Numerical methods for multiscale kinetic equations: asymptotic-preserving and hybrid methods

Lecture 2: Asymptotic-preserving schemes (Part I)

Lorenzo Pareschi

Department of Mathematics and Computer Science University of Ferrara, Italy

http://www.lorenzopareschi.com

Beijing Computational Science Research Center, June 7-10, 2017

Lecture 2 Outline

Introduction

- Motivations
- The asymptotic-preserving (AP) property
- Numerical approaches

Implicit-explicit methods

- Computational aspects
- IMEX Runge-Kutta methods
- IMEX Linear Multistep Methods

3 Application to balance laws

- AP property
- Stability and accuracy
- Numerical examples

Concluding remarks

Motivations

Intermediate Experimental Vehicle - ESA

- Design of spacecraft heat shields
- Hypersonic cruise vehicles
- Granular gases

• . . .

NASA Mars Science Laboratory

One of the most challenging phases of any space-planetary discovery mission is the stage of *hypersonic entering* into a planet's atmosphere. For the earth, reentry velocities range between 7.7 to 15 km/s.

- The spacecraft is exposed to various physical processes that is engendered by the synthesis of chemical kinetics, radiation physics, quantum mechanics and ablation effects with fluid dynamics.
- Due to the high altitude circumstances, the flow-regime characteristics are affected by the *breakdown of the continuum assumption*, which makes it impossible to simulate these cases with conventional CFD routines.
- Typically a model for a mixture of reacting gases is solved by DSMC (altitudes of 200 to 85 km) and coupled with a CFD solver for the *compressible Navier-Stokes equations* at low altitude (in the range 95 to 65 km)¹.

¹G. Bird '94; J.N. Moss, C.E. Glassy, F.A. Greenez '06

Multiscale physics

The asymptotic-preserving (AP) property

- Numerically resolving the small scales may be computationally prohibitive and therefore one resorts on the use of some asymptotic analysis in order to derive *reduced models* which are valid in the small scales regime.
- Thus a *multi-physics* approach, that hybridizes the different models (and numerical methods) in a *domain-decomposition* framework, becomes necessary. This matching, however, is often very difficult.
- A different approach for such multiscale problems is the *asymptotic-preserving (AP)* method. The basic idea is to preserve the asymptotic procedure that lead to the reduced model in a discrete setting².
- The design of AP schemes needs special care for both time and space discretizations, but often, since we deal with *stiff problems*, the time discretization is more crucial.

²E.W. Larsen, J.E. Morel, W.F. Miller '87; F. Coron '91; S. Jin '99; L. P., G. Russo '11; P. Degond '11; G. Dimarco, L. P. '15

A simple illustrative example

A simple prototype example of *relaxation system* is given by³

Jin-Xin relaxation system

$$P^{\varepsilon}: \begin{cases} \partial_t u + \partial_x v = 0, \\ \partial_t v + a \partial_x u = -\frac{1}{\varepsilon} (v - f(u)), \end{cases} \quad (x, t) \in \mathbb{R} \times \mathbb{R}_+$$

The characteristic speeds are $\pm\sqrt{a}$. It corresponds to the original system in the *fluid* scaling: $t \to t/\varepsilon$, $x \to x/\varepsilon$. As $\varepsilon \to 0$ we get the *local equilibrium* v = f(u) and we obtain

$$P^0: \quad \partial_t u + \partial_x f(u) = 0.$$

Using the Chapman-Enskog expansion $v = f(u) + \varepsilon v_1$, under the subcharacteristic condition a > |f'(u)|, we obtain at $O(\varepsilon)$

$$\partial_t u + \partial_x f(u) = \varepsilon \partial_x \left((a^2 - f'(u)^2) \partial_x u \right).$$

³S.Jin, Z.Xin '95

The Boltzmann equation in the fluid-dynamic scaling The density $f = f(x, v, t) \ge 0$ of particles follows

Kinetic model

$$\frac{\partial f}{\partial t} + v \cdot \nabla_x f = \frac{1}{\varepsilon} Q(f), \quad x \in \Omega \subset \mathbb{R}^{d_x}, v \in \mathbb{R}^3,$$

which is written in this form after the scaling $x \to x/\varepsilon$, $t \to t/\varepsilon$ where $\varepsilon > 0$ is a nondimensional parameter (*Knudsen number*) proportional to the mean free path.

- As $\varepsilon \to 0$ formally Q(f) = 0 which implies f = M[f]. Therefore, the associated moment system is closed and corresponds to the *compressible Euler equations*. This result is independent of the choice of Q(f) provided it admits Maxwellian as local equilibrium functions.
- For small but non zero values of ε, closed evolution equations for the moments can be derived by the Chapman-Enskog expansion f = M[f] + εf₁. This leads to the compressible Navier-Stokes equations as a second order approximation in ε to the Boltzmann equation ⁴. The choice of Q(f) influences the Navier-Stokes system in terms of the Prandtl number.

⁴F.Golse '05

The AP diagram

In the diagram P^{ε} is the original singular perturbation problem and $P_{\Delta t}^{\varepsilon}$ its numerical approximation characterized by a discretization parameter Δt . The *asymptotic-preserving* (AP) property corresponds to the request that $P_{\Delta t}^{\varepsilon}$ is a good (consistent and stable) discretization of P^0 as $\varepsilon \to 0$.

Numerical approaches

• The simplest approach is based on *splitting methods* where we solved separately the subproblems

$$\frac{\partial f}{\partial t} = \frac{1}{\varepsilon}Q(f), \qquad \frac{\partial f}{\partial t} + v \cdot \nabla_x f = 0.$$

Easy to analyze and achieve AP property, possible to use existing solvers for the simplified problems and to preserve some relevant physical properties. Main drawback: order reduction in stiff regimes.

- Different approaches to achieve high-order AP schemes
 - IMEX Runge-Kutta methods
 - IMEX linear multistep methods
 - Exponential methods
- All the different approaches share the difficulty of the inversion of the collision operator if evaluated implicitly.

The Implicit-Explicit (IMEX) paradigm

Consider a systems of differential equations in the form

where \mathcal{F} and \mathcal{G} , eventually obtained as finite-difference/element approximations of spatial derivatives, induce considerably different time scales.

- Fully explicit solvers suffer from a time step restriction induced by the stiff term *G*. Since the problem is stiff as a whole implicit methods should be used.
- Fully implicit solvers, however, originate a nonlinear system of equations involving also the non stiff term \mathcal{F} .
- One may combine different time approximations to resolve stiff and non-stiff terms efficiently. These methods are referred to as Implicit-explicit (IMEX)⁵.
- A related approach, based on Explicit exponential integrators⁶, aim at solving exactly the linear stiff operator while keeping the nonlinear term explicit.

⁵U. Asher, S. Ruth, R. Spiteri, B. Wetton '95,'97; M. Carpenter, C. Kennedy '03; L. P.,

G. Russo '00,'05

⁶M.Hochbruck, A.Ostermann '12, L.P., G. Dimarco '11, L.P., Q. Li '15

Lorenzo Pareschi (University of Ferrara)

Numerical requirements

The combination of the implicit and explicit method should satisfy suitable order conditions. For Runge-Kutta (RK) schemes additional mixed compatibility conditions are required.

Explicit method

- The stability region should be the largest possible.
- Monotonicity requirements

 $||U^{n+1}|| \le ||U^n||, \quad \Delta t \le \Delta t_*$

Strong Stability Preserving (SSP) property⁷.

Implicit method

- Stable for stiff systems, and good damping properties.
- Computationally feasible in term of cost.

► The resulting scheme should be *Asymptotic Preserving (AP)* namely it should be consistent with the model reduction that occur in stiff regimes.

⁷S.Gottlieb, C-W.Shu, E.Tadmor '01, R.Spiteri, S.Ruth, '02

The simplest IMEX-AP scheme

Consider the Jin-Xin relaxation system solved by the simple IMEX scheme

For small values of ε we get the local equilibrium

 $v^{n+1} = f(u^{n+1})$

which substituted into the first equation gives

$$P^0_{\Delta t}: \quad \frac{u^{n+1}-u^n}{\Delta t} + \partial_x f(u^n) = 0.$$

IMEX Runge-Kutta methods⁸

IMEX Runge-Kutta

$$U^{(i)} = U^{n} + \Delta t \sum_{j=1}^{i-1} \tilde{a}_{ij} \mathcal{F}(U^{(j)}) + \Delta t \sum_{j=1}^{\nu} a_{ij} \mathcal{G}(U^{(j)}),$$

$$U^{n+1} = U^{n} + \Delta t \sum_{i=1}^{\nu} \tilde{w}_{i} \mathcal{F}(U^{(i)}) + \Delta t \sum_{i=1}^{\nu} w_{i} \mathcal{G}(U^{(i)}).$$

$$\begin{split} \tilde{A} &= (\tilde{a}_{ij}), \ \tilde{a}_{ij} = 0, \ j \geq i \text{ and } A = (a_{ij}): \ \nu \times \nu \text{ matrices and} \\ \tilde{c} &= (\tilde{c}_1, \dots, \tilde{c}_\nu)^T, \ \tilde{w} = (\tilde{w}_1, \dots, \tilde{w}_\nu)^T, \ c = (c_1, \dots, c_\nu)^T, \ w = (w_1, \dots, w_\nu)^T. \end{split}$$

- For diagonally implicit schemes (DIRK), $a_{ij} = 0$, j > i. They they guarantee that \mathcal{F} is evaluated explicitly.
- Schemes for which $\tilde{w}_j = \tilde{a}_{\nu j}$ and $w_j = a_{\nu j}$, $j = 1, ..., \nu$ are called *globally* stiffly accurate (GSA).

 $^{8}\text{U}.$ Ascher, S. Ruth, R. Spiteri '97, L.P., G. Russo '00

Order conditions

- IMEX-RK schemes are a particular case of *additive Runge-Kutta (ARK)* methods ⁹. Further generalization are also possible ¹⁰.
- Order conditions can be derived using a generalization of Butcher 1-trees to 2-trees.
- If $w_i = \tilde{w}_i$ and $c_i = \tilde{c}_i$ mixed conditions are automatically satisfied. This is not true for higher that third order accuracy

Order	General case	$ ilde{w}_i = w_i$	$\tilde{c} = c$	$ ilde{c}=c$ and $ ilde{w}_i=w_i$
1	0	0	0	0
2	2	0	0	0
3	12	3	2	0
4	56	21	12	2
5	252	110	54	15
6	1128	528	218	78

⁹M. Carpenter, C. Kennedy, '03 ¹⁰A. Sandu, M. Günther '13

Lorenzo Pareschi (University of Ferrara)

Design of IMEX-RK

Start with a *p*-order explicit SSP method and find the DIRK method that matches the order conditions with good damping properties (L-stability).

Second order SSP IMEX-RK

$$U_1 = U^n + \gamma \Delta t \mathcal{G}(U_1)$$

$$U_2 = U^n + \Delta t \mathcal{F}(U^n) + (1 - 2\gamma) \Delta t \mathcal{G}(U_1) + \gamma \Delta t \mathcal{G}(U_2)$$

$$U^{n+1} = U^n + \frac{1}{2} \Delta t (\mathcal{F}(U^n) + \mathcal{F}(U_1)) + \frac{1}{2} \Delta t (\mathcal{G}(U_1) + \mathcal{G}(U_2)),$$

with $\gamma = (1 - \sqrt{2})/2$. Third order SSP IMEX-RK

$$U_{1} = U^{n} + \gamma \Delta t \mathcal{G}(U_{1})$$

$$U_{2} = U^{n} + \Delta t \mathcal{F}(U^{n}) + (1 - 2\gamma) \Delta t \mathcal{G}(U_{1}) + \gamma \Delta t \mathcal{G}(U_{2})$$

$$U_{3} = U^{n} + \frac{1}{4} \Delta t (\mathcal{F}(U^{n}) + \mathcal{F}(U_{1})) + (1/2 - \gamma) \Delta t \mathcal{G}(U_{1}) + \gamma \Delta t \mathcal{G}(U_{3})$$

$$U^{n+1} = U^{n} + \frac{1}{6} \Delta t (\mathcal{F}(U^{n}) + \mathcal{F}(U_{1}) + 4\mathcal{F}(U_{2})) + \frac{1}{6} \Delta t (\mathcal{G}(U_{1}) + \mathcal{G}(U_{2}) + 4\mathcal{G}(U_{3})),$$

with $\gamma = (1 - \sqrt{2})/2$.

IMEX Linear Multistep Methods¹¹

IMEX Linear Multistep

$$U^{n+1} = \sum_{j=0}^{\nu-1} a_j U^{n-j} + \Delta t \sum_{j=0}^{\nu-1} b_j \mathcal{F}(U^{n-j}) + \Delta t \sum_{j=-1}^{\nu-1} c_j \mathcal{G}(U^{n-j}),$$

with starting values U^0, U^1, \ldots, U^n .

- The schemes are characterized by the coefficients $a = (a_0, \ldots, a_{\nu-1})^T$, $b = (b_0, \ldots, b_{\nu-1})^T$, $c = (c_0, \ldots, c_{\nu-1})^T$ and $c_{-1} \neq 0$.
- Methods for which $c_0 = c_1 = \ldots = c_{\nu-1} = 0$ are referred to as implicit-explicit backward differentiation formula, *IMEX-BDF* in short.
- Note that *coupling conditions* in IMEX-LM can be easily satisfied (in contrast to IMEX Runge Kutta methods).
- Stability constraints usually increase with the order of the schemes. A-stable schemes have accuracy $p \leq 2$.

¹¹U.Ascher, S.Ruth, B.Wetton '95, W.Hundsdorfer, S.Ruth '07

Design of IMEX-LMM

Again we can start from an explicit SSP method and find the corresponding implicit method with good damping properties (A(α)-stability). Or we can start from an implicit method (BDF) and use the corresponding explicit scheme.

Second order IMEX-BDF

$$U^{n+1} = \frac{4}{3}U^n - \frac{1}{3}U^{n-1} + \frac{4}{3}\Delta t \mathcal{F}(U^n) - \frac{2}{3}\Delta t \mathcal{F}(U^{n-1}) + \frac{2}{3}\Delta t \mathcal{G}(U^{n+1}).$$

Third order SSP IMEX-LM

$$\begin{split} U^{n+1} &= \frac{3909}{2048} U^n - \frac{1367}{1024} U^{n-1} + \frac{873}{2048} U^{n-2} \\ &+ \frac{18463}{12288} \Delta t \mathcal{F}(U^n) - \frac{1271}{768} \Delta t \mathcal{F}(U^{n-1}) + \frac{8233}{12288} \Delta t \mathcal{F}(U^{n-2}) \\ &+ \frac{1089}{2048} \Delta t \mathcal{G}(U^{n+1}) - \frac{1139}{12288} \Delta t \mathcal{G}(U^n) - \frac{367}{6144} \Delta t \mathcal{G}(U^{n-1}) + \frac{1699}{12288} \Delta t \mathcal{G}(U^{n-2}). \end{split}$$

Hyperbolic relaxation systems

Consider the case of hyperbolic relaxation systems¹²

Hyperbolic system with relaxation (Full model)

$$\partial_t U + \partial_x F(U) = \frac{1}{\varepsilon} R(U), \quad (x,t) \in \mathbb{R} \times \mathbb{R}_+.$$

 $R: \mathbb{R}^N \to \mathbb{R}^N$ is a relaxation operator if there exists a $n \times N$ matrix Q with $\operatorname{rank}(Q) = n < N$ s.t. $QR(U) = 0 \quad \forall \ U \in \mathbb{R}^N$. This gives n conserved quantities u = QU that uniquely determine a local equilibrium $U = \mathcal{E}(u)$, s.t. $R(\mathcal{E}(u)) = 0$, and satisfy

 $\partial_t(QU) + \partial_x(QF(U)) = 0.$

As $\varepsilon \to 0 \Rightarrow R(U) = 0 \Rightarrow U = \mathcal{E}(u) \Rightarrow$ (subcharacteristic condition on f(u))

Equilibrium system (Reduced model)

 $\partial_t u + \partial_x f(u) = 0, \qquad f(u) = QF(\mathcal{E}(u)).$

¹²G.Chen, D.Levermore, T.P.Liu, '94

AP property

In the case of hyperbolic system with relaxation we have the following result ¹³

Theorem (IMEX-RK)

If det $A \neq 0$ then in the limit $\epsilon \to 0$, the IMEX-RK scheme applied to an hyperbolic system with relaxation becomes the explicit RK scheme characterized by $(\tilde{A}, \tilde{w}, \tilde{c})$ applied to the limit system of conservation laws.

- To satisfy $\det A \neq 0$ it is necessary that $c \neq \tilde{c}$ (Type A schemes).
- The simplification assumption $c = \tilde{c}$ is possible if the matrix A can be written as (Type CK schemes)

 $\left(\begin{array}{cc} 0 & 0 \\ a & \hat{A} \end{array}\right)$

with $\det(\hat{A}) \neq 0$ where \hat{A} is a $(\nu - 1) \times (\nu - 1)$ submatrix of A. However, the corresponding scheme may be inaccurate if the initial condition is not "well prepared" (initial layer).

¹³L.Pareschi, G.Russo, '05

AP property

In the case of IMEX-LM methods one has the following result ¹⁴

Theorem (IMEX-LM)

For arbitrary initial steps in the limit $\varepsilon \to 0$ an IMEX-BDF scheme $(w_j = 0, j = 0, \dots, s - 1)$ after s time steps becomes the explicit multistep scheme characterized by $a_j, \tilde{w}_j, j = 0, \dots, s - 1$ applied to the limit system of conservation laws.

- Note that, if the initial steps are well-prepared it can be shown that any IMEX-LM scheme satisfy the above theorem.
- Of course, both for IMEX-RK and IMEX-LM these AP results do not guarantee any stability property of the method for fixed but non zero *ε*.

¹⁴G. Dimarco, L.Pareschi, '15

Stability

The A-stability of a IMEX scheme may be studied using the problem¹⁵

Test problem $u' = \lambda u + \mu u, \quad u(0) = 1, \quad \lambda, \mu \in \mathbb{C}.$

This test problem characterizes the stability properties for linear systems

 $U' = A U + B U, \quad U(0) = U_0$

only if A and B are normal, commuting matrices. In general the two matrices do not share the same eigenvectors, and can not be diagonalized simultaneously. This makes the stability analysis for systems very difficult.

▶ Recent nonlinear stability and contractivity results by Higueras et al. '04-'09, Sandu and Günther '13, L.P. and Dimarco '13.

¹⁵U.Asher, S.Ruuth, R.Spiteri '97, J.Frank, W.Hundsdorfer, J.Verwer '97, L.P., G.Russo '00

Accuracy

Simple uniform error estimates can be based on the following argument. If $P_{\Delta t}^{\varepsilon}$ is a *p*-order approximation of P^{ε} then classical analysis gives

$$E_1 = \|P_{\Delta t}^{\varepsilon} - P^{\varepsilon}\| = O(\Delta t^p / \varepsilon^r), \quad 1 \le r \le p.$$

The AP-property typically gives

 $\|P^{\varepsilon}_{\Delta t} - P^0_{\Delta t}\| = O(\varepsilon), \quad \|P^0_{\Delta t} - P^0\| = O(\Delta t^p).$

From the previous estimates one gets immediately

 $E_2 = \|P_{\Delta t}^{\varepsilon} - P^{\varepsilon}\| = O(\varepsilon + \Delta t^p).$

Taking the minimum between E_1 and E_2 one gets the *uniform estimate* ¹⁶

 $\|P_{\Delta t}^{\varepsilon} - P^{\varepsilon}\| = O(\Delta t^{p/(r+1)}).$

¹⁶F.Golse, S.Jin, D.Levermore '99

A numerical example

with ε is the mean free path. The dynamical variables ρ and m are the density and the momentum respectively, while z represents the flux of momentum. In the relaxation limit $\varepsilon \to 0$ we obtain

$$\begin{split} \partial_t \rho + \partial_x m &= 0 \\ \partial_t m + \frac{1}{2} \partial_x \left(\rho + \frac{m^2}{\rho} \right) &= 0 \end{split}$$

Accuracy test for IMEX-RK schemes with smooth initial data and periodic b.c.
 Shock test for IMEX-RK schemes.

Space discretizations

- We can adopt any finite difference/volume or spectral method to approximate the *spatial derivatives*, and use the standard (linear) stability analysis.
- In presence of *shocks and discontinuities* this stability analysis is not sufficient (nonlinear problems can develop discontinuous solutions in finite time even starting from a smooth solution).
- Build spatial discretizations which capture the shock structure and that satisfy some nonlinear stability properties. These methods include *total* variation diminishing (TVD) schemes and essentially non-oscillatory (ENO) or weighted ENO (WENO) schemes¹⁷.

¹⁷A. Harten '87, T.Chan, X-D.Liu, S.Osher '94, G-S.Jang, C-W.Shu '95

ε	1.0	10^{-1}	10^{-2}	10^{-3}	10^{-4}	10^{-5}	10^{-6}			
Scheme	Convergence rates for ρ									
IMEX-ARS	2.018	1.513	1.159	1.165	1.165	1.165	1.165			
IMEX-SSP2	2.042	2.054	2.051	2.053	2.043	2.042	2.042			
IMEX-ARSF	2.044	2.074	2.007	1.982	2.042	2.040	2.040			
IMEX-SSP2F	2.050	2.064	2.061	2.065	2.056	2.055	2.055			
IMEX-ARS3	2.963	3.013	2.982	2.860	2.482	2.060	2.044			
IMEX-BHR	3.119	2.994	2.930	3.117	3.146	3.211	3.187			
Convergence rates for z										
IMEX-ARS	1.950	1.438	1.114	1.121	1.121	1.121	1.121			
IMEX-SSP2	2.027	2.045	1.965	1.501	1.309	1.302	1.302			
IMEX-ARSF	2.031	2.174	1.762	1.596	2.061	2.040	2.039			
IMEX-SSP2F	2.036	2.034	2.038	2.368	2.127	2.052	2.051			
IMEX-ARS3	2.982	2.970	2.471	2.386	2.041	2.003	1.999			
IMEX-BHR	3.050	2.921	2.780	3.539	3.200	3.019	3.016			

Relative error for different second and third order IMEX-RK schemes for the Broadwell equations with $\epsilon = 1$. Left: no initial layer. Right: initial layer.

Relative error for different second and third order IMEX-RK schemes for the Broadwell equations with $\epsilon = 10^{-3}$. Left: no initial layer. Right: initial layer.

Relative error for different second and third order IMEX-RK schemes for the Broadwell equations with $\epsilon = 10^{-6}$. Left: no initial layer. Right: initial layer.

Shock test

Numerical solution for second and third order SSP IMEX-RK schemes for the Broadwell equations with $\epsilon=1$

Shock test

Numerical solution for second and third order SSP IMEX-RK schemes for the Broadwell equations with $\epsilon=10^{-3}$

Shock test

Numerical solution for second and third order SSP IMEX-RK schemes for the Broadwell equations with $\epsilon=10^{-6}$

Concluding remarks

- *IMEX-schemes* represent a powerful tool for the discretization of multiscale partial differential equations, for example where convection and stiff sources/diffusion are present.
- Other than the AP property, an *efficient implicit solver* is also one of the main ingredients in an IMEX scheme.
- They represent an alternative/complementary approach to domain-decomposition methods. The basic principles can be applied to any PDE where there is the presence of *multiple time/space-scales*.

• Main problem

How can we extend the previous approaches to the challenging case of the full Boltzmann equation, where the inversion of the stiff collision operator is computationally prohibitive?