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This paper presents a comprehensive account of the dissipaton-equation-of-motion (DEOM) theory
for open quantum systems. This newly developed theory treats not only the quantum dissipative
systems of primary interest, but also the hybrid environment dynamics that are also experimentally
measurable. Despite the fact that DEOM recovers the celebrated hierarchical-equations-of-motion
(HEOM) formalism, these two approaches have some fundamental differences. To show these differ-
ences, we also scrutinize the HEOM construction via its root at the influence functional path integral
formalism. We conclude that many unique features of DEOM are beyond the reach of the HEOM
framework. The new DEOM approach renders a statistical quasi-particle picture to account for the
environment, which can be either bosonic or fermionic. The review covers the DEOM construction,
the physical meanings of dynamical variables, the underlying theorems and dissipaton algebra, and
recent numerical advancements for efficient DEOM evaluations of various problems. We also address
the issue of high-order many-dissipaton truncations with respect to the invariance principle of quan-
tum mechanics of Schrödinger versus Heisenberg prescriptions. DEOM serves as a universal tool for
characterizing of stationary and dynamic properties of system-and-bath interferences, as highlighted
with its real-time evaluation of both linear and nonlinear current noise spectra of nonequilibrium
electronic transport.
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1 Introduction

Correlated system-and-bath coherence is a type of quan-
tum entanglement which occurs whenever the quantum
nature of an environment cannot be neglected. Nowa-
days, this type of quantum entanglement plays roles of
ever-increasing importance in many fields of science. It is
concerned with quantum impurities under the influence
of dissipative environments that can exchange electrons

(or particles) and quantum information with local impu-
rity systems. The interplay between system anharmonic-
ity and nonperturbative coupling with non-Markovian
environments results in rich phenomena, such as Mott
metal-insulator transitions and Kondo physics. In addi-
tion to quantum systems dynamics, one can manipulate
and monitor certain strongly correlated collective mo-
tions of bath continuum. Examples include Fano inter-
ference spectroscopy, correlated dynamics between chro-
mophores and surface plasmons, quantum rate fluctua-
tions, and electronic transport current shot noise spec-
trum and counting statistics. To address these diversified
issues, a fundamental (Schrödinger-equation-like) theory
of open quantum systems, governing both systems and
hybrid bath dynamics, is needed.

The quantum mechanics of open systems had been
substantially developed in the context of dissipative dy-
namics, with the focus primarily only on reduced sys-
tem density operators, ρS(t) ≡ trBρT(t); i.e., the bath-
subspace trace of the total composite density operator.
Quantum dissipation theories cover topics ranging from
various second-order quantum master equations [1–6] to
the Feynman–Vernon influence functional path integral
formalism [7, 8]. For the influences of Gaussian bath on
reduced systems, the path integral approach is exact,
except for the initial factorization ansatz [7–9]. The cel-
ebrated hierarchical-equations-of-motion (HEOM) for-
malism, with either bosonic [10–17] or fermionic [18] bath
influence, involves a set of auxiliary density operators
that are known to be relevant to the hybrid bath dynam-
ics [19, 20]. Nevertheless, they appear rather as mathe-
matical auxiliaries, irrespective of whether the HEOM is
constructed via the stochastic field method [10, 11] or
the calculus-on-path-integral approach [12–18].

In this paper, we present a comprehensive account of
the recently developed theory of the dissipaton equa-
tion of motion (DEOM) [21]. It not only recovers HEOM
but also identifies the physical meanings of all involved
dynamical quantities as many-dissipaton configurations.
More importantly, it renders a statistical quasi-particle
(dissipaton) picture to account for the environment,
which can be either bosonic or fermionic. In this sense,
DEOM is a type of “second-quantization” theory of the
quantum mechanics of open systems. It consists of not
only the law of governing dynamics of evolving variables
but also the underlying statistical quasi-particle picture
as well as novel dissipaton algebra [21–23]. Particularly
important is the generalized Wick’s theorem [21], which
provides DEOM with a versatile means for the accurate
evaluation of various experimentally measurable quanti-
ties of system-and-bath interference dynamics.

This paper is organized as follows. After an overview
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of the general features in Section 2, we present in de-
tail the constructions of bosonic and fermionic DEOM
theories, in Section 3 and Section 4, respectively. As the
DEOM dynamical generators recover their HEOM cor-
respondences, we scrutinize the fermionic HEOM con-
struction in Section 5, following which we conclude that
many unique features of DEOM are beyond the reach of
the HEOM framework. However, all numerical HEOM
techniques developed recently can be directly used in
the present DEOM evaluations. In Section 6, we present
some recent advancements in this aspect. In Section 7,
we discuss the quantum mechanics on the DEOM-space
algebra, considering DEOM as a universal theory for the
stationary and dynamic properties of both systems and
hybrid bath environments. We also derive the Heisen-
berg prescription of the DEOM formalism, which con-
firms that the derivative-resum truncation scheme, pre-
sented in Section 3.5 and Section 4.5, does preserve the
invariance principle of the prescriptions. We conclude the
paper in Section 8.

2 General remarks on DEOM theory

2.1 Remarks on Gaussian bath

The DEOM approach is formally exact for the linear
hybridization noninteracting bath model, referred to as
Gaussian bath hereafter. The details of the Gaussian
bath model are as follows. (i) The bath (hB) consists
of practically infinite number of noninteracting (quasi)
particles, which are either fermionic or bosonic; (ii) The
system-bath coupling HSB is modeled at the linear bath
hybridization level. Gaussian bath covers the Caldeira-
Leggett model, which is widely adopted in the study of
decoherence problems, and also the electronic transfer
coupling model commonly used in quantum transport
and quantum impurity physics research.

The simplification of Gaussian bath is rooted at its
underlying Gaussian statistics of Wick’s theorem. It is
concerned with the thermodynamical average, 〈Ô〉B ≡
trB(Ôρeq

B ), over the equilibrium canonical ensembles of
the bare bath at a given temperature [8, 9]. The ex-
tension to nonequilibrium grand canonical ensembles for
bath reservoirs in the presence of bias chemical poten-
tials is rather trivial. This will be considered in the con-
text of quantum transport (cf. Section 4). Apparently,
〈HSB〉B = 0 automatically holds in the present bath
model. More importantly, the Gaussian statistical dy-
namics with zero-means is completely characterized by
its second cumulants. These are simply the hybridization
bath correlation functions, which can be further related

to the hybridizing bath spectral density functions via the
fluctuation-dissipation theorem [8, 9], owing to the un-
derlying detailed balance relation [6]. In other words, the
above bath characterization completely determines the
bath influences on the reduced system dynamics. This
is also the reason why the Feynman-Vernon influence
functional path integral formalism [7, 8] is exact in the
present bath model; for further details see Section 5.

It is worth noting that the initial factorization ansatz,
ρT(t0) = ρS(t0)ρ

eq
B , for the total system-and-bath den-

sity operator is adopted in deriving the influence func-
tionals in the path integral formalism. Its differential-
equation counterpart, the HEOM formalism, would in
principle also suffer this problem. On the other hand,
the DEOM construction formally starts with an arbi-
trary initial ρT(t0).

2.2 Remarks on total composite Hamiltonian

The total composite Hamiltonian tractable with the
DEOM formalism has the following generic form,

HT(t) = [HS − D̂SE(t)] + hB +HSB + D̂BE
′(t). (2.1)

Here, hB and HSB were modeled with the Gaussian bath,
as detailed in Section 2.1. The first term of Eq. (2.1) is
the system Hamiltonian, H(t) = HS − D̂SE(t), under
the local classical electromagnetic field E(t) interroga-
tion. Both HS and D̂S are arbitrary Hermitian operators
in the system subspace. Define system Liouvillian super-
operator L(t) via

L(t)Ô ≡ [H(t), Ô] ≡ [HS − D̂SE(t), Ô]. (2.2)

The last term in Eq. (2.1), D̂BE
′(t), represents the in-

teraction between the environment (bath) and external
classical field E′(t), which can be arbitrary. It highlights
the fact that various experimentally accessible bath dy-
namics, including system-and-bath interference phenom-
ena, are also within the reach of the DEOM framework in
this review article. The interrogated bath operator D̂B is
chosen to modify either hB or HSB, without altering the
underlying Gaussian statistics, as stipulated in Section
2.1. Some details are as follows. (i) The bosonic DEOM
will be considered with the quantum dissipation setup
(cf. Fig. 1), where the bath polarization gives rise to
D̂BE

′(t) that effectively modifies HSB [cf. Eq. (3.1)]. (ii)
The fermionic DEOM will be considered with a quan-
tum transport setup (cf. Fig. 2), where a local quantum
impurity is coupled with electrodes that serve as bath
reservoirs. In this case, D̂BE

′(t) represents the modifica-
tions to the individual bath reservoirs bath [cf. Eq. (4.4)],
due to the applied external bias electric potential field,
which can be time-dependent.
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2.3 General features of DEOM

The DEOM approach provides a statistical quasi-particle
(dissipaton) picture to account for the environment,
which can be either bosonic or fermionic. In this ap-
proach, the linear hybridizing bath operators are de-
composed into a set of statistically independent dissi-
paton operators {f̂k

}
, with certain well-defined features

to support rather simple but novel dissipaton algebra.
This includes the generalized diffusion equation and the
generalized Wick’s theorem for dissipatons.

Dynamical variables in DEOM are the so-called dis-
sipaton density operators (DDOs) [21–23], with the
generic form of

ρ(n)
n (t) ≡ ρ

(n)
n1···nK (t) ≡ trB

[(
f̂n1
1 · · · f̂nK

K

)◦
ρT(t)

]
. (2.3)

The product of dissipaton operators inside (· · ·)◦ is
irreducible. Note that (c − number)◦ ≡ 0. More-
over, bosonic/fermionic dissipatons satisfy [f̂k, f̂j ]∓ =
c − number, with [·, ·]− ≡ [·, ·] and [·, ·]+ ≡ {·, ·} being
commutator and anti-commutator, respectively. There-
fore,

(
f̂kf̂j

)◦ =
(
f̂j f̂k

)◦ (bosonic);
(
f̂kf̂j

)◦ = −(
f̂j f̂k

)◦ (fermionic). (2.4)

Each DDO of Eq. (2.3), where n = n1+· · ·+nK , specifies
an n-dissipaton configuration, with nk being the partic-
ipation number of a specified dissipaton: nk � 0 if f̂k
is bosonic, and nk = 0 or 1 if f̂k is fermionic [cf. Eq.
(2.4)]. Apparently, the reduced system density operator
is simply ρS(t) = ρ(0)(t), a special member of Eq. (2.3).

The DEOM formalism assumes the generic form of

ρ̇(n)
n = −[

iL(t)+γ(n)
n

]
ρ(n)
n +

{
ρ
(n−1)
n−

}
+

{
ρ
(n+1)
n+

}
.(2.5)

It is constructed by applying the Liouville-von Neumann
equation, ρ̇T(t) = −i

[
H(t) + hB +HSB, ρT(t)

]
, to the to-

tal composite density operator in Eq. (2.3), followed by
applying the novel dissipaton algebra [21–23]. In general,
the system H(t) gives rise to L(t) of Eq. (2.2). The hB-
commutator action is evaluated via the generalized dif-
fusion equation, resulting in the γ(n)

n -term in Eq. (2.5).
The diffusion parameter γ(n)

n is usually complex, and it
represents the memory-frequency contents of the n-body
DDO under study. It can even be time-dependent, if the
underlying bath Hamiltonian is an effective heff

B (t) [cf.
Eq. (4.1)]. This is the case in transient quantum trans-
port studies, in which a time-dependent external bias
electric field is applied across the contacting bath reser-
voirs. The HSB-commutator action is evaluated via the
generalized Wick’s theorem [21], resulting in the depen-
dence on the associating (n±1)-body DDOs, as denoted

by
{
ρ
(n±1)

n±
}

in Eq. (2.5).
It is worth re-emphasizing here that the DEOM the-

ory does not just describe how the DDOs evolve in time,
as governed by Eq. (2.5), it also describes the underlying
statistical quasi-particle picture and the novel dissipaton
algebra [21]. In particular, the notion of irreducibility,
(· · ·)◦ in Eq. (2.3), is closely related to a novel Wick’s-like
theorem [21]. It enables DEOM to address not only the
system but also the bath dynamics and the interferences
between them.

Throughout this paper, we adopt the units of � = e =
1, where � is the Planck constant and e is the electron
charge. Denote β ≡ 1/(kBT ), with kB being the Boltz-
mann constant and T the temperature.

Hereafter, the time variable t > 0, unless specified oth-
erwise. The correlation functions of the type,

〈
Â†(t)B̂(0)

〉 ≡ Tr
[
Â†(t)B̂(0)ρeq

T

]
, (2.6)

associate physically with the Keldysh forward (>) path.
The backward (<) path counterpart is

〈
B̂(0)Â†(t)

〉 ≡ Tr
[
Â†(t)ρeq

T B̂(0)
]
. (2.7)

Here, Â(t) = eiHTtÂe−iHTt, with the total composite
Hamiltonian HT, in the absence of an external field, and
ρeq

T ≡ e−βHT/ZT with ZT being the canonical thermal
equilibrium partition function. Both Â and B̂ are also
defined within the total space, involved both system and
environment. The above definitions readily lead to the
time-reversal and detailed-balance relations [6], respec-
tively, of

〈
B̂(0)Â†(t)

〉
=

〈
Â(t)B̂†(0)

〉∗=
〈
Â†(t− iβ)B̂(0)

〉
. (2.8)

2.4 Basic algebra for superoperators and tensors

Some superoperators, defined in the system subspace, are
involved in the DEOM formalism. A superoparator maps
an operator, such as a DDO of Eq. (2.3), to another op-
erator. Throughout this work, we define superoperators
via their actions on an arbitrary operator. For complete-
ness, we also represent the basic superoperator algebra,
as follows.

(i) Superoperators are also referred to as Liouville-
space operators. They are tensors with respect to a
given Hilbert-space basis-set representation, {|m〉}. The
Liouville-space basis set elements are then {|mn〉〉}, with
each |mn〉〉 = |m〉〈n| being an ordinary Hilbert-space
projection-type state operator. Here, we adopt the so-
called tetradic bra-and-ket notation. The orthonormality
and completeness of a Liouville-space basis set read [24,
25]

〈〈mn|m′n′〉〉 ≡ trS

[
(|n〉〈m|)(|m′〉〈n′|)] = δmm′δn′n,
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∑

mn

|mn〉〉〈〈mn| = I. (2.9)

The tensor elements of a superoperator O are then

Omn,m′n′ ≡ 〈〈mn|O|m′n′〉〉 ≡ 〈
m

∣
∣[O(|m′〉〈n′|)]∣∣n〉

.

The tetradic bra-ket notation [24, 25] is convenient for
the superoperator/tensor algebra, because

(OÂ)mn =
∑

m′n′
Omn,m′n′Am′n′ , (2.10)

where Am′n′ = 〈m′|Â|n′〉.
(ii) Hermitian superoperators, O, are defined, via their

actions on an arbitrary operator, as (OÂ)† = OÂ†. It
is equivalent to state that a Hermitian superoperator
maps a Hermitian operator to another Hermitian opera-
tor. From this definition, it immediately follows that the
product of Hermitian superoperators remains Hermitian.
The tensor elements of a Hermitian superoperator satisfy

Omn,m′n′ = O∗
nm,n′m′ . (2.11)

Note that the diagonal elements, following Eq. (2.9) or
(2.10), are Omn,mn, which are complex in general. For
example, iLS is Hermitian. Its tetradic tensor elements,
in the diagonal HS-representation, are (iLS)mn,m′n′ =
iωmnδmm′δnn′ , with ωmn = εm − εn being the transition
frequency between two eigenstates of the bare system
Hamiltonian. The diagonal elements of (iLS) are purely
imaginary in the above tetradic convention.

(iii) Another is the so-called “chemistry” convention.
It arranges the tensor {Omn,m′n′ ≡ 〈〈mn|O|m′n′〉〉} in
an ordinary matrix form, {Opq}, such that a Hermitian
superoperator satisfies

Opq = O∗
qp. (2.12)

This can be achieved via

Opq ≡ (p|O|q) = (mm′|O|nn′) ≡ 〈〈mn|O|m′n′〉〉.
(2.13)

The Hermitian matrix indexes are then p = mM + m′

and q = nM + n′, provided the Hilbert-space basic set
in use is {|m〉;m = 0, · · · ,M − 1}. This convention is
numerically useful, when the eigenvalues of a Hermitian
superoperator are needed to be explicitly evaluated.

3 Bosonic DEOM theory

3.1 Statistical description of bosonic bath

3.1.1 Fluctuation-dissipation theorem for bosonic bath

For a quantum dissipation setup such as that in Fig. 1,

Fig. 1 Schematic representation of a quantum dissipation setup,
in which a mesoscopic system S is coupled to a macroscopic bath,
under temperature T . The external light field interrogates both
the discrete system and bath continuum.

we specify the total composite Hamiltonian of Eq. (2.1)
as

HT(t) = H(t) + hB +
∑

a

[Q̂S
a − ζB

aE(t)]F̂B
a , (3.1)

with the Caldeira–Leggett bath model of [26, 27]

hB =
1
2

∑

j

ωj(p2
j + x2

j) and F̂B
a =

∑

j

cajxj . (3.2)

The last two terms in Eq. (2.1) are now combined into
the single last term in Eq. (3.1), with the self-explained
forms of HSB and D̂B, in terms of the hybridizing bath
operators {F̂B

a }. Involved in the system-bath coupling,
HSB, are also the hybridizing system modes {Q̂S

a}, which
are usually set to be dimensionless. We also set a same
electromagnetic field, E′(t) = E(t), to act on both sys-
tem and bath continuum, so that Fano interference is
anticipated.

Equation (3.2) is a type of linear hybridization non-
interacting bath. The bath influence on the system dy-
namics satisfies the aforementioned Gaussian statistics
(cf. Section 2.1). The characterizing hybridization bath
spectral density functions, as described microscopically
via Eq. (3.2), are

Jab(ω) =
π

2

∑

j

cajcbjδ(ω − ωj), with ω � 0. (3.3)

The equivalent thermodynamical description, covering
all real ω, reads [6]

Jab(ω) =
1
2

∫ ∞

−∞
dt eiωt

〈
[F̂B
a (t), F̂B

b (0)]
〉
B
. (3.4)

Here, F̂B
a (t) ≡ eihBt/�F̂B

a e−ihBt/�, and 〈Ô〉B denotes an
average over the unperturbed bare bath thermal equilib-
rium ensemble at a given temperature. Apparently, the
relations in Eq. (2.8) hold for the isolated bath quanti-
ties above. It is easy to show that bosonic bath spectral
density functions satisfy the Hermitian anti-symmetric
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relations [6]:

J∗
ab(ω) = −Jab(−ω) = Jba(ω). (3.5)

Moreover, the underlying detailed-balance relation, as
inferred from Eqs. (2.8) and (3.4), leads to [6]

〈
F̂B
a (t)F̂B

b (0)
〉

B
=

1
π

∫ ∞

−∞
dω e−iωt Jab(ω)

1 − e−βω
. (3.6)

This is the bosonic fluctuation-dissipation theorem [6, 9].

3.1.2 Sum-over-poles decomposition of bath correlation
functions

We will see later that the form of exponential expan-
sion of

〈
F̂B
a (t)F̂B

b (0)
〉

B
in Eq. (3.6) actually dictates the

explicit expressions of either the DEOM or HEOM for-
malism. Some related properties of this expansion are as
described here.

Firstly, the prerequisite on a form of exponential ex-
pansion for bare bath correlation functions is rather gen-
erally achievable, as shown in what follows. Consider
the Fourier integrand of Eq. (3.6), i.e., the spectrum,
represented by the product of Jab(ω) and fBose(ω) =
1/(1−e−βω). After exploiting certain sum-over-poles de-
compositions on Jab(ω) and fBose(ω), the Cauchy’s con-
tour integration technique is applied for the formal eval-
uation of Eq. (3.6). Let {z = −iγabj ; j = 1, · · · , NJ}
be the poles of Jab(z) in the lower-half plane, and
{z = −iγ̌m;m = 1, · · · ,∞} be those of the Bose func-
tion fBose(z), with γ̌m = 2πm/β being the Matsubara
frequencies. The resulting infinite exponential series has
the general form,

〈
F̂B
a (t)F̂B

b (0)
〉

B
=

NJ∑

j=1

ηabje−γabj t +
∞∑

m=1

η̌abme−γ̌mt.

(3.7)

Two properties of the involved parameters will be of
some non-essential but practical relevance to the final
DEOM/HEOM expressions. Both these properties are
related to Eq. (3.5).

One is related to the pre-exponential coefficients
{η̌abm}, originating from the Bose function, being en-
tirely real [15]; i.e.,

η̌abm = η̌∗abm. (3.8)

In fact, the Matsubara expansion of the Bose function
leads to η̌abm = −i(2/β)Jab(−iγ̌m). Now, by applying the
Hermitian and anti-symmetry relations of Eq. (3.5), we
conclude that while Jab(ω) can be complex when a �= b,
its analytical continuation Jab(iω) is purely imaginary;
thus, η̌abm is real. This property remains with those op-

timal sum-over-poles expansions, the Padé spectrum de-
compositions of the Bose function [28, 29].

Another property is that the exponents {γabj}, orig-
inating from Jab(ω), appear either real or in complex
conjugate pairs. This property can be expressed as

γabj̄ ≡ γ∗abj ∈ {γabj ; j = 1, · · · , NJ}, (3.9)

which is also related to Eq. (3.5).
Without loss of generality, we hereafter assume all

those {γabj = γj} independent of the indexes (ab). For an
accuracy controllable optimal DEOM construction, [16,
17, 28–31] consider Eq. (3.7) as a finite exponential-plus-
residue expansion form of

〈
F̂B
a (t)F̂B

b (0)
〉

B
=

K∑

k=1

ηabke−γkt + 2Δabδ(t). (3.10)

Here,K = NJ+NBose is the total number of poles, chosen
by taking into account both Jab(ω) and the Bose func-
tion. The last term, if it were expressed exactly, would
be the residue from all remaining (m > NBose) compo-
nents in Eq. (3.7), which are not included in the first
term of Eq. (3.10). The resulting residue spectra must be
real and symmetric functions, as inferred from the fact
that all γ̌m and η̌abm are real. This fact supports the
last term of Eq. (3.10) the white-noise-residue (WNR)
ansatz, in close relation to the accuracy controllable op-
timal DEOM/HEOM constructions [16, 17, 28–31]. Ap-
parently, Δab = Δ∗

ab, in line with Eq. (3.8).
Moreover, the time-reversal (backward) counterpart to

Eq. (3.10), as inferred from Eq. (2.8), can be expressed
as

〈
F̂B
b (0)F̂B

a (t)
〉

B
=

K∑

k=1

η∗abk̄e
−γkt + 2Δabδ(t). (3.11)

The index k̄ ∈ {k = 1, · · · ,K}, defined in line with Eq.
(3.9) via γk̄ ≡ γ∗k. Apparently, k̄ = k if γk is real.

3.2 Dissipatons decomposition scheme and generalized
diffusion equation

Consider now the hybridizing bath operators {F̂B
a } in the

dissipaton decomposition, as follows [21]:

F̂B
a ≡

K∑

k=1

f̂ak + δF̂a. (3.12)

The involved
{
f̂ak, δF̂a

}
are called dissipatons that sup-

port a statistical quasi-particle picture to account for the
influence of a Gaussian environment. Dissipatons are de-
fined via their correlation functions in relation to the
individual components in Eq. (3.7) or (3.11). These are
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(t > 0)
〈
f̂ak(t)f̂bj(0)

〉
B

= δkjηabke−γkt,
〈
f̂bj(0)f̂ak(t)

〉
B

= δkjη
∗
abk̄e

−γkt; (3.13)
〈
f̂ak(t)δF̂b(0)

〉
B

= 0, and
〈
δF̂a(t)δF̂b(0)

〉
B
=

〈
δF̂b(0)δF̂a(t)

〉
B
=2Δabδ(t). (3.14)

Both Eqs. (3.10) and (3.11) are strictly preserved.
We have thus verified that the above statistical quasi-
particles or dissipatons decomposition scheme is exact
for Gaussian bath interactions (cf. Section 2.1).

As inferred from Eq. (3.13), where γk̄ ≡ γ∗k , in general,
we obtain

〈
f̂bj(0)f̂ak(t)

〉
B

=
〈
f̂ak̄(t)f̂bj̄(0)

〉∗
B
. (3.15)

This is the time-reversal relation for bosonic dissipatons,
which also implies that f̂ak̄ = f̂ †

ak, as inferred from Eq.
(2.8).

Equation (3.13) highlights two important features of
dissipatons: (i) Dissipatons with different “color-γk” are
statistically independent with respective to the k-index;
(ii) each individual dissipaton is of a single-exponential
correlation function, with a same exponent for both the
forward and the backward paths. These features are
closely related to the dissipaton algebra used in the
DEOM construction. In particular, the feature (ii) above
leads to [21]

trB

[( ∂
∂t
f̂ak

)

B
ρT(t)

]
= −γktrB

[
f̂akρT(t)

]
. (3.16)

This is the generalized diffusion equation for dissipatons,
where γk can be complex and the total system-and-bath
composite ρT(t) is non-Gaussian in general.

To complete the description of dissipatons, we are also
interested in their variances in the bare bath canonical
ensembles. Start again from Eq. (3.6) for the variance of

〈
F̂B
a F̂

B
b

〉
B

=
1
π

Re
∫ ∞

−∞
dω

Jab(ω)
1 − e−βω

. (3.17)

Note also that [f̂ak, f̂bj ] = 0, as F̂B
a in Eq. (3.2) is sim-

ply a collection of bath coordinates. Consider now Eq.
(3.13). We have

〈
f̂akf̂bj

〉
B

= δkj(ηabk + ηbak + η∗abk̄ + η∗bak̄)/4. (3.18)

Together with Eq. (3.12), we obtain
〈
δF̂aδF̂b

〉
B

=
〈
F̂B
a F̂

B
b

〉
B
− 1

2
Re

∑

k

(ηabk + ηbak). (3.19)

3.3 Bosonic DEOM formalism and generalized Wick’s
theorem

Dynamically independent DDOs explicitly contain only

those colored-dissipatons, involved in the first term of
Eq. (3.12). These are the active dynamical variables, ex-
plicitly engaged in the DEOM formalism [cf. Eq. (3.24)].
Those involved WNR dissipatons are also physically im-
portant, but they can be expressed in terms of the active
ones [cf. Eq. (3.28)].

The active bosonic DDOs, which satisfy symmetric
permutation [cf. Eqs. (2.3) and (2.4)], now read [21]

ρ(n)
n (t) ≡ trB

[(∏

ak

f̂nak

ak

)◦
ρT(t)

]
. (3.20)

Here, n ≡ {nak} is the collective indexes, and

n =
∑

ak

nak, with nak = 0, 1, 2, · · ·

being the participation number for each individual f̂ak-
dissipaton. Thus, ρ(n)

n of Eq. (3.20) specifies the “configu-
ration” of the n bosonic dissipatons involved. Denote also
ρ
(n±1)

n±
ak

as the associated (n ± 1)-dissipatons configura-

tion, with n±
ak differing from n only at the specified f̂ak-

disspaton participation number, nak, by ±1. Apparently,
the reduced system density operator is simply ρS ≡ ρ(0).

The most important ingredient of the dissipaton alge-
bra is the generalized Wick’s theorem, which satisfies the
notion of irreducibility, (· · ·)◦, as follows:

trB

[(∏

ak

f̂nak

ak

)◦
f̂bjρT(t)

]

=
∑

ak

nak
〈
f̂akf̂bj

〉>

B
ρ
(n−1)

n−
ak

(t) + ρ
(n+1)

n+
bj

(t), (3.21)

and

trB

[(∏

ak

f̂nak

ak

)◦
ρT(t)f̂bj

]

=
∑

ak

nak
〈
f̂bj f̂ak

〉<

B
ρ
(n−1)

n−
ak

(t) + ρ
(n+1)

n+
bj

(t). (3.22)

Here [cf. Eq. (3.13)],
〈
f̂akf̂bj

〉>

B
≡ 〈

f̂ak(0+)f̂bj
〉

= δkjηabk,
〈
f̂bj f̂ak

〉<

B
≡ 〈

f̂bj f̂ak(0+)
〉

= δkjη
∗
abk̄. (3.23)

The generalized Wick’s theorem above holds for Gaus-
sian bath influences, regardless of the fact that the to-
tal system-and-bath composite ρT(t) is generally non-
Gaussian and non-factorizable.

The DEOM formalism is summarized as follows [21,
22]:

ρ̇(n)
n = −

(
iL(t) +

∑

ak

nakγk + δR
)
ρ(n)
n

−i
∑

ak

(
nakCeff

ak (t)ρ(n−1)

n−
ak

+ Aaρ
(n+1)

n+
ak

)
, (3.24)
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with [cf. the total Hamiltonian HT(t) of Eq. (3.1)]

δRÔ ≡
∑

a,b

Δab

[
Q̂S
a,

[
Q̂S
b, Ô

]]
, (3.25)

Ceff
ak (t) ≡ Cak − E(t)

∑

b

(ηabk − η∗abk)ζ
B
b , (3.26)

and

AaÔ ≡ [
Q̂S
a, Ô

]
,

CakÔ ≡
∑

b

(
ηabkQ̂

S
bÔ − η∗abk̄ÔQ̂

S
b

)
. (3.27)

Note that the second term of Eq. (3.26) is responsible
for the Fano interference. An individual (ηabk − η∗

abk̄
) is

nonzero only when its corresponding γk arises from the
poles of Jab(ω). Those associated with the poles of the
Bose function are all zeros [cf. Eq. (3.8)].

The DEOM theory also includes the single-WNR-
dissipaton-containing DDOs (SW-DDOs) [21]:

�
(n)
n,a′(t) ≡ trB

[
δF̂a′

( ∏

ak

f̂nak

ak

)◦
ρT(t)

]

= −i
∑

b

Δa′b
[
Q̂S
b, ρ

(n)
n (t)

]
. (3.28)

The first identity is simply the mathematical definition of
SW-DDO, �(n)

n;a′ , which is actually an irreducible (n+1)-
body quantity, since the involved WNR δF̂a′ do not cor-
relate with the colored {f̂ak}-dissipatons. The second ex-
pression of Eq. (3.28) is exactly what we need for the
WNR dissipaton dynamics.

Note also that there is the so-called WNR dissipa-
ton lemma: No more than single irreducible white-noise-
dissipatons can physically participate in dynamics [21].
Therefore, SW-DDOs of Eq. (3.28) are all we need for
the WNR dissipaton dynamics, including the δR-term
in Eq. (3.24). In fact, the second identity of Eq. (3.28)
leads to Eq. (3.25) and the expression

δRρ(n)
n = i

∑

a

Aa�
(n)
n,a. (3.29)

Actually, Eq. (3.24), in the absence of external-field in-
duced bath polarization, where Ceff

ak (t) = Cak, reduces to
the celebrated HEOM formalism; see Ref. [17], for exam-
ple. The latter is rooted at the Feynman–Vernon influ-
ence functional path integral formalism [7]. The HEOM
theory offers no physical meanings to all

{
ρ
(n>0)
n

}
that

were used to be just mathematical auxiliaries [12–17].
The DEOM framework, which consists of all equations in
this subsections, is much more rich. The underlying pic-
ture of DDOs, Eq. (3.20), and the algebra of dissipatons,
especially the generalized Wick’s theorem of Eqs. (3.21)
and (3.22), renders DEOM a novel theory, for not only

system but also hybrid bath dynamics. The important
observations above will be further illustrated in Section
7.

We will terminate the infinite hierarchy of Eq. (3.24)
to complete the DEOM framework in Section 3.5. Be-
fore doing so, we present the detailed derivations of Eqs.
(3.24)–(3.28).

3.4 Derivations of bosonic DEOM formalism

3.4.1 Basic applications of dissipaton algebra

Evidently, derivations are only needed for Eq. (3.24) and
the second expression of Eq. (3.28). We start by apply-
ing ρ̇T = −i[HT(t), ρT] to the total composite density
operator in Eq. (3.20), and we then examine the contri-
butions of different components in the total composite
HT(t). Following the dissipaton decomposition of {F̂B

a },
Eq. (3.12), the total composite Hamiltonian, HT(t) of
Eq. (3.1), can be recast as

HT(t) = H(t) + hB +H ′
SB(t) + δHSB(t), (3.30)

with

H ′
SB(t) =

∑

ak

[
Q̂S
a − ζB

b E(t)
]
f̂ak, (3.31)

δHSB(t) =
∑

a

[
Q̂S
a − ζB

b E(t)
]
δF̂B

a . (3.32)

The commutator actions of hB, H ′
SB(t) and δHSB(t), are

evaluated, respectively, with the three aforementioned
ingredients of dissipaton algebra, as follows.

The hB-commutator action is evaluated via the gen-
eralized diffusion equation (3.16). Together with the
Heisenberg equation of motion in the bare bath,

( ∂
∂t
ÔB

)

B
= −i[ÔB, hB], (3.33)

we readily obtain

i trB

{(∏

ak

f̂nak

ak

)◦[
hB, ρT

]}

= i trB

{[( ∏

ak

f̂nak

ak

)◦
, hB

]
ρT

}

= −trB

{[ ∂
∂t

(∏

ak

f̂nak

ak

)◦]

B
ρT

}

=
( ∑

ak

nakγk

)
ρ(n)
n . (3.34)

This contributes to the second term in the first paren-
theses of Eq. (3.24).

TheH ′
SB(t)-commutator action is evaluated readily via

the generalized Wick’s theorem, Eqs. (3.21) and (3.22),
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with Eq. (3.23). With theH ′
SB(t) expression of Eq. (3.31),

first evaluate

trB

{(∏

ak

f̂nak

ak

)◦[
Q̂S
bf̂bj , ρT

]}

=
∑

ak

δkjnak

(
ηabkQ̂

S
bρ

(n−1)

n−
ak

− η∗abk̄ρ
(n−1)

n−
ak

Q̂S
b

)

+
[
Q̂S
b, ρ

(n+1)

n+
bj

]
. (3.35)

It immediately follows that

trB

{(∏

ak

f̂nak

ak

)◦[
H ′

SB(t), ρT

]}

=
∑

bj

trB

{(∏

ak

f̂nak

ak

)◦[
(Q̂S

b − ζB
b E(t))f̂bj , ρT

]}

=
∑

abk

nak

(
ηabkQ̂

S
bρ

(n−1)

n−
ak

− η∗abk̄ρ
(n−1)

n−
ak

Q̂S
b

)

−E(t)
∑

abk

nak(ηabk − η∗abk̄)ζ
B
b ρ

(n−1)

n−
ak

+
∑

bj

[
Q̂S
b, ρ

(n+1)

n+
bj

]
, (3.36)

which can be recast as [cf. Eq. (3.26) and (3.27)]

trB

{(∏

ak

f̂nak

ak

)◦[
H ′

SB(t), ρT

]}

=
∑

ak

[
nakCeff

ak (t)ρ(n−1)

n−
ak

+ Aaρ
(n+1)

n+
ak

]
. (3.37)

This contributes to the last term in Eq. (3.24).
Turn now to the influence of δHSB(t), Eq. (3.31), on

the DDOs of Eq. (3.20). Its contribution is an analogue
to Eq. (3.37) but contains no contraction terms, since〈
f̂ak(t)δF̂b(0)

〉
B

= 0. That is,

trB

{(∏

ak

f̂nak

ak

)◦[
δHSB(t), ρT

]}
=

∑

a

Aa�
(n)
n;a. (3.38)

It can be recast as

i trB

{(∏

ak

f̂nak

ak

)◦[
δHSB(t), ρT

]}
= δRρ(n)

n . (3.39)

Adopted here is Eq. (3.29), the trivial result of the second
identity of Eq. (3.28), which is the remaining equation
to be derived, as below.

3.4.2 Treatment of white-noise-residue dissipatons

Recall the SW-DDO lemma: No more than single irre-
ducible white-noise-dissipatons can physically participate
in dynamics [21]. Consequently, the SW-DDOs, �(n)

n,a(t)
of Eq. (3.28), are all we need for the WNR dissipa-
ton dynamics, including the δHSB(t)-contribution to the

DEOM formalism, Eq. (3.24).
The first identity of Eq. (3.28) is simply the mathemat-

ical definition of �(n)
n;a′ , which is actually an irreducible

(n + 1)-body quantity, since the involved WNR {δF̂a}
does not correlate with the colored {f̂ak}-dissipatons.
The second expression of Eq. (3.28) is exactly what we
need for the WNR dissipaton dynamics.

To derive the second expression of Eq. (3.28), we recast
Eq. (3.14) as

〈
δF̂a(t)δF̂b(0)

〉
B

= 2Δabδ(t) = Δab lim
Λ→∞

(
Λe−Λt

)
.

We then evaluate �̇(n)
n;a, with a finite but large Λ in the

SW-DDO lemma limit, following the same procedure as
that from Eq. (3.34) to Eq. (3.37). The resulting �̇

(n)
n;a

exclusively contains the following Λ-dependent terms:

−Λ�(n)
n;a − iΛ

∑

b

Δab

[
Q̂S
b, ρ

(n)
n

] → 0,

which should vanish when Λ → ∞, since �̇(n)
n;a does not

diverge in this limit. Therefore,

�(n)
n;a(t) = −i

∑

b

Δab

[
Q̂S
b, ρ

(n)
n (t)

]
. (3.40)

This is the second expression of Eq. (3.28). It also com-
pletes the derivation of Eq. (3.24). The fact that Eq.
(3.24) recovers the path integral-based HEOM formal-
ism de facto validates the dissipaton algebra discussed
throughout this section.

3.5 Derivative-resum truncation scheme

The DEOM formalism, Eq. (3.24), consists of an infinite
hierarchy and needs to be truncated. This issue can be
addressed via practical aspects as well as some principles
of elementary quantum mechanics. Various schemes have
been proposed [13–15], all from the practical aspect, with
a focus on the approximate treatments of

{
ρ
(n>L)
n

}
. The

standard method is to set all
{
ρ
(n>L)
n = 0

}
. This sim-

plest scheme is usually sufficient and reliable, owing to
the nonperturbative nature of the DEOM/HEOM for-
malism [14]. As inferred from the DDOs expression, Eq.
(3.20), the standard truncation scheme treats all L-body
dissipatons exactly. The higher level many-body effects
would have been accounted for via the generalized Wick’s
contraction approximation. This fact may explain why a
variety of other

{
ρ
(n>L)
n

}
-based schemes [13–15] hardly

show improvement when implemented; see Ref. [32] for
numerical demonstrations.

Note that the total number of active bosonic DDOs
participating in Eq. (3.24) is
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N (L, K̃) =
L∑

n=0

(n+ K̃ − 1)!
n!(K̃ − 1)!

=
(L+ K̃)!
L!K̃!

, (3.41)

where K̃ = NaK, with a fixed number Na of the
{Q̂S

aF̂
B
a }-decomposition terms in HSB of the study [33].

The optimal DEOM/HEOM construction goes with a
minimum number of K-space basis-set dissipatons [cf.
Eq. (3.10) and comments therein]. It should also have
an efficient L-space truncation scheme. The number of{
ρ
(L+1)
n

}
is often comparable to or even greater than

that of
{
ρ
(n�L)
n

}
in total. It would be practically impor-

tant to have a truly improved resum scheme to retrieve
the influence of

{
ρ
(L+1)
n

}
in the final DEOM dynamics.

In this paper, we treat the issue of truncation, not only
from the aforementioned practical aspect, but, more fun-
damentally, also from the invariance principle of quantum
mechanics prescriptions [32]. It demands that a proper
truncation scheme in the Schrödinger picture be trans-
ferable to a Heisenberg-picture equivalent to Eq. (3.24),
without further approximations. We will see in Section
7.4 that the standard

{
ρ
(n>L)
n = 0

}
-based scheme [6, 13–

15, 34, 35] fails in this formal requirement. Considered
below is the so-called derivative-resum scheme [32, 36].

To this end, we scrutinize the ρ̇(L+1)

n+
ak

expression, with

the general form of Eq. (3.24). To simplify the notation,
we denote the quantity inside the first parentheses of Eq.
(3.24)

L(n)
n (t) ≡ iL(t) +

∑

ak

nakγk + δR. (3.42)

We then have [cf. Eq. (3.24)]

ρ̇
(L+1)

n+
ak

= −L(L+1)

n+
ak

(t)ρ(L+1)

n+
ak

− i
∑

bj

Abρ
(L+2)

n+,+
ak,bj

−i
∑

bj

(nbj + δabδkj)Ceff
bj (t)ρ(L)

n+,−
ak,bj

. (3.43)

The derivative-resum truncation goes [32, 36]

ρ̇
(L+1)

n+
ak

≈ −i
∑

bj

Abρ
(L+2)

n+,+
ak,bj

. (3.44)

It leads to the following relation between the other two
terms in Eq. (3.43),

ρ
(L+1)

n+
ak

= −i
∑

bj

nbj + δabδkj

L(L+1)

n+
ak

(t)
Ceff
bj (t)ρ(L)

n+,−
ak,bj

. (3.45)

This closes the bosonic DEOM formalism with

ρ̇(L)
n = −L(L)

n (t)ρ(L)
j − i

∑

ak

nakCeff
ak (t)ρ(L−1)

n−
ak

−
∑

ak,bj

Aa
nbj + δabδkj

L(L+1)

n+
ak

(t)
Ceff
bj (t)ρ(L)

n+,−
ak,bj

. (3.46)

Explicitly used here is Eq. (3.45), which is equivalent to
Eq. (3.44). The latter is related directly to the equivalent
Heisenberg prescription of DEOM truncation; cf. Section
7.4. The involved superoperator inverse, 1/L(L+1)

n+
ak

(t) in

Eq. (3.46), can be evaluated with tensor algebra, as de-
tailed in Section 2.4. The Dyson equation would also be
useful to facilitate the evaluation.

The bosonic DEOM framework is now complete. It
consists of all equations in Section 3.3, including the gen-
eralized Wick’s theorem, which enables DEOM to be a
theory for not only systems but also hybrid bath dynam-
ics. The DEOM formalism, Eq. (3.24) with n � L and
the terminal expression (3.45) or Eq. (3.46), governs how
the DDOs evolve in time as well as the steady-state solu-
tions for structural properties; cf. Section 7.1 for further
comments. Note that

{
ρ
(L+1)
n

}
via Eq. (3.45) is also a

useful part of the complete theory. The derivative-resum
scheme presented in this subsection does obey the in-
variance principle of quantum mechanics prescriptions
(cf. Section 7.4), with the overall best performance, by
far, among all resum schemes we have tested; cf. Section
6.4 and also Ref. [32].

Note that a variation of Eq. (3.45), developed origi-
nally by Tanimura and Wolynes [37], supports also a pre-
scription invariant correspondence. However, the deriva-
tion there involved a local classical treatment, which re-
places individual L(L+1)

n+
ak

with its damping constant only

[32, 37]. This comprises the numerical efficiency to about
the same as the standard {ρ(n�L+1)

n = 0}–based trunca-
tion; see Ref. [32] for numerical demonstrations.

4 Fermionic DEOM theory

4.1 Bath hybridization functions and setup

4.1.1 Quantum transport setup

The fermionic DEOM will be constructed in contact with
an electron transport setup such as in Fig. 2, where
a mesoscopic electronic impurity system is in contact
with electrodes (α = L and R), which are represented
by bath reservoirs here. Throughout this paper, we set
μeq

L = μeq
R = 0 for equilibrium chemical potentials in the

absence of an external field. Also denote βα ≡ 1/(kBTα),
with kB being the Boltzmann constant and Tα the tem-
perature of the α-electrode.

The total composite Hamiltonian HT(t), in the pres-
ence of external fields, has the generic form of Eq. (2.1),
where the impurity system H(t) is arbitrary, and the
reservoir environment belongs to a Gaussian bath model,
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Fig. 2 Schematic representation of a quantum electron transport
setup, where a mesoscopic system S is coupled to two macroscopic
electrodes, L and R, under temperatures TL and TR, respectively.
The difference in chemical potential between L and R is controlled
by a time-dependent bias voltage, V (t), applied across the two
electrodes.

cf. Section 2.1. The specifications of hB and HSB for the
electron transport setup are as follows.

The bare reservoirs bath (electrodes) Hamiltonian is
modeled as noninteracting electrons,

hB =
∑

α

ĥα; with ĥα =
∑

k

εαkd̂
+
αkd̂

−
αk. (4.1)

Here, d̂−αk ≡ d̂αk (d̂+
αk ≡ d̂†αk) denotes the annihila-

tion (creation) operator for the kth single-electron spin-
orbital state with energy εαk in the α-electrode. Denote
also â−u ≡ âu (â+

u ≡ â†u), the electron annihilation (cre-
ation) operator in the specified system spin-orbital |u〉-
state.

The system-reservoirs interaction Hamiltonian as-
sumes the standard transfer coupling form,

HSB =
∑

αu

(
â+
u F̂

−
αu + F̂+

αuâ
−
u

)
, (4.2)

with the linear hybridizing bath operators of

F̂+
αu ≡

∑

k

tαkud̂
+
αk = (F̂−

αu)
†. (4.3)

For bookkeeping, introduce the sign symbols σ = +,−
and σ̄ with the sign opposite to that of σ.

To manipulate and control the electronic dynamics
in the central system, the external fields are, in gen-
eral, time-dependent, such as the laser pulses applied to
the system. This case had been implied via the time-
dependent H(t) for system; cf. Eq. (2.2). The quantum
transport setup naturally includes a time-dependent ex-
ternal bias electric (voltage) potential, eV (t) = μL(t) −
μR(t). Its effect can be described by rigid homogeneous
time-dependent shifts of the conduction bands of elec-
trodes such that the occupation on each electronic state
is unchanged [38]. The shifted ĥα reads

ĥeff
α (t)=

∑

k

[εαk + μα(t)]d̂+
αk d̂

−
αk=ĥα + μα(t)N̂α. (4.4)

The electron number operator N̂α in the α-electrode sat-
isfies [ĥα, N̂α] = 0, in line with the electron number con-

servation in an isolated electrode. The transport current
operator, with a specified flux from the bath α-reservoir
to the system, is then Îα ≡ − d

dtN̂α = −i[HSB, N̂α]. To-
gether with Eq. (4.2), we obtain

Îα = −i
∑

u

(
â+
u F̂

−
αu − F̂+

αuâ
−
u

)
. (4.5)

The DEOM-based evaluations of transport current and
current-current correlation functions will be discussed in
Section 7.2.

The total composite Hamiltonian to be treated with
the fermionic DEOM theory, including the last term of
Eq. (2.1), can now be expressed as

HT(t) = H(t) +
∑

α

ĥeff
α (t) +HSB. (4.6)

The last two terms remain in the framework of the linear
hybridization noninteracting bath model that obeys the
Wick’s Gaussian statistics, as elaborated in Section 2.1.
For later use, also denote the bath Hamiltonians,

hst
B ≡

∑

α

ĥst
α and heff

B (t) ≡
∑

α

ĥeff
α (t), (4.7)

in the presence of time-independent and time-dependent
bias voltage potentials, respectively.

4.1.2 Bath hybridization and equilibrium correlation
functions

The hybridizing bath spectral density functions, which
characterize the influence of {F̂ σαu}, Eq. (4.3), are de-
fined with the bare bath hB of Eq. (4.1). They read

Jαuv(ω) ≡ J−
αuv(ω) = π

∑

k

t∗αkutαkvδ(ω − εαk). (4.8)

Its equivalent thermodynamics definition is given by [cf.
the bosonic Eq. (3.4)]

Jσαuv(ω) ≡ 1
2

∫ ∞

−∞
dt eiωt

〈{
F̂ σαu(t), F̂

σ̄
αv(0)

}〉eq

B
. (4.9)

It is easy to verify that [cf. the bosonic Eq. (3.5)]

Jσαvu(ω) = [Jσαuv(ω)]∗ = J σ̄αuv(ω). (4.10)

Moreover,

〈
F̂ σαu(t)F̂

σ̄
αv(0)

〉eq

B
=

1
π

∫ ∞

−∞
dω eσiωt J

σ
αuv(ω)

1 + eσβαω
. (4.11)

This is the fermionic fluctuation-dissipation theorem
[6, 8, 9]. Both Eqs. (4.9) and (4.11) follow the so-
called ĥα-based thermodynamic prescription: F̂ σαu(t) =
eiĥαtF̂ σαue

−iĥαt and 〈Ô〉eqB = trB(Ôe−βαĥα)/Zeq
α , with

Zeq
α = trBe−βαĥα , the canonical (μeq

α = 0) ensembles
partition function at temperature Tα.
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4.2 Steady-state versus nonstationary bath correlation
functions

4.2.1 Steady-state bath correlation functions

Consider the nonequilibrium steady-state case, in which
the applied bias potential, eV = μL − μR, is time-
independent. The effective α-electrode Hamiltonian of
Eq. (4.4) reads

ĥst
α ≡ ĥα + μαN̂α =

∑

k

(εαk + μα)d̂+
αk d̂

−
αk. (4.12)

Nonequilibrium steady-state
〈
F̂ σαu(t)F̂ σ̄αv(0)

〉
B

follows
the ĥst

α -based thermodynamic prescription. It involves
the partition function of grand canonical ensembles,
Zα(βα, μα) = trBe−βα(ĥα+μαN̂α), at a specified tempera-
ture Tα and chemical potential μα. The underlying sta-
tistical thermodynamics average is completely charac-
terized by 1/[1 + eσβα(ω−μα)], the Fermi function for
electrons (σ = +) or holes (σ = −). In parallel, the
steady-state hybridizing bath spectral density functions
are J st

αuv(ω) = Jαuv(ω − μα), in relation to their μα-free
equilibrium counterparts, Eq. (4.9). Consequently, the
nonequilibrium steady-state correlation functions are re-
lated to the equilibrium ones as

〈
F̂ σαu(t)F̂

σ̄
αv(0)

〉
B

= eσiμαt
〈
F̂ σαu(t)F̂

σ̄
αv(0)

〉eq

B
. (4.13)

The equilibrium 〈· · ·〉eqB in the right-hand-side of the
above expression follows the μα-free ĥα-based thermo-
dynamic prescription, as specified following Eq. (4.11).

It is easy to show that the time-reversal counterpart
to the nonequilibrium steady-state

〈
F̂ σαu(t)F̂

σ̄
αv(0)

〉
B

sat-
isfies [cf. the first identity of Eq. (2.8)]

〈
F̂ σ̄αv(0)F̂ σαu(t)

〉
B

=
〈
F̂ σ̄αu(t)F̂

σ
αv(0)

〉∗
B
. (4.14)

We also have [cf. the second identity of Eq. (2.8)]
〈
F̂ σαu(t− iβ)F̂ σ̄αv(0)

〉
B

= eσβμα
〈
F̂ σ̄αu(t)F̂

σ
αv(0)

〉∗
B
. (4.15)

This is the grand canonical detailed-balance relation.
However, there is no simple relation if it involves flux.

4.2.2 Nonstationary bath correlation functions

In the presence of time-dependent μα(t) ≡ μα + Δα(t),
the hybridizing bath correlation functions,

Cσαuv(t, τ) ≡
〈
F̂ σαu(t)F̂

σ̄
αv(τ)

〉nst

B
, (4.16)

are nonstationary and do not have time-translational in-
variance. While 〈· · ·〉nst

B remains in the ĥst
α -based pre-

scription of the average of grand canonical ensembles,
those {F̂ σαu(t)} inside 〈· · ·〉nst

B are governed by ĥeff
α (t) ≡

ĥst
α + Δα(t)N̂α. That is

∂

∂t
F̂ σαu(t) = −i[F̂ σαu(t), ĥ

eff
α (t)], (4.17)

or

F̂ σαu(t) = exp−

[
i
∫ t

t0

dτĥeff
α (τ)

]

× F̂ σαu exp+

[
− i

∫ t

t0

dτĥeff
α (τ)

]
.

The initial t0 can be at any time prior to the time-
dependent Δα(t) taking action. The resulting nonsta-
tionary bath correlation functions are then expressed as
(t � τ)

Cσαuv(t, τ) = exp
[
σi

∫ t

τ

dt′Δα(t′)
]
Cσ;st
αuv(t− τ), (4.18)

Note that Δα(t) is the time-dependent chemical poten-
tial, in addition to the constant part μα, applied on the
α-electrode. The stationary Cσ;st

αuv(t) simply represents
the steady-state Eq. (4.13). Apparently, Eq. (4.18) can
be considered the generalization of Eq. (4.13), in line
with the homogeneous-conduction-band-shift ansatz, as
described above Eq. (4.4).

4.3 Dissipatons decomposition scheme and generalized
diffusion equation

4.3.1 Onset of exponential expansions

Consider now an exponential series expansion of the
steady-state [cf. Eq. (3.7) and the remarks therein]

Cσ;st
αuv(t)=

NJ∑

k=1

ησαkuve
−γσ

αkuvt+
∞∑

m=1

η̌σαmuve
−γ̌σ

αmt. (4.19)

The exponents are related to the poles of Jσαuv(ω) and
the Fermi function,

γσαkuv = γσ;eq
αkuv − σiμα,

γ̌σαm = (2m− 1)π/βα − σiμα. (4.20)

While {γ̌σ;eq
αm = (2m − 1)π/βα}, the fermionic Matsub-

ara frequencies, are all real, those from Jσαuv(ω) have the
property of γσ;eq

αkuv = (γσ̄;eq
αkuv)

∗, owing to the second iden-
tity of Eq. (4.10). The above observations indicate that

γσαkuv = (γσ̄αkuv)
∗, γ̌σαm = (γ̌σ̄αm)∗. (4.21)

This property of all involved exponents will be explicitly
used in the formulations later.

Furthermore, note that the symmetry relation of
Jσαuv(ω) in Eq. (4.10) implies also [cf. Eq. (3.8)]
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η̌σαkuv = −(η̌σ̄αkuv)
∗. (4.22)

It turns out that each individual frequency-domain com-
ponent from the last term of Eq. (4.19) is, in general, an
asymmetric and complex function. The dominant part
is antisymmetric and imaginary. All existing nonzero
residue resum treatments, including the δ̇(t)-type WNR
ansatz proposed in the original DEOM paper [21], are
rather uncontrollable and case-dependent. The situation
here is very different from that of the bosonic bath. The
latter does support the δ(t)-type WNR ansatz, i.e., the
last term in Eq. (3.10), which is generally controllable
[16, 17, 28–31]. Owing to the remarkably efficient Padé
spectra decomposition for the Fermi/Bose function [28,
29], we adopt the zero-residue treatment for fermions Eq.
(4.19), which is always controllable and has also been
proved sufficient even for a variety of Kondo problems;
see Ref. [36] and references therein.

For clarity, we also assume γσαkuv = γσαk, such that Eq.
(4.19) can be recast as

〈
F̂ σαu(t)F̂

σ̄
αv(0)

〉
B

=
K∑

κ=1

ησακuve
−γσ

ακt. (4.23)

Here, K = NJ +NFermi is the total number of poles from
both Jσαuv(ω) and the Fermi function.

4.3.2 Decomposition of fermionic dissipatons

To proceed, let us recast Eq. (4.2) in a compact form,
the second identity below,

HSB =
∑

αu

(
â+
u F̂

−
αu + F̂+

αuâ
−
u

) ≡
∑

σαu

âσ̄uF̃
σ
αu, (4.24)

which defines

F̃ σαu ≡ −σF̂ σαu ≡ σ̄F̂ σαu. (4.25)

Apparently,
〈
F̃ σαu(t)F̃

σ̄
αv(0)

〉
B

= −〈
F̂ σαu(t)F̂

σ̄
αv(0)

〉
B
.

The decomposition of dissipatons for the fermionic
bath hybridizing operators reads

F̃ σαu ≡ −σF̂ σαu ≡
K∑

κ=1

f̂σακu, (4.26)

with [cf. Eq. (3.13)]
〈
f̂σακu(t)f̂

σ′
α′κ′v(0)

〉
B

= −δσ,σ̄′
ακ,α′κ′η

σ
ακuve

−γσ
ακt,

〈
f̂σ

′
α′κ′v(0)f̂σακu(t)

〉
B

= −δσ,σ̄′
ακ,α′κ′η

σ̄∗
ακuve

−γσ
ακt, (4.27)

where

δσ,σ̄
′

ακ,α′κ′ ≡ δσσ̄′δαα′δκκ′ . (4.28)

The time-reversal relation for fermionic dissipatons reads
[noting that γσ̄∗αm = γσαm; cf. Eq. (4.21)]

〈
f̂ σ̄

′
α′κ′v(0)f̂σακu(t)

〉
B

=
〈
f̂ σ̄ακu(t)f̂

σ′
α′κ′v(0)

〉∗
B
. (4.29)

It is easy to verify that the above decomposition pre-
serves the bath correlation function of Eq. (4.23).

4.3.3 Generalized diffusion equation with extension

The extension to the nonstationary case is rather
straightforward. In line with Section 4.1.2, the nonsta-
tionary counterpart of Eq. (4.27), exemplified with the
nonzero and forward-path one, reads (−∞ < τ < t <∞)

〈
f̂σακu(t)f̂

σ̄
ακv(τ)

〉nst

B
= −ησακuv exp

[
−

∫ t

τ

dt′γσακ(t
′)

]
,

〈
f̂ σ̄ακv(τ)f̂

σ
ακu(t)

〉nst

B
= −ησ̄∗ακuv exp

[
−

∫ t

τ

dt′γσακ(t
′)

]
.

(4.30)

Here,

γσακ(t) ≡ γσ;eq
ακ − σiμα − σiΔα(t). (4.31)

The same-and-single-exponent nature remains; cf. the
last paragraph in Section 3.2. The generalized diffusion
equation [cf. Eq. (3.16)] now reads

trB

[( ∂
∂t
f̂σακu

)

B
ρT(t)

]
= −γσακ(t)trB

[
f̂σακuρT(t)

]
. (4.32)

It is to be used together with the Heisenberg equation of
motion,

( ∂
∂t
ÔB

)

B
= −i[ÔB, heff

B (t)], (4.33)

for the evaluations of the heff
B (t) effect on the fermionic

DDOs [cf. Eq. (3.34)].
Moreover, the fermionic counterparts to Eq. (3.23) are

also rooted at the correlation functions for nonstationary
dissipatons, such as Eq. (4.30), defined with t− τ = 0+.

〈
f̂σακuf̂

σ′
α′κ′v

〉>
B

= −δσ,σ̄′
ακ,α′κ′η

σ
ακuv,

〈
f̂σ

′
α′κ′vf̂

σ
ακu

〉<
B

= −δσ,σ̄′
ακ,α′κ′η

σ̄∗
ακuv. (4.34)

4.4 Fermionic DEOM formalism and generalized
Wick’s theorem

For bookkeeping, we adopt the abbreviations,

j ≡ (σακu), j̄ ≡ (σ̄ακu), (4.35)

for the collective indexes in fermionic dissipatons, such
that f̂j ≡ f̂σακu and so on. The fermionic DDOs are there-
fore [cf. Eq. (2.3) and remarks therein]

ρ
(n)
j (t) ≡ ρ

(n)
j1···jn(t) ≡ trB

[(
f̂jn · · · f̂j1

)◦
ρT(t)

]
. (4.36)
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The indexes in ρ
(n)
j are self-explanatory. Note that the

participating number for each fermionic dissipaton f̂j can
only be nj = 0 or 1. The product of dissipaton oper-
ators dissipatons operator product inside (· · ·)◦ is also
ordered. A swap of any two irreducible fermionic dissi-
patons causes a minus sign, such as

(
f̂j f̂j′

)◦ = −(
f̂j′ f̂j

)◦

[cf. Eq. (2.4)].
From Eqs. (4.32) and (4.33), we immediately obtain

[cf. Eq. (3.34)]

i trB

{(
f̂jn · · · f̂j1

)◦[heff
B (t), ρT]

}
= γ

(n)
j (t)ρ(n)

j . (4.37)

Here [noting γj(t) ≡ γσακu(t) = γσακ(t) of Eq. (4.31)],

γ
(n)
j (t) =

n∑

r=1

γjr (t). (4.38)

The effect of HSB on ρ
(n)
j (t) is to be evaluated with

the generalized fermionic Wick’s theorem [cf. the bosonic
counterparts of Eqs. (3.21) and (3.21)]. Apparently, HSB

of Eq. (4.24), now reads (noting âj̄ ≡ âσ̄ακu = âσ̄u)

HSB =
∑

j

âj̄ f̂j . (4.39)

It will give rise to
{
ρ
(n−1)

j−r
≡ ρ

(n−1)
j1···jr−1jr+1···jn

}
and

{
ρ
(n+1)
jj ≡ ρ

(n+1)
j1···jnj

}
. Note also

ρ
(n+1)
jj = (−)nρ(n+1)

jj . (4.40)

It highlights the fact that the product of irreducible
fermionic dissipaton operators inside the (· · ·)◦ in Eq.
(4.36) is ordered.

The generalized Wick’s theorem for fermionic dissipa-
tons results in [cf. Eqs. (3.21) and (3.22)]

trB

[(
f̂jn · · · f̂j1

)◦
f̂jρT(t)

]

=
n∑

r=1

(−)r−1
〈
f̂jr f̂j

〉>

B
ρ
(n−1)

j−r
+ ρ

(n+1)
jj , (4.41)

and

trB

[(
f̂jn · · · f̂j1

)◦
ρT(t)f̂j

]

= (−)ntrB

[
f̂j

(
f̂jn · · · f̂j1

)◦
ρT(t)

]

= (−)n
[ n∑

r=1

(−)n−r
〈
f̂j f̂jr

〉<

B
ρ
(n−1)

j−r
+ ρ

(n+1)
jj

]
. (4.42)

The first identity in Eq. (4.42) highlights the fermionic
cyclic partial-trace relation, as detailed in to the end of
Appendix A of Ref. [21]. Note also

trB

[(
f̂jn · · · f̂j1

)◦
âj̄ f̂jρT(t)

]

= (−)nâj̄trB

[(
f̂jn · · · f̂j1

)◦
f̂jρT(t)

]
. (4.43)

Equations (4.39)–(4.43), together with Eq. (4.34) for
the values of

〈
f̂jr f̂j

〉>

B
and

〈
f̂j f̂jr

〉<

B
, lead readily to [21,

23]

trB

{(
f̂jn · · · f̂j1

)◦[
HSB, ρT

]}

=
n∑

r=1

(−)n−rCjrρ(n−1)

j−r
+

∑

j

Aj̄ρ
(n+1)
jj . (4.44)

Together with Eq. (4.37), we obtain the final DEOM for-
malism, as follows [21, 23].

ρ̇
(n)
j = −[

iL(t) + γ
(n)
j (t)

]
ρ
(n)
j − i

∑

j

Aj̄ρ
(n+1)
jj

−i
n∑

r=1

(−)n−rCjrρ(n−1)

j−r
. (4.45)

Here, Aj̄ ≡ Aσ̄
ακu = Aσ̄

u and Cj ≡ Cσακu are Grassman-
nian superoperators defined via

Aσ
uÔ± ≡ âσuÔ± ± Ô±a

σ
u ≡ [

âσu, Ô±
]
±,

CσακuÔ± ≡
∑

v

(
ησακuv â

σ
v Ô± ∓ ησ̄∗ακuvÔ±â

σ
v

)
. (4.46)

Here, Ô± denotes an arbitrary operator, with even (+)
or odd (−) fermionic parity, such as ρ(2m) or ρ(2m+1) in
Eq. (4.36), respectively.

In Section 5, we present the HEOM formalism that
also assumes the form of Eq. (4.45) but is rooted at the
Feynman–Vernon influential functional path integral for-
mulations. The close comparison between DEOM and
HEOM will be scrutinized in due course.

4.5 Derivative-resum truncation scheme

We address the issue of truncation, in parallel to Sec-
tion 3.5, with respect to the invariance principle of
quantum mechanics prescriptions [32]. Note that vari-
ous commonly used truncation schemes [13–15, 33], in-
cluding the resultant quantum master equations and self-
consistent Born approximations [6, 34, 35], are concerned
only with the practical implementation aspect. The com-
mon feature among these conventional schemes is to set{
ρ
(n>L)
j

}
, all or some, to be zeroes explicitly. It will be

evident in Section 7.4 that all these
{
ρ
(n>L)
j = 0

}
-based

schemes, if transferred to the Heisenberg prescriptions,
require additional approximations, at least formally. The
derivative-resum scheme, similar to Eq. (3.44), which
preserves the invariance of the prescriptions, is to be
adopted as follows.

Let us recast ρ̇(L+1)
jj via Eq. (4.45) as
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ρ̇
(L+1)
jj = −[

iL(t) + γ
(L+1)
jj (t)

]
ρ
(L+1)
jj

−i
∑

j′
Aj̄′ρ

(L+2)
jjj′ − i

L+1∑

r=1

Cjrρ(L)
jr
, (4.47)

where

ρ
(L)
jr

≡ ρ
(L)
j1···jr−1jjr+1···jL . (4.48)

The derivative-resum scheme, the counterpart to the
bosonic Eq. (3.44), now reads

ρ̇
(L+1)
jj ≈ −i

∑

j′
Aj̄′ρ

(L+2)
jjj′ . (4.49)

The other two terms in Eq. (4.47) are then related via

ρ
(L+1)
jj =

−i

iL(t) + γ
(L+1)
jj (t)

L+1∑

r=1

Cjrρ(L)
jr
. (4.50)

It closes the DEOM formalism, Eq. (4.45), with [36]

ρ̇
(L)
j = −

[
iL(t)+

L∑

r=1

γjr (t)
]
ρ
(L)
j −i

L∑

r=1

(−)L−rCjrρ(L−1)

j−r

−
∑

j

Aj̄

1

iL(t)+γ(L+1)
jj (t)

(
L+1∑

r=1

Cjrρ(L)
jr

)

. (4.51)

In the absence of a time-dependent laser field ap-
plied to the local system, L(t) = LS, which is diago-
nal in the HS-representation; see the tetradic bra-ket no-
tation described in Section 2.4. That is (LS)mn,m′n′ =
ωmnδmm′δnn′ , with ωmn = εm − εn being the transi-
tion frequency between two eigenstates of the bare sys-
tem Hamiltonian. The superoperator inversion involved
in the above equations are also diagonal and can be read-
ily evaluated. For the case of the time-dependent L(t), we
may use the Dyson equation to facilitate the evaluation.

Actually, Eq. (4.50) had been proposed before, as an
efficient HEOM truncation method [36]. However, the
previous work addressed only the numerical aspect of
truncation, with setting individual ρ̇(L+1)

jj and ρ(L+2)
jjj′ be

zeroes. Apparently, this double setting is overkilled. The
derivative–resum, Eq. (4.49), with its equivalence Eq.
(4.50), is preferred for the prescription invariance re-
quirement [32]. While it is Eq. (4.50) that is used in
Eq. (4.51), its equivalent Eq. (4.49) is reflected directly
in the Heisenberg prescription of the truncation; cf. Sec-
tion 7.4. The derivative-resum scheme does follow Eq.
(4.49) without setting {ρ(L+2)

jjj′ (t)} to be zero. This ob-
servation implies that Eq. (4.51) would have effectively
taken certain nonzero

{
ρ
(L+2)
jjj′ (t)

}
dynamical influences

into account. Note that for stationary states, Eq. (4.49)
gives

{
ρ
(L+2);st
jjj′ = 0

}
. The numerical performance of the

derivative-resum scheme will be detailed later in Section

6; cf. Table 1.
The fermionic DEOM theory is now complete. It con-

sists of a closed set of equations of motion, Eqs. (4.45),
and (4.51) for ρ(n�L)

j (t), and also Eq. (4.50) for ρ(L+1)
j (t).

The underlying dissipaton algebra, especially the gener-
alized Wick’s theorem, Eqs. (4.41) and (4.42), is also
very important. It enables DEOM to be a theory for
both systems and hybrid bath dynamics; see Section 7
for details.

5 Fermionic HEOM via path integral
influence functionals

The DEOM formalism, either bosonic, Eq. (3.24), or
fermionic, Eq. (4.45), had been constructed before in
the HEOM framework [12–15, 18], where the dynami-
cal variables were mainly just mathematical auxiliaries.
As we will see later in Section 7, the crucially important
ingredients of the DEOM theory include also the expres-
sion of DDOs, Eq. (3.20) or Eq. (4.36), and the gener-
alized Wick’s theorems, Eqs. (3.21) and (3.22) or Eqs.
(4.41) and (4.42). In this section, we revisit the HEOM
construction, from its root at the Feynman-Vernon influ-
ence functional path integral formalism [7, 8], and closely
compare the involved key steps with their DEOM corre-
spondences, if any. It will be evident that, except for
Eq. (3.24) or Eq. (4.45), the aforementioned additional
crucially important ingredients of the DEOM theory are
hardly within the reach of the HEOM framework. With-
out loss of generality, we focus on the fermionic HEOM
formalism.

5.1 Path integral influence functional formalism

Let us start by recasting the total composite Hamilto-
nian in Eq. (4.6) with Eqs. (4.7) and (4.24) in the heff

B (t)-
interaction picture:

H̃T(t) = H(t) +
∑

σαu

âσ̄uF̃
σ
αu(t). (5.1)

Here, F̃ σαu(t) ≡ U †
B(t; t0)F̃ σαuUB(t; t0). It satisfies [cf. Eq.

(4.17)]

∂

∂t
F̃ σαu(t) = −i[F̃ σαu(t), ĥ

eff
B (t)], (5.2)

with ĥeff
B (t) specified in Section 4.1.1 as

ĥeff
B (t) ≡

∑

α

{
ĥα + [μα + Δα(t)]N̂α

}
. (5.3)

The initial t0 in Eq. (5.2), and also hereafter, can be
at any time prior to the time-dependent Δα(t). In the
ĥeff

B (t)-interaction picture, the total composite density
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operator, ρ̃T(t) = U †
B(t; t0)ρT(t)UB(t; t0), reads

ρ̃T(t) = ŨT(t, t0; {F̃ σαu(t)})ρT(t0)Ũ †
T(t, t0; {F̃ σαu(t)}),

(5.4)

where [cf. Eq. (5.1)]

ŨT(t, t0; {F̃ σαu(t)}) = exp+

[
− i

∫ t

t0

dτH̃T(τ)
]
, (5.5)

with H̃T(τ) of Eq. (5.1).
The influence functional path integral theory targets

at the reduced system density operator, which reads now
as ρS(t) = trB[ρ̃T(t)]. For its formal evaluation, the ini-
tial value in Eq. (5.4) has to be of either the steady-state
total composite density operator [39], or the following
factorization form [18],

ρT(t0) = ρS(t0)ρst
B , (5.6)

with

ρst
B =

∏

α

e−βα(ĥα+μαN̂α)

Zα(βα, μα)
. (5.7)

Here, Zα(βα, μα) denotes the grand canonical partition
function of electrons in the α-reservoir under the time-
independent nonequilibrium potential μα. Under the
homogeneous-conduction-band-shift ansatz, as described
above Eq. (4.4), an additional time-dependent potential
Δα(t) will not change the distribution of electrons in the
conduction bands of the α-electrode. Together with Eq.
(5.4), we have [18]

ρS(t) =
〈
ŨT(t, t0; {F̃ σαu(t− iβ)})ρS(t0)

×Ũ †
T(t, t0; {F̃ σαu(t)})

〉nst

B

≡ U(t, t0)ρS(t0), (5.8)

with 〈· · ·〉nst
B , the nonstationary-state reservoirs bath av-

erage, defined in Eq. (4.16).
In Eq. (5.8), U(t, t0) is symbolically introduced as the

reduced Liouville-space propagator. It only has a con-
crete expression in the path integral “space-time” rep-
resentation [8, 40]. Let {|ψ〉} be a generic basis set in
the system subspace such that ρS(ψ, t) ≡ ρS(ψ, ψ′, t) ≡
〈ψ|ρS(t)|ψ′〉. The reduced Liouville-space propagator in
the path integral representation reads [7, 8]

U(ψ, t;ψ0, t0) =
∫ ψ[t]

ψ0[t0]

DψeiS[ψ]F [ψ]e−iS[ψ′]. (5.9)

Here, S[ψ] is the classical action functional of the re-
duced system, evaluated along a path ψ(τ), subject to
the constraint that the two ending points ψ(t0) = ψ0

and ψ(t) = ψ are fixed. The influence functional F [ψ]
in Eq. (5.9) can be evaluated using Eq. (5.8), together

with the Gaussian statistics for the stochastic linear bath
operators {F̃ σαu(t)}. The final result reads [18]

F [ψ] = exp
{
−

∫ t

t0

dτR[
τ ; {ψ}]

}
, (5.10)

with the dissipation functional of

R[
t; {ψ}] = i

∑

σαu

Aσ̄
u[ψ(t)]B̃σαu

[
t; {ψ}]. (5.11)

Here,

Aσ
u[ψ(t)] = aσu[ψ(t)] + aσu[ψ

′(t)], (5.12)

and

B̃σαu[t; {ψ}] = −i
{
B̃σ;>
αu [t; {ψ}] − B̃σ;<

αu [t; {ψ′}]}, (5.13)

with

B̃σ;>
αu [t; {ψ}] ≡

∑

v

∫ t

t0

dτCσαuv(t, τ)a
σ
v [ψ(τ)],

B̃σ;<
αu [t; {ψ′}]≡

∑

v

∫ t

t0

dτ
[
Cσ̄αuv(t, τ)

]∗
aσv [ψ

′(τ)]. (5.14)

The above two expressions are specified with the “for-
ward” (>) and “backward” (<) notations that are used
throughout this paper. They involve the nonstationary
bath correlation functions [cf. Eq. (4.16)], along the for-
ward and backward paths, respectively; i.e.,

Cσαuv(t, τ) =
〈
F̂ σαu(t)F̂

σ̄
αv(τ)

〉nst

B
,

[
Cσ̄αuv(t, τ)

]∗ =
〈
F̂ σ̄αv(τ)F̂

σ
αu(t)

〉nst

B
. (5.15)

While the A-functionals in Eq. (5.12) depend on{
aσu[ψ(t)]

}
at a fixed local terminal time t, the B̃-

functionals in Eq. (5.13) are of time nonlocal memory.
The involved

{
aσu[·]

}
, the path-integral representations

of the fermionic {âσu} operators, are not c-numbers, but
rather Grassmann variables [8, 40]. Consequently, the
quantities defined in Eqs. (5.12)–(5.13) are all Grass-
mann variables, satisfying the algebraic rule of xy =
−yx.

5.2 Fermionic HEOM formalism

From Eqs. (5.10) and (5.11), we have

∂

∂t
F = −i

( ∑

σαu

Aσ̄
u[ψ(t)]B̃σαu[t; {ψ}]

)
F . (5.16)

This equation is not closed, because of the time-nonlocal
nature of the B̃-functionals.

The HEOM construction is to resolve the memory con-
tents in the B̃-functionals of Eq. (5.13) with Eq. (5.14).
It follows the same exponential series expansion as in
Section 4.3 for the involved correlation functions of reser-
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voirs. By combining Eqs. (4.18) and (4.23), we have Eq.
(5.15) the expressions [cf. Eq. (4.30)]

Cσαuv(t, τ) =
K∑

κ=1

ησακuv exp
[
−

∫ t

τ

dt′γσακ(t
′)

]
,

[
Cσ̄αuv(t, τ)

]∗=
K∑

κ=1

ησ̄∗ακuv exp
[
−

∫ t

τ

dt′γσακ(t
′)

]
. (5.17)

We can then recast Eq. (5.13) with Eq. (5.14) as

B̃σαu[t; {ψ}] ≡
K∑

κ=1

Bσακu[t; {ψ}], (5.18)

where

Bσακu[t; {ψ}] = −i
∑

v

{
ησακuvB

σ;>
ακu[t; {ψ}]

−ησ̄∗ακuvBσ;<
ακu[t; {ψ′}]

}
, (5.19)

with

Bσ;>
ακu[t; {ψ}] =

∫ t

t0

dτ
{
aσv [ψ(τ)]e−

R
t
τ

dt′γσ
ακ(t′)

}
,

Bσ;<
ακu[t; {ψ′}]=

∫ t

t0

dτ
{
aσv [ψ

′(τ)]e−
R

t
τ

dt′γσ
ακ(t′)

}
. (5.20)

The above B-functionals satisfy the memory-resolved,
time-local equation of motion,

∂

∂t
Bσακu[t; {ψ}] = −i

∑

v

{
ησακuva

σ
v [ψ(t)]

−ησ̄∗ακuvaσv [ψ′(t)]
} − γσακ(t)Bσακu[t; {ψ}]. (5.21)

Substituting Eq. (5.18) in Eq. (5.16) leads to

∂

∂t
F = −i

(∑

j

Aj̄ [ψ(t)]Bj [t; {ψ}]
)
F . (5.22)

Note that j ≡ (σακu) and j̄ ≡ (σ̄ακu), were defined in
Eq. (4.35). Introduce a set of auxiliary influence func-
tionals,

F (n)
j = F (n)

j1j2···jn = Bjn · · · Bj2Bj1F . (5.23)

Their equations of motion are all time-local, but hierar-
chically coupled. In parallel to Eq. (5.9), we introduce

U (n)
j (ψ, t;ψ0, t0) =

∫ ψ[t]

ψ0[t0]

DψeiS[ψ]F (n)
j [ψ]e−iS[ψ′],

(5.24)

to define the auxiliary density operators (ADOs),

ρ
(n)
j (t) ≡ U (n)

j (t, t0)ρS(t0). (5.25)

The above equations, (5.21)–(5.25), readily lead to [18]

ρ̇
(n)
j = −[

iL(t) +
n∑

r=1

γjr (t)
]
ρ
(n)
j − i

∑

j

Aj̄ρ
(n+1)
jj

−i
n∑

r=1

(−)n−rCjrρ(n−1)
jr

. (5.26)

This is the fermionic HEOM formalism, which identical
to the fermionic DEOM (4.45). It de facto verifies the
important dissipaton algebra presented in Section 3 and
Section 4. However, these two approaches are of some
fundamental differences, as elaborated below.

5.3 Comments on HEOM versus DEOM

The main drawback of the HEOM formalism is the lack
of physical meanings of all its dynamical variables, ex-
cept for ρ(0)(t) = ρS(t). Those

{
ρ
(n>0)
j (t)

}
are simply

mathematical auxiliaries, referred to as the ADOs in the
HEOM literature. They were introduced as intermedi-
ate quantities, with the definition being given in Eqs.
(5.23)–(5.25), together with Eqs. (5.19) and (5.20). This
definition works only for the purpose of obtaining Eq.
(5.26), and it has hardly any relation to various HEOM
applications. Strictly speaking, it is more harmful than
useful, as it may limit the use of HEOM (5.26), with the
initial conditions of

{
ρ
(n>0)
j (t0) = 0

}
, the manifestations

of ADOs of the initial factorization of Eq. (5.6).
Nevertheless, the HEOM construction is exact, and

the resulting formalism, Eq. (5.26), should be applica-
ble to a broad range of initial values of

{
ρ
(n)
j (t = 0)

}

that are dynamically accessible from those uncorrelated
ADOs in the past, say t0 → −∞. Therefore, the HEOM
formalism has been widely used in characterizing the
properties of reduced systems, both static structures and
dynamical behaviors, in the presence of couplings of a
non-Markovian and nonpertubative environment. There
had also been some efforts toward identifying the physi-
cal meanings of ADOs, with clear indications that they
are related to correlated system-and-bath interferences
[19, 20, 41]. The most important identification may be
the relation of the first-tier ADOs,

{
ρ
(1)
j (t)

}
, with the

transient transport current [18, 36, 42–48]. However, the
transport current fluctuations, such as current correla-
tion functions and noise spectra, are beyond reach. The
main drawback remains. Because the HEOM framework
is rooted at the influence functional path integral formal-
ism, it is concerned mainly with reduced systems [49, 50].

The DEOM theory is different. All
{
ρ
(n)
j

}
are now the

physically well defined DDOs, with Eq. (4.36) that is free
of the puzzle of initial values. The underlying dissipa-
ton algebra, especially the generalized Wick’s theorem,
renders the DEOM a unique theory for not only sys-
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tems but also hybrid bath dynamics. The DEOM-based
evaluations of nonlinear Fano interferences and trans-
port current noise spectra have been reported recently
[22, 23]. Neither the expressions of DDOs, Eq. (4.36),
nor the dissipaton algebra are within the reach of the
HEOM framework.

Nevertheless, the dynamical generators of two ap-
proaches, i.e., Eq. (4.45) and Eq. (5.26), are identical.
All artilleries developed before for HEOM can be used
directly in the present DEOM approach. For our previ-
ous reviews on this aspect, see for example, Ref. [36] and
Ref. [33]. As far the numerical implementations are con-
cerned, “DEOM” and “DDO” used in the next section,
are completely exchangeable with “HEOM” and “ADO”,
respectively.

6 Onsets of efficient DEOM methods

6.1 General remarks

Let us start with the indexing algorithm for DDOs. For
fermionic dissipatons, {f̂σακu}, the total number of DDOs
participating in the DEOM formalism, truncated at the
L-body level, is [cf. Eq. (3.41)]

N (L, K̃) =
L∑

n=0

K̃!
n!(K̃ − n)!

; K̃ ≡ 2NαNuK. (6.1)

Here, Nα and Nu are the numbers of bath reservoirs and
system orbitals, respectively, and the factor of 2 accounts
for the two signs of σ = +,−. Thus, K̃ defined above is
the number of the distinct fermionic dissipatons, {f̂σακu}.

To locate individual DDOs in a numerical DEOM
code, we map the multiple indices in ρ

(n)
j to an inte-

ger j(n, j) ∈ [0,N ], i.e., ρ(n)
j = ρj(n,j). To proceed, let

ρ
(n)
j ≡ ρ

(n)
j1···jn ≡ ρ

(n)
n1···nK̃

, with nk = δkjrk. The or-
dered set j = j1 · · · jn follows the same order as in
n = (n1 · · ·nK̃). The indexing algorithm for DDOs, for
j(n) ≡ j(n, j), can be chosen as [33]

j(n) = N (n− 1, K̃) +
K̃∑

k=1

(1 − nk)N (Nk − 1, K̃ − k).

Here, Nk = nk+1 + · · ·+nK̃ and N (m < 0,M) = 0. This
algorithm sorts DDOs into n-based blocks, followed by
the sub-indices n = (n1 · · ·nK̃) of a same n-dissipaton
level. For example, j(0 · · · 0) = 0; j(10 · · · 0) = 1, · · ·,
j(0 · · · 01) = K̃; and j(110 · · ·0) = K̃ + 1.

Currently, the major challenge of the DEOM approach
is the rapidly increasing memory space for storing and
computing these DDOs. Reducing such memory cost will
dramatically enhance the efficiency of this approach. We

tackle this problem from both the optimal DEOM for-
malism and efficient numerical implementation aspects,
as presented in the two subsequent subsections, respec-
tively.

6.2 Minimum basis-set dissipatons

The optimal DEOM formalism deals with the so-called
K-space and L-space issues. The latter is concerned
with efficient L-body dissipaton-level truncations. The
derivative-resum scheme, presented in Section 3.5 and
Section 4.5 is by far the best; see Section 6.4 for numer-
ical verifications.

The K-space issue is to minimize the number of dis-
tinct dissipatons, exemplified with the fermionic {f̂σακu},
cf. Section 4.4, where κmax = K = NJ +NFermi. For the
given problems under study, the number NJ of the poles
from the bath hybridization function is fixed. Thus, the
basis-set issue may simply refer to the minimal NFermi, as
required from the Fermi function. Apparently, every one-
increment of NFermi results in the increase of the size of
basis-set dissipatons by 2NαNu; see Eq. (6.1). The curse
of the dimensionality problem would quickly appear. The
very best minimal NFermi is in demand.

In the following, we denote the “best” Nmin
Fermi ≡ P , as it

follows the Padé spectral decomposition [28, 29, 51]. This
scheme is not only the [P−1/P ] Padé approximant of the
Fermi function, but also the fact that all involving pa-
rameters in the sum-over-poles decomposition form are
determined at machine precision via simple algorithms
[28, 29, 51].

The number P of Padé terms determines the accuracy
of the correlation functions of the bath reservoirs in expo-
nential expansion, Eq. (4.23), that leads to the basis-set
dissipatons for the DEOM construction. Note that the
discrepancy of Δf [P − 1/P ]

Fermi (ω) ≡ ∣
∣fFermi(ω)− f [P − 1/P ]

Fermi (ω)
∣
∣

is on the order of (βω)4P+1. However, the challenge oc-
curs at a lower temperature, especially in the Kondo
regime, where the optimal number of Padé terms, P , sen-
sitively varies with temperature T . For a convenient im-
plementation of the DEOM approach, it would be help-
ful to have an a priori estimate of the required P value.
To this end, we define the relative error of dissipaton-
decomposition as follows:

Ec =
∫

dωΔf [P − 1/P ]
Fermi (ω)J(ω)

/ ∫
dωfFermi(ω)J(ω).

Here, J(ω) denotes the function form of Jαuv(ω). We
adopt J(ω) = 1/(ω2 +W 2) for the illustrations below.

Figure 3 plots the minimal P that gives an error less
than the preset Ec for different temperatures, aiming
at the DEOM evaluations in the Kondo regime. Appar-
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Fig. 3 The scattered data are the minimal number of Padé terms
P versus the temperature T corresponding to different preset er-
rors Ec. The scatters are determined using the [P − 1/P ] Padé
spectral decomposition of the Fermi function, and the lines are the
least squared fits to the relation lnP = a + bln(T/W ). The values
of fitting parameters a and b for each line are listed in the figure.
Reproduced with permission from Ref. [36], Copyright c© 2015 AIP
Publishing LLC.

ently, a larger P is required for a lower T or to reach a
smaller error Ec. It is found that the data fit remark-
ably well to a linear relation lnP = a+ b ln(T/W ). Here,
the reservoir band width W is taken as a reference en-
ergy scale. The parameter a depends on the preset Ec

via a = 1.10 ln(−0.28 lnEc), while b is nearly constant
in all cases; see Fig. 3. This leads to [36]

lnP = 1.10 ln(−0.28 lnEc) − 0.50 ln(T/W ). (6.2)

This quantitative relation, reliable at T/W < 0.004, pro-
vides an a priori estimate of P such that the somewhat
tedious trial-and-error search process can be avoided.
Such a quantitative relation helps to reach an optimal
balance between the accuracy and efficiency of DEOM.

6.3 Utilizing the sparsity feature

In the previous implementation of DEOM, all matrix el-
ements of all the DDOs were stored in physical memory.
Consequently, the memory cost rapidly increases with
the number of system spin-orbitals Nu or as the temper-
ature decreases. It is important to note that DDOs are
often sparse matrixes; a large percentage of the elements
are exactly zero owing to physical constraints. The spar-
sity feature is completely determined by the interactions
among electrons on different dot orbitals. In the DEOM
approach, this involves the system Hamiltonian HS and
the reservoir spectral functions Jαuv(ω).

Take a quantum dot (QD) system consisting of only
one orbital as an example. Such a system is often de-
scribed by the single-impurity Anderson model (SIAM)
[52, 53]. The dot Hamiltonian isHS = ε(n̂↑+n̂↓)+Un̂↑n̂↓.
Here, n̂s = â†sâs and U is the on-dot electron-electron

Coulomb repulsion energy. The physical space of the QD
is spanned by four Fock states, |0〉, | ↑〉, | ↓〉, and | ↑↓〉.
Usually, the direct spin-flip term â†↑â↓ and its Hermitian
conjugate are absent from HS. Consequently, there is no
coherence between the two states | ↑〉 and | ↓〉. Therefore,
the reduced density matrix element 〈↑ |ρ| ↓〉 is exactly
zero, and its contribution to all the associated first-tier
DDOs is also zero.

In many cases, up to 90% or even more DDO-matrix
elements are zero, owing to the intrinsic system config-
uration. Therefore, utilizing the sparsity of the DDOs
will lead to a substantial reduction in the memory cost
of DEOM. The challenge is that the zero elements are
located at different positions of different DDOs. An ef-
ficient algorithm is needed to identify and screen these
zero elements quickly. Such an algorithm has been pro-
posed in Ref. [36], which consists of the following two
ansatzs:

(i) The sparsity of the reduced density matrix ρS = ρ(0)

of the system is determined by an effective Hamiltonian
as ρ(0) ∼ e−βHeff , with Heff = HS +HΣ. Here, HΣ origi-
nates from the reservoir spectral functions, since an off-
diagonal Jαuv(ω) may introduce a nonzero coupling be-
tween dot orbitals |u〉 and |v〉 mediated by α-reservoir.
Note that the reservoir correlation functions are equiv-
alent to the “embedding” self-energies in the nonequi-
librium Green’s function theory:

〈
F̂−
αu(t)F̂+

αv(0)
〉

B
=

iΣ>αuv(t) and
〈
F̂+
αv(0)F̂−

αu(t)
〉

B
= −iΣ<αuv(t). As inferred

from Eqs. (4.9) and (4.13), Jαuv(ω − μα) is simply the
spectrum of i[Σ>αuv(t) − Σ<αuv(t)]. For any pair of u

and v that gives Jαuv(ω) �= 0, we add a nonzero term
(tuv â†uâv+H.c.) to HΣ. In this manner, the reservoir me-
diated couplings among different dot orbitals are prop-
erly accounted for.

(ii) The sparsity of any n-body DDO ρ
(n)
j is completely

determined by Heff and all its associated (n − 1)-body
DDOs via [Heff , ρ

(n)
j ] +

∑n
r=1 Cjrρ(n−1)

j−r
. Therefore, by

scanning through all {ρ(n)
j ;n = 0, · · · , L}, the sparsity of

all the DDOs can be deduced.
Although not rigorously proved, the above two ansatzs

have been validated by our extensive numerical tests on
a variety of systems with diversified HS and Jαuv(ω). In
our present implementation of fermionic DEOM, both
the above sparse mode and the derivative-resum trunca-
tion (cf. Section 4.5) are included, leading to significant
enhancement in numerical efficiency, while maintaining
accuracy.

6.4 Numerical verifications

In the following, we denote the original implementation
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of DEOM as the “standard mode” which exploits neither
the sparsity feature nor the derivative-resum scheme. It
stores and computes all DDOs appearing in the DEOM
formalism of Eq. (4.45), with n = 0, · · · , L, and set-
ting all

{
ρ
(n>L)
j

}
= 0. The “sparse mode” exploits the

sparsity pre-screening algorithm, as described above, to
store and compute only those surviving nonzero ele-
ments of DDOs. Usually, the memory space required
by the “sparse mode” is only 5%–10% of that needed
in the “standard mode”, while the numerical outcomes
are exactly the same. Therefore, the use of the “sparse
mode” dramatically reduces the memory cost, and hence
substantially enhances the efficiency of the DEOM ap-
proach. The “derivative mode” itself refers to the use of
the derivative-resum truncation scheme in Section 4.5,
whereas the “derivative+sparse mode” combines those
two advanced techniques. It should be emphasized that
all these four modes yield exactly the same numerical
results, if all converge.

The benchmark is performed on a SIAM system, HS =
ε(n̂↑ + n̂↓) + Un̂↑n̂↓, where n̂u = â†uâu, in the quantum
transport setup (cf. Fig. 2), with μL = μeq

L + V/2 and
μR = μeq

R −V/2, under the bias potential. Set μeq
α = 0 as

energy zero. The equilibrium reservoir spectral function
assumes the form of Jα(ω) = Δ

2
W 2

ω2+W 2 . The hybridiza-
tion strength Δ is taken as an energy unit below. The
parameters ε = −U/2 = −6Δ are adopted, such that the
dot is exactly half-filling, and the reservoir band width
is W = 20Δ. The system is in a nonequilibrium steady
state under a bias voltage V = 2Δ, and the tempera-
ture is T = 0.1Δ. To reach a high truncation tier, we
adopt a slightly larger error tolerance for the reservoir
memory decomposition: Ec = 7.5%. From Eq. (6.2), we
immediately have P = 10.

Table 1 compares the CPU time, physical memory,
and indexing memory consumed by DEOM calculations
carried out in the four different aforementioned modes.
Also listed are the steady-state current, I, and the di-
agonal elements of the reduced system density matrix,
ρS, obtained at different truncation tiers. The results are
related to the steady-state solutions to the DEOM for-
malism; see Section 7.1 for details.

In terms of efficiency, the “sparse mode” indeed re-
duces the physical memory by more than one order of
magnitude. The CPU time is also greatly shortened, with
the zero elements of DDOs screened out of the hierar-
chy. As indicated by the calculated current I and ρS,
the truncation of L-body dissipatons in the “derivative
mode” amounts to the (L + 1)-body truncation in the
“standard mode”. In other words, the “derivative mode”
allows for accessing many-dissipatons dynamics that is
one level higher, without increasing the cost of physi-
cal memory. This is because the (L+ 1)-body DDOs are
treated on-the-fly by Eq. (4.50). The price to pay is the
somewhat increased indexing memory. Nevertheless, the
“derivative mode” proves to be very useful, since the
saving of physical memory often exceeds the increase in
indexing memory.

We proceed to examine how the four modes work
for the time evolution of the same system of Table 1,
but with the bias voltage being switched off at t = 0.
The subsequent relaxation dynamics is governed by the
DEOM (4.45) in the absence of bias. Figure 4 depicts
the resulting time-dependent current through the right
lead, IR(t), calculated with the “sparse” and “deriva-
tive+sparse” modes of DEOM truncated at different L-
body levels. Apparently, the computed data converge
quickly to the same exact curve as L increases, and the

Table 1 The upper table lists the CPU time (in seconds), physical memory, and indexing memory (in bytes) consumed by DEOM
calculations in four different modes, and L = 2, 3, 4, 5 for the standard and sparse modes, whereas L = 1, 2, 3, 4 for the derivative-resum
and derivative+sparse modes, respectively. “N/A” indicates that the results are unavailable because the computational cost exceeds
the resources at our disposal. The lower table shows the calculated steady-state current I, and the diagonal elements of ρst

s ≡ ρ(0);st.
The system is a symmetric SIAM; see text for parameters. The particle-hole symmetry implies that 〈↑↓ |ρst

s | ↑↓〉 = 〈0|ρst
s |0〉, and the

spin-degeneracy suggests that 〈↑ |ρst
s | ↑〉 = 〈↓ |ρst

s | ↓〉. Both relations are clearly satisfied by the calculated results. It can be easily verified
that the diagonal elements of ρst

s always correctly normalize to unity, i.e., trsρs = 1. All data results are from Ref. [36] with permission,
Copyright c© 2015 AIP Publishing LLC.

Mode CPU time (s) Physical memory (byte) Indexing memory (byte)

Standard 1.6 38 0.9 k N/A 5.0 M 0.2 G 3.2 G 70 G 0.8 M 24 M 0.6 G 6.4 G

Sparse 1.2 13 0.3 k 7.7 k 0.6 M 9.5 M 0.2 G 2.8 G 0.4 M 11 M 0.3 G 7.1 G

Derivative-resum 1.4 47 2.0 k 83 k 0.1 M 5.0 M 0.2 G 3.2 G 0.3 M 16 M 0.5 G 15 G

Derivative+sparse 1.4 33 1.1 k 42 k 0.1 M 0.6 M 9.5 M 0.2 G 0.3 M 15 M 0.5 G 14 G

Mode Current I (eΔ/h × 104) 〈↑↓ |ρst
s | ↑↓〉 or 〈0|ρst

s |0〉 〈u|ρst
s |u〉; u =↑ or ↓

Standard 4.956 8.980 7.725 N/A 0.040 0.050 0.047 N/A 0.460 0.450 0.453 N/A

Sparse 4.956 8.980 7.725 7.765 0.040 0.050 0.047 0.047 0.460 0.450 0.453 0.453

Derivative-resum 4.956 8.980 7.725 7.765 0.040 0.050 0.047 0.047 0.460 0.450 0.453 0.453

Derivative+sparse 4.956 8.980 7.725 7.765 0.040 0.050 0.047 0.047 0.460 0.450 0.453 0.453
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Fig. 4 Time-dependent current through the right lead, IR(t), for
the SIAM studied in Table 1. The results of “sparse” and “deriva-
tive+sparse” modes are displayed. See the text for more details.
Reprinted with permission from Ref. [36], Copyright 2015 AIP
Publishing LLC.

L-body result of the “derivative+sparse mode” is close
(but not exactly identical) to the (L + 1)-body “sparse
mode” counterpart. For clarity, the results of “standard”
and “derivative” modes are not presented. They are ex-
actly the same as those of the corresponding sparse
modes. Again, making use of the sparsity feature of
DDOs leads to a saving of more than 95% of physical
memory for the above time evolution calculations.

It is concluded from the above examples, as well as
our extensive numerical tests, that among all the four
modes the “sparse mode” has the best overall balance
between efficiency and accuracy. If an on-the-fly index-
ing algorithm could be developed for fermionic systems,
the cost of indexing memory would become trivial, and
the “derivative+sparse mode” would be even more ap-
pealing. In terms of accuracy, all the four modes con-
verge to the same results as L increases. This highlights
the important fact that, while significantly enhancing the
numerical efficiency, the newly developed techniques pre-
serve the accuracy of the DEOM approach.

Note that the sparse-matrix feature also occurs in
many optical spectroscopic problems, where individual
DDOs are of the block matrix form [54, 55]. Differ-
ence blocks present distinct excitation manifolds that
are coupled via external electromagnetic fields. Our
bosonic DEOM platform for coherent two-dimensional
spectroscopy also utilizes the sparsity feature [54, 55].

7 DEOM-space quantum mechanics

7.1 General remarks and stationary-state solutions

We would like to reemphasize that DEOM is a novel type
of reduced dynamics theory. It projects the total system-

and-bath composite ρT to a set of physically well-defined
DDOs of Eqs. (3.20) or (4.36). Physically, the DEOM
space describes both the system and the hybrid bath
dynamics. Mathematically, it constitutes a linear space,
giving rise to all standard quantum mechanics prescrip-
tions, i.e., the Schrödinger, Heisenberg, and interaction
pictures. Consequently, the DEOM-based evaluations
cover not only the expectation values, but also various
linear and nonlinear responses. These experimental mea-
surables should be invariant in different DEOM prescrip-
tions. This basic physical requirement will be exploited
to scrutinize the “standard” and the novel derivative-
resum truncation schemes. Only the latter preserves the
invariance of the prescription; see the remarks towards
the end of Section 7.4. Thus, we refer to the DEOM for-
malism in the Schrödinger prescription, with fermionic
notations unless specified otherwise, for the EOMs (4.45)
and (4.51) for n < L and n = L, respectively, as well as
the expression (4.50) for n = L+ 1. The above concepts
and pictures would be implied hereafter, unless specified
otherwise.

The stationary solution of DEOM is of particular sig-
nificance. In the absence of external fields, the station-
ary solution characterizes the thermodynamic equilib-
rium state of the local system in contact with a reservoir
or bath environment; while under applied fields, it de-
scribes nonequilibrium steady states, in which the local
system exchanges energy or particles with the environ-
ment at a constant rate. The collection of steady-states{
ρ
(n);st
j

}
is the DEOM-space projection of ρst

T . They are
related to the initial DDOs for the DEOM evaluation of
a variety of linear and nonlinear correlation functions, as
to be elaborated later in the following two subsections.

In the framework of DEOM, there are two schemes
to achieve stationary states: (i) start with an initial
state close to the target stationary state in the physi-
cal phase space, and propagate the DEOM to t → ∞;
(ii) use the stationary condition ρ̇(n)

j = 0 explicitly, caus-
ing the DEOM to reduce to coupled linear equations for
{ρ(n);st
j }. To avoid the trivial zero solution, the normal-

ization constraint trSρ
(0) = 1 is included in the coupled

equations. In practical calculations, an iterative quasi-
minimal residual algorithm is employed for solving the
large-sized coupled linear equations [56, 57]. In many
cases, the above two schemes give the same stationary so-
lution. However, for some systems, particularly those in-
volved bound states (local system states that are uncou-
pled with the environment) [58], multiple steady states
may exist. In such cases, the finally reached stationary
state depends on the choice of initial state as well as the
time-dependence of external fields.
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7.2 Onsets of DEOM-based dynamical evaluations

The application aspects of DEOM will be illustrated with
electronic systems in the quantum transport setup de-
scribed in Section 4. For clarity of presentation, we re-
peat Eq. (4.36) below:

ρ
(n)
j (t) ≡ trB

[(
f̂jn · · · f̂j1

)◦
ρT(t)

]
. (7.1)

The steady-state solutions, {ρ(n);st
j }, either equilibrium

or nonequilibrium, were just described.
Time evolution occurs in the presence of time-

dependent fields or when the initial DDOs are not at
steady states. The expectation values of arbitrary dy-
namical variables are (Tr ≡ trStrB)

〈Â(t)〉 ≡ Tr[ÂρT(t)]. (7.2)

Universal characterizations also involve, in general, vari-
ous spectra that are related to correlation functions, such
as

〈
Â(t)B̂(0)

〉
= Tr

{
Â[e−iLTt(B̂ρst

T )]
}
.

It can be recast in the expectation value form as
〈
Â(t)B̂(0)

〉
= Tr

[
ÂρT(t; B̂)

]
, (7.3)

where ρT(t; B̂) ≡ e−iLTt(B̂ρst
T ), with the initial value of

ρT(t = 0; B̂) = B̂ρst
T .

The universal DEOM evaluation is to construct the
following relation:

Tr
[
ÂρT(t)

]
=

∑

n;j

trS

[
Â

(n)
j ρ

(n)
j (t)

]
. (7.4)

There are two issues on the above DEOM evaluation.
One is related to the DEOM-space {Â(n)

j } that corre-
sponds to a given Â. The former, by definition, are exclu-
sively the system-subspace operators, whereas the latter
may involve the composite system-and-bath space.

Another issue is concerned with the initial DDOs. For
the correlation function of Eq. (7.3), where ρT(0; B̂) =
B̂ρst

T , the required initial DDOs, defined via Eq. (7.1),
are

ρ
(n)
j (t = 0; B̂) ≡ trB

[(
f̂jn · · · f̂j1

)◦(B̂ρst
T )

]
. (7.5)

It should be expressed, within the DEOM framework,
in terms of steady-state DDOs, in order to initiate the
DEOM propagations of ρ(n)

j (t) in Eq. (7.4). This issue
could be nontrivial; see details in Section 7.3.

For purely local system operators, ÂS and B̂S, the
above two issues are trivial. Actually, the first issue
of {Â(n)

j } is simply to validate Eq. (7.4). The identity,
Tr

[
ÂSρT(t)

]
= trS

[
ÂSρS(t)], leads to

ÂS =⇒ {
Â(0) = ÂS; else Â(n)

j = 0
}
. (7.6)

Moreover, Eq. (7.5) immediately gives rise to

ρT(0; B̂S) = B̂Sρ
st
T =⇒ {

ρ
(n)
j (0; B̂S) = B̂Sρ

(n);st
j

}
. (7.7)

The DEOM approach to
〈
ÂS(t)B̂S(0)

〉
, Eqs. (7.3)

via (7.4), is now evident: (i) Evaluate
{
ρ
(n);st
j

}
via

the steady-state solutions to the fermionic DEOM;
(ii) Determine the initial DDOs,

{
ρ
(n)
j (0; B̂S)

}
, accord-

ing to Eqs. (7.7); (iii) Perform the DEOM propa-
gation to obtain

{
ρ
(n)
j (t; B̂S)

}
, and

〈
ÂS(t)B̂S(0)

〉
=

trS[ÂSρ
(0)(t; B̂S)], along the propagation.

We may refer to the above local protocol, because it
involves only local system operators [49, 54, 55, 59]. The
evaluation of

〈
[ÂS(t), B̂S(0)]±

〉
goes along with the initial

ρ
(n)
j (0; B̂S) = [B̂S, ρ

(n);st
j ]±. The nonlinear correlation

functions of local system operators are the same [54, 55].
The identification of Eq. (7.6) is mainly for the purpose of
an efficient evaluation of nonlinear correlation functions
based on the mixed Schrödinger-Heisenberg prescription
[54, 55]; see Section 7.4.

In fact, the local protocol had been extensively utilized
within the HEOM framework [49, 54, 55]. It arises from
the response theory, as if the system Liouvillian would
behave like LS + B̂Sε(t) [59]. Moreover, in the original
fermionic HEOM paper [18], we had related the first-
tier quantities, i.e., the one-body DDOs {ρ(1)

j }, to trans-

port current. Higher-order {ρ(n>1)
j } were simply auxil-

iary quantities within the HEOM construction (cf. Sec-
tion 5), but also irrelevant to the local protocol. HEOM-
based benchmark results for Anderson impurity models
showing significant Kondo resonance features had been
extensively reported. The calculated properties include
the Kondo hysteretic feature [47], thermopower with
Kondo correlations [48], Aharonov–Bohm interferometer
dynamics [36], and impurity spectral density [46, 49, 60].

7.3 Quantum transport current fluctuations

The transport current operator, Îα of Eq. (4.5), is non-
local, involved both local system {âσu} and hybridizing
bath reservoir operators {F̂ σαu} of itinerary electrons. Fol-
lowing the decomposition of dissipatons, Eq. (4.26), it
reads

Îα = i
∑

σκu

(σâσ̄u)f̂
σ
ακu ≡ i

∑

jα∈j
ãj̄ f̂j . (7.8)

Here, jα ≡ {σκu} ∈ j ≡ {σακu} [cf. Eq. (4.35)]. Note
that the above ãj̄ = ãσ̄u ≡ σâσ̄u, is defined in parallel with
Eq. (4.25), but it differs from that in Ref. [23] [Eq. (23)
therein] by a sign. The mean current expression, in terms
of DDOs, is then
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Iα(t) = Tr
[
ÎαρT(t)

]
= i

∑

jα∈j
trS

[
ãj̄ρ

(1)
j (t)

]
. (7.9)

This expression addresses the first issue underlying Eq.
(7.4), with the following correspondence,

Îα =⇒ {
Â

(1)
αjα

= iãσ̄u; else Â(n)
j = 0

}
. (7.10)

Among all {Â(n)
j }, only those Â

(1)
j of specified α are

nonzero.
Actually, Eq. (7.9) is sufficient to pin down the proto-

col of the DEOM approach to current-current correlation
function [23]. In this sense, the identification Eq. (7.10)
seems somewhat redundant. However, as we mentioned
earlier, it will be essential for the mixed Schrödinger-
Heisenberg prescription, which facilitates the evaluations
of the nonlinear response functions; see Section 7.5.

Consider the lead-specific current-current correlation
function [cf. Eqs. (7.3) and (7.9)]:

〈
Îα(t)Îα′ (0)

〉
= i

∑

jα∈j
trS

[
ãj̄ρ

(1)
j (t; Îα′)

]
. (7.11)

The required initial DDOs are [cf. Eqs. (7.5) and (7.8)]

ρ
(n)
j (0; Îα′) = i

∑

j′
α′∈j′

trB

[(
f̂jn · · · f̂j1

)◦(
ãj̄′ f̂j′ρ

st
T

)]
.

(7.12)

Its evaluation involves the generalized Wick’s theorem,
Eq. (4.41) and Eq. (4.43), followed by some simple alge-
bra. We obtain [cf. Eq. (4.44)]

ρ
(n)
j (0; Îα′) = i

n∑

r=1

(−)n−rδα′αr

(∑

v

ηjrvã
σr
v

)
ρ
(n−1);st

j−r

+i
∑

j′
α′∈j′

ãj̄′ρ
(n+1);st
jj′ . (7.13)

Here, ηjv ≡ ησακuv. The nonlocal nature of the cur-
rent operator, Îα′ , is manifested via the dependence of
ρ
(n)
j (0; Îα′) on

{
ρ
(n±1);st
j±

}
. The latter are the steady-

state solutions to DEOM, under a time-independent
bias voltage. The resulting initial

{
ρ
(n)
j (0;α′)

}
of Eq.

(7.13) are then propagated, with the same DEOM, to
obtain

{
ρ
(n)
j (t;α′)

}
. Finally, the electrode-specific cur-

rent correlation function,
〈
Îα(t)Îα′(0)

〉
, is evaluated via

Eq. (7.11).
The current noise spectrum is just the Fourier trans-

form of
〈
δÎα(t)δÎα′ (0)

〉
, where δÎα ≡ Îα − Ist

α . Based on
accurate DEOM evaluations, we have recently investi-
gated current noise spectra, for single-impurity Anderson
model systems, in several typical transport regimes [23].
Besides the characteristic Kondo feature, we have also
identified the signatures of anti-Stokes and destructive
interference [23].

7.4 DEOM in Heisenberg prescription

The dissipatons-space for open quantum systems refers
to the linearity of the DEOM formalism, which can be
either bosonic [Eq. (3.24)] or fermionic [Eq. (4.45)]. Both
are of linear form,

ρ̇(t) = −iL(t)ρ(t). (7.14)

Here, L(t) is specified by the closed set of DEOM, for
either bosonic or fermionic DDOs. We adopt the generic
form of ρ ≡ {

ρ
(n)
n

}
, as highlighted in Eq. (2.3), where

{ρ(n�L)
n (t)} are governed by Eq. (7.14), but ρ(L+1)

n (t)
are expressed separately via Eq. (3.45) or (4.50). In
other words, the complete DEOM theory is truly for
{ρ(n�L+1)
n (t)}. This will become transparent with the

Heisenberg prescription of DEOM [cf. Eq. (7.19)], which
explicitly includes the EOM for the Heisenberg counter-
part to ρ(L+1)

n (t).
The Heisenberg picture goes with a time-independent

L. It reads
˙̂
A(t) = −iÂ(t)L, (7.15)

with the initial conditions Â(0) ≡ {
Â

(n)
n

}
and the

DEOM-space dynamical variables, such as those of Eqs.
(7.6) and (7.10). As to be detailed below, Eq. (7.15) is
actually a closed set equations for

{
Â

(n�L+1)
n (t)

}
.

In the following derivation, we adopt the convention, in
which DEOM-space states and dynamical variables are
denoted with |ρ〉〉 and 〈〈Â|, respectively. The DEOM-
space inner product then follows

〈〈Â|ρ〉〉 ≡
∑

n

〈〈
Â(n)
n |ρ(n)

n

〉〉 ≡
∑

n

trS

[
Â(n)
n ρ(n)

n

]
. (7.16)

It demands that the Heisenberg picture and Schrödinger
picture be equivalent:

〈〈 ˙̂
A|ρ〉〉 = 〈〈Â|ρ̇〉〉. (7.17)

For fermionic DEOM (4.45), it demands

〈〈 ˙̂
A|ρ〉〉 ≡

∑

{n;j}

〈〈 ˙̂
A

(n)

j

∣
∣ρ(n)
j

〉〉

=
∑

{n;j}

{
− 〈〈

Â
(n)
j

∣
∣(iL + γ

(n)
j

)∣∣ρ(n)
j

〉〉

−i
n∑

r=1

(−)n−r
〈〈
Â

(n)
j

∣
∣Cjr |ρ(n−1)

j−r

〉〉

−i
∑

j

〈〈
Â

(n)
j

∣∣Aj̄

∣∣ρ(n+1)
jj

〉〉
}
. (7.18)

Together with the identity, ρ(n)
j = (−)n−rρ(n)

j−r jr
, and the

derivative-resum scheme, Eq. (4.49) in the Schrödinger
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picture truncation, we finally obtain

˙̂
A

(n�L)

j = −Â(n)
j

(
iL + γ

(n)
j

)
− i

∑

j

Â
(n+1)
jj Cj

−i
n∑

r=1

(−)n−rÂ(n−1)

j−r
Aj̄r , (7.19a)

and

˙̂
A

(L+1)

jj = −i
∑

j

Â
(L)
j Aj̄ . (7.19b)

The Grassmannian superoperators, Aj and Cj , preserve
〈〈(
Â

(n)
j O)∣∣ρ(n)

j

〉〉
=

〈〈
Â

(n)
j

∣
∣(Oρ(n)

j

)〉〉
. (7.20)

It results in Â
(n)
j Aj = [Â(n)

j , âj]±, with the even (+)
or odd (−) fermionic parity that is exclusively dictated
by its ρ(n)

j counterpart; see Eq. (4.46). Apparently, Eq.
(7.20) also includes the trivial case that ÂL = [Â,HS],
where Lρ = [HS, ρ].

Now, we return to the invariance issue of the prescrip-
tions, in relation to the truncation schemes. Evidently,
the derivative-resum scheme of Eq. (4.49) and its equiva-
lent in Eq. (4.50) lead to the terminal DEOM (7.19b) and
(4.51), in the Heisenberg and Schrödinger prescriptions,
respectively. In other words, the derivative-resum scheme
preserves the invariance of the prescriptions. All other ex-
isting schemes explicitly set all or some

{
ρ
(n>L)
j

}
to be

zeroes. Those
{
ρ
(L+1)
j = 0

}
would just affect the Â(L−1)

jj -

term in Eq. (7.19a), rather than the Â(L+1)
jj -term. None

of the
{
ρ
(n>L)
j = 0

}
-based schemes are formally trans-

ferable indifferent prescriptions. The derivative-resum
scheme is the only one that maintains the invariance.
The setup of Eqs. (4.49) and (4.50), which are the sim-
plest derivative pair from Eq. (4.47), is also found to be
the best [32].

7.5 Efficient evaluation of nonlinear correlation
functions

The main usage of the Heisenberg DEOM prescription is
concerned with an efficient evaluation of nonlinear cor-
relation functions, such as

R(t2, t1) ≡
〈
B̂(0)Â(t1 + t2)B̂(t1)

〉

= 〈〈Â∣
∣e−iLTt2B̂>e−iLTt1B̂<

∣
∣ρst

T 〉〉
= 〈〈Â∣∣e−iLTt2B̂>e−iLTt1

∣∣(ρst
T B̂

)〉〉
= 〈〈Â∣

∣e−iLTt2
∣
∣[B̂ρT(t1; B̂)]〉〉. (7.21)

Here, 〈〈Â|ρT〉〉 ≡ Tr(ÂρT). The second expression fol-
lows immediately, as Â(t) = eiHTtÂe−iHTt = Âe−iLTt

and 〈Â〉 ≡ Tr(Âρst
T ). The third expression in Eq. (7.21)

prepares the initial ρT(t1 = 0; B̂) =
(
ρst

T B̂
)

such that
ρT(t1; B̂) = e−iLTt1ρT(t1 = 0; B̂). The last one pre-
pares ρT(t2 = 0|t1; B̂) = B̂ρT(t1; B̂). One could continue
e−iLTt2 [B̂ρT(t1; B̂)] = ρ̃T(t2; t1; B̂), and evaluate Eq.
(7.21) via R(t2, t1) = 〈〈Â|ρ̃T(t2; t1; B̂)〉〉. The implemen-
tation here is expensive, as it involves the correlated two-
time propagations, both of which are in Schrödinger pre-
scriptions. The implementation of the mixed Heisenberg-
Schrödinger dynamics,

R(t2, t1) = 〈〈Â(t2)
∣
∣ρ̃T(t1; B̂)〉〉, (7.22)

is surely preferred, where the t2-propagation is treated
separately, in terms of Â(t2) the time evolution of the
dynamical variable.

The DEOM-space evaluation of Eq. (7.22) can be ex-
pressed, with the fermionic case for illustration, as

R(t2, t1) = 〈〈Â(t2)
∣
∣ρ̃(t1; B̂)〉〉

=
L+1∑

n=1

∑

j

〈〈
Â

(n)
j (t2)

∣
∣ρ̃(n)
j (t1; B̂)

〉〉
. (7.23)

Here, Â(t) =
{
Â

(n)
j (t)

}
are governed by Eq. (7.19), start-

ing from the initial Â(0) ≡ Â, as illustrated in Eqs. (7.6)
and (7.10).

For ρ̃(t1; B̂), the underlying DEOM is the collection
of Eq. (4.45) for n < L, Eq. (4.51) for n = L, and Eq.
(4.50) for n = L + 1. The evaluation of ρ̃(t1; B̂), as in-
ferred from Eqs. (7.21) and (7.22), can be summarized
with the following correspondences,

ρst
T =⇒ ρst,

ρst
T B̂ =⇒ ρ(0; B̂),

e−iLTt1(ρst
T B̂) =⇒ ρ(t1; B̂),

B̂ρT(t1; B̂) =⇒ ρ̃(t1; B̂). (7.24)

The four associated evaluations are as follows: (i) Cal-
culate ρst =

{
ρ
(n);st
j

}
via the steady-state solutions to

the DEOM; (ii) Express ρ(t1 = 0; B̂) in terms of ρst,
as exemplified by Eqs. (7.7) and (7.13); (iii) Propagate
ρ(t1; B̂) with the DEOM; (iv) Same as (ii) above, but
for ρ̃(t1; B̂) to be expressed in terms of ρ(t1; B̂).

Note that (ii) and (iv) above are to set the DEOM-
space correspondences to B̂<ρst

T = ρT(t1 = 0; B̂) and
B̂>ρT(t1; B̂) = ρT(t2 = 0|t1; B̂), respectively. For the
local system operator, B̂S, both correspondences above
are straightforward, according to Eqs. (7.7) except now
ρ(t1 = 0; B̂S) = ρstB̂S, as the action of B̂<

S is involved.
For the nonlocal operators, such as the transport current
operator Îα demonstrated in Section 7.2, the evaluations
of (ii) and (iv) utilize the generalized Wick’s theorem of
Eq. (4.42) and Eq. (4.41), respectively.
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8 Concluding remarks

We have thoroughly reviewed the DEOM theory, cover-
ing the unified law governing both systems and hybrid
bath environment dynamics, and the underlying theo-
rems and dissipaton algebra. Evidently, the dynamical
variables, the DDOs of Eq. (3.20) or Eq. (4.36), repre-
sent many-dissipaton configurations. All these are essen-
tial ingredients of the DEOM framework.

We also have an optimal DEOM formalism. Besides
minimum basis-set dissipatons (cf. Section 6.2), it also
uses an optimal truncation scheme, the derivative-resum
scheme, for high-order many-dissipaton effects (cf. Sec-
tion 3.5 and Section 4.5). To our knowledge, this resum
scheme is by far the only one that preserves the invari-
ance principle of quantum mechanics prescriptions; see
comments towards the end of Section 7.4. Dissipaton-
configuration-adapted level truncation would also be
possible. Work along this direction is in progress.

From the numerical perspective, DEOM inherits
all virtues of the previously developed HEOM meth-
ods. Some recent advancements have been presented
in Section 6. As a highly accurate method for charac-
terizing strongly-correlated many-body open systems,
DEOM/HEOM is a powerful complement to Kyldish
non-equilibrium Green’s function (NEGF) formalism
[61–65] and the numerical renormalization group (NRG)
method [66. 67]. In particular, for finite or high temper-
ature cases, the NRG method becomes rather expensive
[50], and neither NEGF or NRG is a real-time dynamics
theory. The DEOM/HEOM method is definitely more
than just a quantum impurity solver – it provides a
universal and versatile framework for investigations of
thermodynamic and dynamical properties of open sys-
tems at equilibrium or far from equilibrium. There is
much more to explore and harvest with the DEOM,
and we look forward to reporting further progress and
achievements in the near future.
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sition of Fermi function and Bose function, J. Chem. Phys.

133(10), 101106 (2010)

29. J. Hu, M. Luo, F. Jiang, R. X. Xu, and Y. J. Yan, Padé
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