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Kinetic equations Levels of description

Levels of description
Interacting particle systems are ubiquitous in nature: gases, fluids, plasmas,
solids (metals, semiconductors or insulators), vehicles on a road, economic
agents can be considered as interacting particle systems.

I.Newton L.Euler

Particle systems can be described at the microscopic level by particle
dynamics (Newton’s equations) describing the individual motions of the
particles. Particle dynamic may be impossible to use, due to the large
number of equations that must be solved simultaneously.
At the macroscopic level models (such as the Euler or Navier-Stokes
equations) describe averaged quantities, local density, mean velocity,
pressure... These models are based on equilibrium assumptions which may
not be valid everywhere (or may even not be known in analytical form in
some cases).
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Kinetic equations Levels of description

Levels of description

There is a need to bridge the gap between particle dynamics and macroscopic
models, by introducing an intermediate step between particle systems and
macroscopic models: the so-called kinetic/mesoscopic level.

I.Newton L.Boltzmann L.Euler

These kind of models, characterized by mean field and Boltzmann equations,
represent a way of describing the time evolution of a system consisting of a
large number of particles by means of a quantity, the distribution function,
which is the density of particles in phase-space (say position and velocity).

Due to the high number of dimensions and their intrinsic physical properties,
the construction of numerical methods represents a challenge and requires a
careful balance between accuracy and computational complexity.
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Kinetic equations Levels of description

Microscopic, mesoscopic and macroscopic levels
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Kinetic equations Microscopic particle dynamics

Microscopic particle dynamics
Let us consider N interacting particles and denote their positions and velocities by
xi(t) and vi(t) with i = 1, . . . , N . Newton’s equations reads

Newton’s equations

ẋi = vi, v̇i = Fi(x1, . . . , xN ),

where Fi(x1, . . . , xN ) is the force exerted on the i-th particle by the other
particles and by external forces.
We shall consider forces which derive from an interacting potential

Fi = −∇xi
Φ(x1, . . . , xN )

where Φ(x1, . . . , xN ) is a scalar potential function.
For forces originated from binary interactions the potential Φ is given by

Φ(x1, . . . , xN ) =
1

2

∑
j 6=k

Φint(xj − xk) +
∑
j

Φext(xj)

with Φint(x) the interaction potential and Φext(x) the external potential.
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Kinetic equations Microscopic particle dynamics

Microscopic particle dynamics

The force is then given by

Fi(x1, . . . , xN ) =
1

2

∑
k 6=i

Fint(xi − xk) +
∑
k

Fext(xk)

with Fint = −∇Φint the interaction force and Fext = −∇Φext the external force.
Often, one considers that the binary interaction is well described by a central force
with inverse power law Fint(x) = Fint(|x|) with

Fint(r) = C
1

rs
x

r
, r = |x|.

The description of particle systems by Newton’s equation of motion is the most
fundamental one. However, for systems composed by large number of particles,
Newton’s equations are intractable from a numerical point of view, and bring little
intuition on how a large particle system behaves.
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Kinetic equations Microscopic particle dynamics

Kinetic level

Kinetic models intend to describe large particle systems by means of a
nonnegative distribution function

f(x, v, t) ≥ 0.

This object represents a number density in phase space, i.e. f(x, v, t)dxdv is the
number of particles at time t in a small volume dxdv about the point (x, v).
Macroscopic quantities (mass, momentum, energy) can be recovered taking
moments of f

ρ(x, t) =

∫
R3

f dv, ρu(x, t) =

∫
R3

f v dv, E(x, t) =
1

2

∫
R3

f v2 dv.

A thorough treatment of the derivation of kinetic models is beyond the scope of
our discussion. We recall some of the basic ideas that lead to the two models that
can be considered as prototypes for the development of the numerical methods,
the Vlasov mean-field equation and the Boltzmann equation.
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Kinetic equations Microscopic particle dynamics

Non-interacting particles
To obtain the equation satisfied by f , it is easier to consider first the case of
non-interacting particles Fint = 0. In such a situation, all particles issued from the
same point (x, v) of phase-space follow the same trajectory

Ẋ = V V̇ = Fext(X, t).

Furthermore, since the vector field (v, Fext(x, t)) is divergence-free (in phase
space), the volume element dxdv does not change along the solutions.
It follows that f satisfies

d

dt
f(X(t), V (t), t) = 0.

Applying the chain rule, we get

Free transport Vlasov equation

∂f

∂t
+ v · ∇xf + Fext(x, t) · ∇vf = 0.
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Kinetic equations Mean-field equations

Mean-field interacting particles
In the case of particles interacting through a smooth potential in absence of
external forces Fext = 0, we obtain

Vlasov mean-field equation

∂f

∂t
+ v · ∇xf + Fm · ∇vf = 0,

where Fm is the mean-field force given by

Fm(t) =

∫
R3×R3

Fint(x− y)f(y, v, t) dv dy =

∫
R3

Fint(x− y)ρ(y, t) dy.

Typically we shall restrict to internal forces which derive from an interaction
potential Φint so that Fint = −∇xΦint, and therefore Fm can also be written as

Fm = −∇xΦm, Φm =

∫
R3

Φint(x− y)ρ(y) dy.
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Kinetic equations Mean-field equations

Vlasov-Poisson systems
One of the most important examples for applications is the Coulomb potential

Φi(x) =
q

4πr
, r = |x|,

where q = 1 corresponds to the repulsive case (like e.g. the electrostatic
interaction) and q = −1 to the attractive case (like e.g. gravitation).
Then ∆Φi(x) = −qδ(x), where δ(x) is the delta distribution at 0 and

∆Φm(x, t) =

∫
R3

∆Φi(x− y)ρ(y, t) dy = −qρ(x, t).

We obtain

Vlasov-Poisson system

∂f

∂t
+ v · ∇xf −∇xΦm · ∇vf = 0,

∆Φm(x, t) = −qρ(x, t).

In the case of negative charged particles in a uniform neutralizing background the
Poisson equation reads

∆Φm(x, t) = 1− ρ(x, t).
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The Boltzmann equation The collision operator

Hard-sphere dynamic
The Boltzmann equation is the fundamental model for the kinetic description of a
dilute gas. The classical hard sphere case considers particles as solid spheres of
diameter d which do not interact as long as they do not enter in contact.
In contrast with the Vlasov description, the interaction potential is non smooth

Fint(x− x∗) = 0 , ∀x, x∗ s.t.|x− x∗| > d,

where (x, v) and (x∗, v∗) are the centers and velocities of the two spheres. When
|x− x∗| = d, the spheres undergo a collision and the collision instantaneously
changes the velocities to v′ and v′∗.

Hard sphere collision. Here n = (x∗ − x)/d.
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The Boltzmann equation The collision operator

Colliding particles
The collision mechanism must satisfy:

(i) Conservation of momentum: v + v∗ = v′ + v′∗ .

(ii) Conservation of energy: v2 + v2∗ = v′
2

+ v′∗
2
.

(iii) From conservation of momentum and energy, we have a system of 4 scalar
equations for 6 scalar unknowns. Then it is natural to expect that its
solutions can be defined in terms of 2 parameters.
Using the unit vector n, by conservation of angular momentum (spheres are
not rotating), we can represent this solution in the form

v′ = v − ((v − v∗) · n)n , v′∗ = v∗ + ((v − v∗) · n)n .

Another common way to parametrize this solution is

v′ =
1

2
(v + v∗ + |v − v∗|ω), v′∗ =

1

2
(v + v∗ − |v − v∗|ω)

where now ω is the unit vector

ω = g − 2(g · n)n, g =
v − v∗
|v − v∗|

.
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The Boltzmann equation The collision operator

The collision operator

Note that in the absence of collisions all particles issued form the same point
(x, v) follows the same trajectory

Ẋ = V , V̇ = 0 ,

and consequently, the distribution function f is invariant along the particle paths.
To take into account collisions, one introduces a quantity denoted by Q(f)
modeling the rate of change of f due to collisions. This leads to

d

dt
f(X(t), V (t), t) =

(
∂f

∂t
+ v · ∇xf

)
|(X(t),V (t),t) = Q(f)|(X(t),V (t),t) .

Q(f) is called the collision operator.
A kinetic equation for colliding hard spheres should therefore be written as

∂f

∂t
+ v · ∇xf = Q(f) .
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The Boltzmann equation The collision operator

The collision operator

In this case the interaction operator has a bilinear structure, Q = Q(f, f) and is
obtained in the Boltzmann-Grad limit where the number of particles N →∞,
d→ 0 in such a way that Nd2 is kept constant. In this limit, the collision
operator converges to1

Hard spheres collision operator

Q(f, f)(x, v, t) =

∫
IR3

∫
S2
|v − v∗|[f(v′)f(v′∗)− f(v)f(v∗)] dω dv∗.

The operator may be decomposed in two terms

Q(f, f) = Q+(f, f)−Q−(f, f) .

The loss term Q− models the decay of f(x, v) due to particles of velocity v
changing to velocity v′ during a collision, while the gain term Q+ describes the
increase of f(x, v) due to particles changing from any other velocity to v.

1L.Boltzmann, 1872 - J.C. Maxwell, 1867 - C.Cercignani, 1988 - C.Cercignani, R.Illner,
M.Pulvirenti, 1995
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The Boltzmann equation The collision operator

More general interactions

Although a mathematical theory is still lacking, the Boltzmann equation is often
used in connection with smooth potentials. Formally, for interactions forces
described by an inverse power law we have the Boltzmann collision operator

General collision operator

Q(f, f)(v) =

∫
R3

∫
S2
B(v, v∗, ω)[f(x, v′)f(x, v′∗)− f(x, v)f(x, v∗)] dω dv∗.

The collision kernel B(v, v∗, ω) for inverse s-th power forces reads

B(v, v∗, ω) = bα(cos θ)|v − v∗|α, α = (s− 5)/(s− 1), cos θ =
(v − v∗)
|v − v∗|

· ω.

For s > 5 we have hard potentials, for 2 < s < 5 we have soft potentials. The
special situation s = 5 gives the Maxell model with B(v, v∗, ω) = b0(cos θ).
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The Boltzmann equation Conservations

Conservations
The collision operator preserves mass, momentum and energy∫

R3

Q(f, f)φ(v) dv = 0, φ(v) = 1, vx, vy, vz, |v|2,

and in addition it satisfies

H-theorem ∫
R3

Q(f, f) ln(f(v))dv ≤ 0.

The above properties are a consequence of the following identity that can be
easily proved for any test function φ(v)∫
R3

Q(f, f)φ(v) dv = −1

4

∫
R6

∫
S2
B(v, v∗, ω)[f ′f ′∗−ff∗][φ′+φ′∗−φ−φ∗] dω dv∗ dv.

where we have omitted the explicit dependence from x and v, v∗, v
′, v′∗.

In order to prove this identity we used the micro-reversibility
B(v, v∗, ω) = B(v∗, v, ω) and the fact that the Jacobian of the transformation
(v, v∗)↔ (v′, v′∗) is equal to 1.
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The Boltzmann equation Conservations

Collision invariants
A function φ such that

φ(v′) + φ(v′∗)− φ(v)− φ(v∗) = 0

is called a collision invariant. It can be shown that a continuous function φ is a
collision invariant if and only if φ ∈ span{1, v, |v|2} or equivalently

φ(v) = a+ b · v + c|v|2, a, c ∈ R, b ∈ R3.

Assuming f strictly positive, for φ(v) = ln(f(v)) we obtain∫
R3

Q(f, f) ln(f)dv

= −1

4

∫
R6

∫
S2
B(v, v∗, ω)[f ′f ′∗ − ff∗][ln(f ′) + ln(f ′∗)− ln(f)− ln(f∗)] dω dv∗ dv

= −1

4

∫
R6

∫
S2
B(v, v∗, ω)[f ′f ′∗ − ff∗] ln

(
f ′f ′∗
ff∗

)
dω dv∗ dv ≤ 0,

since the function z(x, y) = (x− y) ln(x/y) ≥ 0 and z(x, y) = 0 only if x = y.
In particular the equality holds only if ln(f) is a collision invariant that is

f = exp(a+ b · v + c|v|2), c < 0.
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The Boltzmann equation Maxwellian states

Maxwellian states
If we define the density, mean velocity and temperature of the gas by

ρ =

∫
R3

f dv, u =
1

ρ

∫
R3

vf dv, T =
1

3Rρ

∫
R3

[v − u]2f dv,

we obtain

Maxwellian state

f(v, t) = M(ρ, u, T )(v, t) =
ρ

(2πRT )3/2
exp

(
−|u− v|

2

2RT

)
,

where R = KB/m, KB is the Boltzmann constant and m the mass of a particle.
Boltzmann’s H-theorem implies that any function f s.t. Q(f, f) = 0 is a
Maxwellian. If we define the H-function we have

H(f) =

∫
R3

f ln(f) dv ⇒ ∂

∂t

∫
R3

H(f) dx =

∫
R3

∫
R3

Q(f, f) ln(f) dv dx ≤ 0.

The H-function is monotonically decreasing until f reaches the Maxwellian state.
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The Boltzmann equation Maxwellian states

Hydrodynamic approximations
Integrating the Boltzmann equation against the collision invariants φ(v) yields a
system of macroscopic conservation laws

∂

∂t

∫
R3

fφ(v) dv +∇x
(∫

R3

vfφ(v) dv

)
= 0, φ(v) = 1, v1, v2, v3, |v|2.

The system is not closed since it involves higher order moments of f .
The simplest way to find an approximate closure is to assume f ≈M . Higher
order moments of f can be computed as function of ρ, u, and T and we obtain

Compressible Euler equations

∂ρ

∂t
+∇x · (ρu) = 0

∂ρu

∂t
+∇x · (ρu⊗ u+ p) = 0

∂E

∂t
+∇x · (Eu+ pu) = 0, p = ρT =

2

3
E − 1

3
ρu2.

Other closure strategies, like the Navier-Stokes approach, lead to more accurate
macroscopic approximations of the moment system.
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Other kinetic models One-dimensional models

One-dimensional models

In one-dimension in velocity the collision operator vanishes since imposing
conservation of momentum and energy we have a system of two equations in two
unknowns v′ and v′∗ which has the trivial unique solution v′ = v and v′∗ = v∗.
A model that considers only energy conservation is Kac’s model2 of a Maxwell gas

Q(f, f) =

∫
R

∫ 2π

0

β(θ)[f(v′)f(v′∗)− f(v)f(v∗)]dθ dv∗,

with v′ = v cos(θ)− v∗ sin(θ), v′∗ = v sin(θ) + v∗ cos(θ).
If we assume energy dissipation we have a granular gas model3

Q(f, f) =

∫
R
|v − v∗|[

1

e
f(v′)f(v′∗)− f(v)f(v∗)] dv∗,

with v′ = 1
2 (v + v∗) + 1

2 (v − v∗)e, v′∗ = 1
2 (v + v∗)− 1

2 (v − v∗)e, 0 < e < 1.

2M.Kac, 1959
3D.Benedetto, E.Caglioti, M.Pulvirenti, 1997, Toscani 2000
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Other kinetic models BGK

BGK
A simplified model Boltzmann equation is given by the BGK model4. In this
model the collision operator is replaced by a relaxation operator of the form

BGK operator

QBGK(f, f)(v) = ν(ρ)(M(f)− f)

where M(f) is the Maxwellian and ν(ρ) is the collisional frequency.
Conservation of mass, momentum and energy as well as Boltzmann H-theorem are
satisfied. The equilibrium solutions are Maxwellians

QBGK(f, f) = 0⇔ f = M(f).

The model has the wrong Prandtl number (the ratio between heat conductivity
and viscosity) and therefore incorrect Navier-Stokes limit. Correct Prandtl number
2/3 can be recovered using ν = ν(ρ, v) and Ellipsoidal Statistical BGK (ES-BGK)
models5.

4P.I.Bhatnagar, E.P.Gross, M.Krook, 1954
5F.Bouchut, B.Perthame, 1993 - L.H.Holway, 1966
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Other kinetic models Further Models

Further Models
Quantum models: the nonlinear term f ′f ′∗ − ff∗ is replaced by

f ′f ′(1± f)(1± f∗)− ff∗(1± f ′)(1± f ′∗).
Sign − Pauli operator, Sign + Bose-Einstein operator.

Landau Fokker-Planck models: Coulomb case (α = −3) in plasma physics

QL(f, f)(v) = ∇v ·
∫
IRd

A(v − v∗)[f(v∗)∇vf(v)− f(v)∇v∗f(v∗)] dv∗

where A(z) = Ψ(|z|)Π(z) is a d× d nonnegative symmetric matrix,
Π(z) = (πij(z)) is the orthogonal projection upon the space orthogonal to z,
πij(z) =

(
δij − zizj/|z|2

)
and Ψ(|z|) = Λ|z|, Λ > 0.

Semiconductor models: linear equation for semiconductor devices

QS(f,M) =

∫
σ(v, v∗){M(v)f(v∗)−M(v∗)f(v)} dv∗,

where M is the normalized equilibrium (Maxwellian, Fermi-Dirac) and
σ(v, v∗) describes the interaction of carriers with phonons.
Boltzmann-like models: vehicular traffic flows, social sciences, swarming
models, finance, . . .6

6L.Pareschi, G.Toscani ’13
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Numerical considerations

Numerical challenges
The numerical solution of kinetic equations involves several problems of different
nature. Aside from the high dimensionality of the problem, in general
(x, v, t) ∈ R7, we summarize some of the additional numerical difficulties:

(i) Conservation properties. Physical conservation properties are very impor-
tant since they characterize the steady states. Methods that do not maintain
such properties at the discrete level need special care in practical applications.

(ii) Computational cost. The collision operator may be described by a high
dimensional integral in velocity space at each point x in physical space. In
such cases fast solvers are essential to avoid excessive computational cost.

(iii) Velocity range. The significant velocity range may vary strongly with
space position (steady states are not compactly supported in velocity space
and in some applications may present power law tails). Methods that use a
finite velocity range may be inadequate in some circumstances.

(iv) Presence of multiple scales. In presence of multiple space-time scales
and/or large velocities the kinetic equation becomes stiff. Classical stiff solvers
may be hard to use when we have to invert a very large nonlinear system.
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Numerical considerations

Some final considerations

In these lectures we review some of the main results in this field for deterministic
numerical methods in presence of multiple scales.

The material is mostly based on the recent survey

G. Dimarco, L. Pareschi, Acta Numerica, 2014.

Another class of methods, that we will not cover in the present lectures, is based
on stochastic Monte-Carlo techniques. The most famous example is the Direct
Simulation Monte-Carlo (DSMC) methods 7. Some related topics based on the
use of hybrid stochastic-deterministic methods will be discussed in the last lecture.

7G.Bird ’4, K.Nanbu ’80
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