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Abstract. In this paper, we present a non-equilibrium quantum theory for
transient electron dynamics in nanodevices based on the Feynman–Vernon
influence functional. Applying the exact master equation for nanodevices we
recently developed to the more general case in which all the constituents of
a device vary in time in response to time-dependent external voltages, we
obtained non-perturbatively the transient quantum transport theory in terms of
the reduced density matrix. The theory enables us to study transient quantum
transport in nanostructures with back-reaction effects from the contacts, with
non-Markovian dissipation and decoherence being fully taken into account. For
a simple illustration, we apply the theory to a single-electron transistor subjected
to ac bias voltages. The non-Markovian memory structure and the nonlinear
response functions describing transient electron transport are obtained.
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1. Introduction

The investigation of quantum coherence dynamics far away from equilibrium in nanoscale
quantum devices (nanodevices) has attracted much attention in the past decade, due to
various applications in nanotechnology and quantum information processing. Experimentally,
it became possible not only to directly manufacture structures but also to investigate their non-
equilibrium quantum coherence properties under well-controlled parameters [1]–[5]. Previous
theoretical investigations focused mainly on the steady-state limit of the non-equilibrium
quantum transport [6]–[8]. More recently, increasing efforts have been devoted to the study
of the time-dependent quantum transport far away from equilibrium [9]–[15]. In fact, a full
understanding of non-equilibrium dynamics induced and controlled by external fields lies in the
temporal evolution of electrons in nanodevices from some specific initial preparation towards
any designed state within an extremely short time, which is essential for practical applications.

Prototypical nanodevices studied in this paper are made of a gate-defined region on a
semiconductor containing discrete electronic states or a quasi-continuum spectrum, as shown
in figure 1. Electrode leads are implanted around this central region to control the electrons
across it. Also, gates are deposited to adjust the electronic states within the central area as
well as their couplings to the surrounding electrodes. Much theoretical work has been devoted
to the understanding and prediction of how fast or slow the device can turn a current on or off.
However, as a quantum device, in particular for quantum information processing [2]–[5], the big
challenge is to understand and predict not only how fast or slow the device can turn a current on
or off but also how reliably and efficiently the device can manipulate quantum coherence of the
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Figure 1. A schematic plot of a nanoscale quantum device in which the bias
voltage is applied to the source, and the drain electrode leads labeled L and R
and other gates labeled Gc, G1, G2, . . . control the energy levels of the central
region as well as the couplings between the central region and the leads.

electron states through external bias and gate voltage controls. This requires a non-equilibrium
quantum device theory to fully analyze the quantum coherence dynamics of electrons in the
device. The purpose of this paper is to attempt to establish such a nonequilibrium theory for
the quantum coherence dynamics of electrons in nanodevices that can be feedback controlled
through the nonlinear response of the electron transport to the external time-dependent bias and
gate voltage pulses.

Physically, the nanodevice studied in this paper is a typical open quantum system in
the sense that it exchanges particles, energy and information with its surroundings. For an
open quantum system, the non-equilibrium electron dynamics are completely determined by
the master equation of the reduced density matrix ρ(t), which can fully depict the dynamics
of electron quantum coherence in the device. Any other physical observable is simply given
by 〈O(t)〉 = 〈Oρ(t)〉. The transient electron transport should also be directly solved from
the reduced density matrix. However, it has been attempted for many years without a
very satisfactory answer to find the exact master equation for an arbitrary open quantum
system [16]. Most of the master equations used in the literature are obtained using semiclassical
approximation or perturbation truncation, such as the semiclassical Boltzmann equation [17, 18]
or the Lindblad-type master equations under the Born–Markov approximation [19]. For a
nanodevice with an extremely short length scale (∼1 nm) and extremely fast time scale
(∼1 fs), the semiclassical Boltzmann equation and the master equation under the Born–Markov
approximation are most likely inapplicable.

Theoretically, there are two fundamental but equivalent methods for dealing with
modern non-equilibrium physics. These are the Schwinger–Keldysh non-equilibrium Green
function technique [20, 21] and the Feynman–Vernon influence functional approach [22].
In practical applications, both methods have their own advantages and disadvantages. The
Schwinger–Keldysh non-equilibrium Green function technique allows not only a systematic
perturbative study [23, 24] but also a non-perturbative study [25, 26] for various nonequilibrium
phenomena in many-body systems. In particular, it is a powerful tool to study the steady-
state properties, for which the initial state of the quantum system is irrelevant and where
transport is mainly determined by the density of states [7, 8]. The extension of this method
to treat time-dependent transport has already been investigated [27]. However, except for
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the wide band limit (WBL), the time-dependent non-equilibrium Green function calculations
become rather complicated, due to the initial state dependence and the non-Markovian memory
structure [9, 12].

On the other hand, the Feynman–Vernon influence functional approach [22] is mainly used
to study dissipation dynamics in quantum tunneling problems [28] and decoherence problems in
quantum measurement theory [29]. It is, in particular, very useful to derive non-perturbatively
the master equation for the reduced density matrix of an open system. This is accomplished
by integrating out completely the environmental degrees of freedom through the path integral
approach, where the non-Markovian memory structure is manifested explicitly. In the early
applications of the influence functional approach, the master equation was derived for some
particular class of Ohmic (white-noise) environments for the quantum Brownian motion (QBM),
modeled as a central harmonic oscillator linearly coupled to a set of harmonic oscillators
simulating the thermal bath [30, 31]. The exact master equation for the QBM with a general
spectral density (color-noise environments) that can fully address the non-Markovian dynamics
was the Hu–Paz–Zhang master equation [32]. Applications of the QBM exact master equation
cover various topics, such as quantum decoherence, quantum-to-classical transition, quantum
measurement theory, quantum gravity and quantum cosmology [19, 33, 34]. However, using the
influence functional approach to obtain the exact master equation has largely been focused on
the bosonic (thermal) environments in the past half century.

Meanwhile, utilizing the master equation to study quantum electron transport has also
recently received a certain amount of attention. In principle, the master equation can be formally
expressed in terms of the real-time diagrammatic expansion up to all the orders [35]–[37]. In
practice, most of the master equation approaches used in quantum transport by far only take
the perturbative theory up to the second order [38]–[40]. An exception is the recently developed
hierarchical expansion [10]. This hierarchical expansion is a very efficient tool for the numerical
study of the quantum transport properties, including the accurate evaluations of the Coulomb
blockage and the Kondo transition dynamics [15, 41]. Still, a close form of the master equation
for the reduced density matrix combined with the fully non-equilibrium electron transport
dynamics in nanodevices has not yet been presented.

By extending the influence functional approach to the fermionic reservoirs, we have
recently derived an exact master equation for a large class of nanodevices [13]. This exact master
equation is capable of studying the full non-Markovian decoherence dynamics of electrons in
nanostructures. In the present work, we shall extend the exact master equation to the cases in
which all the constituents of a device, including the couplings to leads, vary in time in response
to time-dependent external voltages. We then derive the exact quantum transport theory in terms
of the reduced density matrix within the same framework. The resulting theory can be used
to investigate various time-dependent quantum transport processes accompanied explicitly by
non-Markovian quantum relaxation and decoherence dynamics. The non-equilibrium transport
based on Keldysh’s Green function technique can be easily reproduced from the present theory.

The remainder of this paper is organized as follows. In section 2, we outline the derivation
of the exact master equation we obtained recently [13], with the extension to the time-dependent
Hamiltonian. In section 3, we derive the transient current operator in terms of the reduced
density operator, based on the influence functional and the master equation. The relation
between the reduced density matrix and the time-dependent current is established through
the master equation, and all the back-reaction effects associated with the non-Markovian
dynamics of electrons are fully taken into account. As an illustration, we apply the theory to a
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single-electron transistor (SET) subjected to ac bias voltages in section 4, where the non-
Markovian memory structure and the nonlinear response functions describing transient electron
transport are obtained. The summary and perspective are given in section 5. In the appendices,
a close connection between the exact master equation approach and the non-equilibrium Green
function technique for transient quantum transport is established.

2. The exact master equation of the reduced density matrix for nanodevices

In this section, we shall outline the exact master equation derived recently by two of us for
a large class of nanodevices [13], with an extension to the time-dependent energy levels and
couplings. We shall only list the necessary formulae that we will use later for the derivation
of the transient current. For a more detailed derivation, please refer to [13]. We begin with the
Hamiltonian of a prototypical mesoscopic system for electron transport,

H(t) =

∑
i j

εi j(t)a
†
i a j +

∑
αk

εαk(t)c
†
αkcαk +

∑
iαk

[Viαk(t)a
†
i cαk + V ∗

iαk(t)c
†
αkai ]. (1)

Here, the first sum represents the electron Hamiltonian HS for the central region in the device.
The second sum represents the Hamiltonian

∑
α Hα describing the non-interacting electron

leads (the source and drain electrodes, plus other electric gates; see figure 1) labeled by the
index α(=L , R, . . .). The last term is the electron tunneling Hamiltonian HT between the leads
and the central region. To make the transient dynamics complete, the bias voltages Vα applied
to the leads are considered to be a time-dependent external field or an ultrafast pulse such
that the single-electron energy levels in the leads are shifted as εαk → εαk(t) = εαk + eV α(t).
In principle, a time-dependent external field may also induce off-diagonal terms to the electrode
Hamiltonian in the single-electron energy basis, but it is not difficult to transform it into a new
diagonal basis as long as the external field does not induce electron–electron interactions in the
electrode leads. Meanwhile, the energy levels εi j of the central region and the couplings Viαk

between the central region and the leads are controllable through the gate voltages and external
field pulses so that they can be, in general, also time dependent: εi j → εi j(t) = εi j + 1i j(t) and
Viαk → Viαk(t). Throughout this work, we set h̄ = 1, except for the transient current where we
will put h̄ back into its definition.

It is worth noting that we have not considered the electron–electron Coulomb interaction
in equation (1), which may induce interesting new phenomena, such as the Kondo effect at
very low temperature [42]. However, in practical applications, the importance of Coulomb
correlations depends on the energy scale involved in the manipulation of nanodevices. One
can always control the energy scale of the nanodevice to let the Coulomb correlations become
negligible or to set up the device in the Coulomb blockage regime for practical applications. For
the Coulomb blockage regime, as we have shown, we can properly and explicitly exclude the
doubly occupied states and the resulting master equation can be applied to the strong Coulomb
repulsion [13]. Therefore, these two extreme limits, the extremely weak and the extremely
strong Coulomb interaction regimes together, can cover most of the useful nanodevices.
The extension to the general Coulomb interaction regime will then be retained for further
investigation.

Our derivation of the master equation is based on the Feynman–Vernon influence functional
approach [22, 28, 32] in the coherent state representation [13]. As is well known [16], the
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non-equilibrium electron dynamics of an open system are completely determined by the so-
called reduced density matrix. The reduced density matrix is defined from the density matrix
of the total system (the central system plus the leads, and the leads are treated as reservoirs
to the central system) by tracing over entirely the environmental degrees of freedom: ρ(t) ≡

trR[ρtot(t)], where the total density matrix is formally given by ρtot(t) = U (t, t0)ρtot(t0)U †(t, t0)

with the evolution operator U (t, t0) = T exp{−i
∫ t

t0
H(τ )dτ }, and T is the time-ordering

operator. As usual, we assume that the central region is uncorrelated with the reservoirs before
the tunneling couplings are turned on [28]: ρtot(t0) = ρ(t0) ⊗ ρR(t0), where the system can be in
an arbitrary state ρ(t0) but the reservoirs are initially at equilibrium: ρR(t0) =

1
Z e−

∑
α βα(Hα−µα Nα),

βα = 1/(kBTα) is the initial inverse temperature and Nα =
∑

k c†
αkcαk is the particle number

operator for the lead α.
In the coherent state representation [13, 43, 44], the reduced density matrix at an arbitrary

later time t can be expressed as

〈ξ f |ρ(t)|ξ ′

f 〉 =

∫
dµ(ξ 0) dµ(ξ ′

0)〈ξ 0|ρ(t0)|ξ
′

0〉J (ξ̄ f , ξ
′

f , t |ξ 0, ξ̄
′

0, t0), (2)

with ξ = (ξ1, ξ2, . . .) and ξ̄ = (ξ ∗

1 , ξ ∗

2 , . . .) being the Grassmannian numbers and their complex
conjugate defined through the fermion coherent states: ai |ξ〉 = ξi |ξ〉 and 〈ξ |a†

i = 〈ξ |ξ ∗

i . The
propagating function in equation (2) is given in terms of Grassmannian number path integrals,

J (ξ̄ f , ξ
′

f , t |ξ 0, ξ̄
′

0, t0) =

∫
D[ξ̄ ξ ; ξ̄

′

ξ ′]ei(Sc[ξ̄ ,ξ ]−S∗
c [ξ̄

′
,ξ ′])F[ξ̄ ξ ; ξ̄

′

ξ ′], (3)

where Sc[ξ̄ , ξ ] is the action of the central system in the fermion coherent state representation
and F[ξ̄ ξ; ξ̄

′

ξ ′] is the influence functional obtained after integrating out all the environmental
(reservoirs) degrees of freedom [13]:

F[ξ̄ ξ; ξ̄
′

ξ ′] = exp

−

∑
αi j

∫ t

t0

dτ

∫ τ

t0

dτ ′(gαi j(τ, τ
′)ξ ∗

i (τ )ξ j(τ
′) + g∗

α j i(τ, τ
′)ξ ′∗

i (τ ′)ξ ′

j(τ ))

−

∑
αi j

∫ t

t0

dτ

∫ t

t0

dτ ′(gαi j(τ, τ
′)ξ ′∗

i (τ )ξ j(τ
′) − g̃αi j(τ, τ

′)

×(ξ ∗

i (τ ) + ξ ′∗

i (τ ))(ξ j(τ
′) + ξ ′

j(τ
′)))

 . (4)

The non-local time correlations in equation (4) are defined by

gαi j(τ, τ
′) =

∑
k

Viαk(τ )V ∗

jαk(τ
′)e−i

∫ τ

τ ′ dτ1εαk(τ1), (5a)

g̃αi j(τ, τ
′) =

∑
k

Viαk(τ )V ∗

jαk(τ
′) fα(εαk)e

−i
∫ τ

τ ′ dτ1εαk(τ1), (5b)

which depict all the time correlations of electrons in the leads through the couplings with the
central region and fα(εαk) = 1/(eβα(εαk−µα) + 1) is the Fermi distribution function of the lead α

at the initial time t0.
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This influence functional takes fully into account the back-reaction effects of the reservoirs
on the central system. It modifies the original action of the system into an effective one,
e(i/h̄)(Sc[ξ̄ ,ξ ]−S∗

c [ξ̄
′
,ξ ′])F[ξ̄ ξ; ξ̄

′

ξ ′] = e(i/h̄)Seff[ξ̄ ξ;ξ̄
′
ξ ′], which dramatically changes the dynamics of

the central system. The detailed change is manifested through the generating function of
equation (3) by carrying out the path integral with respect to the effective action Seff[ξ̄ ξ; ξ̄

′

ξ ′].
The path integral D[ξ̄ ξ; ξ̄

′

ξ ′] integrates over all the forward paths ξ̄(τ ), ξ(τ ) and the backward
paths ξ̄

′

(τ ), ξ ′
(τ ) in the Grassmannian space bounded by ξ̄(t) = ξ̄ f , ξ(t0) = ξ 0 and ξ̄

′

(t0) =

ξ̄
′

0, ξ
′
(t) = ξ ′

f , respectively. Since Seff[ξ̄ ξ; ξ̄
′

ξ ′] is only a quadratic function in terms of the
integral variables, the path integrals in equation (3) can be reduced to Gaussian integrals so that
we can use the stationary path method to exactly carry them out [45]5. The resulting generating
function is [13]

J (ξ̄f , ξ
′

f , t |ξ 0, ξ̄
′

0, t0) =
1

det[w(t)]
exp{ξ̄f J1(t)ξ 0 + ξ̄f J2(t)ξ

′

f + ξ̄
′

0 J3(t)ξ 0 + ξ̄
′

0 J†
1(t)ξ

′

f }, (6)

in which the time-dependent coefficients are given explicitly as J1(t) = w(t)u(t), J2(t) =

w(t) − I and J3(t) = u†(t)w(t)u(t) − I , with w(t) = [I − v(t)]−1. Here, we have also
expressed the stationary paths in terms of N × N matrix functions u(τ ), v(τ ) and ū(τ ) for
t0 6 τ 6 t , where N is the total number of single-particle energy levels in the central region.
They satisfy the following integrodifferential equations of motion (i.e. the stationary path
equations of motion),

u̇(τ ) + iε(τ )u(τ ) +
∑

α

∫ τ

t0

dτ ′ gα(τ, τ
′)u(τ ′) = 0, (7a)

˙̄u(τ ) + iε(τ )ū(τ ) −

∑
α

∫ t

τ

dτ ′ gα(τ, τ
′)ū(τ ′) = 0, (7b)

v̇(τ ) + iε(τ )v(τ ) +
∑

α

∫ τ

t0

dτ ′ gα(τ, τ
′)v(τ ′) =

∑
α

∫ t

t0

dτ ′ g̃α(τ, τ
′)ū(τ ′), (7c)

subject to the boundary conditions u(t0) = 1, ū(t) = 1 and v(t0) = 0, where gα(τ, τ
′) and

g̃α(τ, τ
′) are the non-local time correlation matrix functions, whose matrix elements are given

by equation (5). As we show in appendix A, the matrix functions u(τ ), ū(τ ) and v(τ )

correspond, respectively, to the retarded, advanced and lesser Green functions, and gα(τ, τ
′)

and g̃α(τ, τ
′) are the retarded and lesser self-energies in the non-equilibrium Green function

technique. For the most general cases where all the parameters in Hamiltonian (1) are time
dependent, the time translational invariance is broken. Then u(τ ) and ū(τ ) are independent
except for the endpoints, where we have ū(t0) = u†(t). When all parameters in the Hamiltonian
of equation (1) are time independent, u(τ ) becomes only a function of τ − t0 and ū(τ ) =

u†(t − τ + t0), as we have shown in [13].
Taking the time derivative of the reduced density matrix with the solution of the

propagating function (6), together with the D-algebra of the fermion creation and annihilation

5 Usually the stationary path (or stationary phase) method is an approximation to path integral calculations. When
the path integrals can be reduced to Gaussian integrals, the stationary path method will lead to an exact solution.
For a more detailed discussion, see [45].
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operators in the fermion coherent state representation, we arrive at the final form of the exact
master equation we obtained previously [13],

dρ(t)

dt
= −i[H ′

S(t), ρ(t)] +
∑

i j

{γ i j(t)(2a jρ(t)a†
i − a†

i a jρ(t) − ρ(t)a†
i a j)

+γ̃ i j(t)(a jρ(t)a†
i − a†

i ρ(t)a j − a†
i a jρ(t) + ρ(t)a ja

†
i )}. (8)

The first term (the commutator) in the master equation accounts for the renormalized effect
(including the time-dependent shifts of the energy levels and the changes of the transition
amplitudes between them) of the central system due to the coupling with the leads. The
resulting renormalized Hamiltonian is H ′

S(t) =
∑

i j ε ′

i j(t)a
†
i a j . The remaining terms in the

master equation describe the dissipation and noise effects (which result in a non-unitary
evolution of electrons in the central region) induced also by the coupling with the leads. All
the time-dependent coefficients in equation (8) are determined systematically and explicitly by
u(t) and v(t), as follows,

ε ′

i j(t) =
i

2
[u̇u−1

− (u†)−1u̇†]i j

= εi j(t) −
i

2

∑
α

[κα(t) − κ†
α(t)]i j , (9a)

γ i j(t) = −
1

2
[u̇u−1 + (u†)−1u̇†]i j

=
1

2

∑
α

[κα(t) + κ†
α(t)]i j , (9b)

γ̃ i j(t) = [u̇u−1v + v(u†)−1u̇†
− v̇]i j

=

∑
α

[λα(t) + λ†
α(t)]i j . (9c)

Here, we have used the relations solved from equation (7),

κα(t) =

∫ t

t0

dτ gα(t, τ )u(τ )[u(t)]−1, (10a)

λα(t) =

∫ t

t0

dτ {gα(t, τ )v(τ ) − g̃α(t, τ )ū(τ )} − κα(t)v(t). (10b)

The master equation (8) takes a convolutionless form, so the non-Markovian dynamics are
fully encoded in the time-dependent coefficients. These coefficients determined by the functions
u(τ ), ū(τ ) and v(τ ) are governed essentially by integrodifferential equations (7). The non-local
time correlation functions in equation (7), gα(τ, τ

′) and g̃α(τ, τ
′), characterize all the non-

Markovian memory structures of the central system interacting with its environment through the
coupling Hamiltonian HT . By solving equation (7), one can completely describe the quantum
decoherence dynamics of electrons in the central region due to the entanglement between the
central system and the leads. Master equation (8) is valid for various nanodevices coupled to
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various surroundings as long as the electron–electron interaction can be ignored. It is also worth
mentioning that the master equation is derived exactly so that the positivity, Hermiticity and
trace of the reduced density matrix are guaranteed.

In fact, master equation (8) fully determines the exact non-equilibrium dynamics of open
electron systems in nanostructures. The time dependence of an arbitrary physical observable
is simply given by 〈O(t)〉 = 〈Oρ(t)〉, which can be calculated from the master equation in a
much simpler way since all the environmental degrees of freedom have already been eliminated
completely. The transient electron transport can also be solved directly from the reduced density
matrix. In the next section, we will first derive the transient current, in section 3.1, following the
same approach of the influence functional. Then, in section 3.2, we will present an alternative
derivation of the transient current based directly on master equation (8). As one can see, this
derivation is rather simple in comparison with that in terms of the influence functional in
section 3.1. Furthermore, in section 3.3, we will show the powerfulness of the master equation
through a simpler but non-trivial calculation of the single-particle density matrix for arbitrary
initial states of nanodevices.

3. Exact transient current for quantum transport

3.1. The influence functional approach

The transient current from the α-lead tunneling through the α-junction into the central region is
defined in the Heisenberg picture as

Iα(t) = −e

〈
d

dt
N̂ α(t)

〉
= i

e

h̄
〈[N̂ α(t), H(t)]〉. (11)

Here, e is the electron charge, 〈O(t)〉 ≡ tr[O(t)ρH
tot] with tr ≡ trStrR, N̂ α(t) =

∑
k c†

αk(t)cαk(t)
and ρH

tot is the total density matrix in the Heisenberg picture. By explicitly calculating the above
commutation relation with the Hamiltonian of equation (1) and then transforming it into the
Schrödinger picture, we have

Iα(t) = i
e

h̄
trS

∑
i

[
A†

αi(t)ai − a†
i Aαi(t)

]
, (12)

where the operators Aαi(t) = trR[
∑

k Viαk(t)cαkρtot(t)] and A†
αi(t) = [Aαi(t)]

†. The time
dependence of these two operators comes from the non-Markovian memory dynamics by tracing
the total density matrix over the environmental degrees of freedom in the Schrödinger picture.
These two operators are indeed the effective (dressed) electronic creation and annihilation
operators acting on the reduced density matrix of the central system, as a result of tracing over
the reservoir degrees of freedom for the corresponding operators acting on the lead α.

Following the procedure of obtaining the reduced density matrix through the influence
functional approach [13], we can write

〈ξf |Aαi(t)|ξ
′

f 〉 =

∫
dµ(ξ 0)dµ(ξ ′

0)〈ξ 0|ρ(t0)|ξ
′

0〉J
A

αi (ξ̄f , ξ
′

f , t |ξ 0, ξ̄
′

0, t0), (13)

where the operator-associated propagating function is defined as

J A
αi (ξ̄f , ξ

′

f , t |ξ 0, ξ̄
′

0, t0) =

∫
D[ξ̄ ξ; ξ̄

′

ξ ′]ei(Sc[ξ̄ , ξ ]−S∗
c [ξ̄

′
, ξ ′])F A

αi [ξ̄ ξ; ξ̄
′

ξ ′]. (14)
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Similar to the calculation of the influence functional in equation (14), the operator-associated
influence functional F A

αi [ξ̄ ξ; ξ̄
′

ξ ′] can be evaluated in the same way with the result

F A
αi [ξ̄ ξ ; ξ̄

′

ξ ′] = −iAαi [ξ , ξ ′]F[ξ̄ ξ; ξ̄
′

ξ ′], (15)

where the functional expression of the effective electron annihilation operator is obtained as

Aα[ξ , ξ ′] =

∫ t

t0

dτ
{

gα(t, τ )ξ(τ ) − g̃α(t, τ )
[
ξ(τ ) + ξ ′

(τ )
]}

, (16)

and F[ξ̄ ξ ; ξ̄
′

ξ ′] is the same influence functional given by equation (4). It should be pointed out
that the factorability of the operator-associated influence functional is due to the fact that the
environmental path integral is exactly computable.

Since the path integrals in equation (14) can also be reduced to Gaussian integrals, similar
to the derivation of the master equation for the reduced density matrix (8), we use again the
stationary phase method to exactly carry out the path integrals of equation (14). The result is

J A
αi (ξ̄ f , ξ

′

f , t |ξ 0, ξ̄
′

0, t0) = −iAαi(ξ
′

f , ξ 0, t)J (ξ̄ f , ξ
′

f , t |ξ 0, ξ̄
′

0, t0), (17)

where Aαi(ξ
′

f , ξ 0, t) =
∑

j [ yαi j(t)ξ 0 j + zαi j(t)ξ
′

f j ] with yα(t) =
∫ t

t0
dτ gα(t, τ )u(τ ) + zα(t)u(t)

and zα(t) = [λα(t) + κα(t)v(t)][1 − v(t)]−1. The propagating function J (ξ̄ f , ξ
′

f , t |ξ 0, ξ̄
′

0, t0) is
given by equation (6) in the last section. Substituting equation (17) into (13) and using the
identity

ξ 0J = u−1(t)

{
[1 − v(t)]

∂

∂ξ f

− v(t)ξ ′

f

}
J ,

together with the D-algebra for the fermion creation and annihilation operators in the fermion
coherent state representation, we obtain the effective electronic annihilation operator after
tracing over completely the environmental degrees of freedom,

Aαi(t) = −i
∑

j

{
λαi j(t)[a jρ(t) + ρ(t)a j ] + καi j(t)a jρ(t)

}
, (18)

where the coefficient matrices λα(t) and κα(t) are the same coefficients given by equation (10)
and ρ(t) is just the reduced density matrix determined by master equation (8).

Accordingly, substituting the above result into equation (12), the transient current can be
directly calculated, and the result is rather simple,

Iα(t) = −
e

h̄
Tr

{
λα(t) + κα(t)ρ

(1)(t) + H.c.
}

= −
2e

h̄
Re

∫ t

t0

dτ Tr
{

gα(t, τ )v(τ ) − g̃α(t, τ )ū(τ ) + gα(t, τ )u(τ )u−1(t)[ρ(1)(t) − v(t)]
}
,

(19)

where the notation Tr is the trace over the states of the central region, ρ
(1)

i j (t) ≡ trs[a
†
jaiρ(t))] is

the single-particle density matrix, while the matrix elements of gα(τ, τ
′) and g̃α(τ, τ

′) are the
non-local time correlation functions of the reservoirs given by equation (5), and u(τ ), v(τ ) and
ū(τ ) are determined non-perturbatively by equation (7), as shown in the last section. This is a
derivation of the transient current Iα(t) that flows from the lead α into the central region, based
on the influence functional.
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3.2. The master equation approach

In fact, we can derive the transient current in a rather simple way once we have the exact master
equation. Consider the equation of motion for the operator a†

i a j in the Heisenberg picture,

i
d

dt
a†

i a j = [a†
i a j , H ] =

∑
l

ε jla
†
i al − εlia

†
l a j +

∑
αk

(V jαka†
i cαk − V ∗

iαkc†
αka j). (20)

Taking the expectation value of the above equation with respect to the state ρH
tot (the total density

matrix in the Heisenberg picture) and then transforming it into the Schrödinger picture, we
obtain

i
dρ(1)(t)

dt
= [ε(t), ρ(1)(t)] + i

∑
α

Iα(t). (21)

Here, we have used the definition of the single-particle density matrix again, ρ
(1)

i j (t) ≡

tr[a†
jaiρtot(t)] = trs[a

†
jaiρ(t)], and also introduced a current matrix Iα j i(t) ≡ itrs[A†

αi(t)a j −

a†
i Aα j(t)]. Equivalently, the transient current of equation (12) is simply given by Iα(t) =

e
h̄ TrIα(t). In other words, the equation of motion for ρ(1)(t) is directly related to the transient
current.

On the other hand, the equation of motion for the single-particle density matrix can be
obtained easily from the exact master equation (8). The result is

dρ(1)

dt
= u̇u−1ρ(1) + ρ(1)(u†)−1u̇†

− γ̃

= − i[ε, ρ(1)] − (κρ(1) + H.c.) − γ̃ . (22)

Using the expression for γ̃ (t) given by (9c) and comparing equation (21) with (22), we have

Iα(t) = −{λα(t) + κα(t)ρ
(1)(t) + H.c.}. (23)

The above equation reproduces exactly the transient current of equation (19) after taking a
trace over the states of the central system. This not only provides a self-consistent check for
the transient current derived from the influence functional but also shows the superiority of the
master equation.

Taking the trace over the both sides of equation (21) and also noting that N (t) = Trρ(1)(t),
the total electron occupation in the central system, we have

e
dN (t)

dt
=

∑
α

Iα(t) ≡ −Idis(t), (24)

where Idis(t) is defined as the transient displacement current [46]. This shows that the sum
over the currents flowing from all the leads into the central region equals the change in the
electron occupation in the central region, as was expected. In the steady-state limit t → ∞,
Ṅ (t) = Trρ̇(1)(t) = 0 so that Idis(t) = 0, as a consequence of current conservation.

3.3. Solution to single-particle density matrix and transient current

To show the power of the master equation, we will further evaluate the single-particle density
matrix explicitly from the master equation. To do so, let us rewrite equation (9c) as

dv

dt
= u̇u−1v + v(u†)−1u̇†

− γ̃ .
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Comparing equation (21) for the single-particle density matrix ρ(1)(t) and the above equation
for v(t) shows that the solution of ρ(1)(t) is just v(t), apart from an initial function. Explicitly,
equation (21) and the above equation lead to

d

dt
(ρ(1)

− v) = u̇u−1(ρ(1)
− v) + (ρ(1)

− v)(u†)−1u̇†.

It is easy to find from the above equation the following relationship between ρ(1)(t) and v(t),

ρ(1)(t) = v(t) + u(t)ρ(1)(t0)u†(t), (25)

where ρ(1)(t0) is the initial single-particle density matrix. Accordingly, the transient current (19)
is reduced to

Iα(t) = −
2e

h̄
Re

∫ t

t0

dτ Tr{gα(t, τ )v(τ ) − g̃α(t, τ )ū(τ ) + gα(t, τ )u(τ )ρ(1)(t0)u†(t)}. (26)

The last term shows the explicit dependence on the initial state in the transient current, where
the initial state is presented through the initial single-particle density matrix ρ(1)(t0). ρ(1)(t0)

contains information about the initial electron occupation in each level as well as the electron
quantum coherence between different levels in the central region. This term is also an important
ingredient in the study of transient dynamics for practical manipulation of a quantum device
in the real-time domain, namely, it determines explicitly the time evolution of electrons in
nanodevices from some initial preparation towards any specifically designed state within a
given time.

As one can find in appendix B, this explicit initial-state dependence is often omitted in
practical applications of Keldysh’s non-equilibrium Green function technique (also see [7]).
The Green function technique has the advantage of treating the single-particle density matrix
in a complicated system by the assumption of adiabatically switching on the many-body
correlations. This allows one to trace back the initial time t0 → −∞, which provides a great
simplification for practical evaluation but in the meantime excludes a good treatment of transient
phenomena. The influence functional aims to address the dissipative dynamics of an open
system in terms of the reduced density matrix (an arbitrary quantum state) [22]. The master
equation derived (if possible) from the influence functional explicitly determines, by definition,
the temporal evolution of an initially prepared state. For the nanodevices considered in this
paper, we are able to obtain a convolutionless form of the exact master equation so that all
the non-Markovian memory effects are encoded into the time-dependent coefficients in the
master equation. These time-dependent coefficients are determined by the functions u(t) and
v(t) (see equation (9)), which are closely related to the retarded and less Green functions
in Keldysh’s formalism, as we have shown in appendix A. Therefore, all the advantages of
the non-equilibrium Green function technique are maintained in our master equation theory.
However, the difficulty of addressing the transient dynamics can be avoided in terms of the
master equation.

3.4. Relation between the transient current and the reduced density matrix

Furthermore, the transient current defined by equation (12) can be written as a trace over the
transient current operator: Iα(t) = (e/h̄)trs[Iα(t)], where the current operator Iα(t) is obtained
directly from equation (18),

Iα(t) = −

∑
i j

{λαi j(t)[a
†
i a jρ(t) + a†

i ρ(t)a j ] + καi j(t)a
†
i a jρ(t) + H.c.} ≡ L+

α(t)ρ(t). (27)
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Here, we have introduced a current superoperator L+
α(t) such that the current operator can be

simply expressed as the current superoperator acting on the reduced density matrix. Note, from
equation (10), that

∑
α(λα + λ†

α) = γ̃ and
∑

α(κα + κ†
α) = 2γ , and the transient current operator

given by equation (27) is closely connected to master equation (8) for the reduced density
matrix ρ(t).

Because of the trace over the states of the central system, the transient current of
equation (12) can be alternatively expressed as

Iα(t) = i
e

h̄
trs

∑
i

[
ai A†

αi(t) − Aαi(t)a
†
i

]
≡ −

e

h̄
trs Ĩα(t), (28)

where Ĩα(t) can be considered as an inverse current operator of electrons with respect to Iα(t).
Then, using equation (18) again, we have

Ĩα(t) =

∑
i j

{λαi j(t)[a jρ(t)a†
i + ρ(t)a ja

†
i ] + καi j(t)a jρ(t)a†

i + H.c.} ≡ L−

α (t)ρ(t), (29)

where L−

α (t) is defined as the superoperator for the inverse current operator Ĩα(t). Now it is
easy to check that master equation (8) for the reduced density matrix and the transient current
of (19) can be simply expressed as

dρ(t)

dt
= −i[HS(t), ρ(t)] +

∑
α

[L+
α(t) +L−

α (t)]ρ(t),

Iα(t) =
e

h̄
trs[L+

α(t)ρ(t)] = −
e

h̄
trs[L−

α (t)ρ(t)],

(30)

where HS is the original Hamiltonian of the central system. This analytical operator relation
between the reduced density matrix and the transient current shows explicitly the intimate
connection between quantum decoherence and quantum transport in non-equilibrium dynamics.
The reservoir-induced non-Markovian relaxation and decoherence in the transport processes are
manifested through the superoperators of (27) and (29) acting on the reduced density matrix
ρ(t). The time-dependent parameters λα(t) and κα(t) appearing in the superoperators are given
by equation (10), which are determined by the integrodifferential equations of motion (7). This
completes the non-equilibrium theory for transient electron dynamics in the nanostructures we
are concerned with.

We now summarize the main results derived in this section. We obtain the general formula
of the transient current Iα(t) through the lead α, which is given by equation (19) or equivalently
equation (26), accompanied by the exact master equation for the reduced density matrix ρ(t).
We also establish explicitly the connection between the transient current and the reduced
density matrix, i.e. equation (30), through the superoperators L+

α(t) and L−

α (t) determined by
equations (27) and (29), which encompass all the back-reaction effects associated with the
non-Markovian dynamics of the central system interacting with the lead α. This general non-
equilibrium theory for electron transient dynamics is valid for arbitrary bias and gate voltage
pulses with arbitrary couplings between the central system and the leads. These results enable
us to analyze the transient quantum transport phenomena intimately entangled with the electron
quantum coherence and non-Markovian dynamics through the reduced density matrix. The latter
describes completely the temporal evolution of electron quantum coherence in the nanodevice.
Therefore, the problem we posed in the Introduction, ‘the big challenge is to understand and
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predict not only how fast or slow the device can turn a current on or off, but also how reliably
and efficiently the device can manipulate quantum coherence of the electron states through
external bias and gate voltage controls’, can now be well addressed within the master equation
theory.

4. Analytical and numerical illustrations

4.1. Time-independent bias voltage in the wide band limit (WBL): an analytic solution for
transient dynamics

As an illustration, we apply the theory developed in this paper to SETs, or, more specifically, a
single dot containing only one spinless level coupled to left and right leads. The Hamiltonian
of the central system is simply written as H = εa†a. This system contains only two states,
the empty state |0〉 and the occupied state |1〉. All the corresponding matrices (denoted by
the bold symbols) in the previous sections are then reduced to a single function, such as
u(t) = u(t), v(t) = v(t) and ρ(1)(t) = 〈1|ρ|1〉 = ρ11(t) = N (t). We will first consider a time-
independent bias voltage V . For simplicity, we also assume that the tunneling couplings between
the leads and the dot as well as the densities of states of the leads are energy independent.
In other words, the spectral density becomes a constant 0α(ω) = 0α. The non-local time
correlation functions are reduced to

gα(τ − τ ′) = 0αδ(τ − τ ′), (31a)

g̃α(τ − τ ′) = 0α

∫
dω

2π
fα(ω) e−iω(τ−τ ′). (31b)

This corresponds to the WBL in the literature.
To be explicit, we take the initial time t0 = 0 and let e = h̄ = 1 in the following calculations.

In the WBL, the solution of equation (7) is

u(τ ) = exp

{
−

(
iε +

0

2

)
τ

}
, ū(τ ) = u†(t − τ), (32a)

v(t) = vst +
∫

dω

2π

0L fL(ω) + 0R fR(ω)

(ε − ω)2 + (0/2)2

{
e−0t

− 2e−0t/2 cos[(ε − ω)t]
}
, (32b)

where 0 = 0L + 0R and vst is the solution of v(t) at the steady-state limit,

vst =

∫
dω

2π

0L fL(ω) + 0R fR(ω)

(ε − ω)2 + (0/2)2
= ρ(1)

st . (33)

The electron occupation of the dot is calculated using equation (25) as

N (t) = ρ(1)(t) = e−0tρ(1)(0) + v(t), (34)

where N (0) = ρ(1)(0) is the initial electron occupation of the dot. Obviously, in the steady-state
limit, Nst = vst. This is not surprising since ρ(1)(t) and v(t) obey the same equation of motion
that must lead to the same result in the steady-state limit.

The transient current can then be analytically obtained, as follows,

Iα(t) = Iα,st − 0α[N (t) − Nst] − e−0t/2

∫
dω

2π

0α fα(ω)

(ε − ω)2 + (0/2)2

× {0 cos[(ε − ω)t] − 2(ε − ω) sin[(ε − ω)t]} , (35)
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where the steady-state current is

Iα,st = 0α

∫
dω

2π

0L[ fα(ω) − fL(ω)] + 0R[ fα(ω) − fR(ω)]

(ε − ω)2 + (0/2)2
. (36)

Due to charge conservation, it is necessary to check the displacement current that obeys the
relation (24). In the WBL,

Idis(t) = 0e−0t N (0) −

∫
dω

2π

0L fL(ω) + 0R fR(ω)

(ε − ω)2 + (0/2)2

×
{
−0e−0t + 0e−0t/2 cos[(ε − ω)t] + 2(ε − ω)e−0t/2 sin[(ε − ω)t]

}
= −

dN (t)

dt
. (37)

At the steady-state limit, the displacement current Idis(t → ∞) = 0, as a consequence of current
conservation. It is also straightforward to calculate the net current,

Inet(t) = IL(t) − IR(t)

= Ist − (0L − 0R)[N (t) − Nst] − e−0t/2

∫
dω

2π

0L fL(ω) − 0R fR(ω)

(ε − ω)2 + (0/2)2

× {0 cos[(ε − ω)t] − 2(ε − ω) sin[(ε − ω)t]} , (38)

where the stationary net current is

Ist = 20L0R

∫
dω

2π

fL(ω) − fR(ω)

(ε − ω)2 + (0/2)2
. (39a)

As we can see, once we solve the integrodifferential equations of motion, equation (7),
a complete time dependence of all the physical quantities, such as the electron occupations
in the central system and the currents flowing from each lead to the central region, can be
obtained with explicit dependence on the time and the initial electron occupation without
ambiguity. From equation (35), we see that the initial current Iα(0) = −0α N (0), which depends
on the initial occupation of the dot. This result is consistent with the electron occupation in
the dot (equation (34)). For zero initial occupation, the initial current is zero. Note that some
of the above results were also obtained recently using the non-equilibrium Green function
technique [12].

4.2. Non-Markovian memory structure

Realistically, the spectral density of the leads must depend on the energy. Here, we take the
energy dependence as a Lorentzian-type form [9, 10, 13],

0α(ω) =
0αW 2

α

(ω − µα)2 + W 2
α

, (40)

where 0α describes the coupling strength and Wα is the bandwidth of the source (drain) reservoir
with α = L(R). Obviously, the WBL, 0α(ω) = 0α, is achieved by simply letting Wα → ∞. The
lead correlation functions with time-independent voltage can be parameterized as [10]

gα(t − τ) =
0αWα

2
e−γα0(t−τ), (41a)
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Figure 2. Three-dimensional plot of the temperature-dependent non-local time
correlation function g̃L(t − τ) (denoted by gβ

L(t − τ) in the plots, in unit: 02) as
a function of temperature for µL = 2.50 and 0L = 0.50. V = 5 (arbitrary units).

g̃α(t − τ) =

M∑
m=0

ηαme−γαm(t−τ). (41b)

The first term in equation (41b) with m = 0 arises from the pole of the spectral density function,
with

ηα0 =
0αWα/2

1 + e−iβαWα
, γα0 = Wα + iµα. (42)

The other terms with m > 0 (M → ∞ in principle) arise from the Matsubara poles, where the
relevant parameters are explicitly given as

ηαm =
i

βα

0α(−iγαm), m = 1, . . . ,∞, (43a)

γαm =
(2m − 1)π

βα

+ iµα. (43b)

In fact, the bandwidth Wα in a Lorentizan-type spectral density is the main factor leading to
the non-Markovian dynamics in the transient transport. In the WBL, Wα → ∞, the dominating
memory structure is mostly washed out. This can be seen directly from the reservoir correlation
functions. The correlation function gα(t − τ) of equation (41a) can be simplified to 0α

2 δ(t − τ)

in the WBL. For g̃α(t − τ) in equation (41b), the first term (m = 0) is also simplified to a delta
function of t − τ but the other terms (m > 1) are apparently not changed too much,

g̃α(t − τ) →
0α

2(1 + e−iβαWα)
δ(t − τ) +

i

βα

0α

M∑
m=1

e−γαm(t−τ). (44)

The profile of this temperature-dependent time correlation function is plotted in figure 2. When
we take further the high temperature limit βα → 0, the summation term in equation (44) will
also be reduced to a delta function of t − τ (see figure 2). Then no memory effect remains, and
a true Markov limit is reached at the high temperature limit. On the other hand, in the large bias
voltage limit eV = µL − µR → ∞, we have fL(ω + eV

2 ) → 1 and fR(ω −
eV
2 ) → 0, which lead
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Figure 3. The temperature-dependent non-local time correlation function
g̃L(t − τ) with different bias voltages at a fixed temperature β−1

= kBT = 0.10

and 0L = 0.50. (a and b) The plots for µL = 0.50 and (c and d) the plots for
µL = 300 (the large bias limit). 0L = 0.5, β = 20 (arbitrary units).

to g̃L(t − τ) → gL(t − τ) =
0L
2 δ(t − τ) and g̃R(t − τ) → 0 in the WBL. This reduces the elec-

tron dynamics into the Markov limit again, as has been widely used in the literature [47]–[49].
However, for a relatively low temperature or a finite bias voltage, there appears to exist some
non-Markovian effect in the WBL, coming from the summation term in equation (44). Figure 3
shows the time dependence of the correlation dependence for different voltages. As one can
see, the temperature-dependent time-correlation function does not approach a delta function of
the time.

To examine whether some non-Markovian effect can still survive in the WBL, we
numerically calculate the transient current passing through a SET considered in the last
subsection. In the sequential tunneling regime µL > ε > µR, the exact solutions of the
occupation and the transient current are close to the Markov limit (differing by a few per cent
except for a very short timescale at the beginning), as shown in figures 4(a)–(d). In the co-
tunneling regime with µα � ε, the exact solutions of the occupation and the current are still
almost the same as their Markov counterparts except for the very short timescale at the beginning
(see figures 4(e)–(f)). These results indicate that the WBL (an extremely short characteristic
time of the reservoirs) largely suppresses the thermal fluctuations. In other words, when the
bandwidth W → ∞, not only at the high temperature and large bias limit, but even for a finite
temperature and a finite bias voltage, the non-Markovian effects become quite weak and are
most likely negligible. Thus, the WBL mainly takes into account the Markov dynamics. The
manifestation of the non-Markovian memory structure then should go beyond the WBL [13].
In figure 5, we calculate the transient current with different bandwidths to demonstrate the
non-Markovian effect in transport phenomena. As we can see, the transport dynamics are
significantly different from the Markov limit for a small W . Increasing the value of W will
decrease the memory effect accordingly. When the bandwidth W > 500, the exact solution of
the transient current nearly approaches the Markov result that is consistent with the WBL. An
analysis of the non-Markovian dynamics in this simple system has also recently been carried
out using the Heisenberg equations of motion [50].
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Figure 4. Comparison of the non-Markovian dynamics with the Markov limit
in the WBL for the electron occupation (left row) and the transient current
(right row). Here, we used the parameters 0L = 0R = 0.50, β−1

= kBT = 0.10,
µL,R = ±eV /2 = ±50 and (a and b) eV = 100, ε = 20; (c and d) eV = 200,
ε = 20; (e and f) eV = 100, ε = −100. ρ11(0) = 1.0; µL = eV/2 = −µR, 0L =

0R = 0.50, β−1
= 0.10, IR(t) unit:eh̄/0.

Figure 5. The transient current IL,R(t) through the left and right leads with a
Lorentzian-type spectral density for different bandwidths: dashed line, the WBL
(W = ∞); other lines, from top to bottom for (a) and from bottom to top for
(b), correspond to W = 50, 20, 10, 5, 2 and 0, respectively. Other parameters
that we used are 0L = 0R = 0.50, β−1

= kBT = 0.10, µL,R = ±eV /2 = ±50

and ε = 20. ρ11(0) = 1.0; µL = eV/2 = −µR, 0L = 0R = 0.50, β−1
= 0.10,

eV = 100, I (t) unit:eh̄/0.
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4.3. Transient transport dynamics with time-dependent bias voltage

We are now in a position to study the time-dependent transport phenomena cooperating with the
solution of the master equation in response to time-dependent bias voltages. The calculation of
the time-dependent electron current in response to time-dependent bias voltages has recently
received much attention [7, 9, 12, 15, 36]. Transient transport dynamics are also a central
ingredient of many different experiments, such as single-electron pumps and turnstiles with
time-modified gate signals moving electrons one by one through quantum dots [51]–[54], and
the study of the quantum capacitance and inductances with ac voltage response [55]–[59]. All
these problems can be studied explicitly in the present theory. The corresponding nanoscale
devices can be modeled as the SET considered in this section. The applied time-dependent
voltages are taken to be the most commonly interesting ones. For the time-dependent voltages,
as we mentioned in section 2, the single-particle energy levels of the leads are changed to
εαk(t) = εαk + eV α(t). The non-local time correlation functions of the leads can be expressed as

gα(τ, τ
′) = exp

{
−ie

∫ τ

τ ′

dτ1Vα(τ1)

}
gα(τ − τ ′), (45a)

g̃α(τ, τ
′) = exp

{
−ie

∫ τ

τ ′

dτ1Vα(τ1)

}
g̃α(τ − τ ′). (45b)

With the parametrization of equation (41), it is not difficult to numerically calculate the transient
electron dynamics for arbitrary bandwidth Wα. In the following calculation, we use symmetric
ac voltages, i.e. µL(t) = eV (t)/2 and µL(t) = −eV (t)/2. For the quantum dot with a single
level, the reduced density matrix can be fully characterized by the electron occupation in the
dot. The exact numerical results for the time-dependent occupation and current due to different
types of applied ac voltages are presented as follows.

4.3.1. Exponentially time-dependent bias voltage. We shall first study the transient electron
dynamics in response to an exponentially time-dependent bias voltage V (t) = V (1 − e−t/τ ),
where τ > 0 is the time dominating the switch-on rate of the voltage. The asymptotic limit
τ → 0+ corresponds to a step function. The numerical results are plotted in figure 6. The first
peak shown in the displacement current arises from the co-tunneling process during the initially
short timescale. At the beginning, the Fermi surface of both the leads is nearly equivalent to
zero and the dot energy level is higher than the Fermi surface. The initial currents through
both leads are equal to each other due to the totally symmetric structure. This leads to zero
initial net current. This feature is common for other types of ac bias voltage discussed later. In
general, the emergence of the peaks in the current corresponds to a steep transient behavior
of the electron states (i.e. the occupation for the single-level dot) occurring inside the dot.
The nonlinear response to time-dependent bias is clearly manifested in the change in both the
electron state in the dot and the transient current through the leads (including the individual
current through each lead and the displacement and net currents), as is plotted in figure 6. In
particular, the net current changes in time closely follow the change in electron occupation in
the dot, while the displacement current depicts a steep change in the rate of occupation, as we
expected from equation (24).

4.3.2. Oscillating bias voltage. Let us now move to the transient electron dynamics driven by
an oscillating voltage [7], V (t) = V0 − Vc cos(ωct), where V0 is a dc component, and Vc and
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Figure 6. The occupation and transient currents in response to exponential time-
dependent voltage with τ = 1.5/0. The other parameters are eV = 100, 0L =

0R = 1.50, β−1
= kBT = 0.10, WL = WR = W = 200 and ε = 20. ρ11(0) =

0.0; ε = 2.00, Vc = V0 = 10.00, µL = V/2 = −µR, 0L = 0R = 0.5, β = 100;
τa = 1.5/0 (arbitrary units).

ωc are the oscillation amplitude and frequency of the ac component. The corresponding exact
numerical solution is shown in figure 7. As one can see, all the quantities, the electron state in
the dot and the transient currents, have similar oscillating behavior to the ac voltage oscillation,
where the steady-state values and the oscillation around the steady-state values are determined
by the dc voltage V0. The oscillation amplitude around the steady state is proportional to the ac
voltage amplitude Vc and the oscillation period is mainly given by T = 2π/ωc. However, the
transient dynamics of the occupation and current do not always strictly follow the ac voltage
oscillation. The current oscillation is a little slantwise compared to the ac voltage oscillation.
By increasing the amplitude of the ac voltage Vc and decreasing the oscillation frequency ωc,
a sideband oscillation occurs in the electron occupation as well as in the transient currents, as
shown in figure 8. Physically, this sideband oscillation is induced by the sinusoidal behavior of
the ac voltage. It can be understood analytically under the WBL [7],

g̃α(τ, τ
′) =

∑
n1,n2

Jn1

(
1α

ωc

)
Jn2

(
1α

ωc

) ∫
dω

2π
0α fα(ω)e−i(ω+n1ωc)τ ei(ω+n2ωc)τ

′

, (46a)

v(t) =

∑
α,n1,n2

Jn1

(
1α

ωc

)
Jn2

(
1α

ωc

) ∫
dω

2π
0α fα(ω)

×
e−0t + e−i(n1−n2)ωct

− e−0/2t
[
e−i(ε−ω−n2ωc)t + ei(ε−ω−n1ωc)t

]
(ε − ω − n1ωc)(ε − ω − n2ωc) + (0

2 )2 − i0

2 (n1 − n2)ωc
, (46b)
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Figure 7. The occupation and transient current in response to oscillating
voltage with the dc component eV 0 = 100, an ac component eVc = 20 and the
oscillation frequency ωc = 40. The other parameters are the same as in figure 6.
ρ11(0) = 0.0; ε = 2.0, ω = 4, µL = V/2 = −µR, 0L = 0R = 0.5, β = 10 (unit:
0 = 0L + 0R) Vc = 2.0; V0 = 10.0.

Iα(t) = −0α

{
(e−0t N (t0) + Re[v(t)]

}
+

∑
n1,n2

Jn1

(
1α

ωc

)
Jn2

(
1α

ωc

) ∫
dω

2π
0α fα(ω)

× 2Im
e−i(ε−ω−n2ωc)t − e−i(n1−n2)ωct

ε − ω − n2ωc + i0

2

, (46c)

where the Bessel function satisfies J−n(z) = (−1)n Jn(z) and 1L,R = ∓
eVc
2 . The numerical result

with Lorentzian spectra presented here is qualitatively similar to the previous calculation with
the WBL based on the non-equilibrium Green function technique [7].

4.3.3. Gaussian pulse. The last example that we shall study is the transient electron dynamics
driven by a Gaussian pulse V (t) = V exp{−

(t−τ1)
2

τ 2
2

}. The width and the center of the pulse are
determined by τ2 and τ1, respectively. The exact numerical result plotted in figure 9 shows
that the net current peak emerges (slightly delayed) just after the voltage pulse, while the
corresponding response of the electron occupation is delayed significantly. This behavior is
easy to understand because the external voltage pulse leads to a sharp change in the electron
occupation due to the delayed response. The shape change of the transient current comes from
the largest change rate of the electron occupation in the dot. The delayed response effect is
determined by the tunneling rate 0. Outside the voltage pulse, the tunneling current comes
completely from the co-tunneling effect and the occupation in the dot decays to a stationary
value. It is interesting to note that the response of the occupation and the currents to the
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Figure 8. The transient current (black line) in response to the oscillating
voltage (dashed red line) with eV 0 = eV c = 100 and the oscillating frequencies
ωc = 10 for (a) and ωc = 0.50 for (b). The other parameters are the same as
in figure 7. ρ11(0) = 0.0; ε = 2.0, µL = V/2 = −µR, 0L = 0R = 0.5, β = 10;
V = Vc = 10.0.

Figure 9. The occupation and transient current in response to Gaussian voltage
pulse with τ1 = 3/0 and τ2 = 0.5/0. The other parameters are the same as in
figure 6. ρ11(0) = 0.0; ε = 20, Vc = V0 = 10.00, µL = V/2 = −µR, 0L = 0R =

0.5, β = 100 (arbitrary units) τ1 = 3/0, τ2 = 1.5/0.

co-tunneling process is different before and after the voltage pulse. Before the voltage pulse,
the system is dominated by the co-tunneling process because the Fermi surface of both leads
is nearly equivalent but is lower than the dot energy level (µL ' µR ' 0 < ε = 20). The
aligned Fermi surfaces double the peak amplitude of the displacement current, which also
gives the zero net current, while the occupation has a corresponding change with respect
to the change of the displacement current. With increasing voltage, the Fermi surface of
the left lead moves up over the dot energy level, while that of the right lead moves down
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Figure 10. The occupation and transient current in response to a step pulse
voltage (i.e. a constant bias after t = 0, dot-dashed line) corresponds to the
initial condition of ρ11(t0) = 0 (solid lines) and ρ11(t0) = 1.0 (dashed lines),
respectively. The other parameters are the same as in figure 6. ρ11(0) = 0.0;
ε = 2.00, Vc = V0 = 10.00, µL = V/2 = −µR, 0L = 0R = 0.5, β = 100; τa =

1.5/0 (unit: 0).

below the dot energy level, such that the system gradually approaches the sequential tunneling
regime. This drives the electron flowing from the left lead to the dot and then to the right
lead. Such a process results in a sensitive response of all physical quantities, the electron
occupation in the dot, the displacement and the net currents. Then, with the voltage decaying
to zero, the electron residing in the dot favors co-tunneling into the left lead, which gives a
negative current and finally reaches the steady state. The transient electron dynamics with the
nonlinear response to this Gaussian pulse are, in particular, interesting for quantum feedback
control of the electron states in the dot through the transient current that we will study in
the future.

Note that the above transient dynamics start with a zero initial occupation, i.e. ρ00(t0) = 1
and ρ11(t0) = 1 − ρ00(t0) = 0 [N (t0) = 0]. This implies that the last term of equation (26), which
is often ignored in the non-equilibrium Green function technique [9, 27], has no contribution
to the transient current in the above numerical calculations. When the dot is initially occupied,
the time-dependent current will be quite different, although the steady-state limit is the same,
because the initial electron distribution vanishes in the steady-state limit for this simple system.
In figure 10, we show the exact numerical result corresponding to such a situation where we
take the simple step-pulse voltage as an example. This shows that the initial occupation in the
central region has measurable contributions to studying the transient dynamics, especially for
the ultrafast (extremely short time) operations in a quantum device.

Combining all these analyses together, as one can see, the exact numerical solutions
presented here have demonstrated that both the electron states in the dot and the transient
currents passing through it have a clear nonlinear response to the external bias voltage pulses,
in particular within a short timescale after the pulse is turned on. These ultrafast nonlinear
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response properties should provide very useful information regarding the manipulation of the
device states as well as the quantum feedback controls for practical applications. However,
since we consider here only a very simple device (a SET with a single-level dot), the quantum
coherence and decoherence dynamics in the transient current are not manifested in these
numerical calculations. To demonstrate the quantum coherence properties in the transient
transport dynamics, it is necessary to have a device containing at least two levels (or a single
level with electron spin degrees of freedom) in the central region. Also, in the above numerical
calculations, we take a rather large finite bandwidth, Wα = 200. The non-Markovian memory
structure will become more significant when the bandwidth becomes narrower [9, 13]. We will
examine in detail these features within the present theory in our future work.

5. Summary and perspective

In summary, we have established a non-equilibrium quantum theory for the transient electron
dynamics of various nanodevices, based on the Feynman–Vernon influence functional. We have
extended the exact master equation, equation (8), obtained recently [13], to nanodevices in
which all constituents of the device vary in time in response to time-dependent external fields.
The master equation takes a convolutionless form and hence the non-Markovian dynamics are
fully encoded in the time-dependent coefficients. Explicitly, the back-reaction effect of the
gating electrodes on the central system is fully taken into account by these time-dependent
coefficients through the integrodifferential equations of motion (7). The non-Markovian
memory structure is non-perturbatively built into the integral kernels in these equations of
motion. All the physical observables can be calculated directly from the master equation. In
particular, the transient transport current, equation (19) or (26), and the single particle density
matrix, equation (25), are found directly from the master equation in a rather simple way, where
the initial state dependence of the transport current shows up explicitly (see equation (26)).
The master equation and the transient transport current are also explicitly related to each other
in terms of the superoperators acting on the reduced density matrix (see equation (30)). This
exact non-equilibrium formalism should provide a very intuitive picture showing how the
change in the electron quantum coherence in the devices is intimately related to the electron
tunneling processes through the leads and therefore responds nonlinearly to the corresponding
external bias controls. This theory is applicable to a variety of quantum decoherence and
quantum transport phenomena involving the non-Markovian memory effect, in both stationary
and transient scenarios, and at arbitrary initial temperatures of the different contacts.

As we have also shown in the appendices, we can simply reproduce the non-equilibrium
transport theory in terms of the non-equilibrium Green function technique. However, we should
point out that the quantum transport theory based on the non-equilibrium Green function
technique does not explicitly give the connection to the reduced density matrix of the device
and thereby lacks a direct description of the quantum decoherence processes of the electrons
and the non-Markovian memory dynamics in nanostructures. However, the way in which
the quantum decoherence and the non-Markovian memory affect the electron transport is the
central issue in the investigation of the non-equilibrium quantum transport. Our theory builds
on the master equation of the reduced density matrix. The non-equilibrium transport current
is directly derived from the reduced density matrix. The master equation for the reduced
density matrix (i.e. equation (8), which provides all the information about the electron quantum
coherence in the device) plus the transient current (i.e. equation (26), which determines transient
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electron transport phenomena, including the initial state dependence) together provide a unique
procedure to address the quantum decoherence problem in nonequilibrium quantum transport.

As a simple illustration, we apply the theory to a SET, a simple model of electron tunneling
through a single-level quantum dot. We obtain all analytical solutions in the WBL where the
dependence of the initial electron occupation in the dot is explicitly determined. Taking a
more realistic spectral density with a Lorentzian shape, we show that the Markov limit is a
good approximation in the WBL. The non-Markovian memory effect is dominated by a finite
bandwidth of the spectral density. Under ac bias voltage pulses (including a step pulse, a
Gaussian pulse and an oscillation pulse), we have demonstrated the ultrafast nonlinear response
of the electron occupation and currents to the ac bias. We find that the transient currents are
more sensitive to the energetic configuration of the dot than the temporal evolution of the
electron occupation. More applications will be presented in future work. These include the
decoherence transport dynamics in quantum dot devices, such as quantum dot Aharonov–Bohm
inteferometers; the non-equilibrium dynamics and the real-time monitoring of spin polarization
processes in nanostructures; the transient transport dynamics in molecular electronics; and the
application to bio-electronics, such as DNA junctions, etc.

Lastly, we should also point out that the present theory is developed without considering
the electron–electron interaction in the device and therefore it is mainly valid in the weak
Coulomb interaction regime. It is not difficult to extend the present theory to the strong Coulomb
blockage regime by properly excluding the doubly occupied states in the central region of the
nanostructure, as we have shown explicitly in [13]. Although studying the above two extreme
limits, the extremely weak and the extremely strong Coulomb interaction regimes, together
could lead to a significant understanding of quantum devices in practical applications, there is
an increasing amount of discussion about the intermediate Coulomb interaction regime [60, 61],
where the analysis of transport physics becomes much more complicated. We should simply
outline the possible extension of the present theory to the intermediate Coulomb interaction
regime. In this situation, the path integrals of equations (3) and (14) may not be carried out
exactly, and therefore it is not obvious that one can find an analytically closed formulation for
the exact master equation of the reduced density matrix and an exact expression of the time-
dependent transport current. But the master equation, equation (8), and the transient transport
current, equation (26), can still serve as a good approximation with respect to the saddle
point approximation [26] or more systematically the loop expansion [25], where the Coulomb
interaction can be included self-consistently in generalizing integrodifferential equations of
motion (7). Such a generalization should provide a systematic procedure for the study of
quantum transport phenomena in the intermediate Coulomb interaction regime. The detailed
extension of the present theory to the interacting electron systems is now in progress and will
be published separately.
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Appendix A. Relations between u(t), ū(τ), v(t) and the non-equilibrium Green functions

As we see, both the master equation (8) and the transient current (26) are completely determined
by the propagating matrices of the stationary paths: u(τ ), ū(τ ) and v(τ ). Here, we shall show
that these propagating matrices are directly related to the retarded, advanced and lesser Green
functions in the non-equilibrium Green function technique. In our previous work [13], the
propagating matrices u(τ ), ū(τ ) and v(τ ) were introduced to simplify the stationary path
equations of motion (with the convention x = yz for xi =

∑
j yi j z j ), as follows,

ξ(τ ) = u(τ )ξ(t0) + v(τ )[ξ(t) + ξ ′
(t)], (A.1a)

ξ(τ ) + ξ ′
(τ ) = ū(τ )[ξ(t) + ξ ′

(t)]. (A.1b)

In fact, equations (A.1) show that u(τ ) is a propagating matrix of the forward stationary paths
ξ(τ ) starting at t0, while v(τ ) mixes the forward path ξ(τ ) and the backward path ξ ′

(τ ) started
backwardly from t , and ū(τ ) is a backward-propagating matrix of the stationary paths. In fact,
equations (A.1) show that the transformation matrices u(τ ), ū(τ ) and v(τ ) should be defined
more precisely as u(τ ) ≡ u(τ, t0), ū(τ ) ≡ u†(t, τ ) and v(τ ) ≡ v(τ, t):

ξ(τ ) = u(τ, t0)ξ(t0) + v(τ, t)[ξ(t) + ξ ′
(t)], (A.2a)

ξ(τ ) + ξ ′
(τ ) = u†(t, τ )[ξ(t) + ξ ′

(t)], (A.2b)

where the Grassmannian variables ξ(τ ) and ξ ′
(τ ) represent the forward and backward electron

paths in the functional path integrals. Then equations (A.1) directly tell us that u(τ, t0) describes
the electron propagation (represented by ξ(τ ) in the Grassmannian space) from the initial time
t0 to the time τ so that it is just the retarded Green function, namely,

u(τ ) = u(τ, t0) = iGr(τ, t0)

= θ(τ − t0)〈{ai(τ ), a†
j (t0)}〉. (A.3)

Similarly, u†(t, τ ) describes the inverse propagation of the electron (or the backward
propagation represented by ξ ′

(τ )) from time t to time τ such that it is indeed the advanced
Green function,

ū(τ ) = u†(t, τ ) = −iGa(τ, t). (A.4)

In the meantime, in the same way, equation (7a) indicates that the time correlation function of
the α-reservoir,

gαi j(τ1, τ2) = i6r
αi j(τ1, τ2)

= θ(τ1 − τ2)
∑

k

Vαki V
∗

αk j〈{cαk(τ1), c†
αk(τ2)}〉B, (A.5)

as a back-reaction effect of the α-lead to the central system, is the retarded self-energy. These
relations can be justified by equations (7a) and (7b).

The function v(τ, t) describes the electron propagation mixing the forward and backward
paths so that it is related to the lesser Green function defined by G<

i j(τ, t) ≡ i〈a†
j (t)ai(τ )〉 in the
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non-equilibrium Green function formalism. In fact, it is not difficult to find the explicit solution
of equation (7c),

v(τ ) = v(τ, t) =

∫ τ

t0

dτ1

∫ t

t0

dτ2 u(τ, τ1)̃g(τ1, τ2)u
†(t, τ2), (A.6)

which in terms of Green functions becomes

v(τ, t) = −i
∫ τ

t0

dτ1

∫ t

t0

dτ2 Gr(τ, τ1)6
<(τ1, τ2)Ga(τ2, t), (A.7)

where

6<(τ1, τ2) = ĩg(τ1, τ2) (A.8)

is the lesser component of the self-energy. On the other hand, the single-particle reduced density
matrix is related to the lesser Green function by ρ(1)(t) = −iG<(τ, t)|τ=t . From the relation of
equation (25), we find that v(τ ) is related to the lesser Green function, as follows,

G<(τ, t) = i[u(τ )ρ(1)(t0)u†(t) + v(τ )]

= Gr(τ, t0)G<(t0, t0)Ga(t0, t)

+
∫ τ

t0

dτ1

∫ t

t0

dτ2 Gr(τ, τ1)6
<(τ1, τ2)Ga(τ2, t). (A.9)

This provides indeed the general solution of the lesser Green function with an explicit
dependence on the initial states, which has not been solved in the non-equilibrium Green
function technique. In the previous investigation of transient electron dynamics, this initial
state-dependent term (the first term in equation (A.9)) is often omitted [7, 9, 27]. In fact, the
second term in equation (A.9) can only be identified as the lesser Green function G<(τ, t) in
the steady-state limit.

Appendix B. Reproduce the transient current and its steady-state limit in
Keldysh’s formalism

Using the above explicit relations between u(t), ū(τ ), v(t) and the non-equilibrium retarded,
advanced and lesser Green functions, we immediately obtain the time-dependent current of
equation (26) in terms of the non-equilibrium Green functions,

Iα(t) = −
2e

h̄
Re

∫ t

t0

dτ Tr{6r
α(t, τ )G<(τ, t) + 6<

α (t, τ )Ga(τ, t)}. (B.1)

This current has the same form as obtained from the non-equilibrium Green function
technique [7, 27]. However, as we have pointed out in practical applications, one usually uses
the steady-state lesser Green function, namely ignores the first term in equation (A.9). This term
does vanish in the steady-state limit in the simple systems, as we considered in section 4, so that
it does not affect the steady-state current. It can also be dropped if one takes the initial time
t0 → −∞ so that the central region is assumed to be in an empty state initially. However, this
term that explicitly depends on the initial single-particle density matrix of the central region
(including the initial electron occupation in each level and the electron quantum coherence
between different levels in the central region) is crucial for practical manipulation of a real
quantum device. Only in the WBL where the non-local time correlation function

gα(t, τ ) = i6r
α(t, τ ) = 0αδ(t − τ), (B.2)
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the integral of the first term in equation (B.1) is reduced to the single-particle density matrix,
G<(t, t) = iρ(1)(t)), which results in

Iα(t) = −
e

h̄
Tr

[
0αρ

(1)(t) − 0α

∫
dω

π
fα(ω)

×

∫ t

t0

dτ Im
{

e−i[ω(t−τ)+e
∫ t
τ

dτ ′Vα(τ ′)]Ga(τ, t)
}]

. (B.3)

Thus, the ignored initial occupation dependence is accidentally recovered in the WBL. In this
case, the initial state dependence may not be essential.

To reproduce the steady-state current in terms of the non-equilibrium Green functions
and the Landauer–Büttiker formula used in the literature, we introduce the spectral density
of the lead α: 0αi j(ω) = 2π

∑
k Vαik V ∗

α jkδ(ω − εαk) and take a time-independent bias voltage
explicitly. Then the two-time correlation functions of the α-lead can be written as

gα(τ − τ ′) =

∫
dω

2π
0α(ω)e−iω(τ−τ ′), (B.4a)

g̃α(τ − τ ′) =

∫
dω

2π
fα(ω)0α(ω)e−iω(τ−τ ′), (B.4b)

where fα(ω) = 1/(eβα(ω−µα) + 1) is the Fermi distribution function of the α-lead at the initial
time t0. Using the Laplace transformation, i.e. f (z) =

∫
∞

t0
dt e−z(t−t0) f (t) with z = −iω, we

have

gα(ω) =

∫
dω′

2π
0α(ω

′)
i

ω − ω′ + i0+
= i6r

α(ω), (B.5)

i.e. gα(ω) is the retarded self-energy in the frequency domain. The Laplace transformation of
equation (7a) for u(t) gives

u(ω) =
i

ω − ε − 6r(ω)
= iGr(ω), (B.6)

where Gr(ω) is just the retarded Green function in the frequency domain, and 6r(ω) sums over
6r

α(ω) for all α. The advanced Green function is simply given by ū(ω) = −iGa(ω) = u†(ω).
Furthermore, for the time-independent Hamiltonian, the explicit solution of equation (7c) is

v(τ ) =

∫ τ

t0

dτ1

∫ t

t0

dτ2 u(τ1)̃g(τ − τ1 − t + τ2)u†(τ2). (B.7)

Taking the limits t0 → −∞ and t → ∞, its Laplace transformation (it becomes indeed a Fourier
transformation with the above time limit of −∞ to +∞) gives

v(ω) = u(ω)̃g(ω)u†(ω)

= − iGr(ω)6<(ω)Ga(ω) = −iG<(ω). (B.8)

Here, we have also used the relation g̃(ω) = −i6<(ω).
Substituting the above results into equation (26) in the steady-state limit t → ∞ (also plus

t0 → −∞), we obtain the steady-state single-particle reduced density matrix and current,

ρ(1)
st =

∫
dω

2π
Gr(ω)

[∑
α

0α(ω) fα(ω)

]
Ga(ω), (B.9a)
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Iα,st =
ie

h̄

∫
dω

2π
Tr

(
0α(ω)

[
G<(ω) + fα(ω){Gr(ω) − Ga(ω)}

])
. (B.9b)

This reproduces the steady-state current in terms of the non-equilibrium Green functions in
the frequency domain that has been widely used. When we consider specifically a system
coupled with left (source) and right (drain) electrodes, i.e. α = L and R, respectively, and also
assume that the spectral densities for the left and right leads have the same energy dependence,
0L(ω) = λ0R(ω), where λ is a constant, then the net steady-state current flowing from the left
to the right lead is given by

Ist =
2e

h̄

∫
dω

2π

[
fL(ω) − fR(ω)

]
T (ω),

(B.10)

T (ω) = Tr

{
0L(ω)0R(ω)

0L(ω) + 0R(ω)
Im[Ga(ω)]

}
.

This is the generalized Landauer–Büttiker formula [7].
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