃s(t)}] +A3(t) [x̂, [p̂, ρ̃s(t)]]

+A4(t) [x̂, [x̂, ρ̃s(t)]] , (76)

where the coefficient functions are

A1(t) =

∫ t

0

dt′αi(t− t′)x21(t, t
′),

A2(t) =

∫ t

0

dt′αi(t− t′)x22(t, t
′),

A3(t) =

∫ t

0

dt′ [αr(t−t′)x11(t, t
′)+αi(t−t′)x23(t, t

′)] ,

A4(t) =

∫ t

0

dt′ [αr(t−t′)x12(t, t
′)+αi(t−t′)x24(t, t

′)] .

The master equation Eq. (76) agrees with that derived
by Hu, Paz, and Zhang by virtue of path integral tech-
nique [88, 89]. As clarified in Ref. [89], A1(t) is the co-
efficient for the frequency shift because [x̂, {x̂, ρ̃s(t)}] =
[x̂2, ρ̃s(t)], A2(t) is a quantum dissipation term, A3(t)
reflects the anomalous quantum diffusion, and A4(t) is
the coefficient for the normal quantum diffusion.

Furthermore, the exact master equation for a dis-
sipative harmonic oscillator driven by external time-
dependent fields was also conveniently solved with above
procedure [101]. In this case, the driving fields medi-
ate an interplay between the system and the bath so
that the system is dressed by both the driving and the
stochastic fields.

5 Numerical algorithms based on stochastic
formulation

5.1 Decomposition of bath response function

When a simple master equation exists, the calculation of
the reduced density matrix is straightforward. By con-
trast, the stochastic simulation is deemed to be less ef-
ficient than solving the master equation due to the fluc-
tuations of the stochastic density matrix. Therefore, a
deterministic approach is always preferred. However, for
a general system a closed set of equations like Eq. (75)
cannot be reached because the stochastic average related
to the bath-induced noises cannot be solved exactly due
to the correlation between the stochastic density matrix
ρs(t) and random field ḡ(t). Any attempt to derive de-
terministic differential equations based on the stochastic
Liouville equation has to find a strategy to represent the
average involving the bath-induced noises in Eq. (54).

In this section we show that deterministic differential
equations can still be achieved if the response function

of the bath can be expanded as

α(t) =
∑
j

bjt
nje−γjt. (77)

Here γj may be complex with positive real part and nj

are non-negative integers. Eq. (77) can be viewed as an
expansion of α(t) in terms of the basis functions ϕj(t) =
tnje−γjt, which are related to the orthonormal Laguerre
polynomials when the constants γj are universal. The
response function in Eq. (77) is decomposable such that
it can be recast as

α(t− s) =
∑
j,k

cj,kϕj(t)ϕk(s). (78)

Furthermore, an arbitrary order derivative of the ex-
pansion can also be expressed in terms of these basis
functions

dn

dtn
α(t) =

∑
j

d
(n)
j ϕj(t), (79)

where d
(n)
j are constants of time. The properties of

Eqs. (78) and (79) greatly simplify the derivation of the
deterministic equation for the reduced density matrix.

It could be pointed out that Eq. (77) is a general
form of the response function for a wide range of model
spectral density functions. In many models for the bath,
the spectral density function assumes the form of the
odd rational function,

J(ω) = ω
PK(ω2)

QM (ω2)
, (80)

where PK(QM ) is a polynomial of order K(M). The
spectral density functions for Ohmic dissipation with
the Debye [Eq. (51)] and the algebraic [Eq. (89)] [102]
regulation as well as the multiple-mode Brownian os-
cillator model [85] assume this form. Eq. (34) then can
be integrated with contour integration and the contri-
bution of the poles of the spectral density function and
the hyperbolic cotangent function results in a form of
Eq. (77). Note that when the denominator polynomial
QM (x) has only simple roots, Eq. (77) will reduce to a
summation of exponentials. The integers nj in Eq. (77)
will become non-zero when the polynomial QM (x) has
multiple roots. Furthermore, the spectral density func-
tion may well be approximated with rational functions
even if it does not assume the form of odd rational func-
tions. For example, the Ohmic spectral density can be
decomposed into shifted Drude–Lorentzian terms [103,
104]. In this case, the corresponding response function
is indeed a sum of exponentials.

5.2 Hierarchical approach

In 1978 Shapiro and Loginov proposed the formulae of
differentiation to calculate the first order momentum for
a stochastic process driven by an Ornstein-Uhlenbeck
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noise with a correlation function of a single exponential
[105]. Tanimura and Kubo also obtained the Shapiro-
Loginov equations when employing the semiclassical ap-
proximation for the dissipative dynamics at high tem-
peratures, where the response function of the bath is
a single exponential [106]. The low temperature correc-
tions were included soon by Tanimura [107]. Later, our
group gave a rigorous derivation of the hierarchical ap-
proach through the stochastic formulation.

To derive the hierarchical approach, one again needs
to deal with Eq. (54). For a general system the aver-
age related to the bath-induced random field M⟨ḡ(t)ρs⟩
cannot be solved analytically and one has to resort to
the differential equation for its time evolution,

ih̄
d

dt
M⟨ḡ(t)ρs⟩

= ih̄M⟨ḡ(t)dρs⟩/dt+ ih̄M⟨[dḡ(t)]ρs⟩/dt
+ ih̄M⟨[dḡ(t)]dρs⟩/dt

= [Ĥs,M⟨ḡ(t)ρs⟩] + iM⟨ḡ1(t)ρs⟩
+ [f(ŝ),M⟨ḡ2(t)ρs⟩] + αr(0)[f(ŝ), ρs]

+ iαi(0){f(ŝ), ρs}. (81)

Here ḡ1(t) is a random field arising from the differenti-
ation of ḡ(t)

ḡ1(t) =

∫ t

0

[(dµ1,τ − idµ4,τ )α̇r(t− τ)

+ (dµ2,τ + idµ3,τ )α̇i(t− τ)]. (82)

The second identity in Eq. (81) is obtained by using the
stochastic Liouville equation Eq. (25) and recognizing
the nonanticipating rule Eq. (15). New density matrices
M⟨ḡ2(t)ρs(t)⟩ and M⟨ḡ1(t)ρs(t)⟩ appear on the right
hand side of this equation. The former originates from
the bath-induced field term in the stochastic Liouville
equation and the latter comes from the differentiation
of the bath-induced field.

To work out a deterministic equation for
M⟨ḡ(t)ρs(t)⟩, one needs to find the differential
equations for the two density matrices M⟨ḡ2(t)ρs(t)⟩
and M⟨ḡ1(t)ρs(t)⟩. This procedure generates new
density matrices whose equations of motion involve
more terms. However, it will be greatly simplified if
the response function can be decomposed in terms
of Eq. (77). Originally, only the sum-of-exponential
approximation for the bath response function was used
for the hierarchical approach. In Ref. [108], we at the
first time went beyond this approximation by using a
response function related to the Laguerre polynomials

α(t) = ibte−Ωt, (83)

where b and Ω are real numbers. Very recently, Tang and
co-workers suggested an expansion of the bath response
function with a complete set of orthonormal functions
for the hierarchical scheme [109].

In the following, we will illustrate the derivation of
the hierarchical approach with Eq. (83). To include all
terms generated in the procedure of differentiation, we
introduce the auxiliary density matrices

ρm,n(t) = M
{
ḡm(t)h̄n(t)ρs(t)

}
, (84)

with the root entry ρ0,0(t) being the reduced density ma-
trix. Here, the auxiliary stochastic process h̄(t), which
accounts the new term other than ḡ(t) when substitut-
ing Eq. (83) into Eq. (82), is defined as

h̄(t) =

∫ t

0

(dµ2,τ + idµ3,τ )be
−Ω(t−τ). (85)

The differential equations of the auxiliary density matri-
ces are obtained through the fundamental Itô calculus

ih̄ρ̇m,n(t) = −ih̄(m+ n)Ωρm,n(t) + [Ĥs, ρm,n(t)]

+ [f(ŝ), ρm+1,n(t)] + inh̄b{f(ŝ), ρm,n−1(t)}

+ imh̄ρm−1,n+1(t). (86)

By definition the initial condition is ρ0,0(0) = ρ̃s(0) and
ρm,n(0) = 0 (m+ n ̸= 0).

Eq. (86) forms a hierarchical structure for the evolu-
tion of the auxiliary density matrices. The evolution of
the reduced density matrix (ρ0,0) involves the density
matrix in the first layer, i.e., ρ1,0. The auxiliary density
matrix in the first layer is coupled to root and those in
the second layer, and so forth. Here the auxiliary den-
sity matrices with the same value of m+2n form a layer
of the hierarchy with the value m + 2n indicating the
times of differentiation required for the root to access
this layer. Thus the value m + 2n can be understood
as the depth of the auxiliary density matrix ρm,n and
reflects the order of correlation of the noise in the prop-
agation of the reduced density matrix.

The derivation can be extended to a response func-
tion with arbitrary number of terms in Eq. (77). For
example, with a response function containing three ex-
ponentials, one can use three integers to identify the
auxiliary density matrices ρm,n,k(t). Then as depicted
in Fig. 5, all the density matrices in the hierarchy are
linked to the previous and the next layers through a
pyramid-like structure.

Actually the hierarchy approach is a scheme to em-
bed a non-Markovian system in a larger, possibly infinite
Markovian system and the memory effects are character-
ized by the auxiliary terms. In other words, it converts
an integro-differential equation with a degenerate ker-
nel to infinite number of hierarchy equations. We would
like to point out that the auxiliary density matrices also
carry the information for the bath and have physical
meaning instead of being pure mathematical intermedi-
ate entities. For example, the auxiliary density matrices
in the first layer are directly related to the transport
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Fig. 5 The pyramid-like structure of the auxiliary density
matrices in the hierarchical evolution for response function
containing three exponentials.

current in fermionic systems [110].

5.3 Performance of hierarchical approach

The hierarchy equation Eq. (86) is an infinite-
dimensional ordinary differential equation. It is an
unattainable yet unnecessary work to handle an infinite
system exactly in numerical simulations. Normally, the
deeper the layer is, the less impact it has on the evolu-
tion of the reduced density matrix. In practice, one can
safely truncate the hierarchy equation to the Kth layer
with a sufficiently large integer K. That is, all terms
ρm,n,k(t) with m+ n+ k > K are set to zero. The level
of truncation K depends on the system-bath coupling
strength. The stronger the coupling is, the larger value
of K has to be used for the truncation. In the numeri-
cal simulations we will choose the minimum value Kmin

such that the differences between the results with trun-
cation of Kmin and Kmin + 1 are smaller than a pres-
elected criteria but those between Kmin and Kmin − 1
are not.

To verify this point we will check the performance of
the hierarchical approach for the dissipated symmetric
two-level system Eq. (50). For the clarity of showing the
impact of parameters on the performance of the hierar-
chy equation, the response function is assumed to take
a single exponential,

α(t) = 0.5ηω2
c (0.5 cot(βωc/2)− i) exp(−ωc|t|), (87)

which is essentially the first term in the response func-
tion Eq. (52) by ignoring contributions from all Matsub-
ara frequencies. Here we set β = 0.5 and explore how the
level of truncation depends on the dissipation strength
η with a cut-off ωc = 4. Figure 6(a) shows the dissipa-
tion strength dependence of the truncation level Kmin

with tolerances of 2 × 10−3 and 10−4. The differences
in the results with a maximum deviation of 2 × 10−3

cannot be recognized with naked eye if they are plotted
on top of each other. It verifies that in general the hier-
archy equation can converge when we include more and
more layers. When the tolerance decreases by a factor of

Fig. 6 The relation between the truncation level Kmin and
(a) the dissipation strength η with ωc = 4∆ for the tolerance
of 2×10−3 and 10−4, and (b) the memory time with η = 0.5
for the TLS with response function Eq. (87) at temperature
T = 2∆.

20, usually we have to increase the truncation level by
one or two. With a properly chosen truncation level, we
even can obtain numerically exact results with machine
accuracy of the double precision.

Because the hierarchy approach gives the finite mem-
ory time corrections to the Markovian approximation,
we expect that the truncation level would be small for
short bath memory times. Again, we will use the sym-
metric two-level system Eq. (50) and the single exponen-
tial response function Eq. (87) to illustrate this point.
Here β = 2∆, η = 0.5 are fixed and ωc varies from 0.1
to 70. The results are plotted in Fig. 6(b). It shows an
overall monotonic increase of the truncation level with
respect to the memory time (measured by ∆/ωc). When
the memory time is around 0.15, Kmin = 3 is already
sufficient to produce the accuracy of 0.002. The trun-
cation level gradually increases up to seven when the
memory goes to 10.

In the hierarchy equation, the auxiliary density ma-
trix ρm,n is damped by the factor (m + n)Ω . The ma-
trices with large damping factors will decay fast in time
propagation. There exist alternative truncation schemes
based on this fact. Shi and co-workers introduced a fil-
tering scheme after rescaling the auxiliary density ma-
trices that automatically truncates the hierarchy with
a preselected tolerance [111]. This truncation scheme
may significantly reduce the number of auxiliary den-
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sity matrices and speed up the numerical simulation of
the hierarchical approach.

The computational effort, such as computer mem-
ory and CPU time required for the numerical simu-
lation, directly depends on the number of auxiliary
density matrices in the hierarchy. The jth layer has
(j +N − 1)!/(j!(N − 1)!) auxiliary density matrices for
N exponentials. The total number of density matrices
for K layers is

L(K,N) =

K∑
j=0

(j +N − 1)!

j!(N − 1)!
=

(K +N)!

K!N !
. (88)

Therefore, the computational effort scales exponentially
with respect to the number of terms approximating the
response function. It is appreciated to reduce the num-
ber of exponentials decomposing the response function
without loss of accuracy. For this purpose, Yan and co-
workers used the Padé approximant of the Bose/Fermi
function to obtain accurate approximation for the re-
sponse function with a few exponentials [112, 113].

Here the hierarchy equation is derived based on the
stochastic decoupling for the reduced density matrix.
Similar hierarchy equations were derived for multi-time
correlation functions [114] and for diffusively driven
quantum systems [115]. Very recently, de Vega suggested
another form of hierarchical equations [116]. Zhou and
co-workers also derived non-Markovian quantum Bloch
equations in the hierarchical form [117].

Now the hierarchical approach has become a standard
tool for the simulation of the non-Markovian dynamics.
It has been applied to the study of quantum coherence
in a photosynthetic system [118], the dissipative two-
exciton dynamics in molecular aggregate [119], the ex-
citon Seebeck effect in molecular systems [120], the exci-
ton interference [121], two-dimensional electronic spec-
tra [122], Kondo effects in driven strongly correlated
quantum dots [123], to name but only a few.

As numerical examples, the hierarchical simulations
of the spin-boson model Eq. (50) are performed assum-
ing the Ohmic spectral density function with the Debye
regulation Eq. (51). We will explore the dynamics with
a broad range of the dissipation strength η and the fre-
quency cut-off ωc. As discussed above, only the first Ne

exponentials in the response function Eq. (52) need to
be incorporated into the hierarchy with a finite level of
truncation Kmin.

Figure 7 displays the dynamics of the TLS with a
fast bath (ωc = 5∆) at temperature T = 2∆. It shows
that for weak dissipation with η = 0.4, clear quantum
coherence is manifested by the oscillation of the pop-
ulation difference. The calculation converges with four
exponentials up to the seventh order. When the dissi-
pation is strong, i.e., η = 8, the system returns to the
equilibrium without oscillation, but with a longer re-
laxation time. In this case, we have to incorporate six

Fig. 7 The time evolution of the population difference for
the TLS with a relative large cut-off ωc = 5∆ at temperature
T = 2∆ for (a) η = 0.4 and (b) η = 8. The hierarchy
parameters are Ne = 4, Kmin = 7 for (a) and Ne = 6,
Kmin = 9 for (b).

Fig. 8 The time evolution of the population difference for
the TLS with a small cut-off ωc = 0.25∆ at temperature
T = 0.5∆ for (a) η = 4, Ne = 4, Kmin = 6; (b) η = 8,
Ne = 6, Kmin = 9; and (c) η = 80, Ne = 7, Kmin = 25.

exponentials and truncate the hierarchy at the ninth or-
der.

The scenario changes for a TLS with a slow bath
(ωc = 0.25∆) at a lower temperature T = 0.5∆. As
depicted in Fig. 8, the system is slightly damped for a
rather large coupling constant η = 4. The coherence is
still observable with a strength as large as η = 80.

6 Hybrid stochastic-hierarchical equation

For the dissipative harmonic oscillator, either classical
or quantum, as the dissipation increases, the motion
will change from coherence to exponential decay. For the
undissipated two-level system, the dynamics exhibits co-
herence as the system changes from one localized state
to the other periodically. Under weak to intermediate
dissipation, the coherence between the two localized
states will be destroyed and the zero-temperature dy-
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namical behavior of the spin-boson model is expected
to exhibit the similar coherence-to-decoherence transi-
tion. However, the dissipated two-level system is nonlin-
ear and there exists a critical value for the dissipation
strength beyond which the dynamics is frozen. In this
case the dynamical phase transition occurs for the spin-
boson model, which is nothing but the localization [124].

It remains a challenge for theorists to simulate non-
Markovian quantum dissipative dynamics under strong
dissipation at zero temperature. Both the stochastic and
hierarchical approaches have disadvantages in numeri-
cal simulations of the low temperature dynamics. On
one side, the stochastic Liouville equation is suitable
for the dynamics at arbitrary temperatures under weak
to intermediate dissipation. The performance is mainly
degraded by the imaginary part of the response func-
tion which makes the stochastic density matrix non-
Hermitian and non-norm-conserving. On the other side,
hierarchical approach is numerically efficient for inter-
mediate to strong dissipation. However, when the tem-
perature becomes low, many terms have to be included
in the expansion of the real part of the response func-
tion. Therefore, the treatment of the real part of the
response function makes the hierarchical approach only
suitable for medium to high temperatures. Based on
the above analysis, a natural question arises: Can we
combine the hierarchical and stochastic schemes to use
their advantages and circumvent their disadvantages to
achieve an efficient numerical method for dynamics un-
der strong dissipation at low temperatures or even at
zero temperature?

This question led to the hybrid stochastic-hierarchical
equations [108, 125]. The original idea was to use the
mixed random-deterministic (MRD) scheme to deal
with the imaginary part of the response function by the
hierarchical approach and to handle the real part with
the stochastic method [108]. To be specific, the stochas-
tic average of Eq. (25) with respect to w2 is tackled
with the hierarchical approach and that with respect
to w1 is maintained with the stochastic scheme. It is
successful to calculate long-time dynamics for weak to
moderate dissipation at zero temperature but fails for
strong dissipation. A natural remedy is the introduc-
tion of the flexible random-deterministic (FRD) scheme
where a few exponentials are extracted from the real
part of the response function and tackled with the hi-
erarchical approach [125]. By doing so, the rest of the
response function which needs to be dealt with by the
random scheme is much smaller. Consequently, the flex-
ible scheme is efficient both in producing the random
average and in representing the response function. Its
numerical performance is greatly improved and suitable
for the zero temperature dynamics under strong dissi-
pation.

To explore the performance of these methods we use
the dissipated symmetric two-level system under Ohmic
dissipation with a polynomial cut-off [102]

J(ω) = 2πηω/
[
1 + (ω/ωc)

2
]2

, (89)

where η is the Kondo parameter characterizing the dis-
sipation strength. The imaginary part of the response
function is an exponentially weighted polynomial

αi(t) = −1

2
πηω3

c te
−ωct, (90)

which can be effectively tackled with the hierarchical
approach.

The dynamics of the dissipative system at zero tem-
perature for the Kondo parameter α = 0.1–0.5 and
the cut-off ωc = 10∆ were simulated with the mixed
random-deterministic scheme. The results shown in
Fig. 9 display a clear pattern of the transition from
coherent to incoherent motion. The population differ-
ences exhibit obvious coherence when the dissipation
strength is less than 0.5 and follow an exponential de-
cay for α = 0.5.

To scrutinize the dynamics at zero temperature, we
also carried out the simulations with the mixed random-
deterministic scheme for the population differences with
cut-offs of 20∆ and 40∆. Here we present the results for
α = 0.1 as an example. As shown in Fig. 10, the results
for different frequency cut-offs fit together once the time
axis is rescaled by the renormalization frequency

∆r = ∆

(
∆

ωc

)α/(1−α)

. (91)

This feature implies that the frequency cut-off ωc only
comes into the time scale of the dynamics through ∆r

for large cut-offs. In this case, the scaling limit is al-
most reached when ωc = 10. The results based on
the noninteracting-blip approximation (NIBA) are also
plotted in this figure. For such weak dissipation the
noninteracting-blip approximation gives almost exact
results. It produces noticeable and even significant er-
rors for stronger dissipation, except for the case with
α = 0.5 [125].

Fig. 9 The coherent dynamics of the spin-boson model
at zero temperature for various dissipation strength α sim-
ulated with the mixed random-deterministic scheme. The
frequency cut-off is ωc = 10∆.
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Fig. 10 The scaling limit of the spin-boson model at zero
temperature for dissipation strength α = 0.1 simulated with
the mixed random-deterministic scheme. NIBA gives almost
exact results for this case.

The results for α = 0.2 − 0.5 with different cut-offs
confirm the scaling behavior. For α = 0.5, the popu-
lation difference at long times exhibits an exponential
decay with respect to the time rescaled by the renor-
malization frequency ∆r. This exponential decay agrees
with the theoretical prediction from the noninteracting-
blip approximation [32], which becomes exact for an in-
finite frequency cut-off for α = 0.5.

The mixed random-deterministic scheme becomes in-
efficient under strong dissipation and one has to resort
to the flexible scheme. Fig. 11 presents a comparison of
the efficiency between the mixed and flexible random-
deterministic schemes for the case with α = 0.5. It takes
the mixed scheme more than one day to obtain the con-
verged results with a common desktop computer. But
the flexible scheme yields reasonable results within five
seconds with the same computer. For a clear compari-
son the results based on the mixed random-deterministic
scheme within five seconds are also demonstrated, which
display a dramatic deviation from the ensemble average.

The flexible random-deterministic scheme allows the
exploration of the dynamics for α > 0.5 within a
reasonably short amount of time. It will take several
days to several weeks to simulate the dynamics with
0.5 < α ≤ 0.8. Figure 12 depicts the results for α = 0.6.
Other cases assume similar features and are not shown
here. Again the results based on the noninteracting-blip
approximation are compared, which are only good at
short times and become qualitatively correct for long
times for such strong dissipations. In these cases the
population differences follow an exponential decay af-
ter an initial quick drop. But now the frequency cut-off
dependency is different to that in the weak dissipation
cases with α ≤ 0.5. As revealed by panel (b), the quan-
tities ln[σz(t)] with different frequency cut-offs fit to-
gether if the time is rescaled with 1/ωc for large cut-off.
For such strong dissipation, the scaling limit is reached
around ωc = 20∆, which is later than ωc = 10∆ for a
weak dissipation with α = 0.1. Once the scaling limit is
maintained, the quantity ln[σz(t)] shows a linear depen-

Fig. 11 The dynamics of the spin-boson model at zero
temperature for dissipation strength α = 0.5. The frequency
cut-off is ωc = 10∆. Solid line shows the converged results
with the mixed random-deterministic scheme. The results
for the flexible scheme were calculated with a common desk-
top within five seconds. A 5-seconds simulation of the mixed
random-deterministic scheme is also shown for the compari-
son of the numerical efficiency.

Fig. 12 The dynamics of the spin-boson model at zero
temperature for dissipation strength α = 0.6 with different
frequency cut-off. (a) The comparison between the FRD and
NIBA; (b) The scaling limit for the FRD simulations.

dence on ∆(∆/ωc)t. It strongly suggests that there is
a phase transition at α = 0.5 for the spin-boson model
at zero temperature. In the scaling limit ωc/∆ → ∞,
the dynamics changes from coherent motion for α < 0.5
to exponential decay for 0.5 ≤ α < 1.0. Accordingly,
the scaling factor changes from ∆r to ∆(∆/ωc). The
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transition to localization at α = 1.0 is also predicted by
various analytic theories [32, 34] in the limit ωc/∆ → ∞.
These results are summarized in Fig. 13.

One may introduce a decay rate as

κ = −ωc lim
t→tc

d ln[σz(t)]

dt
, (92)

with a sufficiently large time tc. The results of the de-
cay rates for the Kondo parameters 0.5 ≤ α ≤ 0.8 are
presented in Fig. 14. Though the existence of the expo-
nential decay could be explained by conformal field the-
ory [34, 126], the predicted results are different from the
current simulations. The decay rate decreases as the dis-
sipation becomes stronger. Interestingly, the logarithm
of the decay rate shows a linear dependence on the dis-
sipation strength.

7 Summary and perspectives

The past two decades have witnessed an increasing pop-
ularity of stochastic simulations of quantum dissipative
dynamics. Particularly, the influence functional within
the framework of linear dissipation can be naturally re-
constructed with the random average by introducing
Gaussian random forces to the system. Thanks to the
Hubbard–Stratonovich transformation, we have decou-
pled the system and the bath. The original system-bath
coupling is converted into the correlation induced by
the motion of the stochastic system and the bath un-

Fig. 13 The phase diagram for the spin-boson model at
zero temperature in the scaling limit ωc/∆ → ∞.

Fig. 14 The logarithm of the decay rate as the function
of the dissipation strength for the spin-boson model at zero
temperature. Symbols are calculated results and the line is
for the guide of the eye with a linear function lnκ = 4.14−
7.66α.

der the influence of the common white noise forces. The
sole effect of the bath is to provide a random field on
the evolution of the system. For the linear dissipation
model, the motion of the bath is exactly known and the
bath-induced random field can be worked out. Thus a
stochastic Liouville equation can be derived for the re-
duced dynamics without explicit treatment of the bath.

The final stochastic Liouville equation does not pre-
serve hermicity, norm-conserving, or positivity, which
affects its numerical performance. To have a better nu-
merical performance, a Hermitian scheme has also been
developed. The stochastic simulation is simple, easy to
be implemented and suitable for numerical simulations
of dissipative dynamics with weak to intermediate cou-
pling strength at arbitrary temperatures.

The stochastic scheme can also serve as a useful theo-
retical tool to derive deterministic master equation. For
the analytically solvable models and for the memoryless
bath, we can carry out the random average analytically
to achieve the exact master equation. The procedure for
general systems with arbitrary bath response function is
not closed. However, if the response function is a degen-
erate kernel, i.e., decomposable in terms of exponentials
or exponential-weighted Laguerre polynomials, an effi-
cient hierarchy approach can be developed, where the
memory effects is characterized by the auxiliary density
matrices.

But at low temperatures, the response function of the
bath must be approximated with many terms and the
hierarchical simulations may become prohibitively ex-
pansive. In these cases, we can combine the determin-
istic and stochastic schemes to handle part of the re-
sponse function with the hierarchical approach and the
rest with the stochastic scheme. Such hybrid stochastic-
hierarchical equations exploit the advantages of the
stochastic and hierarchical schemes and are suitable for
the lower temperature dynamics with strong dissipation.

As described above, the Hubbard-Stratonovich trans-
formation provides us a machinery to decouple the in-
teraction between different physical variables via intro-
ducing white noises. It is, in principle, a (at least par-
tial) cure for the curse of dimensionality, yet would not
become powerful unless the average of the concomitant
stochastic evolution is feasibly obtained. We see that it
works well for a bosonic bath with linear couplings to
the system and the bath-induced stochastic field can be
derived in a closed form. For a general bath, however,
no analytic results are available. It is no doubt that ob-
taining a reasonably accurate bath-induced stochastic
field is a challenging task.

It is really ideal if the master equation that a dissipa-
tive system obeys can be derived. Then it would be eas-
ier to use such a deterministic equation to reveal the dy-
namical features of quantum dissipation. Unfortunately,
even if the induced stochastic field is known for the lin-
ear bath and the stochastic Liouville equation has been
determined, the master equation for the nonlinear dis-
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sipative system is elusive. The difficulty is rooted at the
correlation between the bath-induced stochastic field
and the evolution of the system. Except for the case of
weak dissipation in which a reliable perturbation treat-
ment may lead a master equation, it is hardly possible to
find a deterministic equation of motion with general dis-
sipation. Although numerical simulations based on the
stochastic Liouville equations are applicable, the com-
putational cost would increase rapidly as the dissipation
gets stronger and the statistical error would eventually
be uncontrollable. This problem may be alleviated by
using a nonlinear but norm-conserved stochastic Liou-
ville equation instead of the linear one, but nonlinearity
may also cause numerical instability.

The lesson we have learnt is that stochastic simula-
tion is a general approach with low efficiency while de-
terministic method is highly effective but limited to spe-
cific systems. The mixed stochastic-deterministic tech-
nique enjoys some success in solving the dynamics of
the spin-boson model, yet more effective numerical al-
gorithm with more flexibility and feasibility, addressing
general quantum dissipative dynamics is yet to be de-
veloped.

From a fundamental perspective, because many
macroscopic effects ranging from pure physical such
as turbulence, phase transition to biological such as
memory and so on are only possible within dissipative
systems, to reveal the underlying mechanism of these
emergent effects needs conceptual as well as theoretical
advances. In a recent article Whitesides listed how
dissipative systems work as the third new class of
problems for chemists [127]. As he pointed, “Studying
dissipative systems has, of course, been a subject of
physical science for decades, but, unlike equilibrium
systems, understanding dissipative systems—both
theoretically and empirically—is still at the very
beginning”. More fruitful emergent phenomena such
as quantum phase transition, a behavior change from
delocalized quantum world to the localized classical
one, may undergo in quantum dissipative systems and
still await for exploration [128].
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